mir_to_lir.h revision 8dea81ca9c0201ceaa88086b927a5838a06a3e69
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_storage.h"
25#include "dex/backend.h"
26#include "dex/quick/resource_mask.h"
27#include "driver/compiler_driver.h"
28#include "leb128.h"
29#include "safe_map.h"
30#include "utils/array_ref.h"
31#include "utils/arena_allocator.h"
32#include "utils/growable_array.h"
33
34namespace art {
35
36/*
37 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
38 * add type safety (see runtime/offsets.h).
39 */
40typedef uint32_t DexOffset;          // Dex offset in code units.
41typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
42typedef uint32_t CodeOffset;         // Native code offset in bytes.
43
44// Set to 1 to measure cost of suspend check.
45#define NO_SUSPEND 0
46
47#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
48#define IS_BRANCH            (1ULL << kIsBranch)
49#define IS_IT                (1ULL << kIsIT)
50#define IS_LOAD              (1ULL << kMemLoad)
51#define IS_QUAD_OP           (1ULL << kIsQuadOp)
52#define IS_QUIN_OP           (1ULL << kIsQuinOp)
53#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
54#define IS_STORE             (1ULL << kMemStore)
55#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
56#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
57#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
58#define NO_OPERAND           (1ULL << kNoOperand)
59#define REG_DEF0             (1ULL << kRegDef0)
60#define REG_DEF1             (1ULL << kRegDef1)
61#define REG_DEF2             (1ULL << kRegDef2)
62#define REG_DEFA             (1ULL << kRegDefA)
63#define REG_DEFD             (1ULL << kRegDefD)
64#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
65#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
66#define REG_DEF_LIST0        (1ULL << kRegDefList0)
67#define REG_DEF_LIST1        (1ULL << kRegDefList1)
68#define REG_DEF_LR           (1ULL << kRegDefLR)
69#define REG_DEF_SP           (1ULL << kRegDefSP)
70#define REG_USE0             (1ULL << kRegUse0)
71#define REG_USE1             (1ULL << kRegUse1)
72#define REG_USE2             (1ULL << kRegUse2)
73#define REG_USE3             (1ULL << kRegUse3)
74#define REG_USE4             (1ULL << kRegUse4)
75#define REG_USEA             (1ULL << kRegUseA)
76#define REG_USEC             (1ULL << kRegUseC)
77#define REG_USED             (1ULL << kRegUseD)
78#define REG_USEB             (1ULL << kRegUseB)
79#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
80#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
81#define REG_USE_LIST0        (1ULL << kRegUseList0)
82#define REG_USE_LIST1        (1ULL << kRegUseList1)
83#define REG_USE_LR           (1ULL << kRegUseLR)
84#define REG_USE_PC           (1ULL << kRegUsePC)
85#define REG_USE_SP           (1ULL << kRegUseSP)
86#define SETS_CCODES          (1ULL << kSetsCCodes)
87#define USES_CCODES          (1ULL << kUsesCCodes)
88#define USE_FP_STACK         (1ULL << kUseFpStack)
89#define REG_USE_LO           (1ULL << kUseLo)
90#define REG_USE_HI           (1ULL << kUseHi)
91#define REG_DEF_LO           (1ULL << kDefLo)
92#define REG_DEF_HI           (1ULL << kDefHi)
93
94// Common combo register usage patterns.
95#define REG_DEF01            (REG_DEF0 | REG_DEF1)
96#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
97#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
98#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
99#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
100#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
101#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
102#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
103#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
104#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
105#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
106#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
107#define REG_USE012           (REG_USE01 | REG_USE2)
108#define REG_USE014           (REG_USE01 | REG_USE4)
109#define REG_USE01            (REG_USE0 | REG_USE1)
110#define REG_USE02            (REG_USE0 | REG_USE2)
111#define REG_USE12            (REG_USE1 | REG_USE2)
112#define REG_USE23            (REG_USE2 | REG_USE3)
113#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
114
115// TODO: #includes need a cleanup
116#ifndef INVALID_SREG
117#define INVALID_SREG (-1)
118#endif
119
120struct BasicBlock;
121struct CallInfo;
122struct CompilationUnit;
123struct InlineMethod;
124struct MIR;
125struct LIR;
126struct RegLocation;
127struct RegisterInfo;
128class DexFileMethodInliner;
129class MIRGraph;
130class Mir2Lir;
131
132typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
133                            const MethodReference& target_method,
134                            uint32_t method_idx, uintptr_t direct_code,
135                            uintptr_t direct_method, InvokeType type);
136
137typedef std::vector<uint8_t> CodeBuffer;
138
139struct UseDefMasks {
140  const ResourceMask* use_mask;        // Resource mask for use.
141  const ResourceMask* def_mask;        // Resource mask for def.
142};
143
144struct AssemblyInfo {
145  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
146};
147
148struct LIR {
149  CodeOffset offset;             // Offset of this instruction.
150  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
151  int16_t opcode;
152  LIR* next;
153  LIR* prev;
154  LIR* target;
155  struct {
156    unsigned int alias_info:17;  // For Dalvik register disambiguation.
157    bool is_nop:1;               // LIR is optimized away.
158    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
159    bool use_def_invalid:1;      // If true, masks should not be used.
160    unsigned int generation:1;   // Used to track visitation state during fixup pass.
161    unsigned int fixup:8;        // Fixup kind.
162  } flags;
163  union {
164    UseDefMasks m;               // Use & Def masks used during optimization.
165    AssemblyInfo a;              // Instruction info used during assembly phase.
166  } u;
167  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
168};
169
170// Target-specific initialization.
171Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
172                          ArenaAllocator* const arena);
173Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
174                            ArenaAllocator* const arena);
175Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
176                          ArenaAllocator* const arena);
177Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
178                          ArenaAllocator* const arena);
179Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
180                          ArenaAllocator* const arena);
181
182// Utility macros to traverse the LIR list.
183#define NEXT_LIR(lir) (lir->next)
184#define PREV_LIR(lir) (lir->prev)
185
186// Defines for alias_info (tracks Dalvik register references).
187#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
188#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
189#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
190#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
191
192#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
193#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
194  do { \
195    low_reg = both_regs & 0xff; \
196    high_reg = (both_regs >> 8) & 0xff; \
197  } while (false)
198
199// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
200#define STARTING_DOUBLE_SREG 0x10000
201
202// TODO: replace these macros
203#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
204#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
205#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
206#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
207#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
208
209class Mir2Lir : public Backend {
210  public:
211    /*
212     * Auxiliary information describing the location of data embedded in the Dalvik
213     * byte code stream.
214     */
215    struct EmbeddedData {
216      CodeOffset offset;        // Code offset of data block.
217      const uint16_t* table;      // Original dex data.
218      DexOffset vaddr;            // Dalvik offset of parent opcode.
219    };
220
221    struct FillArrayData : EmbeddedData {
222      int32_t size;
223    };
224
225    struct SwitchTable : EmbeddedData {
226      LIR* anchor;                // Reference instruction for relative offsets.
227      LIR** targets;              // Array of case targets.
228    };
229
230    /* Static register use counts */
231    struct RefCounts {
232      int count;
233      int s_reg;
234    };
235
236    /*
237     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
238     * and native register storage.  The primary purpose is to reuse previuosly
239     * loaded values, if possible, and otherwise to keep the value in register
240     * storage as long as possible.
241     *
242     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
243     * this register (or pair).  For example, a 64-bit register containing a 32-bit
244     * Dalvik value would have wide_value==false even though the storage container itself
245     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
246     * would have wide_value==true (and additionally would have its partner field set to the
247     * other half whose wide_value field would also be true.
248     *
249     * NOTE 2: In the case of a register pair, you can determine which of the partners
250     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
251     *
252     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
253     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
254     * value, and the s_reg of the high word is implied (s_reg + 1).
255     *
256     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
257     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
258     * If is_temp==true and live==false, no other fields have
259     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
260     * and def_end describe the relationship between the temp register/register pair and
261     * the Dalvik value[s] described by s_reg/s_reg+1.
262     *
263     * The fields used_storage, master_storage and storage_mask are used to track allocation
264     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
265     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
266     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
267     * change once initialized.  The "used_storage" field tracks current allocation status.
268     * Although each record contains this field, only the field from the largest member of
269     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
270     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
271     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
272     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
273     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
274     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
275     *
276     * For an X86 vector register example, storage_mask would be:
277     *    0x00000001 for 32-bit view of xmm1
278     *    0x00000003 for 64-bit view of xmm1
279     *    0x0000000f for 128-bit view of xmm1
280     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
281     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
282     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
283     *
284     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
285     * held in the widest member of an aliased set.  Note, though, that for a temp register to
286     * reused as live, it must both be marked live and the associated SReg() must match the
287     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
288     * members of an aliased set will share the same liveness flags, but each will individually
289     * maintain s_reg_.  In this way we can know that at least one member of an
290     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
291     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
292     * because it is wide), its aliases s2 and s3 will show as live, but will have
293     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
294     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
295     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
296     * report that v9 is currently not live as a single (which is what we want).
297     *
298     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
299     * to treat xmm registers:
300     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
301     *         o This more closely matches reality, but means you'd need to be able to get
302     *           to the associated RegisterInfo struct to figure out how it's being used.
303     *         o This is how 64-bit core registers will be used - always 64 bits, but the
304     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
305     *     2. View the xmm registers based on contents.
306     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
307     *           be a k64BitVector.
308     *         o Note that the two uses above would be considered distinct registers (but with
309     *           the aliasing mechanism, we could detect interference).
310     *         o This is how aliased double and single float registers will be handled on
311     *           Arm and MIPS.
312     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
313     * mechanism 2 for aliased float registers and x86 vector registers.
314     */
315    class RegisterInfo {
316     public:
317      RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll);
318      ~RegisterInfo() {}
319      static void* operator new(size_t size, ArenaAllocator* arena) {
320        return arena->Alloc(size, kArenaAllocRegAlloc);
321      }
322
323      static const uint32_t k32SoloStorageMask     = 0x00000001;
324      static const uint32_t kLowSingleStorageMask  = 0x00000001;
325      static const uint32_t kHighSingleStorageMask = 0x00000002;
326      static const uint32_t k64SoloStorageMask     = 0x00000003;
327      static const uint32_t k128SoloStorageMask    = 0x0000000f;
328      static const uint32_t k256SoloStorageMask    = 0x000000ff;
329      static const uint32_t k512SoloStorageMask    = 0x0000ffff;
330      static const uint32_t k1024SoloStorageMask   = 0xffffffff;
331
332      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
333      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
334      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
335      // No part of the containing storage is live in this view.
336      bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
337      // Liveness of this view matches.  Note: not equivalent to !IsDead().
338      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
339      void MarkLive(int s_reg) {
340        // TODO: Anything useful to assert here?
341        s_reg_ = s_reg;
342        master_->liveness_ |= storage_mask_;
343      }
344      void MarkDead() {
345        if (SReg() != INVALID_SREG) {
346          s_reg_ = INVALID_SREG;
347          master_->liveness_ &= ~storage_mask_;
348          ResetDefBody();
349        }
350      }
351      RegStorage GetReg() { return reg_; }
352      void SetReg(RegStorage reg) { reg_ = reg; }
353      bool IsTemp() { return is_temp_; }
354      void SetIsTemp(bool val) { is_temp_ = val; }
355      bool IsWide() { return wide_value_; }
356      void SetIsWide(bool val) {
357        wide_value_ = val;
358        if (!val) {
359          // If not wide, reset partner to self.
360          SetPartner(GetReg());
361        }
362      }
363      bool IsDirty() { return dirty_; }
364      void SetIsDirty(bool val) { dirty_ = val; }
365      RegStorage Partner() { return partner_; }
366      void SetPartner(RegStorage partner) { partner_ = partner; }
367      int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
368      const ResourceMask& DefUseMask() { return def_use_mask_; }
369      void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; }
370      RegisterInfo* Master() { return master_; }
371      void SetMaster(RegisterInfo* master) {
372        master_ = master;
373        if (master != this) {
374          master_->aliased_ = true;
375          DCHECK(alias_chain_ == nullptr);
376          alias_chain_ = master_->alias_chain_;
377          master_->alias_chain_ = this;
378        }
379      }
380      bool IsAliased() { return aliased_; }
381      RegisterInfo* GetAliasChain() { return alias_chain_; }
382      uint32_t StorageMask() { return storage_mask_; }
383      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
384      LIR* DefStart() { return def_start_; }
385      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
386      LIR* DefEnd() { return def_end_; }
387      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
388      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
389      // Find member of aliased set matching storage_used; return nullptr if none.
390      RegisterInfo* FindMatchingView(uint32_t storage_used) {
391        RegisterInfo* res = Master();
392        for (; res != nullptr; res = res->GetAliasChain()) {
393          if (res->StorageMask() == storage_used)
394            break;
395        }
396        return res;
397      }
398
399     private:
400      RegStorage reg_;
401      bool is_temp_;               // Can allocate as temp?
402      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
403      bool dirty_;                 // If live, is it dirty?
404      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
405      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
406      int s_reg_;                  // Name of live value.
407      ResourceMask def_use_mask_;  // Resources for this element.
408      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
409      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
410      RegisterInfo* master_;       // Pointer to controlling storage mask.
411      uint32_t storage_mask_;      // Track allocation of sub-units.
412      LIR *def_start_;             // Starting inst in last def sequence.
413      LIR *def_end_;               // Ending inst in last def sequence.
414      RegisterInfo* alias_chain_;  // Chain of aliased registers.
415    };
416
417    class RegisterPool {
418     public:
419      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
420                   const ArrayRef<const RegStorage>& core_regs,
421                   const ArrayRef<const RegStorage>& core64_regs,
422                   const ArrayRef<const RegStorage>& sp_regs,
423                   const ArrayRef<const RegStorage>& dp_regs,
424                   const ArrayRef<const RegStorage>& reserved_regs,
425                   const ArrayRef<const RegStorage>& reserved64_regs,
426                   const ArrayRef<const RegStorage>& core_temps,
427                   const ArrayRef<const RegStorage>& core64_temps,
428                   const ArrayRef<const RegStorage>& sp_temps,
429                   const ArrayRef<const RegStorage>& dp_temps);
430      ~RegisterPool() {}
431      static void* operator new(size_t size, ArenaAllocator* arena) {
432        return arena->Alloc(size, kArenaAllocRegAlloc);
433      }
434      void ResetNextTemp() {
435        next_core_reg_ = 0;
436        next_sp_reg_ = 0;
437        next_dp_reg_ = 0;
438      }
439      GrowableArray<RegisterInfo*> core_regs_;
440      int next_core_reg_;
441      GrowableArray<RegisterInfo*> core64_regs_;
442      int next_core64_reg_;
443      GrowableArray<RegisterInfo*> sp_regs_;    // Single precision float.
444      int next_sp_reg_;
445      GrowableArray<RegisterInfo*> dp_regs_;    // Double precision float.
446      int next_dp_reg_;
447      GrowableArray<RegisterInfo*>* ref_regs_;  // Points to core_regs_ or core64_regs_
448      int* next_ref_reg_;
449
450     private:
451      Mir2Lir* const m2l_;
452    };
453
454    struct PromotionMap {
455      RegLocationType core_location:3;
456      uint8_t core_reg;
457      RegLocationType fp_location:3;
458      uint8_t FpReg;
459      bool first_in_pair;
460    };
461
462    //
463    // Slow paths.  This object is used generate a sequence of code that is executed in the
464    // slow path.  For example, resolving a string or class is slow as it will only be executed
465    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
466    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
467    // branch over them.
468    //
469    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
470    // the Compile() function that will be called near the end of the code generated by the
471    // method.
472    //
473    // The basic flow for a slow path is:
474    //
475    //     CMP reg, #value
476    //     BEQ fromfast
477    //   cont:
478    //     ...
479    //     fast path code
480    //     ...
481    //     more code
482    //     ...
483    //     RETURN
484    ///
485    //   fromfast:
486    //     ...
487    //     slow path code
488    //     ...
489    //     B cont
490    //
491    // So you see we need two labels and two branches.  The first branch (called fromfast) is
492    // the conditional branch to the slow path code.  The second label (called cont) is used
493    // as an unconditional branch target for getting back to the code after the slow path
494    // has completed.
495    //
496
497    class LIRSlowPath {
498     public:
499      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
500                  LIR* cont = nullptr) :
501        m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
502          m2l->StartSlowPath(cont);
503      }
504      virtual ~LIRSlowPath() {}
505      virtual void Compile() = 0;
506
507      static void* operator new(size_t size, ArenaAllocator* arena) {
508        return arena->Alloc(size, kArenaAllocData);
509      }
510
511      LIR *GetContinuationLabel() {
512        return cont_;
513      }
514
515      LIR *GetFromFast() {
516        return fromfast_;
517      }
518
519     protected:
520      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
521
522      Mir2Lir* const m2l_;
523      CompilationUnit* const cu_;
524      const DexOffset current_dex_pc_;
525      LIR* const fromfast_;
526      LIR* const cont_;
527    };
528
529    // Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_.
530    class ScopedMemRefType {
531     public:
532      ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type)
533          : m2l_(m2l),
534            old_mem_ref_type_(m2l->mem_ref_type_) {
535        m2l_->mem_ref_type_ = new_mem_ref_type;
536      }
537
538      ~ScopedMemRefType() {
539        m2l_->mem_ref_type_ = old_mem_ref_type_;
540      }
541
542     private:
543      Mir2Lir* const m2l_;
544      ResourceMask::ResourceBit old_mem_ref_type_;
545
546      DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType);
547    };
548
549    virtual ~Mir2Lir() {}
550
551    int32_t s4FromSwitchData(const void* switch_data) {
552      return *reinterpret_cast<const int32_t*>(switch_data);
553    }
554
555    /*
556     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
557     * it was introduced, it was intended to be a quick best guess of type without having to
558     * take the time to do type analysis.  Currently, though, we have a much better idea of
559     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
560     * just use our knowledge of type to select the most appropriate register class?
561     */
562    RegisterClass RegClassBySize(OpSize size) {
563      if (size == kReference) {
564        return kRefReg;
565      } else {
566        return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
567                size == kSignedByte) ? kCoreReg : kAnyReg;
568      }
569    }
570
571    size_t CodeBufferSizeInBytes() {
572      return code_buffer_.size() / sizeof(code_buffer_[0]);
573    }
574
575    static bool IsPseudoLirOp(int opcode) {
576      return (opcode < 0);
577    }
578
579    /*
580     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
581     * instructions which require PC-relative fixups), we need the operands to carry
582     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
583     * hold that index in the operand array.
584     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
585     * may be worth conditionally-compiling a set of identity functions here.
586     */
587    uint32_t WrapPointer(void* pointer) {
588      uint32_t res = pointer_storage_.Size();
589      pointer_storage_.Insert(pointer);
590      return res;
591    }
592
593    void* UnwrapPointer(size_t index) {
594      return pointer_storage_.Get(index);
595    }
596
597    // strdup(), but allocates from the arena.
598    char* ArenaStrdup(const char* str) {
599      size_t len = strlen(str) + 1;
600      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
601      if (res != NULL) {
602        strncpy(res, str, len);
603      }
604      return res;
605    }
606
607    // Shared by all targets - implemented in codegen_util.cc
608    void AppendLIR(LIR* lir);
609    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
610    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
611
612    /**
613     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
614     * to place in a frame.
615     * @return Returns the maximum number of compiler temporaries.
616     */
617    size_t GetMaxPossibleCompilerTemps() const;
618
619    /**
620     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
621     * @return Returns the size in bytes for space needed for compiler temporary spill region.
622     */
623    size_t GetNumBytesForCompilerTempSpillRegion();
624
625    DexOffset GetCurrentDexPc() const {
626      return current_dalvik_offset_;
627    }
628
629    RegisterClass ShortyToRegClass(char shorty_type);
630    RegisterClass LocToRegClass(RegLocation loc);
631    int ComputeFrameSize();
632    virtual void Materialize();
633    virtual CompiledMethod* GetCompiledMethod();
634    void MarkSafepointPC(LIR* inst);
635    void SetupResourceMasks(LIR* lir);
636    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
637    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
638    void SetupRegMask(ResourceMask* mask, int reg);
639    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
640    void DumpPromotionMap();
641    void CodegenDump();
642    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
643                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
644    LIR* NewLIR0(int opcode);
645    LIR* NewLIR1(int opcode, int dest);
646    LIR* NewLIR2(int opcode, int dest, int src1);
647    LIR* NewLIR2NoDest(int opcode, int src, int info);
648    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
649    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
650    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
651    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
652    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
653    LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
654    LIR* AddWordData(LIR* *constant_list_p, int value);
655    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
656    void ProcessSwitchTables();
657    void DumpSparseSwitchTable(const uint16_t* table);
658    void DumpPackedSwitchTable(const uint16_t* table);
659    void MarkBoundary(DexOffset offset, const char* inst_str);
660    void NopLIR(LIR* lir);
661    void UnlinkLIR(LIR* lir);
662    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
663    bool IsInexpensiveConstant(RegLocation rl_src);
664    ConditionCode FlipComparisonOrder(ConditionCode before);
665    ConditionCode NegateComparison(ConditionCode before);
666    virtual void InstallLiteralPools();
667    void InstallSwitchTables();
668    void InstallFillArrayData();
669    bool VerifyCatchEntries();
670    void CreateMappingTables();
671    void CreateNativeGcMap();
672    int AssignLiteralOffset(CodeOffset offset);
673    int AssignSwitchTablesOffset(CodeOffset offset);
674    int AssignFillArrayDataOffset(CodeOffset offset);
675    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
676    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
677    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
678
679    virtual void StartSlowPath(LIR *label) {}
680    virtual void BeginInvoke(CallInfo* info) {}
681    virtual void EndInvoke(CallInfo* info) {}
682
683
684    // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
685    RegLocation NarrowRegLoc(RegLocation loc);
686
687    // Shared by all targets - implemented in local_optimizations.cc
688    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
689    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
690    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
691    virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
692
693    // Shared by all targets - implemented in ralloc_util.cc
694    int GetSRegHi(int lowSreg);
695    bool LiveOut(int s_reg);
696    void SimpleRegAlloc();
697    void ResetRegPool();
698    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
699    void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
700    void DumpCoreRegPool();
701    void DumpFpRegPool();
702    void DumpRegPools();
703    /* Mark a temp register as dead.  Does not affect allocation state. */
704    void Clobber(RegStorage reg);
705    void ClobberSReg(int s_reg);
706    void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
707    int SRegToPMap(int s_reg);
708    void RecordCorePromotion(RegStorage reg, int s_reg);
709    RegStorage AllocPreservedCoreReg(int s_reg);
710    void RecordSinglePromotion(RegStorage reg, int s_reg);
711    void RecordDoublePromotion(RegStorage reg, int s_reg);
712    RegStorage AllocPreservedSingle(int s_reg);
713    virtual RegStorage AllocPreservedDouble(int s_reg);
714    RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
715    virtual RegStorage AllocFreeTemp();
716    virtual RegStorage AllocTemp();
717    virtual RegStorage AllocTempWide();
718    virtual RegStorage AllocTempRef();
719    virtual RegStorage AllocTempSingle();
720    virtual RegStorage AllocTempDouble();
721    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class);
722    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class);
723    void FlushReg(RegStorage reg);
724    void FlushRegWide(RegStorage reg);
725    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
726    RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
727    virtual void FreeTemp(RegStorage reg);
728    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
729    virtual bool IsLive(RegStorage reg);
730    virtual bool IsTemp(RegStorage reg);
731    bool IsPromoted(RegStorage reg);
732    bool IsDirty(RegStorage reg);
733    void LockTemp(RegStorage reg);
734    void ResetDef(RegStorage reg);
735    void NullifyRange(RegStorage reg, int s_reg);
736    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
737    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
738    void ResetDefLoc(RegLocation rl);
739    void ResetDefLocWide(RegLocation rl);
740    void ResetDefTracking();
741    void ClobberAllTemps();
742    void FlushSpecificReg(RegisterInfo* info);
743    void FlushAllRegs();
744    bool RegClassMatches(int reg_class, RegStorage reg);
745    void MarkLive(RegLocation loc);
746    void MarkTemp(RegStorage reg);
747    void UnmarkTemp(RegStorage reg);
748    void MarkWide(RegStorage reg);
749    void MarkNarrow(RegStorage reg);
750    void MarkClean(RegLocation loc);
751    void MarkDirty(RegLocation loc);
752    void MarkInUse(RegStorage reg);
753    bool CheckCorePoolSanity();
754    virtual RegLocation UpdateLoc(RegLocation loc);
755    virtual RegLocation UpdateLocWide(RegLocation loc);
756    RegLocation UpdateRawLoc(RegLocation loc);
757
758    /**
759     * @brief Used to prepare a register location to receive a wide value.
760     * @see EvalLoc
761     * @param loc the location where the value will be stored.
762     * @param reg_class Type of register needed.
763     * @param update Whether the liveness information should be updated.
764     * @return Returns the properly typed temporary in physical register pairs.
765     */
766    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
767
768    /**
769     * @brief Used to prepare a register location to receive a value.
770     * @param loc the location where the value will be stored.
771     * @param reg_class Type of register needed.
772     * @param update Whether the liveness information should be updated.
773     * @return Returns the properly typed temporary in physical register.
774     */
775    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
776
777    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
778    void DumpCounts(const RefCounts* arr, int size, const char* msg);
779    void DoPromotion();
780    int VRegOffset(int v_reg);
781    int SRegOffset(int s_reg);
782    RegLocation GetReturnWide(RegisterClass reg_class);
783    RegLocation GetReturn(RegisterClass reg_class);
784    RegisterInfo* GetRegInfo(RegStorage reg);
785
786    // Shared by all targets - implemented in gen_common.cc.
787    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
788    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
789                          RegLocation rl_src, RegLocation rl_dest, int lit);
790    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
791    virtual void HandleSlowPaths();
792    void GenBarrier();
793    void GenDivZeroException();
794    // c_code holds condition code that's generated from testing divisor against 0.
795    void GenDivZeroCheck(ConditionCode c_code);
796    // reg holds divisor.
797    void GenDivZeroCheck(RegStorage reg);
798    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
799    void GenArrayBoundsCheck(int32_t index, RegStorage length);
800    LIR* GenNullCheck(RegStorage reg);
801    void MarkPossibleNullPointerException(int opt_flags);
802    void MarkPossibleStackOverflowException();
803    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
804    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
805    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
806    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
807    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
808                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
809    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
810                                 LIR* taken, LIR* fall_through);
811    virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
812    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
813                         RegLocation rl_src);
814    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
815                     RegLocation rl_src);
816    void GenFilledNewArray(CallInfo* info);
817    void GenSput(MIR* mir, RegLocation rl_src,
818                 bool is_long_or_double, bool is_object);
819    void GenSget(MIR* mir, RegLocation rl_dest,
820                 bool is_long_or_double, bool is_object);
821    void GenIGet(MIR* mir, int opt_flags, OpSize size,
822                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
823    void GenIPut(MIR* mir, int opt_flags, OpSize size,
824                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
825    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
826                        RegLocation rl_src);
827
828    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
829    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
830    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
831    void GenThrow(RegLocation rl_src);
832    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
833    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
834    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
835                      RegLocation rl_src1, RegLocation rl_src2);
836    virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
837                        RegLocation rl_src1, RegLocation rl_shift);
838    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
839                          RegLocation rl_src, int lit);
840    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
841                        RegLocation rl_src1, RegLocation rl_src2);
842    template <size_t pointer_size>
843    void GenConversionCall(ThreadOffset<pointer_size> func_offset, RegLocation rl_dest,
844                           RegLocation rl_src);
845    virtual void GenSuspendTest(int opt_flags);
846    virtual void GenSuspendTestAndBranch(int opt_flags, LIR* target);
847
848    // This will be overridden by x86 implementation.
849    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
850    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
851                       RegLocation rl_src1, RegLocation rl_src2);
852
853    // Shared by all targets - implemented in gen_invoke.cc.
854    template <size_t pointer_size>
855    LIR* CallHelper(RegStorage r_tgt, ThreadOffset<pointer_size> helper_offset, bool safepoint_pc,
856                    bool use_link = true);
857    RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
858    RegStorage CallHelperSetup(ThreadOffset<8> helper_offset);
859    template <size_t pointer_size>
860    void CallRuntimeHelper(ThreadOffset<pointer_size> helper_offset, bool safepoint_pc);
861    template <size_t pointer_size>
862    void CallRuntimeHelperImm(ThreadOffset<pointer_size> helper_offset, int arg0, bool safepoint_pc);
863    template <size_t pointer_size>
864    void CallRuntimeHelperReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, bool safepoint_pc);
865    template <size_t pointer_size>
866    void CallRuntimeHelperRegLocation(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
867                                      bool safepoint_pc);
868    template <size_t pointer_size>
869    void CallRuntimeHelperImmImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg1,
870                                 bool safepoint_pc);
871    template <size_t pointer_size>
872    void CallRuntimeHelperImmRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
873                                         RegLocation arg1, bool safepoint_pc);
874    template <size_t pointer_size>
875    void CallRuntimeHelperRegLocationImm(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
876                                         int arg1, bool safepoint_pc);
877    template <size_t pointer_size>
878    void CallRuntimeHelperImmReg(ThreadOffset<pointer_size> helper_offset, int arg0, RegStorage arg1,
879                                 bool safepoint_pc);
880    template <size_t pointer_size>
881    void CallRuntimeHelperRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, int arg1,
882                                 bool safepoint_pc);
883    template <size_t pointer_size>
884    void CallRuntimeHelperImmMethod(ThreadOffset<pointer_size> helper_offset, int arg0,
885                                    bool safepoint_pc);
886    template <size_t pointer_size>
887    void CallRuntimeHelperRegMethod(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
888                                    bool safepoint_pc);
889    template <size_t pointer_size>
890    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<pointer_size> helper_offset,
891                                               RegStorage arg0, RegLocation arg2, bool safepoint_pc);
892    template <size_t pointer_size>
893    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
894                                                 RegLocation arg0, RegLocation arg1,
895                                                 bool safepoint_pc);
896    template <size_t pointer_size>
897    void CallRuntimeHelperRegReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
898                                 RegStorage arg1, bool safepoint_pc);
899    template <size_t pointer_size>
900    void CallRuntimeHelperRegRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
901                                    RegStorage arg1, int arg2, bool safepoint_pc);
902    template <size_t pointer_size>
903    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
904                                               RegLocation arg2, bool safepoint_pc);
905    template <size_t pointer_size>
906    void CallRuntimeHelperImmMethodImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg2,
907                                       bool safepoint_pc);
908    template <size_t pointer_size>
909    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
910                                                    int arg0, RegLocation arg1, RegLocation arg2,
911                                                    bool safepoint_pc);
912    template <size_t pointer_size>
913    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
914                                                            RegLocation arg0, RegLocation arg1,
915                                                            RegLocation arg2,
916                                                            bool safepoint_pc);
917    void GenInvoke(CallInfo* info);
918    void GenInvokeNoInline(CallInfo* info);
919    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
920    virtual int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
921                             NextCallInsn next_call_insn,
922                             const MethodReference& target_method,
923                             uint32_t vtable_idx,
924                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
925                             bool skip_this);
926    virtual int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
927                           NextCallInsn next_call_insn,
928                           const MethodReference& target_method,
929                           uint32_t vtable_idx,
930                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
931                           bool skip_this);
932
933    /**
934     * @brief Used to determine the register location of destination.
935     * @details This is needed during generation of inline intrinsics because it finds destination
936     *  of return,
937     * either the physical register or the target of move-result.
938     * @param info Information about the invoke.
939     * @return Returns the destination location.
940     */
941    RegLocation InlineTarget(CallInfo* info);
942
943    /**
944     * @brief Used to determine the wide register location of destination.
945     * @see InlineTarget
946     * @param info Information about the invoke.
947     * @return Returns the destination location.
948     */
949    RegLocation InlineTargetWide(CallInfo* info);
950
951    bool GenInlinedCharAt(CallInfo* info);
952    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
953    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
954    bool GenInlinedAbsInt(CallInfo* info);
955    bool GenInlinedAbsLong(CallInfo* info);
956    bool GenInlinedAbsFloat(CallInfo* info);
957    bool GenInlinedAbsDouble(CallInfo* info);
958    bool GenInlinedFloatCvt(CallInfo* info);
959    bool GenInlinedDoubleCvt(CallInfo* info);
960    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
961    bool GenInlinedStringCompareTo(CallInfo* info);
962    bool GenInlinedCurrentThread(CallInfo* info);
963    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
964    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
965                             bool is_volatile, bool is_ordered);
966    virtual int LoadArgRegs(CallInfo* info, int call_state,
967                    NextCallInsn next_call_insn,
968                    const MethodReference& target_method,
969                    uint32_t vtable_idx,
970                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
971                    bool skip_this);
972
973    // Shared by all targets - implemented in gen_loadstore.cc.
974    RegLocation LoadCurrMethod();
975    void LoadCurrMethodDirect(RegStorage r_tgt);
976    virtual LIR* LoadConstant(RegStorage r_dest, int value);
977    // Natural word size.
978    virtual LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
979      return LoadBaseDisp(r_base, displacement, r_dest, kWord);
980    }
981    // Load 32 bits, regardless of target.
982    virtual LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
983      return LoadBaseDisp(r_base, displacement, r_dest, k32);
984    }
985    // Load a reference at base + displacement and decompress into register.
986    virtual LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
987      return LoadBaseDisp(r_base, displacement, r_dest, kReference);
988    }
989    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
990    virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
991    // Same as above, but derive the target register class from the location record.
992    virtual RegLocation LoadValue(RegLocation rl_src);
993    // Load Dalvik value with 64-bit memory storage.
994    virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
995    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
996    virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
997    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
998    virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
999    // Load Dalvik value with 64-bit memory storage.
1000    virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
1001    // Load Dalvik value with 64-bit memory storage.
1002    virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
1003    // Store an item of natural word size.
1004    virtual LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
1005      return StoreBaseDisp(r_base, displacement, r_src, kWord);
1006    }
1007    // Store an uncompressed reference into a compressed 32-bit container.
1008    virtual LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src) {
1009      return StoreBaseDisp(r_base, displacement, r_src, kReference);
1010    }
1011    // Store 32 bits, regardless of target.
1012    virtual LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
1013      return StoreBaseDisp(r_base, displacement, r_src, k32);
1014    }
1015
1016    /**
1017     * @brief Used to do the final store in the destination as per bytecode semantics.
1018     * @param rl_dest The destination dalvik register location.
1019     * @param rl_src The source register location. Can be either physical register or dalvik register.
1020     */
1021    virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
1022
1023    /**
1024     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1025     * @see StoreValue
1026     * @param rl_dest The destination dalvik register location.
1027     * @param rl_src The source register location. Can be either physical register or dalvik
1028     *  register.
1029     */
1030    virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
1031
1032    /**
1033     * @brief Used to do the final store to a destination as per bytecode semantics.
1034     * @see StoreValue
1035     * @param rl_dest The destination dalvik register location.
1036     * @param rl_src The source register location. It must be kLocPhysReg
1037     *
1038     * This is used for x86 two operand computations, where we have computed the correct
1039     * register value that now needs to be properly registered.  This is used to avoid an
1040     * extra register copy that would result if StoreValue was called.
1041     */
1042    virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
1043
1044    /**
1045     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1046     * @see StoreValueWide
1047     * @param rl_dest The destination dalvik register location.
1048     * @param rl_src The source register location. It must be kLocPhysReg
1049     *
1050     * This is used for x86 two operand computations, where we have computed the correct
1051     * register values that now need to be properly registered.  This is used to avoid an
1052     * extra pair of register copies that would result if StoreValueWide was called.
1053     */
1054    virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
1055
1056    // Shared by all targets - implemented in mir_to_lir.cc.
1057    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
1058    virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1059    bool MethodBlockCodeGen(BasicBlock* bb);
1060    bool SpecialMIR2LIR(const InlineMethod& special);
1061    virtual void MethodMIR2LIR();
1062    // Update LIR for verbose listings.
1063    void UpdateLIROffsets();
1064
1065    /*
1066     * @brief Load the address of the dex method into the register.
1067     * @param target_method The MethodReference of the method to be invoked.
1068     * @param type How the method will be invoked.
1069     * @param register that will contain the code address.
1070     * @note register will be passed to TargetReg to get physical register.
1071     */
1072    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1073                         SpecialTargetRegister symbolic_reg);
1074
1075    /*
1076     * @brief Load the Method* of a dex method into the register.
1077     * @param target_method The MethodReference of the method to be invoked.
1078     * @param type How the method will be invoked.
1079     * @param register that will contain the code address.
1080     * @note register will be passed to TargetReg to get physical register.
1081     */
1082    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1083                                   SpecialTargetRegister symbolic_reg);
1084
1085    /*
1086     * @brief Load the Class* of a Dex Class type into the register.
1087     * @param type How the method will be invoked.
1088     * @param register that will contain the code address.
1089     * @note register will be passed to TargetReg to get physical register.
1090     */
1091    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
1092
1093    // Routines that work for the generic case, but may be overriden by target.
1094    /*
1095     * @brief Compare memory to immediate, and branch if condition true.
1096     * @param cond The condition code that when true will branch to the target.
1097     * @param temp_reg A temporary register that can be used if compare to memory is not
1098     * supported by the architecture.
1099     * @param base_reg The register holding the base address.
1100     * @param offset The offset from the base.
1101     * @param check_value The immediate to compare to.
1102     * @returns The branch instruction that was generated.
1103     */
1104    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1105                                   int offset, int check_value, LIR* target);
1106
1107    // Required for target - codegen helpers.
1108    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1109                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1110    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1111    virtual LIR* CheckSuspendUsingLoad() = 0;
1112
1113    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
1114    virtual RegStorage LoadHelper(ThreadOffset<8> offset) = 0;
1115
1116    virtual LIR* LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest,
1117                                      OpSize size) = 0;
1118    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1119                              OpSize size) = 0;
1120    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1121                                 int scale, OpSize size) = 0;
1122    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1123                                     int displacement, RegStorage r_dest, OpSize size) = 0;
1124    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1125    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1126    virtual LIR* StoreBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_src,
1127                                       OpSize size) = 0;
1128    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1129                               OpSize size) = 0;
1130    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1131                                  int scale, OpSize size) = 0;
1132    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1133                                      int displacement, RegStorage r_src, OpSize size) = 0;
1134    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
1135
1136    // Required for target - register utilities.
1137    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1138    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
1139    virtual RegLocation GetReturnAlt() = 0;
1140    virtual RegLocation GetReturnWideAlt() = 0;
1141    virtual RegLocation LocCReturn() = 0;
1142    virtual RegLocation LocCReturnRef() = 0;
1143    virtual RegLocation LocCReturnDouble() = 0;
1144    virtual RegLocation LocCReturnFloat() = 0;
1145    virtual RegLocation LocCReturnWide() = 0;
1146    virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0;
1147    virtual void AdjustSpillMask() = 0;
1148    virtual void ClobberCallerSave() = 0;
1149    virtual void FreeCallTemps() = 0;
1150    virtual void LockCallTemps() = 0;
1151    virtual void MarkPreservedSingle(int v_reg, RegStorage reg) = 0;
1152    virtual void MarkPreservedDouble(int v_reg, RegStorage reg) = 0;
1153    virtual void CompilerInitializeRegAlloc() = 0;
1154
1155    // Required for target - miscellaneous.
1156    virtual void AssembleLIR() = 0;
1157    virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0;
1158    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
1159                                          ResourceMask* use_mask, ResourceMask* def_mask) = 0;
1160    virtual const char* GetTargetInstFmt(int opcode) = 0;
1161    virtual const char* GetTargetInstName(int opcode) = 0;
1162    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1163    virtual ResourceMask GetPCUseDefEncoding() const = 0;
1164    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1165    virtual int GetInsnSize(LIR* lir) = 0;
1166    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1167
1168    // Check support for volatile load/store of a given size.
1169    virtual bool SupportsVolatileLoadStore(OpSize size) = 0;
1170    // Get the register class for load/store of a field.
1171    virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1172
1173    // Required for target - Dalvik-level generators.
1174    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1175                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
1176    virtual void GenMulLong(Instruction::Code,
1177                            RegLocation rl_dest, RegLocation rl_src1,
1178                            RegLocation rl_src2) = 0;
1179    virtual void GenAddLong(Instruction::Code,
1180                            RegLocation rl_dest, RegLocation rl_src1,
1181                            RegLocation rl_src2) = 0;
1182    virtual void GenAndLong(Instruction::Code,
1183                            RegLocation rl_dest, RegLocation rl_src1,
1184                            RegLocation rl_src2) = 0;
1185    virtual void GenArithOpDouble(Instruction::Code opcode,
1186                                  RegLocation rl_dest, RegLocation rl_src1,
1187                                  RegLocation rl_src2) = 0;
1188    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1189                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1190    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1191                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1192    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1193                               RegLocation rl_src) = 0;
1194    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1195
1196    /**
1197     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1198     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1199     * that applies on integers. The generated code will write the smallest or largest value
1200     * directly into the destination register as specified by the invoke information.
1201     * @param info Information about the invoke.
1202     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1203     * @return Returns true if successfully generated
1204     */
1205    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
1206
1207    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1208    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1209    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1210    virtual void GenNotLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1211    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1212    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1213                           RegLocation rl_src2) = 0;
1214    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1215                            RegLocation rl_src2) = 0;
1216    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1217                            RegLocation rl_src2) = 0;
1218    virtual void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1219                            RegLocation rl_src2, bool is_div) = 0;
1220    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1221                                  bool is_div) = 0;
1222    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1223                                     bool is_div) = 0;
1224    /*
1225     * @brief Generate an integer div or rem operation by a literal.
1226     * @param rl_dest Destination Location.
1227     * @param rl_src1 Numerator Location.
1228     * @param rl_src2 Divisor Location.
1229     * @param is_div 'true' if this is a division, 'false' for a remainder.
1230     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
1231     */
1232    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1233                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
1234    /*
1235     * @brief Generate an integer div or rem operation by a literal.
1236     * @param rl_dest Destination Location.
1237     * @param rl_src Numerator Location.
1238     * @param lit Divisor.
1239     * @param is_div 'true' if this is a division, 'false' for a remainder.
1240     */
1241    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1242                                     bool is_div) = 0;
1243    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1244
1245    /**
1246     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1247     * @details This is used for generating DivideByZero checks when divisor is held in two
1248     *  separate registers.
1249     * @param reg The register holding the pair of 32-bit values.
1250     */
1251    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1252
1253    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1254    virtual void GenExitSequence() = 0;
1255    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1256    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1257    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1258
1259    /*
1260     * @brief Handle Machine Specific MIR Extended opcodes.
1261     * @param bb The basic block in which the MIR is from.
1262     * @param mir The MIR whose opcode is not standard extended MIR.
1263     * @note Base class implementation will abort for unknown opcodes.
1264     */
1265    virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1266
1267    /**
1268     * @brief Lowers the kMirOpSelect MIR into LIR.
1269     * @param bb The basic block in which the MIR is from.
1270     * @param mir The MIR whose opcode is kMirOpSelect.
1271     */
1272    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1273
1274    /**
1275     * @brief Used to generate a memory barrier in an architecture specific way.
1276     * @details The last generated LIR will be considered for use as barrier. Namely,
1277     * if the last LIR can be updated in a way where it will serve the semantics of
1278     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1279     * that can keep the semantics.
1280     * @param barrier_kind The kind of memory barrier to generate.
1281     * @return whether a new instruction was generated.
1282     */
1283    virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1284
1285    virtual void GenMoveException(RegLocation rl_dest) = 0;
1286    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1287                                               int first_bit, int second_bit) = 0;
1288    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1289    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1290    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1291    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1292    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1293                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1294    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1295                             RegLocation rl_index, RegLocation rl_src, int scale,
1296                             bool card_mark) = 0;
1297    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1298                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1299
1300    // Required for target - single operation generators.
1301    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1302    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1303    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1304                                LIR* target) = 0;
1305    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1306    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1307    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1308    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1309    virtual void OpEndIT(LIR* it) = 0;
1310    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1311    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1312    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1313    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1314    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1315    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1316    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1317    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1318
1319    /**
1320     * @brief Used to generate an LIR that does a load from mem to reg.
1321     * @param r_dest The destination physical register.
1322     * @param r_base The base physical register for memory operand.
1323     * @param offset The displacement for memory operand.
1324     * @param move_type Specification on the move desired (size, alignment, register kind).
1325     * @return Returns the generate move LIR.
1326     */
1327    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1328                             MoveType move_type) = 0;
1329
1330    /**
1331     * @brief Used to generate an LIR that does a store from reg to mem.
1332     * @param r_base The base physical register for memory operand.
1333     * @param offset The displacement for memory operand.
1334     * @param r_src The destination physical register.
1335     * @param bytes_to_move The number of bytes to move.
1336     * @param is_aligned Whether the memory location is known to be aligned.
1337     * @return Returns the generate move LIR.
1338     */
1339    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1340                             MoveType move_type) = 0;
1341
1342    /**
1343     * @brief Used for generating a conditional register to register operation.
1344     * @param op The opcode kind.
1345     * @param cc The condition code that when true will perform the opcode.
1346     * @param r_dest The destination physical register.
1347     * @param r_src The source physical register.
1348     * @return Returns the newly created LIR or null in case of creation failure.
1349     */
1350    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1351
1352    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1353    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1354                             RegStorage r_src2) = 0;
1355    virtual LIR* OpTestSuspend(LIR* target) = 0;
1356    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1357    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) = 0;
1358    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1359    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1360    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1361                       int offset) = 0;
1362    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1363    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1364    virtual void OpTlsCmp(ThreadOffset<8> offset, int val) = 0;
1365    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1366    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1367    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1368    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1369
1370    // May be optimized by targets.
1371    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1372    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1373
1374    // Temp workaround
1375    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1376
1377  protected:
1378    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1379
1380    CompilationUnit* GetCompilationUnit() {
1381      return cu_;
1382    }
1383    /*
1384     * @brief Returns the index of the lowest set bit in 'x'.
1385     * @param x Value to be examined.
1386     * @returns The bit number of the lowest bit set in the value.
1387     */
1388    int32_t LowestSetBit(uint64_t x);
1389    /*
1390     * @brief Is this value a power of two?
1391     * @param x Value to be examined.
1392     * @returns 'true' if only 1 bit is set in the value.
1393     */
1394    bool IsPowerOfTwo(uint64_t x);
1395    /*
1396     * @brief Do these SRs overlap?
1397     * @param rl_op1 One RegLocation
1398     * @param rl_op2 The other RegLocation
1399     * @return 'true' if the VR pairs overlap
1400     *
1401     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1402     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1403     * dex, we'll want to make this case illegal.
1404     */
1405    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1406
1407    /*
1408     * @brief Force a location (in a register) into a temporary register
1409     * @param loc location of result
1410     * @returns update location
1411     */
1412    virtual RegLocation ForceTemp(RegLocation loc);
1413
1414    /*
1415     * @brief Force a wide location (in registers) into temporary registers
1416     * @param loc location of result
1417     * @returns update location
1418     */
1419    virtual RegLocation ForceTempWide(RegLocation loc);
1420
1421    static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
1422      return wide ? k64 : ref ? kReference : k32;
1423    }
1424
1425    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1426                                    RegLocation rl_dest, RegLocation rl_src);
1427
1428    void AddSlowPath(LIRSlowPath* slowpath);
1429
1430    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1431                                            bool type_known_abstract, bool use_declaring_class,
1432                                            bool can_assume_type_is_in_dex_cache,
1433                                            uint32_t type_idx, RegLocation rl_dest,
1434                                            RegLocation rl_src);
1435    /*
1436     * @brief Generate the debug_frame FDE information if possible.
1437     * @returns pointer to vector containg CFE information, or NULL.
1438     */
1439    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1440
1441    /**
1442     * @brief Used to insert marker that can be used to associate MIR with LIR.
1443     * @details Only inserts marker if verbosity is enabled.
1444     * @param mir The mir that is currently being generated.
1445     */
1446    void GenPrintLabel(MIR* mir);
1447
1448    /**
1449     * @brief Used to generate return sequence when there is no frame.
1450     * @details Assumes that the return registers have already been populated.
1451     */
1452    virtual void GenSpecialExitSequence() = 0;
1453
1454    /**
1455     * @brief Used to generate code for special methods that are known to be
1456     * small enough to work in frameless mode.
1457     * @param bb The basic block of the first MIR.
1458     * @param mir The first MIR of the special method.
1459     * @param special Information about the special method.
1460     * @return Returns whether or not this was handled successfully. Returns false
1461     * if caller should punt to normal MIR2LIR conversion.
1462     */
1463    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1464
1465  protected:
1466    void ClobberBody(RegisterInfo* p);
1467    void SetCurrentDexPc(DexOffset dexpc) {
1468      current_dalvik_offset_ = dexpc;
1469    }
1470
1471    /**
1472     * @brief Used to lock register if argument at in_position was passed that way.
1473     * @details Does nothing if the argument is passed via stack.
1474     * @param in_position The argument number whose register to lock.
1475     * @param wide Whether the argument is wide.
1476     */
1477    void LockArg(int in_position, bool wide = false);
1478
1479    /**
1480     * @brief Used to load VR argument to a physical register.
1481     * @details The load is only done if the argument is not already in physical register.
1482     * LockArg must have been previously called.
1483     * @param in_position The argument number to load.
1484     * @param wide Whether the argument is 64-bit or not.
1485     * @return Returns the register (or register pair) for the loaded argument.
1486     */
1487    RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false);
1488
1489    /**
1490     * @brief Used to load a VR argument directly to a specified register location.
1491     * @param in_position The argument number to place in register.
1492     * @param rl_dest The register location where to place argument.
1493     */
1494    void LoadArgDirect(int in_position, RegLocation rl_dest);
1495
1496    /**
1497     * @brief Used to generate LIR for special getter method.
1498     * @param mir The mir that represents the iget.
1499     * @param special Information about the special getter method.
1500     * @return Returns whether LIR was successfully generated.
1501     */
1502    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1503
1504    /**
1505     * @brief Used to generate LIR for special setter method.
1506     * @param mir The mir that represents the iput.
1507     * @param special Information about the special setter method.
1508     * @return Returns whether LIR was successfully generated.
1509     */
1510    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1511
1512    /**
1513     * @brief Used to generate LIR for special return-args method.
1514     * @param mir The mir that represents the return of argument.
1515     * @param special Information about the special return-args method.
1516     * @return Returns whether LIR was successfully generated.
1517     */
1518    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1519
1520    void AddDivZeroCheckSlowPath(LIR* branch);
1521
1522    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1523    // kArg2 as temp.
1524    virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1525
1526    /**
1527     * @brief Load Constant into RegLocation
1528     * @param rl_dest Destination RegLocation
1529     * @param value Constant value
1530     */
1531    virtual void GenConst(RegLocation rl_dest, int value);
1532
1533  public:
1534    // TODO: add accessors for these.
1535    LIR* literal_list_;                        // Constants.
1536    LIR* method_literal_list_;                 // Method literals requiring patching.
1537    LIR* class_literal_list_;                  // Class literals requiring patching.
1538    LIR* code_literal_list_;                   // Code literals requiring patching.
1539    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1540
1541  protected:
1542    CompilationUnit* const cu_;
1543    MIRGraph* const mir_graph_;
1544    GrowableArray<SwitchTable*> switch_tables_;
1545    GrowableArray<FillArrayData*> fill_array_data_;
1546    GrowableArray<RegisterInfo*> tempreg_info_;
1547    GrowableArray<RegisterInfo*> reginfo_map_;
1548    GrowableArray<void*> pointer_storage_;
1549    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1550    CodeOffset data_offset_;            // starting offset of literal pool.
1551    size_t total_size_;                   // header + code size.
1552    LIR* block_label_list_;
1553    PromotionMap* promotion_map_;
1554    /*
1555     * TODO: The code generation utilities don't have a built-in
1556     * mechanism to propagate the original Dalvik opcode address to the
1557     * associated generated instructions.  For the trace compiler, this wasn't
1558     * necessary because the interpreter handled all throws and debugging
1559     * requests.  For now we'll handle this by placing the Dalvik offset
1560     * in the CompilationUnit struct before codegen for each instruction.
1561     * The low-level LIR creation utilites will pull it from here.  Rework this.
1562     */
1563    DexOffset current_dalvik_offset_;
1564    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1565    RegisterPool* reg_pool_;
1566    /*
1567     * Sanity checking for the register temp tracking.  The same ssa
1568     * name should never be associated with one temp register per
1569     * instruction compilation.
1570     */
1571    int live_sreg_;
1572    CodeBuffer code_buffer_;
1573    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1574    std::vector<uint8_t> encoded_mapping_table_;
1575    std::vector<uint32_t> core_vmap_table_;
1576    std::vector<uint32_t> fp_vmap_table_;
1577    std::vector<uint8_t> native_gc_map_;
1578    int num_core_spills_;
1579    int num_fp_spills_;
1580    int frame_size_;
1581    unsigned int core_spill_mask_;
1582    unsigned int fp_spill_mask_;
1583    LIR* first_lir_insn_;
1584    LIR* last_lir_insn_;
1585
1586    GrowableArray<LIRSlowPath*> slow_paths_;
1587
1588    // The memory reference type for new LIRs.
1589    // NOTE: Passing this as an explicit parameter by all functions that directly or indirectly
1590    // invoke RawLIR() would clutter the code and reduce the readability.
1591    ResourceMask::ResourceBit mem_ref_type_;
1592
1593    // Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR
1594    // would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks
1595    // (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache
1596    // to deduplicate the masks.
1597    ResourceMaskCache mask_cache_;
1598};  // Class Mir2Lir
1599
1600}  // namespace art
1601
1602#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1603