mir_to_lir.h revision a1ce1fef2d49d1d537776a5308ace7102a815fe5
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/backend.h"
25#include "driver/compiler_driver.h"
26#include "leb128.h"
27#include "safe_map.h"
28#include "utils/arena_allocator.h"
29#include "utils/growable_array.h"
30
31namespace art {
32
33/*
34 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
35 * add type safety (see runtime/offsets.h).
36 */
37typedef uint32_t DexOffset;          // Dex offset in code units.
38typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
39typedef uint32_t CodeOffset;         // Native code offset in bytes.
40
41// Set to 1 to measure cost of suspend check.
42#define NO_SUSPEND 0
43
44#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
45#define IS_BRANCH            (1ULL << kIsBranch)
46#define IS_IT                (1ULL << kIsIT)
47#define IS_LOAD              (1ULL << kMemLoad)
48#define IS_QUAD_OP           (1ULL << kIsQuadOp)
49#define IS_QUIN_OP           (1ULL << kIsQuinOp)
50#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
51#define IS_STORE             (1ULL << kMemStore)
52#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
53#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
54#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
55#define NO_OPERAND           (1ULL << kNoOperand)
56#define REG_DEF0             (1ULL << kRegDef0)
57#define REG_DEF1             (1ULL << kRegDef1)
58#define REG_DEFA             (1ULL << kRegDefA)
59#define REG_DEFD             (1ULL << kRegDefD)
60#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
61#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
62#define REG_DEF_LIST0        (1ULL << kRegDefList0)
63#define REG_DEF_LIST1        (1ULL << kRegDefList1)
64#define REG_DEF_LR           (1ULL << kRegDefLR)
65#define REG_DEF_SP           (1ULL << kRegDefSP)
66#define REG_USE0             (1ULL << kRegUse0)
67#define REG_USE1             (1ULL << kRegUse1)
68#define REG_USE2             (1ULL << kRegUse2)
69#define REG_USE3             (1ULL << kRegUse3)
70#define REG_USE4             (1ULL << kRegUse4)
71#define REG_USEA             (1ULL << kRegUseA)
72#define REG_USEC             (1ULL << kRegUseC)
73#define REG_USED             (1ULL << kRegUseD)
74#define REG_USEB             (1ULL << kRegUseB)
75#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
76#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
77#define REG_USE_LIST0        (1ULL << kRegUseList0)
78#define REG_USE_LIST1        (1ULL << kRegUseList1)
79#define REG_USE_LR           (1ULL << kRegUseLR)
80#define REG_USE_PC           (1ULL << kRegUsePC)
81#define REG_USE_SP           (1ULL << kRegUseSP)
82#define SETS_CCODES          (1ULL << kSetsCCodes)
83#define USES_CCODES          (1ULL << kUsesCCodes)
84
85// Common combo register usage patterns.
86#define REG_DEF01            (REG_DEF0 | REG_DEF1)
87#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
88#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
89#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
90#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
91#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
92#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
93#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
94#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
95#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
96#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
97#define REG_USE012           (REG_USE01 | REG_USE2)
98#define REG_USE014           (REG_USE01 | REG_USE4)
99#define REG_USE01            (REG_USE0 | REG_USE1)
100#define REG_USE02            (REG_USE0 | REG_USE2)
101#define REG_USE12            (REG_USE1 | REG_USE2)
102#define REG_USE23            (REG_USE2 | REG_USE3)
103#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
104
105struct BasicBlock;
106struct CallInfo;
107struct CompilationUnit;
108struct InlineMethod;
109struct MIR;
110struct LIR;
111struct RegLocation;
112struct RegisterInfo;
113class DexFileMethodInliner;
114class MIRGraph;
115class Mir2Lir;
116
117typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
118                            const MethodReference& target_method,
119                            uint32_t method_idx, uintptr_t direct_code,
120                            uintptr_t direct_method, InvokeType type);
121
122typedef std::vector<uint8_t> CodeBuffer;
123
124struct UseDefMasks {
125  uint64_t use_mask;        // Resource mask for use.
126  uint64_t def_mask;        // Resource mask for def.
127};
128
129struct AssemblyInfo {
130  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
131  uint8_t bytes[16];         // Encoded instruction bytes.
132};
133
134struct LIR {
135  CodeOffset offset;             // Offset of this instruction.
136  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
137  int16_t opcode;
138  LIR* next;
139  LIR* prev;
140  LIR* target;
141  struct {
142    unsigned int alias_info:17;  // For Dalvik register disambiguation.
143    bool is_nop:1;               // LIR is optimized away.
144    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
145    bool use_def_invalid:1;      // If true, masks should not be used.
146    unsigned int generation:1;   // Used to track visitation state during fixup pass.
147    unsigned int fixup:8;        // Fixup kind.
148  } flags;
149  union {
150    UseDefMasks m;               // Use & Def masks used during optimization.
151    AssemblyInfo a;              // Instruction encoding used during assembly phase.
152  } u;
153  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
154};
155
156// Target-specific initialization.
157Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
158                          ArenaAllocator* const arena);
159Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
160                          ArenaAllocator* const arena);
161Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
162                          ArenaAllocator* const arena);
163
164// Utility macros to traverse the LIR list.
165#define NEXT_LIR(lir) (lir->next)
166#define PREV_LIR(lir) (lir->prev)
167
168// Defines for alias_info (tracks Dalvik register references).
169#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
170#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
171#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
172#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
173
174// Common resource macros.
175#define ENCODE_CCODE            (1ULL << kCCode)
176#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
177
178// Abstract memory locations.
179#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
180#define ENCODE_LITERAL          (1ULL << kLiteral)
181#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
182#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
183
184#define ENCODE_ALL              (~0ULL)
185#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
186                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
187
188#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
189#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
190  do { \
191    low_reg = both_regs & 0xff; \
192    high_reg = (both_regs >> 8) & 0xff; \
193  } while (false)
194
195// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
196#define STARTING_DOUBLE_SREG 0x10000
197
198// TODO: replace these macros
199#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
200#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
201#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
202#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
203#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
204
205class Mir2Lir : public Backend {
206  public:
207    /*
208     * Auxiliary information describing the location of data embedded in the Dalvik
209     * byte code stream.
210     */
211    struct EmbeddedData {
212      CodeOffset offset;        // Code offset of data block.
213      const uint16_t* table;      // Original dex data.
214      DexOffset vaddr;            // Dalvik offset of parent opcode.
215    };
216
217    struct FillArrayData : EmbeddedData {
218      int32_t size;
219    };
220
221    struct SwitchTable : EmbeddedData {
222      LIR* anchor;                // Reference instruction for relative offsets.
223      LIR** targets;              // Array of case targets.
224    };
225
226    /* Static register use counts */
227    struct RefCounts {
228      int count;
229      int s_reg;
230    };
231
232    /*
233     * Data structure tracking the mapping between a Dalvik register (pair) and a
234     * native register (pair). The idea is to reuse the previously loaded value
235     * if possible, otherwise to keep the value in a native register as long as
236     * possible.
237     */
238    struct RegisterInfo {
239      int reg;                    // Reg number
240      bool in_use;                // Has it been allocated?
241      bool is_temp;               // Can allocate as temp?
242      bool pair;                  // Part of a register pair?
243      int partner;                // If pair, other reg of pair.
244      bool live;                  // Is there an associated SSA name?
245      bool dirty;                 // If live, is it dirty?
246      int s_reg;                  // Name of live value.
247      LIR *def_start;             // Starting inst in last def sequence.
248      LIR *def_end;               // Ending inst in last def sequence.
249    };
250
251    struct RegisterPool {
252       int num_core_regs;
253       RegisterInfo *core_regs;
254       int next_core_reg;
255       int num_fp_regs;
256       RegisterInfo *FPRegs;
257       int next_fp_reg;
258     };
259
260    struct PromotionMap {
261      RegLocationType core_location:3;
262      uint8_t core_reg;
263      RegLocationType fp_location:3;
264      uint8_t FpReg;
265      bool first_in_pair;
266    };
267
268    //
269    // Slow paths.  This object is used generate a sequence of code that is executed in the
270    // slow path.  For example, resolving a string or class is slow as it will only be executed
271    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
272    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
273    // branch over them.
274    //
275    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
276    // the Compile() function that will be called near the end of the code generated by the
277    // method.
278    //
279    // The basic flow for a slow path is:
280    //
281    //     CMP reg, #value
282    //     BEQ fromfast
283    //   cont:
284    //     ...
285    //     fast path code
286    //     ...
287    //     more code
288    //     ...
289    //     RETURN
290    ///
291    //   fromfast:
292    //     ...
293    //     slow path code
294    //     ...
295    //     B cont
296    //
297    // So you see we need two labels and two branches.  The first branch (called fromfast) is
298    // the conditional branch to the slow path code.  The second label (called cont) is used
299    // as an unconditional branch target for getting back to the code after the slow path
300    // has completed.
301    //
302
303    class LIRSlowPath {
304     public:
305      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
306                  LIR* cont = nullptr) :
307        m2l_(m2l), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
308      }
309      virtual ~LIRSlowPath() {}
310      virtual void Compile() = 0;
311
312      static void* operator new(size_t size, ArenaAllocator* arena) {
313        return arena->Alloc(size, ArenaAllocator::kAllocData);
314      }
315
316     protected:
317      LIR* GenerateTargetLabel();
318
319      Mir2Lir* const m2l_;
320      const DexOffset current_dex_pc_;
321      LIR* const fromfast_;
322      LIR* const cont_;
323    };
324
325    virtual ~Mir2Lir() {}
326
327    int32_t s4FromSwitchData(const void* switch_data) {
328      return *reinterpret_cast<const int32_t*>(switch_data);
329    }
330
331    RegisterClass oat_reg_class_by_size(OpSize size) {
332      return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
333              size == kSignedByte) ? kCoreReg : kAnyReg;
334    }
335
336    size_t CodeBufferSizeInBytes() {
337      return code_buffer_.size() / sizeof(code_buffer_[0]);
338    }
339
340    bool IsPseudoLirOp(int opcode) {
341      return (opcode < 0);
342    }
343
344    /*
345     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
346     * instructions which require PC-relative fixups), we need the operands to carry
347     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
348     * hold that index in the operand array.
349     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
350     * may be worth conditionally-compiling a set of identity functions here.
351     */
352    uint32_t WrapPointer(void* pointer) {
353      uint32_t res = pointer_storage_.Size();
354      pointer_storage_.Insert(pointer);
355      return res;
356    }
357
358    void* UnwrapPointer(size_t index) {
359      return pointer_storage_.Get(index);
360    }
361
362    // strdup(), but allocates from the arena.
363    char* ArenaStrdup(const char* str) {
364      size_t len = strlen(str) + 1;
365      char* res = reinterpret_cast<char*>(arena_->Alloc(len, ArenaAllocator::kAllocMisc));
366      if (res != NULL) {
367        strncpy(res, str, len);
368      }
369      return res;
370    }
371
372    // Shared by all targets - implemented in codegen_util.cc
373    void AppendLIR(LIR* lir);
374    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
375    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
376
377    /**
378     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
379     * to place in a frame.
380     * @return Returns the maximum number of compiler temporaries.
381     */
382    size_t GetMaxPossibleCompilerTemps() const;
383
384    /**
385     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
386     * @return Returns the size in bytes for space needed for compiler temporary spill region.
387     */
388    size_t GetNumBytesForCompilerTempSpillRegion();
389
390    DexOffset GetCurrentDexPc() const {
391      return current_dalvik_offset_;
392    }
393
394    int ComputeFrameSize();
395    virtual void Materialize();
396    virtual CompiledMethod* GetCompiledMethod();
397    void MarkSafepointPC(LIR* inst);
398    bool FastInstance(uint32_t field_idx, bool is_put, int* field_offset, bool* is_volatile);
399    void SetupResourceMasks(LIR* lir);
400    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
401    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
402    void SetupRegMask(uint64_t* mask, int reg);
403    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
404    void DumpPromotionMap();
405    void CodegenDump();
406    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
407                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
408    LIR* NewLIR0(int opcode);
409    LIR* NewLIR1(int opcode, int dest);
410    LIR* NewLIR2(int opcode, int dest, int src1);
411    LIR* NewLIR2NoDest(int opcode, int src, int info);
412    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
413    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
414    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
415    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
416    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
417    LIR* AddWordData(LIR* *constant_list_p, int value);
418    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
419    void ProcessSwitchTables();
420    void DumpSparseSwitchTable(const uint16_t* table);
421    void DumpPackedSwitchTable(const uint16_t* table);
422    void MarkBoundary(DexOffset offset, const char* inst_str);
423    void NopLIR(LIR* lir);
424    void UnlinkLIR(LIR* lir);
425    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
426    bool IsInexpensiveConstant(RegLocation rl_src);
427    ConditionCode FlipComparisonOrder(ConditionCode before);
428    virtual void InstallLiteralPools();
429    void InstallSwitchTables();
430    void InstallFillArrayData();
431    bool VerifyCatchEntries();
432    void CreateMappingTables();
433    void CreateNativeGcMap();
434    int AssignLiteralOffset(CodeOffset offset);
435    int AssignSwitchTablesOffset(CodeOffset offset);
436    int AssignFillArrayDataOffset(CodeOffset offset);
437    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
438    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
439    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
440
441    // Shared by all targets - implemented in local_optimizations.cc
442    void ConvertMemOpIntoMove(LIR* orig_lir, int dest, int src);
443    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
444    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
445    void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
446
447    // Shared by all targets - implemented in ralloc_util.cc
448    int GetSRegHi(int lowSreg);
449    bool oat_live_out(int s_reg);
450    int oatSSASrc(MIR* mir, int num);
451    void SimpleRegAlloc();
452    void ResetRegPool();
453    void CompilerInitPool(RegisterInfo* regs, int* reg_nums, int num);
454    void DumpRegPool(RegisterInfo* p, int num_regs);
455    void DumpCoreRegPool();
456    void DumpFpRegPool();
457    /* Mark a temp register as dead.  Does not affect allocation state. */
458    void Clobber(int reg) {
459      ClobberBody(GetRegInfo(reg));
460    }
461    void ClobberSRegBody(RegisterInfo* p, int num_regs, int s_reg);
462    void ClobberSReg(int s_reg);
463    int SRegToPMap(int s_reg);
464    void RecordCorePromotion(int reg, int s_reg);
465    int AllocPreservedCoreReg(int s_reg);
466    void RecordFpPromotion(int reg, int s_reg);
467    int AllocPreservedSingle(int s_reg);
468    int AllocPreservedDouble(int s_reg);
469    int AllocTempBody(RegisterInfo* p, int num_regs, int* next_temp, bool required);
470    virtual int AllocTempDouble();
471    int AllocFreeTemp();
472    int AllocTemp();
473    int AllocTempFloat();
474    RegisterInfo* AllocLiveBody(RegisterInfo* p, int num_regs, int s_reg);
475    RegisterInfo* AllocLive(int s_reg, int reg_class);
476    void FreeTemp(int reg);
477    RegisterInfo* IsLive(int reg);
478    RegisterInfo* IsTemp(int reg);
479    RegisterInfo* IsPromoted(int reg);
480    bool IsDirty(int reg);
481    void LockTemp(int reg);
482    void ResetDef(int reg);
483    void NullifyRange(LIR *start, LIR *finish, int s_reg1, int s_reg2);
484    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
485    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
486    RegLocation WideToNarrow(RegLocation rl);
487    void ResetDefLoc(RegLocation rl);
488    virtual void ResetDefLocWide(RegLocation rl);
489    void ResetDefTracking();
490    void ClobberAllRegs();
491    void FlushSpecificReg(RegisterInfo* info);
492    void FlushAllRegsBody(RegisterInfo* info, int num_regs);
493    void FlushAllRegs();
494    bool RegClassMatches(int reg_class, int reg);
495    void MarkLive(int reg, int s_reg);
496    void MarkTemp(int reg);
497    void UnmarkTemp(int reg);
498    void MarkPair(int low_reg, int high_reg);
499    void MarkClean(RegLocation loc);
500    void MarkDirty(RegLocation loc);
501    void MarkInUse(int reg);
502    void CopyRegInfo(int new_reg, int old_reg);
503    bool CheckCorePoolSanity();
504    RegLocation UpdateLoc(RegLocation loc);
505    virtual RegLocation UpdateLocWide(RegLocation loc);
506    RegLocation UpdateRawLoc(RegLocation loc);
507
508    /**
509     * @brief Used to load register location into a typed temporary or pair of temporaries.
510     * @see EvalLoc
511     * @param loc The register location to load from.
512     * @param reg_class Type of register needed.
513     * @param update Whether the liveness information should be updated.
514     * @return Returns the properly typed temporary in physical register pairs.
515     */
516    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
517
518    /**
519     * @brief Used to load register location into a typed temporary.
520     * @param loc The register location to load from.
521     * @param reg_class Type of register needed.
522     * @param update Whether the liveness information should be updated.
523     * @return Returns the properly typed temporary in physical register.
524     */
525    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
526
527    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
528    void DumpCounts(const RefCounts* arr, int size, const char* msg);
529    void DoPromotion();
530    int VRegOffset(int v_reg);
531    int SRegOffset(int s_reg);
532    RegLocation GetReturnWide(bool is_double);
533    RegLocation GetReturn(bool is_float);
534    RegisterInfo* GetRegInfo(int reg);
535
536    // Shared by all targets - implemented in gen_common.cc.
537    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
538                          RegLocation rl_src, RegLocation rl_dest, int lit);
539    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
540    void HandleSuspendLaunchPads();
541    void HandleIntrinsicLaunchPads();
542    void HandleThrowLaunchPads();
543    void HandleSlowPaths();
544    void GenBarrier();
545    LIR* GenCheck(ConditionCode c_code, ThrowKind kind);
546    LIR* GenImmedCheck(ConditionCode c_code, int reg, int imm_val,
547                       ThrowKind kind);
548    LIR* GenNullCheck(int s_reg, int m_reg, int opt_flags);
549    LIR* GenRegRegCheck(ConditionCode c_code, int reg1, int reg2,
550                        ThrowKind kind);
551    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
552                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
553    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
554                                 LIR* taken, LIR* fall_through);
555    void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
556    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
557                         RegLocation rl_src);
558    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
559                     RegLocation rl_src);
560    void GenFilledNewArray(CallInfo* info);
561    void GenSput(uint32_t field_idx, RegLocation rl_src,
562                 bool is_long_or_double, bool is_object);
563    void GenSget(uint32_t field_idx, RegLocation rl_dest,
564                 bool is_long_or_double, bool is_object);
565    void GenIGet(uint32_t field_idx, int opt_flags, OpSize size,
566                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
567    void GenIPut(uint32_t field_idx, int opt_flags, OpSize size,
568                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
569    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
570                        RegLocation rl_src);
571
572    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
573    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
574    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
575    void GenThrow(RegLocation rl_src);
576    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest,
577                       RegLocation rl_src);
578    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx,
579                      RegLocation rl_src);
580    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
581                      RegLocation rl_src1, RegLocation rl_src2);
582    void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
583                        RegLocation rl_src1, RegLocation rl_shift);
584    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
585                          RegLocation rl_src, int lit);
586    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
587                        RegLocation rl_src1, RegLocation rl_src2);
588    void GenConversionCall(ThreadOffset func_offset, RegLocation rl_dest,
589                           RegLocation rl_src);
590    void GenSuspendTest(int opt_flags);
591    void GenSuspendTestAndBranch(int opt_flags, LIR* target);
592
593    // This will be overridden by x86 implementation.
594    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
595    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
596                       RegLocation rl_src1, RegLocation rl_src2);
597
598    // Shared by all targets - implemented in gen_invoke.cc.
599    int CallHelperSetup(ThreadOffset helper_offset);
600    LIR* CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc);
601    void CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
602    void CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
603    void CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0,
604                                      bool safepoint_pc);
605    void CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1,
606                                 bool safepoint_pc);
607    void CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0,
608                                         RegLocation arg1, bool safepoint_pc);
609    void CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0,
610                                         int arg1, bool safepoint_pc);
611    void CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1,
612                                 bool safepoint_pc);
613    void CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1,
614                                 bool safepoint_pc);
615    void CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0,
616                                    bool safepoint_pc);
617    void CallRuntimeHelperRegMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc);
618    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset helper_offset, int arg0,
619                                               RegLocation arg2, bool safepoint_pc);
620    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset,
621                                                 RegLocation arg0, RegLocation arg1,
622                                                 bool safepoint_pc);
623    void CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1,
624                                 bool safepoint_pc);
625    void CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1,
626                                    int arg2, bool safepoint_pc);
627    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset, int arg0,
628                                               RegLocation arg2, bool safepoint_pc);
629    void CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0, int arg2,
630                                       bool safepoint_pc);
631    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,
632                                                    int arg0, RegLocation arg1, RegLocation arg2,
633                                                    bool safepoint_pc);
634    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset helper_offset,
635                                                            RegLocation arg0, RegLocation arg1,
636                                                            RegLocation arg2,
637                                                            bool safepoint_pc);
638    void GenInvoke(CallInfo* info);
639    void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
640    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
641                             NextCallInsn next_call_insn,
642                             const MethodReference& target_method,
643                             uint32_t vtable_idx,
644                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
645                             bool skip_this);
646    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
647                           NextCallInsn next_call_insn,
648                           const MethodReference& target_method,
649                           uint32_t vtable_idx,
650                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
651                           bool skip_this);
652
653    /**
654     * @brief Used to determine the register location of destination.
655     * @details This is needed during generation of inline intrinsics because it finds destination of return,
656     * either the physical register or the target of move-result.
657     * @param info Information about the invoke.
658     * @return Returns the destination location.
659     */
660    RegLocation InlineTarget(CallInfo* info);
661
662    /**
663     * @brief Used to determine the wide register location of destination.
664     * @see InlineTarget
665     * @param info Information about the invoke.
666     * @return Returns the destination location.
667     */
668    RegLocation InlineTargetWide(CallInfo* info);
669
670    bool GenInlinedCharAt(CallInfo* info);
671    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
672    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
673    bool GenInlinedAbsInt(CallInfo* info);
674    bool GenInlinedAbsLong(CallInfo* info);
675    bool GenInlinedAbsFloat(CallInfo* info);
676    bool GenInlinedAbsDouble(CallInfo* info);
677    bool GenInlinedFloatCvt(CallInfo* info);
678    bool GenInlinedDoubleCvt(CallInfo* info);
679    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
680    bool GenInlinedStringCompareTo(CallInfo* info);
681    bool GenInlinedCurrentThread(CallInfo* info);
682    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
683    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
684                             bool is_volatile, bool is_ordered);
685    int LoadArgRegs(CallInfo* info, int call_state,
686                    NextCallInsn next_call_insn,
687                    const MethodReference& target_method,
688                    uint32_t vtable_idx,
689                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
690                    bool skip_this);
691
692    // Shared by all targets - implemented in gen_loadstore.cc.
693    RegLocation LoadCurrMethod();
694    void LoadCurrMethodDirect(int r_tgt);
695    LIR* LoadConstant(int r_dest, int value);
696    LIR* LoadWordDisp(int rBase, int displacement, int r_dest);
697    RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
698    RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
699    void LoadValueDirect(RegLocation rl_src, int r_dest);
700    void LoadValueDirectFixed(RegLocation rl_src, int r_dest);
701    void LoadValueDirectWide(RegLocation rl_src, int reg_lo, int reg_hi);
702    void LoadValueDirectWideFixed(RegLocation rl_src, int reg_lo, int reg_hi);
703    LIR* StoreWordDisp(int rBase, int displacement, int r_src);
704
705    /**
706     * @brief Used to do the final store in the destination as per bytecode semantics.
707     * @param rl_dest The destination dalvik register location.
708     * @param rl_src The source register location. Can be either physical register or dalvik register.
709     */
710    void StoreValue(RegLocation rl_dest, RegLocation rl_src);
711
712    /**
713     * @brief Used to do the final store in a wide destination as per bytecode semantics.
714     * @see StoreValue
715     * @param rl_dest The destination dalvik register location.
716     * @param rl_src The source register location. Can be either physical register or dalvik register.
717     */
718    void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
719
720    /**
721     * @brief Used to do the final store to a destination as per bytecode semantics.
722     * @see StoreValue
723     * @param rl_dest The destination dalvik register location.
724     * @param rl_src The source register location. It must be kLocPhysReg
725     *
726     * This is used for x86 two operand computations, where we have computed the correct
727     * register value that now needs to be properly registered.  This is used to avoid an
728     * extra register copy that would result if StoreValue was called.
729     */
730    void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
731
732    /**
733     * @brief Used to do the final store in a wide destination as per bytecode semantics.
734     * @see StoreValueWide
735     * @param rl_dest The destination dalvik register location.
736     * @param rl_src The source register location. It must be kLocPhysReg
737     *
738     * This is used for x86 two operand computations, where we have computed the correct
739     * register values that now need to be properly registered.  This is used to avoid an
740     * extra pair of register copies that would result if StoreValueWide was called.
741     */
742    void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
743
744    // Shared by all targets - implemented in mir_to_lir.cc.
745    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
746    void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
747    bool MethodBlockCodeGen(BasicBlock* bb);
748    bool SpecialMIR2LIR(const InlineMethod& special);
749    void MethodMIR2LIR();
750
751    /*
752     * @brief Load the address of the dex method into the register.
753     * @param dex_method_index The index of the method to be invoked.
754     * @param type How the method will be invoked.
755     * @param register that will contain the code address.
756     * @note register will be passed to TargetReg to get physical register.
757     */
758    void LoadCodeAddress(int dex_method_index, InvokeType type,
759                         SpecialTargetRegister symbolic_reg);
760
761    /*
762     * @brief Load the Method* of a dex method into the register.
763     * @param dex_method_index The index of the method to be invoked.
764     * @param type How the method will be invoked.
765     * @param register that will contain the code address.
766     * @note register will be passed to TargetReg to get physical register.
767     */
768    virtual void LoadMethodAddress(int dex_method_index, InvokeType type,
769                                   SpecialTargetRegister symbolic_reg);
770
771    /*
772     * @brief Load the Class* of a Dex Class type into the register.
773     * @param type How the method will be invoked.
774     * @param register that will contain the code address.
775     * @note register will be passed to TargetReg to get physical register.
776     */
777    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
778
779    // Routines that work for the generic case, but may be overriden by target.
780    /*
781     * @brief Compare memory to immediate, and branch if condition true.
782     * @param cond The condition code that when true will branch to the target.
783     * @param temp_reg A temporary register that can be used if compare to memory is not
784     * supported by the architecture.
785     * @param base_reg The register holding the base address.
786     * @param offset The offset from the base.
787     * @param check_value The immediate to compare to.
788     * @returns The branch instruction that was generated.
789     */
790    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, int temp_reg, int base_reg,
791                                   int offset, int check_value, LIR* target);
792
793    // Required for target - codegen helpers.
794    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
795                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
796    virtual int LoadHelper(ThreadOffset offset) = 0;
797    virtual LIR* LoadBaseDisp(int rBase, int displacement, int r_dest, OpSize size, int s_reg) = 0;
798    virtual LIR* LoadBaseDispWide(int rBase, int displacement, int r_dest_lo, int r_dest_hi,
799                                  int s_reg) = 0;
800    virtual LIR* LoadBaseIndexed(int rBase, int r_index, int r_dest, int scale, OpSize size) = 0;
801    virtual LIR* LoadBaseIndexedDisp(int rBase, int r_index, int scale, int displacement,
802                                     int r_dest, int r_dest_hi, OpSize size, int s_reg) = 0;
803    virtual LIR* LoadConstantNoClobber(int r_dest, int value) = 0;
804    virtual LIR* LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) = 0;
805    virtual LIR* StoreBaseDisp(int rBase, int displacement, int r_src, OpSize size) = 0;
806    virtual LIR* StoreBaseDispWide(int rBase, int displacement, int r_src_lo, int r_src_hi) = 0;
807    virtual LIR* StoreBaseIndexed(int rBase, int r_index, int r_src, int scale, OpSize size) = 0;
808    virtual LIR* StoreBaseIndexedDisp(int rBase, int r_index, int scale, int displacement,
809                                      int r_src, int r_src_hi, OpSize size, int s_reg) = 0;
810    virtual void MarkGCCard(int val_reg, int tgt_addr_reg) = 0;
811
812    // Required for target - register utilities.
813    virtual bool IsFpReg(int reg) = 0;
814    virtual bool SameRegType(int reg1, int reg2) = 0;
815    virtual int AllocTypedTemp(bool fp_hint, int reg_class) = 0;
816    virtual int AllocTypedTempPair(bool fp_hint, int reg_class) = 0;
817    virtual int S2d(int low_reg, int high_reg) = 0;
818    virtual int TargetReg(SpecialTargetRegister reg) = 0;
819    virtual int GetArgMappingToPhysicalReg(int arg_num) = 0;
820    virtual RegLocation GetReturnAlt() = 0;
821    virtual RegLocation GetReturnWideAlt() = 0;
822    virtual RegLocation LocCReturn() = 0;
823    virtual RegLocation LocCReturnDouble() = 0;
824    virtual RegLocation LocCReturnFloat() = 0;
825    virtual RegLocation LocCReturnWide() = 0;
826    virtual uint32_t FpRegMask() = 0;
827    virtual uint64_t GetRegMaskCommon(int reg) = 0;
828    virtual void AdjustSpillMask() = 0;
829    virtual void ClobberCallerSave() = 0;
830    virtual void FlushReg(int reg) = 0;
831    virtual void FlushRegWide(int reg1, int reg2) = 0;
832    virtual void FreeCallTemps() = 0;
833    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0;
834    virtual void LockCallTemps() = 0;
835    virtual void MarkPreservedSingle(int v_reg, int reg) = 0;
836    virtual void CompilerInitializeRegAlloc() = 0;
837
838    // Required for target - miscellaneous.
839    virtual void AssembleLIR() = 0;
840    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
841    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
842    virtual const char* GetTargetInstFmt(int opcode) = 0;
843    virtual const char* GetTargetInstName(int opcode) = 0;
844    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
845    virtual uint64_t GetPCUseDefEncoding() = 0;
846    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
847    virtual int GetInsnSize(LIR* lir) = 0;
848    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
849
850    // Required for target - Dalvik-level generators.
851    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
852                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
853    virtual void GenMulLong(Instruction::Code,
854                            RegLocation rl_dest, RegLocation rl_src1,
855                            RegLocation rl_src2) = 0;
856    virtual void GenAddLong(Instruction::Code,
857                            RegLocation rl_dest, RegLocation rl_src1,
858                            RegLocation rl_src2) = 0;
859    virtual void GenAndLong(Instruction::Code,
860                            RegLocation rl_dest, RegLocation rl_src1,
861                            RegLocation rl_src2) = 0;
862    virtual void GenArithOpDouble(Instruction::Code opcode,
863                                  RegLocation rl_dest, RegLocation rl_src1,
864                                  RegLocation rl_src2) = 0;
865    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
866                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
867    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
868                          RegLocation rl_src1, RegLocation rl_src2) = 0;
869    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
870                               RegLocation rl_src) = 0;
871    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
872
873    /**
874     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
875     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
876     * that applies on integers. The generated code will write the smallest or largest value
877     * directly into the destination register as specified by the invoke information.
878     * @param info Information about the invoke.
879     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
880     * @return Returns true if successfully generated
881     */
882    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
883
884    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
885    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
886    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
887    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
888    virtual void GenOrLong(Instruction::Code,
889                           RegLocation rl_dest, RegLocation rl_src1,
890                           RegLocation rl_src2) = 0;
891    virtual void GenSubLong(Instruction::Code,
892                            RegLocation rl_dest, RegLocation rl_src1,
893                            RegLocation rl_src2) = 0;
894    virtual void GenXorLong(Instruction::Code,
895                            RegLocation rl_dest, RegLocation rl_src1,
896                            RegLocation rl_src2) = 0;
897    virtual LIR* GenRegMemCheck(ConditionCode c_code, int reg1, int base,
898                                int offset, ThrowKind kind) = 0;
899    virtual RegLocation GenDivRem(RegLocation rl_dest, int reg_lo, int reg_hi,
900                                  bool is_div) = 0;
901    virtual RegLocation GenDivRemLit(RegLocation rl_dest, int reg_lo, int lit,
902                                     bool is_div) = 0;
903    /*
904     * @brief Generate an integer div or rem operation by a literal.
905     * @param rl_dest Destination Location.
906     * @param rl_src1 Numerator Location.
907     * @param rl_src2 Divisor Location.
908     * @param is_div 'true' if this is a division, 'false' for a remainder.
909     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
910     */
911    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
912                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
913    /*
914     * @brief Generate an integer div or rem operation by a literal.
915     * @param rl_dest Destination Location.
916     * @param rl_src Numerator Location.
917     * @param lit Divisor.
918     * @param is_div 'true' if this is a division, 'false' for a remainder.
919     */
920    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1,
921                                     int lit, bool is_div) = 0;
922    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
923                            RegLocation rl_src2) = 0;
924
925    /**
926     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
927     * @details This is used for generating DivideByZero checks when divisor is held in two separate registers.
928     * @param reg_lo The register holding the lower 32-bits.
929     * @param reg_hi The register holding the upper 32-bits.
930     */
931    virtual void GenDivZeroCheck(int reg_lo, int reg_hi) = 0;
932
933    virtual void GenEntrySequence(RegLocation* ArgLocs,
934                                  RegLocation rl_method) = 0;
935    virtual void GenExitSequence() = 0;
936    virtual void GenFillArrayData(DexOffset table_offset,
937                                  RegLocation rl_src) = 0;
938    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias,
939                                     bool is_double) = 0;
940    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
941
942    /**
943     * @brief Lowers the kMirOpSelect MIR into LIR.
944     * @param bb The basic block in which the MIR is from.
945     * @param mir The MIR whose opcode is kMirOpSelect.
946     */
947    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
948
949    virtual void GenMemBarrier(MemBarrierKind barrier_kind) = 0;
950    virtual void GenMoveException(RegLocation rl_dest) = 0;
951    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
952                                               RegLocation rl_result, int lit, int first_bit,
953                                               int second_bit) = 0;
954    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
955    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
956    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset,
957                                 RegLocation rl_src) = 0;
958    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset,
959                                 RegLocation rl_src) = 0;
960    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
961                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
962    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
963                             RegLocation rl_index, RegLocation rl_src, int scale,
964                             bool card_mark) = 0;
965    virtual void GenShiftImmOpLong(Instruction::Code opcode,
966                                   RegLocation rl_dest, RegLocation rl_src1,
967                                   RegLocation rl_shift) = 0;
968
969    // Required for target - single operation generators.
970    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
971    virtual LIR* OpCmpBranch(ConditionCode cond, int src1, int src2, LIR* target) = 0;
972    virtual LIR* OpCmpImmBranch(ConditionCode cond, int reg, int check_value, LIR* target) = 0;
973    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
974    virtual LIR* OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) = 0;
975    virtual LIR* OpFpRegCopy(int r_dest, int r_src) = 0;
976    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
977    virtual LIR* OpMem(OpKind op, int rBase, int disp) = 0;
978    virtual LIR* OpPcRelLoad(int reg, LIR* target) = 0;
979    virtual LIR* OpReg(OpKind op, int r_dest_src) = 0;
980    virtual LIR* OpRegCopy(int r_dest, int r_src) = 0;
981    virtual LIR* OpRegCopyNoInsert(int r_dest, int r_src) = 0;
982    virtual LIR* OpRegImm(OpKind op, int r_dest_src1, int value) = 0;
983    virtual LIR* OpRegMem(OpKind op, int r_dest, int rBase, int offset) = 0;
984    virtual LIR* OpRegReg(OpKind op, int r_dest_src1, int r_src2) = 0;
985
986    /**
987     * @brief Used to generate an LIR that does a load from mem to reg.
988     * @param r_dest The destination physical register.
989     * @param r_base The base physical register for memory operand.
990     * @param offset The displacement for memory operand.
991     * @param move_type Specification on the move desired (size, alignment, register kind).
992     * @return Returns the generate move LIR.
993     */
994    virtual LIR* OpMovRegMem(int r_dest, int r_base, int offset, MoveType move_type) = 0;
995
996    /**
997     * @brief Used to generate an LIR that does a store from reg to mem.
998     * @param r_base The base physical register for memory operand.
999     * @param offset The displacement for memory operand.
1000     * @param r_src The destination physical register.
1001     * @param bytes_to_move The number of bytes to move.
1002     * @param is_aligned Whether the memory location is known to be aligned.
1003     * @return Returns the generate move LIR.
1004     */
1005    virtual LIR* OpMovMemReg(int r_base, int offset, int r_src, MoveType move_type) = 0;
1006
1007    /**
1008     * @brief Used for generating a conditional register to register operation.
1009     * @param op The opcode kind.
1010     * @param cc The condition code that when true will perform the opcode.
1011     * @param r_dest The destination physical register.
1012     * @param r_src The source physical register.
1013     * @return Returns the newly created LIR or null in case of creation failure.
1014     */
1015    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, int r_dest, int r_src) = 0;
1016
1017    virtual LIR* OpRegRegImm(OpKind op, int r_dest, int r_src1, int value) = 0;
1018    virtual LIR* OpRegRegReg(OpKind op, int r_dest, int r_src1, int r_src2) = 0;
1019    virtual LIR* OpTestSuspend(LIR* target) = 0;
1020    virtual LIR* OpThreadMem(OpKind op, ThreadOffset thread_offset) = 0;
1021    virtual LIR* OpVldm(int rBase, int count) = 0;
1022    virtual LIR* OpVstm(int rBase, int count) = 0;
1023    virtual void OpLea(int rBase, int reg1, int reg2, int scale, int offset) = 0;
1024    virtual void OpRegCopyWide(int dest_lo, int dest_hi, int src_lo, int src_hi) = 0;
1025    virtual void OpTlsCmp(ThreadOffset offset, int val) = 0;
1026    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1027    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1028    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1029    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1030
1031    // May be optimized by targets.
1032    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1033    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1034
1035    // Temp workaround
1036    void Workaround7250540(RegLocation rl_dest, int value);
1037
1038  protected:
1039    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1040
1041    CompilationUnit* GetCompilationUnit() {
1042      return cu_;
1043    }
1044    /*
1045     * @brief Returns the index of the lowest set bit in 'x'.
1046     * @param x Value to be examined.
1047     * @returns The bit number of the lowest bit set in the value.
1048     */
1049    int32_t LowestSetBit(uint64_t x);
1050    /*
1051     * @brief Is this value a power of two?
1052     * @param x Value to be examined.
1053     * @returns 'true' if only 1 bit is set in the value.
1054     */
1055    bool IsPowerOfTwo(uint64_t x);
1056    /*
1057     * @brief Do these SRs overlap?
1058     * @param rl_op1 One RegLocation
1059     * @param rl_op2 The other RegLocation
1060     * @return 'true' if the VR pairs overlap
1061     *
1062     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1063     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1064     * dex, we'll want to make this case illegal.
1065     */
1066    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1067
1068    /*
1069     * @brief Force a location (in a register) into a temporary register
1070     * @param loc location of result
1071     * @returns update location
1072     */
1073    RegLocation ForceTemp(RegLocation loc);
1074
1075    /*
1076     * @brief Force a wide location (in registers) into temporary registers
1077     * @param loc location of result
1078     * @returns update location
1079     */
1080    RegLocation ForceTempWide(RegLocation loc);
1081
1082    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1083                                    RegLocation rl_dest, RegLocation rl_src);
1084
1085    void AddSlowPath(LIRSlowPath* slowpath);
1086
1087    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1088                                            bool type_known_abstract, bool use_declaring_class,
1089                                            bool can_assume_type_is_in_dex_cache,
1090                                            uint32_t type_idx, RegLocation rl_dest,
1091                                            RegLocation rl_src);
1092
1093    /**
1094     * @brief Used to insert marker that can be used to associate MIR with LIR.
1095     * @details Only inserts marker if verbosity is enabled.
1096     * @param mir The mir that is currently being generated.
1097     */
1098    void GenPrintLabel(MIR* mir);
1099
1100    /**
1101     * @brief Used to generate return sequence when there is no frame.
1102     * @details Assumes that the return registers have already been populated.
1103     */
1104    virtual void GenSpecialExitSequence() = 0;
1105
1106    /**
1107     * @brief Used to generate code for special methods that are known to be
1108     * small enough to work in frameless mode.
1109     * @param bb The basic block of the first MIR.
1110     * @param mir The first MIR of the special method.
1111     * @param special Information about the special method.
1112     * @return Returns whether or not this was handled successfully. Returns false
1113     * if caller should punt to normal MIR2LIR conversion.
1114     */
1115    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1116
1117  private:
1118    void ClobberBody(RegisterInfo* p);
1119    void ResetDefBody(RegisterInfo* p) {
1120      p->def_start = NULL;
1121      p->def_end = NULL;
1122    }
1123
1124    void SetCurrentDexPc(DexOffset dexpc) {
1125      current_dalvik_offset_ = dexpc;
1126    }
1127
1128    /**
1129     * @brief Used to lock register if argument at in_position was passed that way.
1130     * @details Does nothing if the argument is passed via stack.
1131     * @param in_position The argument number whose register to lock.
1132     * @param wide Whether the argument is wide.
1133     */
1134    void LockArg(int in_position, bool wide = false);
1135
1136    /**
1137     * @brief Used to load VR argument to a physical register.
1138     * @details The load is only done if the argument is not already in physical register.
1139     * LockArg must have been previously called.
1140     * @param in_position The argument number to load.
1141     * @param wide Whether the argument is 64-bit or not.
1142     * @return Returns the register (or register pair) for the loaded argument.
1143     */
1144    int LoadArg(int in_position, bool wide = false);
1145
1146    /**
1147     * @brief Used to load a VR argument directly to a specified register location.
1148     * @param in_position The argument number to place in register.
1149     * @param rl_dest The register location where to place argument.
1150     */
1151    void LoadArgDirect(int in_position, RegLocation rl_dest);
1152
1153    /**
1154     * @brief Used to generate LIR for special getter method.
1155     * @param mir The mir that represents the iget.
1156     * @param special Information about the special getter method.
1157     * @return Returns whether LIR was successfully generated.
1158     */
1159    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1160
1161    /**
1162     * @brief Used to generate LIR for special setter method.
1163     * @param mir The mir that represents the iput.
1164     * @param special Information about the special setter method.
1165     * @return Returns whether LIR was successfully generated.
1166     */
1167    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1168
1169    /**
1170     * @brief Used to generate LIR for special return-args method.
1171     * @param mir The mir that represents the return of argument.
1172     * @param special Information about the special return-args method.
1173     * @return Returns whether LIR was successfully generated.
1174     */
1175    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1176
1177
1178  public:
1179    // TODO: add accessors for these.
1180    LIR* literal_list_;                        // Constants.
1181    LIR* method_literal_list_;                 // Method literals requiring patching.
1182    LIR* class_literal_list_;                  // Class literals requiring patching.
1183    LIR* code_literal_list_;                   // Code literals requiring patching.
1184    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1185
1186  protected:
1187    CompilationUnit* const cu_;
1188    MIRGraph* const mir_graph_;
1189    GrowableArray<SwitchTable*> switch_tables_;
1190    GrowableArray<FillArrayData*> fill_array_data_;
1191    GrowableArray<LIR*> throw_launchpads_;
1192    GrowableArray<LIR*> suspend_launchpads_;
1193    GrowableArray<LIR*> intrinsic_launchpads_;
1194    GrowableArray<RegisterInfo*> tempreg_info_;
1195    GrowableArray<RegisterInfo*> reginfo_map_;
1196    GrowableArray<void*> pointer_storage_;
1197    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1198    CodeOffset data_offset_;            // starting offset of literal pool.
1199    size_t total_size_;                   // header + code size.
1200    LIR* block_label_list_;
1201    PromotionMap* promotion_map_;
1202    /*
1203     * TODO: The code generation utilities don't have a built-in
1204     * mechanism to propagate the original Dalvik opcode address to the
1205     * associated generated instructions.  For the trace compiler, this wasn't
1206     * necessary because the interpreter handled all throws and debugging
1207     * requests.  For now we'll handle this by placing the Dalvik offset
1208     * in the CompilationUnit struct before codegen for each instruction.
1209     * The low-level LIR creation utilites will pull it from here.  Rework this.
1210     */
1211    DexOffset current_dalvik_offset_;
1212    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1213    RegisterPool* reg_pool_;
1214    /*
1215     * Sanity checking for the register temp tracking.  The same ssa
1216     * name should never be associated with one temp register per
1217     * instruction compilation.
1218     */
1219    int live_sreg_;
1220    CodeBuffer code_buffer_;
1221    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1222    std::vector<uint8_t> encoded_mapping_table_;
1223    std::vector<uint32_t> core_vmap_table_;
1224    std::vector<uint32_t> fp_vmap_table_;
1225    std::vector<uint8_t> native_gc_map_;
1226    int num_core_spills_;
1227    int num_fp_spills_;
1228    int frame_size_;
1229    unsigned int core_spill_mask_;
1230    unsigned int fp_spill_mask_;
1231    LIR* first_lir_insn_;
1232    LIR* last_lir_insn_;
1233
1234    GrowableArray<LIRSlowPath*> slow_paths_;
1235};  // Class Mir2Lir
1236
1237}  // namespace art
1238
1239#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1240