mir_to_lir.h revision a0cd2d701f29e0bc6275f1b13c0edfd4ec391879
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_storage.h"
25#include "dex/backend.h"
26#include "driver/compiler_driver.h"
27#include "leb128.h"
28#include "safe_map.h"
29#include "utils/arena_allocator.h"
30#include "utils/growable_array.h"
31
32namespace art {
33
34/*
35 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
36 * add type safety (see runtime/offsets.h).
37 */
38typedef uint32_t DexOffset;          // Dex offset in code units.
39typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
40typedef uint32_t CodeOffset;         // Native code offset in bytes.
41
42// Set to 1 to measure cost of suspend check.
43#define NO_SUSPEND 0
44
45#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46#define IS_BRANCH            (1ULL << kIsBranch)
47#define IS_IT                (1ULL << kIsIT)
48#define IS_LOAD              (1ULL << kMemLoad)
49#define IS_QUAD_OP           (1ULL << kIsQuadOp)
50#define IS_QUIN_OP           (1ULL << kIsQuinOp)
51#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
52#define IS_STORE             (1ULL << kMemStore)
53#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
54#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
55#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
56#define NO_OPERAND           (1ULL << kNoOperand)
57#define REG_DEF0             (1ULL << kRegDef0)
58#define REG_DEF1             (1ULL << kRegDef1)
59#define REG_DEF2             (1ULL << kRegDef2)
60#define REG_DEFA             (1ULL << kRegDefA)
61#define REG_DEFD             (1ULL << kRegDefD)
62#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
63#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
64#define REG_DEF_LIST0        (1ULL << kRegDefList0)
65#define REG_DEF_LIST1        (1ULL << kRegDefList1)
66#define REG_DEF_LR           (1ULL << kRegDefLR)
67#define REG_DEF_SP           (1ULL << kRegDefSP)
68#define REG_USE0             (1ULL << kRegUse0)
69#define REG_USE1             (1ULL << kRegUse1)
70#define REG_USE2             (1ULL << kRegUse2)
71#define REG_USE3             (1ULL << kRegUse3)
72#define REG_USE4             (1ULL << kRegUse4)
73#define REG_USEA             (1ULL << kRegUseA)
74#define REG_USEC             (1ULL << kRegUseC)
75#define REG_USED             (1ULL << kRegUseD)
76#define REG_USEB             (1ULL << kRegUseB)
77#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
78#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
79#define REG_USE_LIST0        (1ULL << kRegUseList0)
80#define REG_USE_LIST1        (1ULL << kRegUseList1)
81#define REG_USE_LR           (1ULL << kRegUseLR)
82#define REG_USE_PC           (1ULL << kRegUsePC)
83#define REG_USE_SP           (1ULL << kRegUseSP)
84#define SETS_CCODES          (1ULL << kSetsCCodes)
85#define USES_CCODES          (1ULL << kUsesCCodes)
86#define USE_FP_STACK         (1ULL << kUseFpStack)
87#define REG_USE_LO           (1ULL << kUseLo)
88#define REG_USE_HI           (1ULL << kUseHi)
89#define REG_DEF_LO           (1ULL << kDefLo)
90#define REG_DEF_HI           (1ULL << kDefHi)
91
92// Common combo register usage patterns.
93#define REG_DEF01            (REG_DEF0 | REG_DEF1)
94#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
95#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
96#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
97#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
98#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
99#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
100#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
101#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
102#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
103#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
104#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
105#define REG_USE012           (REG_USE01 | REG_USE2)
106#define REG_USE014           (REG_USE01 | REG_USE4)
107#define REG_USE01            (REG_USE0 | REG_USE1)
108#define REG_USE02            (REG_USE0 | REG_USE2)
109#define REG_USE12            (REG_USE1 | REG_USE2)
110#define REG_USE23            (REG_USE2 | REG_USE3)
111#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
112
113// TODO: #includes need a cleanup
114#ifndef INVALID_SREG
115#define INVALID_SREG (-1)
116#endif
117
118struct BasicBlock;
119struct CallInfo;
120struct CompilationUnit;
121struct InlineMethod;
122struct MIR;
123struct LIR;
124struct RegLocation;
125struct RegisterInfo;
126class DexFileMethodInliner;
127class MIRGraph;
128class Mir2Lir;
129
130typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
131                            const MethodReference& target_method,
132                            uint32_t method_idx, uintptr_t direct_code,
133                            uintptr_t direct_method, InvokeType type);
134
135typedef std::vector<uint8_t> CodeBuffer;
136
137struct UseDefMasks {
138  uint64_t use_mask;        // Resource mask for use.
139  uint64_t def_mask;        // Resource mask for def.
140};
141
142struct AssemblyInfo {
143  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
144};
145
146struct LIR {
147  CodeOffset offset;             // Offset of this instruction.
148  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
149  int16_t opcode;
150  LIR* next;
151  LIR* prev;
152  LIR* target;
153  struct {
154    unsigned int alias_info:17;  // For Dalvik register disambiguation.
155    bool is_nop:1;               // LIR is optimized away.
156    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
157    bool use_def_invalid:1;      // If true, masks should not be used.
158    unsigned int generation:1;   // Used to track visitation state during fixup pass.
159    unsigned int fixup:8;        // Fixup kind.
160  } flags;
161  union {
162    UseDefMasks m;               // Use & Def masks used during optimization.
163    AssemblyInfo a;              // Instruction info used during assembly phase.
164  } u;
165  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
166};
167
168// Target-specific initialization.
169Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
170                          ArenaAllocator* const arena);
171Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
172                            ArenaAllocator* const arena);
173Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
174                          ArenaAllocator* const arena);
175Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
176                          ArenaAllocator* const arena);
177Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
178                          ArenaAllocator* const arena);
179
180// Utility macros to traverse the LIR list.
181#define NEXT_LIR(lir) (lir->next)
182#define PREV_LIR(lir) (lir->prev)
183
184// Defines for alias_info (tracks Dalvik register references).
185#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
186#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
187#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
188#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
189
190// Common resource macros.
191#define ENCODE_CCODE            (1ULL << kCCode)
192#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
193
194// Abstract memory locations.
195#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
196#define ENCODE_LITERAL          (1ULL << kLiteral)
197#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
198#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
199
200#define ENCODE_ALL              (~0ULL)
201#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
202                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
203
204#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
205#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
206  do { \
207    low_reg = both_regs & 0xff; \
208    high_reg = (both_regs >> 8) & 0xff; \
209  } while (false)
210
211// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
212#define STARTING_DOUBLE_SREG 0x10000
213
214// TODO: replace these macros
215#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
216#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
217#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
218#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
219#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
220
221class Mir2Lir : public Backend {
222  public:
223    /*
224     * Auxiliary information describing the location of data embedded in the Dalvik
225     * byte code stream.
226     */
227    struct EmbeddedData {
228      CodeOffset offset;        // Code offset of data block.
229      const uint16_t* table;      // Original dex data.
230      DexOffset vaddr;            // Dalvik offset of parent opcode.
231    };
232
233    struct FillArrayData : EmbeddedData {
234      int32_t size;
235    };
236
237    struct SwitchTable : EmbeddedData {
238      LIR* anchor;                // Reference instruction for relative offsets.
239      LIR** targets;              // Array of case targets.
240    };
241
242    /* Static register use counts */
243    struct RefCounts {
244      int count;
245      int s_reg;
246    };
247
248    /*
249     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
250     * and native register storage.  The primary purpose is to reuse previuosly
251     * loaded values, if possible, and otherwise to keep the value in register
252     * storage as long as possible.
253     *
254     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
255     * this register (or pair).  For example, a 64-bit register containing a 32-bit
256     * Dalvik value would have wide_value==false even though the storage container itself
257     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
258     * would have wide_value==true (and additionally would have its partner field set to the
259     * other half whose wide_value field would also be true.
260     *
261     * NOTE 2: In the case of a register pair, you can determine which of the partners
262     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
263     *
264     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
265     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
266     * value, and the s_reg of the high word is implied (s_reg + 1).
267     *
268     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
269     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
270     * If is_temp==true and live==false, no other fields have
271     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
272     * and def_end describe the relationship between the temp register/register pair and
273     * the Dalvik value[s] described by s_reg/s_reg+1.
274     *
275     * The fields used_storage, master_storage and storage_mask are used to track allocation
276     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
277     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
278     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
279     * change once initialized.  The "used_storage" field tracks current allocation status.
280     * Although each record contains this field, only the field from the largest member of
281     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
282     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
283     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
284     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
285     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
286     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
287     *
288     * For an X86 vector register example, storage_mask would be:
289     *    0x00000001 for 32-bit view of xmm1
290     *    0x00000003 for 64-bit view of xmm1
291     *    0x0000000f for 128-bit view of xmm1
292     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
293     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
294     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
295     *
296     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
297     * held in the widest member of an aliased set.  Note, though, that for a temp register to
298     * reused as live, it must both be marked live and the associated SReg() must match the
299     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
300     * members of an aliased set will share the same liveness flags, but each will individually
301     * maintain s_reg_.  In this way we can know that at least one member of an
302     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
303     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
304     * because it is wide), its aliases s2 and s3 will show as live, but will have
305     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
306     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
307     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
308     * report that v9 is currently not live as a single (which is what we want).
309     *
310     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
311     * to treat xmm registers:
312     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
313     *         o This more closely matches reality, but means you'd need to be able to get
314     *           to the associated RegisterInfo struct to figure out how it's being used.
315     *         o This is how 64-bit core registers will be used - always 64 bits, but the
316     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
317     *     2. View the xmm registers based on contents.
318     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
319     *           be a k64BitVector.
320     *         o Note that the two uses above would be considered distinct registers (but with
321     *           the aliasing mechanism, we could detect interference).
322     *         o This is how aliased double and single float registers will be handled on
323     *           Arm and MIPS.
324     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
325     * mechanism 2 for aliased float registers and x86 vector registers.
326     */
327    class RegisterInfo {
328     public:
329      RegisterInfo(RegStorage r, uint64_t mask = ENCODE_ALL);
330      ~RegisterInfo() {}
331      static void* operator new(size_t size, ArenaAllocator* arena) {
332        return arena->Alloc(size, kArenaAllocRegAlloc);
333      }
334
335      static const uint32_t k32SoloStorageMask     = 0x00000001;
336      static const uint32_t kLowSingleStorageMask  = 0x00000001;
337      static const uint32_t kHighSingleStorageMask = 0x00000002;
338      static const uint32_t k64SoloStorageMask     = 0x00000003;
339      static const uint32_t k128SoloStorageMask    = 0x0000000f;
340      static const uint32_t k256SoloStorageMask    = 0x000000ff;
341      static const uint32_t k512SoloStorageMask    = 0x0000ffff;
342      static const uint32_t k1024SoloStorageMask   = 0xffffffff;
343
344      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
345      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
346      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
347      // No part of the containing storage is live in this view.
348      bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
349      // Liveness of this view matches.  Note: not equivalent to !IsDead().
350      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
351      void MarkLive(int s_reg) {
352        // TODO: Anything useful to assert here?
353        s_reg_ = s_reg;
354        master_->liveness_ |= storage_mask_;
355      }
356      void MarkDead() {
357        if (SReg() != INVALID_SREG) {
358          s_reg_ = INVALID_SREG;
359          master_->liveness_ &= ~storage_mask_;
360          ResetDefBody();
361        }
362      }
363      RegStorage GetReg() { return reg_; }
364      void SetReg(RegStorage reg) { reg_ = reg; }
365      bool IsTemp() { return is_temp_; }
366      void SetIsTemp(bool val) { is_temp_ = val; }
367      bool IsWide() { return wide_value_; }
368      void SetIsWide(bool val) {
369        wide_value_ = val;
370        if (!val) {
371          // If not wide, reset partner to self.
372          SetPartner(GetReg());
373        }
374      }
375      bool IsDirty() { return dirty_; }
376      void SetIsDirty(bool val) { dirty_ = val; }
377      RegStorage Partner() { return partner_; }
378      void SetPartner(RegStorage partner) { partner_ = partner; }
379      int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
380      uint64_t DefUseMask() { return def_use_mask_; }
381      void SetDefUseMask(uint64_t def_use_mask) { def_use_mask_ = def_use_mask; }
382      RegisterInfo* Master() { return master_; }
383      void SetMaster(RegisterInfo* master) {
384        master_ = master;
385        if (master != this) {
386          master_->aliased_ = true;
387          DCHECK(alias_chain_ == nullptr);
388          alias_chain_ = master_->alias_chain_;
389          master_->alias_chain_ = this;
390        }
391      }
392      bool IsAliased() { return aliased_; }
393      RegisterInfo* GetAliasChain() { return alias_chain_; }
394      uint32_t StorageMask() { return storage_mask_; }
395      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
396      LIR* DefStart() { return def_start_; }
397      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
398      LIR* DefEnd() { return def_end_; }
399      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
400      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
401      // Find member of aliased set matching storage_used; return nullptr if none.
402      RegisterInfo* FindMatchingView(uint32_t storage_used) {
403        RegisterInfo* res = Master();
404        for (; res != nullptr; res = res->GetAliasChain()) {
405          if (res->StorageMask() == storage_used)
406            break;
407        }
408        return res;
409      }
410
411     private:
412      RegStorage reg_;
413      bool is_temp_;               // Can allocate as temp?
414      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
415      bool dirty_;                 // If live, is it dirty?
416      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
417      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
418      int s_reg_;                  // Name of live value.
419      uint64_t def_use_mask_;      // Resources for this element.
420      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
421      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
422      RegisterInfo* master_;       // Pointer to controlling storage mask.
423      uint32_t storage_mask_;      // Track allocation of sub-units.
424      LIR *def_start_;             // Starting inst in last def sequence.
425      LIR *def_end_;               // Ending inst in last def sequence.
426      RegisterInfo* alias_chain_;  // Chain of aliased registers.
427    };
428
429    class RegisterPool {
430     public:
431      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
432                   const std::vector<RegStorage>& core_regs,
433                   const std::vector<RegStorage>& core64_regs,
434                   const std::vector<RegStorage>& sp_regs,
435                   const std::vector<RegStorage>& dp_regs,
436                   const std::vector<RegStorage>& reserved_regs,
437                   const std::vector<RegStorage>& reserved64_regs,
438                   const std::vector<RegStorage>& core_temps,
439                   const std::vector<RegStorage>& core64_temps,
440                   const std::vector<RegStorage>& sp_temps,
441                   const std::vector<RegStorage>& dp_temps);
442      ~RegisterPool() {}
443      static void* operator new(size_t size, ArenaAllocator* arena) {
444        return arena->Alloc(size, kArenaAllocRegAlloc);
445      }
446      void ResetNextTemp() {
447        next_core_reg_ = 0;
448        next_sp_reg_ = 0;
449        next_dp_reg_ = 0;
450      }
451      GrowableArray<RegisterInfo*> core_regs_;
452      int next_core_reg_;
453      GrowableArray<RegisterInfo*> core64_regs_;
454      int next_core64_reg_;
455      GrowableArray<RegisterInfo*> sp_regs_;    // Single precision float.
456      int next_sp_reg_;
457      GrowableArray<RegisterInfo*> dp_regs_;    // Double precision float.
458      int next_dp_reg_;
459      GrowableArray<RegisterInfo*>* ref_regs_;  // Points to core_regs_ or core64_regs_
460      int* next_ref_reg_;
461
462     private:
463      Mir2Lir* const m2l_;
464    };
465
466    struct PromotionMap {
467      RegLocationType core_location:3;
468      uint8_t core_reg;
469      RegLocationType fp_location:3;
470      uint8_t FpReg;
471      bool first_in_pair;
472    };
473
474    //
475    // Slow paths.  This object is used generate a sequence of code that is executed in the
476    // slow path.  For example, resolving a string or class is slow as it will only be executed
477    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
478    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
479    // branch over them.
480    //
481    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
482    // the Compile() function that will be called near the end of the code generated by the
483    // method.
484    //
485    // The basic flow for a slow path is:
486    //
487    //     CMP reg, #value
488    //     BEQ fromfast
489    //   cont:
490    //     ...
491    //     fast path code
492    //     ...
493    //     more code
494    //     ...
495    //     RETURN
496    ///
497    //   fromfast:
498    //     ...
499    //     slow path code
500    //     ...
501    //     B cont
502    //
503    // So you see we need two labels and two branches.  The first branch (called fromfast) is
504    // the conditional branch to the slow path code.  The second label (called cont) is used
505    // as an unconditional branch target for getting back to the code after the slow path
506    // has completed.
507    //
508
509    class LIRSlowPath {
510     public:
511      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
512                  LIR* cont = nullptr) :
513        m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
514          m2l->StartSlowPath(cont);
515      }
516      virtual ~LIRSlowPath() {}
517      virtual void Compile() = 0;
518
519      static void* operator new(size_t size, ArenaAllocator* arena) {
520        return arena->Alloc(size, kArenaAllocData);
521      }
522
523      LIR *GetContinuationLabel() {
524        return cont_;
525      }
526
527      LIR *GetFromFast() {
528        return fromfast_;
529      }
530
531     protected:
532      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
533
534      Mir2Lir* const m2l_;
535      CompilationUnit* const cu_;
536      const DexOffset current_dex_pc_;
537      LIR* const fromfast_;
538      LIR* const cont_;
539    };
540
541    virtual ~Mir2Lir() {}
542
543    int32_t s4FromSwitchData(const void* switch_data) {
544      return *reinterpret_cast<const int32_t*>(switch_data);
545    }
546
547    /*
548     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
549     * it was introduced, it was intended to be a quick best guess of type without having to
550     * take the time to do type analysis.  Currently, though, we have a much better idea of
551     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
552     * just use our knowledge of type to select the most appropriate register class?
553     */
554    RegisterClass RegClassBySize(OpSize size) {
555      if (size == kReference) {
556        return kRefReg;
557      } else {
558        return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
559                size == kSignedByte) ? kCoreReg : kAnyReg;
560      }
561    }
562
563    size_t CodeBufferSizeInBytes() {
564      return code_buffer_.size() / sizeof(code_buffer_[0]);
565    }
566
567    static bool IsPseudoLirOp(int opcode) {
568      return (opcode < 0);
569    }
570
571    /*
572     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
573     * instructions which require PC-relative fixups), we need the operands to carry
574     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
575     * hold that index in the operand array.
576     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
577     * may be worth conditionally-compiling a set of identity functions here.
578     */
579    uint32_t WrapPointer(void* pointer) {
580      uint32_t res = pointer_storage_.Size();
581      pointer_storage_.Insert(pointer);
582      return res;
583    }
584
585    void* UnwrapPointer(size_t index) {
586      return pointer_storage_.Get(index);
587    }
588
589    // strdup(), but allocates from the arena.
590    char* ArenaStrdup(const char* str) {
591      size_t len = strlen(str) + 1;
592      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
593      if (res != NULL) {
594        strncpy(res, str, len);
595      }
596      return res;
597    }
598
599    // Shared by all targets - implemented in codegen_util.cc
600    void AppendLIR(LIR* lir);
601    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
602    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
603
604    /**
605     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
606     * to place in a frame.
607     * @return Returns the maximum number of compiler temporaries.
608     */
609    size_t GetMaxPossibleCompilerTemps() const;
610
611    /**
612     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
613     * @return Returns the size in bytes for space needed for compiler temporary spill region.
614     */
615    size_t GetNumBytesForCompilerTempSpillRegion();
616
617    DexOffset GetCurrentDexPc() const {
618      return current_dalvik_offset_;
619    }
620
621    RegisterClass ShortyToRegClass(char shorty_type);
622    RegisterClass LocToRegClass(RegLocation loc);
623    int ComputeFrameSize();
624    virtual void Materialize();
625    virtual CompiledMethod* GetCompiledMethod();
626    void MarkSafepointPC(LIR* inst);
627    void SetupResourceMasks(LIR* lir, bool leave_mem_ref = false);
628    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
629    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
630    void SetupRegMask(uint64_t* mask, int reg);
631    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
632    void DumpPromotionMap();
633    void CodegenDump();
634    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
635                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
636    LIR* NewLIR0(int opcode);
637    LIR* NewLIR1(int opcode, int dest);
638    LIR* NewLIR2(int opcode, int dest, int src1);
639    LIR* NewLIR2NoDest(int opcode, int src, int info);
640    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
641    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
642    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
643    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
644    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
645    LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
646    LIR* AddWordData(LIR* *constant_list_p, int value);
647    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
648    void ProcessSwitchTables();
649    void DumpSparseSwitchTable(const uint16_t* table);
650    void DumpPackedSwitchTable(const uint16_t* table);
651    void MarkBoundary(DexOffset offset, const char* inst_str);
652    void NopLIR(LIR* lir);
653    void UnlinkLIR(LIR* lir);
654    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
655    bool IsInexpensiveConstant(RegLocation rl_src);
656    ConditionCode FlipComparisonOrder(ConditionCode before);
657    ConditionCode NegateComparison(ConditionCode before);
658    virtual void InstallLiteralPools();
659    void InstallSwitchTables();
660    void InstallFillArrayData();
661    bool VerifyCatchEntries();
662    void CreateMappingTables();
663    void CreateNativeGcMap();
664    int AssignLiteralOffset(CodeOffset offset);
665    int AssignSwitchTablesOffset(CodeOffset offset);
666    int AssignFillArrayDataOffset(CodeOffset offset);
667    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
668    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
669    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
670
671    virtual void StartSlowPath(LIR *label) {}
672    virtual void BeginInvoke(CallInfo* info) {}
673    virtual void EndInvoke(CallInfo* info) {}
674
675
676    // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
677    RegLocation NarrowRegLoc(RegLocation loc);
678
679    // Shared by all targets - implemented in local_optimizations.cc
680    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
681    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
682    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
683    virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
684
685    // Shared by all targets - implemented in ralloc_util.cc
686    int GetSRegHi(int lowSreg);
687    bool LiveOut(int s_reg);
688    void SimpleRegAlloc();
689    void ResetRegPool();
690    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
691    void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
692    void DumpCoreRegPool();
693    void DumpFpRegPool();
694    void DumpRegPools();
695    /* Mark a temp register as dead.  Does not affect allocation state. */
696    void Clobber(RegStorage reg);
697    void ClobberSReg(int s_reg);
698    void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
699    int SRegToPMap(int s_reg);
700    void RecordCorePromotion(RegStorage reg, int s_reg);
701    RegStorage AllocPreservedCoreReg(int s_reg);
702    void RecordSinglePromotion(RegStorage reg, int s_reg);
703    void RecordDoublePromotion(RegStorage reg, int s_reg);
704    RegStorage AllocPreservedSingle(int s_reg);
705    virtual RegStorage AllocPreservedDouble(int s_reg);
706    RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
707    virtual RegStorage AllocFreeTemp();
708    virtual RegStorage AllocTemp();
709    virtual RegStorage AllocTempWide();
710    virtual RegStorage AllocTempRef();
711    virtual RegStorage AllocTempSingle();
712    virtual RegStorage AllocTempDouble();
713    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class);
714    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class);
715    void FlushReg(RegStorage reg);
716    void FlushRegWide(RegStorage reg);
717    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
718    RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
719    virtual void FreeTemp(RegStorage reg);
720    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
721    virtual bool IsLive(RegStorage reg);
722    virtual bool IsTemp(RegStorage reg);
723    bool IsPromoted(RegStorage reg);
724    bool IsDirty(RegStorage reg);
725    void LockTemp(RegStorage reg);
726    void ResetDef(RegStorage reg);
727    void NullifyRange(RegStorage reg, int s_reg);
728    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
729    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
730    void ResetDefLoc(RegLocation rl);
731    void ResetDefLocWide(RegLocation rl);
732    void ResetDefTracking();
733    void ClobberAllTemps();
734    void FlushSpecificReg(RegisterInfo* info);
735    void FlushAllRegs();
736    bool RegClassMatches(int reg_class, RegStorage reg);
737    void MarkLive(RegLocation loc);
738    void MarkTemp(RegStorage reg);
739    void UnmarkTemp(RegStorage reg);
740    void MarkWide(RegStorage reg);
741    void MarkNarrow(RegStorage reg);
742    void MarkClean(RegLocation loc);
743    void MarkDirty(RegLocation loc);
744    void MarkInUse(RegStorage reg);
745    bool CheckCorePoolSanity();
746    virtual RegLocation UpdateLoc(RegLocation loc);
747    virtual RegLocation UpdateLocWide(RegLocation loc);
748    RegLocation UpdateRawLoc(RegLocation loc);
749
750    /**
751     * @brief Used to prepare a register location to receive a wide value.
752     * @see EvalLoc
753     * @param loc the location where the value will be stored.
754     * @param reg_class Type of register needed.
755     * @param update Whether the liveness information should be updated.
756     * @return Returns the properly typed temporary in physical register pairs.
757     */
758    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
759
760    /**
761     * @brief Used to prepare a register location to receive a value.
762     * @param loc the location where the value will be stored.
763     * @param reg_class Type of register needed.
764     * @param update Whether the liveness information should be updated.
765     * @return Returns the properly typed temporary in physical register.
766     */
767    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
768
769    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
770    void DumpCounts(const RefCounts* arr, int size, const char* msg);
771    void DoPromotion();
772    int VRegOffset(int v_reg);
773    int SRegOffset(int s_reg);
774    RegLocation GetReturnWide(RegisterClass reg_class);
775    RegLocation GetReturn(RegisterClass reg_class);
776    RegisterInfo* GetRegInfo(RegStorage reg);
777
778    // Shared by all targets - implemented in gen_common.cc.
779    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
780    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
781                          RegLocation rl_src, RegLocation rl_dest, int lit);
782    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
783    virtual void HandleSlowPaths();
784    void GenBarrier();
785    void GenDivZeroException();
786    // c_code holds condition code that's generated from testing divisor against 0.
787    void GenDivZeroCheck(ConditionCode c_code);
788    // reg holds divisor.
789    void GenDivZeroCheck(RegStorage reg);
790    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
791    void GenArrayBoundsCheck(int32_t index, RegStorage length);
792    LIR* GenNullCheck(RegStorage reg);
793    void MarkPossibleNullPointerException(int opt_flags);
794    void MarkPossibleStackOverflowException();
795    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
796    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
797    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
798    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
799    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
800                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
801    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
802                                 LIR* taken, LIR* fall_through);
803    virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
804    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
805                         RegLocation rl_src);
806    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
807                     RegLocation rl_src);
808    void GenFilledNewArray(CallInfo* info);
809    void GenSput(MIR* mir, RegLocation rl_src,
810                 bool is_long_or_double, bool is_object);
811    void GenSget(MIR* mir, RegLocation rl_dest,
812                 bool is_long_or_double, bool is_object);
813    void GenIGet(MIR* mir, int opt_flags, OpSize size,
814                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
815    void GenIPut(MIR* mir, int opt_flags, OpSize size,
816                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
817    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
818                        RegLocation rl_src);
819
820    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
821    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
822    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
823    void GenThrow(RegLocation rl_src);
824    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
825    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
826    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
827                      RegLocation rl_src1, RegLocation rl_src2);
828    virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
829                        RegLocation rl_src1, RegLocation rl_shift);
830    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
831                          RegLocation rl_src, int lit);
832    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
833                        RegLocation rl_src1, RegLocation rl_src2);
834    template <size_t pointer_size>
835    void GenConversionCall(ThreadOffset<pointer_size> func_offset, RegLocation rl_dest,
836                           RegLocation rl_src);
837    virtual void GenSuspendTest(int opt_flags);
838    virtual void GenSuspendTestAndBranch(int opt_flags, LIR* target);
839
840    // This will be overridden by x86 implementation.
841    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
842    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
843                       RegLocation rl_src1, RegLocation rl_src2);
844
845    // Shared by all targets - implemented in gen_invoke.cc.
846    template <size_t pointer_size>
847    LIR* CallHelper(RegStorage r_tgt, ThreadOffset<pointer_size> helper_offset, bool safepoint_pc,
848                    bool use_link = true);
849    RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
850    RegStorage CallHelperSetup(ThreadOffset<8> helper_offset);
851    template <size_t pointer_size>
852    void CallRuntimeHelper(ThreadOffset<pointer_size> helper_offset, bool safepoint_pc);
853    template <size_t pointer_size>
854    void CallRuntimeHelperImm(ThreadOffset<pointer_size> helper_offset, int arg0, bool safepoint_pc);
855    template <size_t pointer_size>
856    void CallRuntimeHelperReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, bool safepoint_pc);
857    template <size_t pointer_size>
858    void CallRuntimeHelperRegLocation(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
859                                      bool safepoint_pc);
860    template <size_t pointer_size>
861    void CallRuntimeHelperImmImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg1,
862                                 bool safepoint_pc);
863    template <size_t pointer_size>
864    void CallRuntimeHelperImmRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
865                                         RegLocation arg1, bool safepoint_pc);
866    template <size_t pointer_size>
867    void CallRuntimeHelperRegLocationImm(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
868                                         int arg1, bool safepoint_pc);
869    template <size_t pointer_size>
870    void CallRuntimeHelperImmReg(ThreadOffset<pointer_size> helper_offset, int arg0, RegStorage arg1,
871                                 bool safepoint_pc);
872    template <size_t pointer_size>
873    void CallRuntimeHelperRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, int arg1,
874                                 bool safepoint_pc);
875    template <size_t pointer_size>
876    void CallRuntimeHelperImmMethod(ThreadOffset<pointer_size> helper_offset, int arg0,
877                                    bool safepoint_pc);
878    template <size_t pointer_size>
879    void CallRuntimeHelperRegMethod(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
880                                    bool safepoint_pc);
881    template <size_t pointer_size>
882    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<pointer_size> helper_offset,
883                                               RegStorage arg0, RegLocation arg2, bool safepoint_pc);
884    template <size_t pointer_size>
885    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
886                                                 RegLocation arg0, RegLocation arg1,
887                                                 bool safepoint_pc);
888    template <size_t pointer_size>
889    void CallRuntimeHelperRegReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
890                                 RegStorage arg1, bool safepoint_pc);
891    template <size_t pointer_size>
892    void CallRuntimeHelperRegRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
893                                    RegStorage arg1, int arg2, bool safepoint_pc);
894    template <size_t pointer_size>
895    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
896                                               RegLocation arg2, bool safepoint_pc);
897    template <size_t pointer_size>
898    void CallRuntimeHelperImmMethodImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg2,
899                                       bool safepoint_pc);
900    template <size_t pointer_size>
901    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
902                                                    int arg0, RegLocation arg1, RegLocation arg2,
903                                                    bool safepoint_pc);
904    template <size_t pointer_size>
905    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
906                                                            RegLocation arg0, RegLocation arg1,
907                                                            RegLocation arg2,
908                                                            bool safepoint_pc);
909    void GenInvoke(CallInfo* info);
910    void GenInvokeNoInline(CallInfo* info);
911    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
912    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
913                             NextCallInsn next_call_insn,
914                             const MethodReference& target_method,
915                             uint32_t vtable_idx,
916                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
917                             bool skip_this);
918    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
919                           NextCallInsn next_call_insn,
920                           const MethodReference& target_method,
921                           uint32_t vtable_idx,
922                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
923                           bool skip_this);
924
925    /**
926     * @brief Used to determine the register location of destination.
927     * @details This is needed during generation of inline intrinsics because it finds destination
928     *  of return,
929     * either the physical register or the target of move-result.
930     * @param info Information about the invoke.
931     * @return Returns the destination location.
932     */
933    RegLocation InlineTarget(CallInfo* info);
934
935    /**
936     * @brief Used to determine the wide register location of destination.
937     * @see InlineTarget
938     * @param info Information about the invoke.
939     * @return Returns the destination location.
940     */
941    RegLocation InlineTargetWide(CallInfo* info);
942
943    bool GenInlinedCharAt(CallInfo* info);
944    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
945    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
946    bool GenInlinedAbsInt(CallInfo* info);
947    bool GenInlinedAbsLong(CallInfo* info);
948    bool GenInlinedAbsFloat(CallInfo* info);
949    bool GenInlinedAbsDouble(CallInfo* info);
950    bool GenInlinedFloatCvt(CallInfo* info);
951    bool GenInlinedDoubleCvt(CallInfo* info);
952    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
953    bool GenInlinedStringCompareTo(CallInfo* info);
954    bool GenInlinedCurrentThread(CallInfo* info);
955    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
956    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
957                             bool is_volatile, bool is_ordered);
958    virtual int LoadArgRegs(CallInfo* info, int call_state,
959                    NextCallInsn next_call_insn,
960                    const MethodReference& target_method,
961                    uint32_t vtable_idx,
962                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
963                    bool skip_this);
964
965    // Shared by all targets - implemented in gen_loadstore.cc.
966    RegLocation LoadCurrMethod();
967    void LoadCurrMethodDirect(RegStorage r_tgt);
968    virtual LIR* LoadConstant(RegStorage r_dest, int value);
969    // Natural word size.
970    virtual LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
971      return LoadBaseDisp(r_base, displacement, r_dest, kWord);
972    }
973    // Load 32 bits, regardless of target.
974    virtual LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
975      return LoadBaseDisp(r_base, displacement, r_dest, k32);
976    }
977    // Load a reference at base + displacement and decompress into register.
978    virtual LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
979      return LoadBaseDisp(r_base, displacement, r_dest, kReference);
980    }
981    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
982    virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
983    // Same as above, but derive the target register class from the location record.
984    virtual RegLocation LoadValue(RegLocation rl_src);
985    // Load Dalvik value with 64-bit memory storage.
986    virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
987    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
988    virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
989    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
990    virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
991    // Load Dalvik value with 64-bit memory storage.
992    virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
993    // Load Dalvik value with 64-bit memory storage.
994    virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
995    // Store an item of natural word size.
996    virtual LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
997      return StoreBaseDisp(r_base, displacement, r_src, kWord);
998    }
999    // Store an uncompressed reference into a compressed 32-bit container.
1000    virtual LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src) {
1001      return StoreBaseDisp(r_base, displacement, r_src, kReference);
1002    }
1003    // Store 32 bits, regardless of target.
1004    virtual LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
1005      return StoreBaseDisp(r_base, displacement, r_src, k32);
1006    }
1007
1008    /**
1009     * @brief Used to do the final store in the destination as per bytecode semantics.
1010     * @param rl_dest The destination dalvik register location.
1011     * @param rl_src The source register location. Can be either physical register or dalvik register.
1012     */
1013    virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
1014
1015    /**
1016     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1017     * @see StoreValue
1018     * @param rl_dest The destination dalvik register location.
1019     * @param rl_src The source register location. Can be either physical register or dalvik
1020     *  register.
1021     */
1022    virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
1023
1024    /**
1025     * @brief Used to do the final store to a destination as per bytecode semantics.
1026     * @see StoreValue
1027     * @param rl_dest The destination dalvik register location.
1028     * @param rl_src The source register location. It must be kLocPhysReg
1029     *
1030     * This is used for x86 two operand computations, where we have computed the correct
1031     * register value that now needs to be properly registered.  This is used to avoid an
1032     * extra register copy that would result if StoreValue was called.
1033     */
1034    virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
1035
1036    /**
1037     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1038     * @see StoreValueWide
1039     * @param rl_dest The destination dalvik register location.
1040     * @param rl_src The source register location. It must be kLocPhysReg
1041     *
1042     * This is used for x86 two operand computations, where we have computed the correct
1043     * register values that now need to be properly registered.  This is used to avoid an
1044     * extra pair of register copies that would result if StoreValueWide was called.
1045     */
1046    virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
1047
1048    // Shared by all targets - implemented in mir_to_lir.cc.
1049    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
1050    virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1051    bool MethodBlockCodeGen(BasicBlock* bb);
1052    bool SpecialMIR2LIR(const InlineMethod& special);
1053    virtual void MethodMIR2LIR();
1054    // Update LIR for verbose listings.
1055    void UpdateLIROffsets();
1056
1057    /*
1058     * @brief Load the address of the dex method into the register.
1059     * @param target_method The MethodReference of the method to be invoked.
1060     * @param type How the method will be invoked.
1061     * @param register that will contain the code address.
1062     * @note register will be passed to TargetReg to get physical register.
1063     */
1064    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1065                         SpecialTargetRegister symbolic_reg);
1066
1067    /*
1068     * @brief Load the Method* of a dex method into the register.
1069     * @param target_method The MethodReference of the method to be invoked.
1070     * @param type How the method will be invoked.
1071     * @param register that will contain the code address.
1072     * @note register will be passed to TargetReg to get physical register.
1073     */
1074    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1075                                   SpecialTargetRegister symbolic_reg);
1076
1077    /*
1078     * @brief Load the Class* of a Dex Class type into the register.
1079     * @param type How the method will be invoked.
1080     * @param register that will contain the code address.
1081     * @note register will be passed to TargetReg to get physical register.
1082     */
1083    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
1084
1085    // Routines that work for the generic case, but may be overriden by target.
1086    /*
1087     * @brief Compare memory to immediate, and branch if condition true.
1088     * @param cond The condition code that when true will branch to the target.
1089     * @param temp_reg A temporary register that can be used if compare to memory is not
1090     * supported by the architecture.
1091     * @param base_reg The register holding the base address.
1092     * @param offset The offset from the base.
1093     * @param check_value The immediate to compare to.
1094     * @returns The branch instruction that was generated.
1095     */
1096    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1097                                   int offset, int check_value, LIR* target);
1098
1099    // Required for target - codegen helpers.
1100    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1101                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1102    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1103    virtual LIR* CheckSuspendUsingLoad() = 0;
1104
1105    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
1106    virtual RegStorage LoadHelper(ThreadOffset<8> offset) = 0;
1107
1108    virtual LIR* LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest,
1109                                      OpSize size) = 0;
1110    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1111                              OpSize size) = 0;
1112    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1113                                 int scale, OpSize size) = 0;
1114    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1115                                     int displacement, RegStorage r_dest, OpSize size) = 0;
1116    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1117    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1118    virtual LIR* StoreBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_src,
1119                                       OpSize size) = 0;
1120    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1121                               OpSize size) = 0;
1122    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1123                                  int scale, OpSize size) = 0;
1124    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1125                                      int displacement, RegStorage r_src, OpSize size) = 0;
1126    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
1127
1128    // Required for target - register utilities.
1129    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1130    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
1131    virtual RegLocation GetReturnAlt() = 0;
1132    virtual RegLocation GetReturnWideAlt() = 0;
1133    virtual RegLocation LocCReturn() = 0;
1134    virtual RegLocation LocCReturnRef() = 0;
1135    virtual RegLocation LocCReturnDouble() = 0;
1136    virtual RegLocation LocCReturnFloat() = 0;
1137    virtual RegLocation LocCReturnWide() = 0;
1138    virtual uint64_t GetRegMaskCommon(RegStorage reg) = 0;
1139    virtual void AdjustSpillMask() = 0;
1140    virtual void ClobberCallerSave() = 0;
1141    virtual void FreeCallTemps() = 0;
1142    virtual void LockCallTemps() = 0;
1143    virtual void MarkPreservedSingle(int v_reg, RegStorage reg) = 0;
1144    virtual void MarkPreservedDouble(int v_reg, RegStorage reg) = 0;
1145    virtual void CompilerInitializeRegAlloc() = 0;
1146
1147    // Required for target - miscellaneous.
1148    virtual void AssembleLIR() = 0;
1149    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
1150    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
1151    virtual const char* GetTargetInstFmt(int opcode) = 0;
1152    virtual const char* GetTargetInstName(int opcode) = 0;
1153    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1154    virtual uint64_t GetPCUseDefEncoding() = 0;
1155    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1156    virtual int GetInsnSize(LIR* lir) = 0;
1157    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1158
1159    // Check support for volatile load/store of a given size.
1160    virtual bool SupportsVolatileLoadStore(OpSize size) = 0;
1161    // Get the register class for load/store of a field.
1162    virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1163
1164    // Required for target - Dalvik-level generators.
1165    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1166                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
1167    virtual void GenMulLong(Instruction::Code,
1168                            RegLocation rl_dest, RegLocation rl_src1,
1169                            RegLocation rl_src2) = 0;
1170    virtual void GenAddLong(Instruction::Code,
1171                            RegLocation rl_dest, RegLocation rl_src1,
1172                            RegLocation rl_src2) = 0;
1173    virtual void GenAndLong(Instruction::Code,
1174                            RegLocation rl_dest, RegLocation rl_src1,
1175                            RegLocation rl_src2) = 0;
1176    virtual void GenArithOpDouble(Instruction::Code opcode,
1177                                  RegLocation rl_dest, RegLocation rl_src1,
1178                                  RegLocation rl_src2) = 0;
1179    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1180                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1181    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1182                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1183    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1184                               RegLocation rl_src) = 0;
1185    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1186
1187    /**
1188     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1189     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1190     * that applies on integers. The generated code will write the smallest or largest value
1191     * directly into the destination register as specified by the invoke information.
1192     * @param info Information about the invoke.
1193     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1194     * @return Returns true if successfully generated
1195     */
1196    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
1197
1198    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1199    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1200    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1201    virtual void GenNotLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1202    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1203    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1204                           RegLocation rl_src2) = 0;
1205    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1206                            RegLocation rl_src2) = 0;
1207    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1208                            RegLocation rl_src2) = 0;
1209    virtual void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1210                            RegLocation rl_src2, bool is_div) = 0;
1211    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1212                                  bool is_div) = 0;
1213    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1214                                     bool is_div) = 0;
1215    /*
1216     * @brief Generate an integer div or rem operation by a literal.
1217     * @param rl_dest Destination Location.
1218     * @param rl_src1 Numerator Location.
1219     * @param rl_src2 Divisor Location.
1220     * @param is_div 'true' if this is a division, 'false' for a remainder.
1221     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
1222     */
1223    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1224                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
1225    /*
1226     * @brief Generate an integer div or rem operation by a literal.
1227     * @param rl_dest Destination Location.
1228     * @param rl_src Numerator Location.
1229     * @param lit Divisor.
1230     * @param is_div 'true' if this is a division, 'false' for a remainder.
1231     */
1232    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1233                                     bool is_div) = 0;
1234    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1235
1236    /**
1237     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1238     * @details This is used for generating DivideByZero checks when divisor is held in two
1239     *  separate registers.
1240     * @param reg The register holding the pair of 32-bit values.
1241     */
1242    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1243
1244    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1245    virtual void GenExitSequence() = 0;
1246    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1247    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1248    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1249
1250    /*
1251     * @brief Handle Machine Specific MIR Extended opcodes.
1252     * @param bb The basic block in which the MIR is from.
1253     * @param mir The MIR whose opcode is not standard extended MIR.
1254     * @note Base class implementation will abort for unknown opcodes.
1255     */
1256    virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1257
1258    /**
1259     * @brief Lowers the kMirOpSelect MIR into LIR.
1260     * @param bb The basic block in which the MIR is from.
1261     * @param mir The MIR whose opcode is kMirOpSelect.
1262     */
1263    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1264
1265    /**
1266     * @brief Used to generate a memory barrier in an architecture specific way.
1267     * @details The last generated LIR will be considered for use as barrier. Namely,
1268     * if the last LIR can be updated in a way where it will serve the semantics of
1269     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1270     * that can keep the semantics.
1271     * @param barrier_kind The kind of memory barrier to generate.
1272     * @return whether a new instruction was generated.
1273     */
1274    virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1275
1276    virtual void GenMoveException(RegLocation rl_dest) = 0;
1277    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1278                                               int first_bit, int second_bit) = 0;
1279    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1280    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1281    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1282    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1283    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1284                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1285    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1286                             RegLocation rl_index, RegLocation rl_src, int scale,
1287                             bool card_mark) = 0;
1288    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1289                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1290
1291    // Required for target - single operation generators.
1292    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1293    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1294    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1295                                LIR* target) = 0;
1296    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1297    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1298    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1299    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1300    virtual void OpEndIT(LIR* it) = 0;
1301    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1302    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1303    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1304    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1305    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1306    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1307    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1308    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1309
1310    /**
1311     * @brief Used to generate an LIR that does a load from mem to reg.
1312     * @param r_dest The destination physical register.
1313     * @param r_base The base physical register for memory operand.
1314     * @param offset The displacement for memory operand.
1315     * @param move_type Specification on the move desired (size, alignment, register kind).
1316     * @return Returns the generate move LIR.
1317     */
1318    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1319                             MoveType move_type) = 0;
1320
1321    /**
1322     * @brief Used to generate an LIR that does a store from reg to mem.
1323     * @param r_base The base physical register for memory operand.
1324     * @param offset The displacement for memory operand.
1325     * @param r_src The destination physical register.
1326     * @param bytes_to_move The number of bytes to move.
1327     * @param is_aligned Whether the memory location is known to be aligned.
1328     * @return Returns the generate move LIR.
1329     */
1330    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1331                             MoveType move_type) = 0;
1332
1333    /**
1334     * @brief Used for generating a conditional register to register operation.
1335     * @param op The opcode kind.
1336     * @param cc The condition code that when true will perform the opcode.
1337     * @param r_dest The destination physical register.
1338     * @param r_src The source physical register.
1339     * @return Returns the newly created LIR or null in case of creation failure.
1340     */
1341    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1342
1343    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1344    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1345                             RegStorage r_src2) = 0;
1346    virtual LIR* OpTestSuspend(LIR* target) = 0;
1347    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1348    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) = 0;
1349    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1350    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1351    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1352                       int offset) = 0;
1353    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1354    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1355    virtual void OpTlsCmp(ThreadOffset<8> offset, int val) = 0;
1356    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1357    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1358    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1359    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1360
1361    // May be optimized by targets.
1362    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1363    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1364
1365    // Temp workaround
1366    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1367
1368  protected:
1369    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1370
1371    CompilationUnit* GetCompilationUnit() {
1372      return cu_;
1373    }
1374    /*
1375     * @brief Returns the index of the lowest set bit in 'x'.
1376     * @param x Value to be examined.
1377     * @returns The bit number of the lowest bit set in the value.
1378     */
1379    int32_t LowestSetBit(uint64_t x);
1380    /*
1381     * @brief Is this value a power of two?
1382     * @param x Value to be examined.
1383     * @returns 'true' if only 1 bit is set in the value.
1384     */
1385    bool IsPowerOfTwo(uint64_t x);
1386    /*
1387     * @brief Do these SRs overlap?
1388     * @param rl_op1 One RegLocation
1389     * @param rl_op2 The other RegLocation
1390     * @return 'true' if the VR pairs overlap
1391     *
1392     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1393     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1394     * dex, we'll want to make this case illegal.
1395     */
1396    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1397
1398    /*
1399     * @brief Force a location (in a register) into a temporary register
1400     * @param loc location of result
1401     * @returns update location
1402     */
1403    virtual RegLocation ForceTemp(RegLocation loc);
1404
1405    /*
1406     * @brief Force a wide location (in registers) into temporary registers
1407     * @param loc location of result
1408     * @returns update location
1409     */
1410    virtual RegLocation ForceTempWide(RegLocation loc);
1411
1412    static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
1413      return wide ? k64 : ref ? kReference : k32;
1414    }
1415
1416    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1417                                    RegLocation rl_dest, RegLocation rl_src);
1418
1419    void AddSlowPath(LIRSlowPath* slowpath);
1420
1421    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1422                                            bool type_known_abstract, bool use_declaring_class,
1423                                            bool can_assume_type_is_in_dex_cache,
1424                                            uint32_t type_idx, RegLocation rl_dest,
1425                                            RegLocation rl_src);
1426    /*
1427     * @brief Generate the debug_frame FDE information if possible.
1428     * @returns pointer to vector containg CFE information, or NULL.
1429     */
1430    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1431
1432    /**
1433     * @brief Used to insert marker that can be used to associate MIR with LIR.
1434     * @details Only inserts marker if verbosity is enabled.
1435     * @param mir The mir that is currently being generated.
1436     */
1437    void GenPrintLabel(MIR* mir);
1438
1439    /**
1440     * @brief Used to generate return sequence when there is no frame.
1441     * @details Assumes that the return registers have already been populated.
1442     */
1443    virtual void GenSpecialExitSequence() = 0;
1444
1445    /**
1446     * @brief Used to generate code for special methods that are known to be
1447     * small enough to work in frameless mode.
1448     * @param bb The basic block of the first MIR.
1449     * @param mir The first MIR of the special method.
1450     * @param special Information about the special method.
1451     * @return Returns whether or not this was handled successfully. Returns false
1452     * if caller should punt to normal MIR2LIR conversion.
1453     */
1454    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1455
1456  protected:
1457    void ClobberBody(RegisterInfo* p);
1458    void SetCurrentDexPc(DexOffset dexpc) {
1459      current_dalvik_offset_ = dexpc;
1460    }
1461
1462    /**
1463     * @brief Used to lock register if argument at in_position was passed that way.
1464     * @details Does nothing if the argument is passed via stack.
1465     * @param in_position The argument number whose register to lock.
1466     * @param wide Whether the argument is wide.
1467     */
1468    void LockArg(int in_position, bool wide = false);
1469
1470    /**
1471     * @brief Used to load VR argument to a physical register.
1472     * @details The load is only done if the argument is not already in physical register.
1473     * LockArg must have been previously called.
1474     * @param in_position The argument number to load.
1475     * @param wide Whether the argument is 64-bit or not.
1476     * @return Returns the register (or register pair) for the loaded argument.
1477     */
1478    RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false);
1479
1480    /**
1481     * @brief Used to load a VR argument directly to a specified register location.
1482     * @param in_position The argument number to place in register.
1483     * @param rl_dest The register location where to place argument.
1484     */
1485    void LoadArgDirect(int in_position, RegLocation rl_dest);
1486
1487    /**
1488     * @brief Used to generate LIR for special getter method.
1489     * @param mir The mir that represents the iget.
1490     * @param special Information about the special getter method.
1491     * @return Returns whether LIR was successfully generated.
1492     */
1493    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1494
1495    /**
1496     * @brief Used to generate LIR for special setter method.
1497     * @param mir The mir that represents the iput.
1498     * @param special Information about the special setter method.
1499     * @return Returns whether LIR was successfully generated.
1500     */
1501    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1502
1503    /**
1504     * @brief Used to generate LIR for special return-args method.
1505     * @param mir The mir that represents the return of argument.
1506     * @param special Information about the special return-args method.
1507     * @return Returns whether LIR was successfully generated.
1508     */
1509    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1510
1511    void AddDivZeroCheckSlowPath(LIR* branch);
1512
1513    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1514    // kArg2 as temp.
1515    virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1516
1517    /**
1518     * @brief Load Constant into RegLocation
1519     * @param rl_dest Destination RegLocation
1520     * @param value Constant value
1521     */
1522    virtual void GenConst(RegLocation rl_dest, int value);
1523
1524  public:
1525    // TODO: add accessors for these.
1526    LIR* literal_list_;                        // Constants.
1527    LIR* method_literal_list_;                 // Method literals requiring patching.
1528    LIR* class_literal_list_;                  // Class literals requiring patching.
1529    LIR* code_literal_list_;                   // Code literals requiring patching.
1530    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1531
1532  protected:
1533    CompilationUnit* const cu_;
1534    MIRGraph* const mir_graph_;
1535    GrowableArray<SwitchTable*> switch_tables_;
1536    GrowableArray<FillArrayData*> fill_array_data_;
1537    GrowableArray<RegisterInfo*> tempreg_info_;
1538    GrowableArray<RegisterInfo*> reginfo_map_;
1539    GrowableArray<void*> pointer_storage_;
1540    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1541    CodeOffset data_offset_;            // starting offset of literal pool.
1542    size_t total_size_;                   // header + code size.
1543    LIR* block_label_list_;
1544    PromotionMap* promotion_map_;
1545    /*
1546     * TODO: The code generation utilities don't have a built-in
1547     * mechanism to propagate the original Dalvik opcode address to the
1548     * associated generated instructions.  For the trace compiler, this wasn't
1549     * necessary because the interpreter handled all throws and debugging
1550     * requests.  For now we'll handle this by placing the Dalvik offset
1551     * in the CompilationUnit struct before codegen for each instruction.
1552     * The low-level LIR creation utilites will pull it from here.  Rework this.
1553     */
1554    DexOffset current_dalvik_offset_;
1555    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1556    RegisterPool* reg_pool_;
1557    /*
1558     * Sanity checking for the register temp tracking.  The same ssa
1559     * name should never be associated with one temp register per
1560     * instruction compilation.
1561     */
1562    int live_sreg_;
1563    CodeBuffer code_buffer_;
1564    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1565    std::vector<uint8_t> encoded_mapping_table_;
1566    std::vector<uint32_t> core_vmap_table_;
1567    std::vector<uint32_t> fp_vmap_table_;
1568    std::vector<uint8_t> native_gc_map_;
1569    int num_core_spills_;
1570    int num_fp_spills_;
1571    int frame_size_;
1572    unsigned int core_spill_mask_;
1573    unsigned int fp_spill_mask_;
1574    LIR* first_lir_insn_;
1575    LIR* last_lir_insn_;
1576
1577    GrowableArray<LIRSlowPath*> slow_paths_;
1578};  // Class Mir2Lir
1579
1580}  // namespace art
1581
1582#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1583