mir_to_lir.h revision c32447bcc8c36ee8ff265ed678c7df86936a9ebe
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_location.h"
25#include "dex/reg_storage.h"
26#include "dex/backend.h"
27#include "dex/quick/resource_mask.h"
28#include "driver/compiler_driver.h"
29#include "instruction_set.h"
30#include "leb128.h"
31#include "safe_map.h"
32#include "utils/array_ref.h"
33#include "utils/arena_allocator.h"
34#include "utils/growable_array.h"
35#include "utils/stack_checks.h"
36
37namespace art {
38
39/*
40 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
41 * add type safety (see runtime/offsets.h).
42 */
43typedef uint32_t DexOffset;          // Dex offset in code units.
44typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
45typedef uint32_t CodeOffset;         // Native code offset in bytes.
46
47// Set to 1 to measure cost of suspend check.
48#define NO_SUSPEND 0
49
50#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
51#define IS_BRANCH            (1ULL << kIsBranch)
52#define IS_IT                (1ULL << kIsIT)
53#define IS_LOAD              (1ULL << kMemLoad)
54#define IS_QUAD_OP           (1ULL << kIsQuadOp)
55#define IS_QUIN_OP           (1ULL << kIsQuinOp)
56#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
57#define IS_STORE             (1ULL << kMemStore)
58#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
59#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
60#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
61#define NO_OPERAND           (1ULL << kNoOperand)
62#define REG_DEF0             (1ULL << kRegDef0)
63#define REG_DEF1             (1ULL << kRegDef1)
64#define REG_DEF2             (1ULL << kRegDef2)
65#define REG_DEFA             (1ULL << kRegDefA)
66#define REG_DEFD             (1ULL << kRegDefD)
67#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
68#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
69#define REG_DEF_LIST0        (1ULL << kRegDefList0)
70#define REG_DEF_LIST1        (1ULL << kRegDefList1)
71#define REG_DEF_LR           (1ULL << kRegDefLR)
72#define REG_DEF_SP           (1ULL << kRegDefSP)
73#define REG_USE0             (1ULL << kRegUse0)
74#define REG_USE1             (1ULL << kRegUse1)
75#define REG_USE2             (1ULL << kRegUse2)
76#define REG_USE3             (1ULL << kRegUse3)
77#define REG_USE4             (1ULL << kRegUse4)
78#define REG_USEA             (1ULL << kRegUseA)
79#define REG_USEC             (1ULL << kRegUseC)
80#define REG_USED             (1ULL << kRegUseD)
81#define REG_USEB             (1ULL << kRegUseB)
82#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
83#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
84#define REG_USE_LIST0        (1ULL << kRegUseList0)
85#define REG_USE_LIST1        (1ULL << kRegUseList1)
86#define REG_USE_LR           (1ULL << kRegUseLR)
87#define REG_USE_PC           (1ULL << kRegUsePC)
88#define REG_USE_SP           (1ULL << kRegUseSP)
89#define SETS_CCODES          (1ULL << kSetsCCodes)
90#define USES_CCODES          (1ULL << kUsesCCodes)
91#define USE_FP_STACK         (1ULL << kUseFpStack)
92#define REG_USE_LO           (1ULL << kUseLo)
93#define REG_USE_HI           (1ULL << kUseHi)
94#define REG_DEF_LO           (1ULL << kDefLo)
95#define REG_DEF_HI           (1ULL << kDefHi)
96
97// Common combo register usage patterns.
98#define REG_DEF01            (REG_DEF0 | REG_DEF1)
99#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
100#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
101#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
102#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
103#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
104#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
105#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
106#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
107#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
108#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
109#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
110#define REG_USE012           (REG_USE01 | REG_USE2)
111#define REG_USE014           (REG_USE01 | REG_USE4)
112#define REG_USE01            (REG_USE0 | REG_USE1)
113#define REG_USE02            (REG_USE0 | REG_USE2)
114#define REG_USE12            (REG_USE1 | REG_USE2)
115#define REG_USE23            (REG_USE2 | REG_USE3)
116#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
117
118// TODO: #includes need a cleanup
119#ifndef INVALID_SREG
120#define INVALID_SREG (-1)
121#endif
122
123struct BasicBlock;
124struct CallInfo;
125struct CompilationUnit;
126struct InlineMethod;
127struct MIR;
128struct LIR;
129struct RegisterInfo;
130class DexFileMethodInliner;
131class MIRGraph;
132class Mir2Lir;
133
134typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
135                            const MethodReference& target_method,
136                            uint32_t method_idx, uintptr_t direct_code,
137                            uintptr_t direct_method, InvokeType type);
138
139typedef std::vector<uint8_t> CodeBuffer;
140
141struct UseDefMasks {
142  const ResourceMask* use_mask;        // Resource mask for use.
143  const ResourceMask* def_mask;        // Resource mask for def.
144};
145
146struct AssemblyInfo {
147  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
148};
149
150struct LIR {
151  CodeOffset offset;             // Offset of this instruction.
152  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
153  int16_t opcode;
154  LIR* next;
155  LIR* prev;
156  LIR* target;
157  struct {
158    unsigned int alias_info:17;  // For Dalvik register disambiguation.
159    bool is_nop:1;               // LIR is optimized away.
160    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
161    bool use_def_invalid:1;      // If true, masks should not be used.
162    unsigned int generation:1;   // Used to track visitation state during fixup pass.
163    unsigned int fixup:8;        // Fixup kind.
164  } flags;
165  union {
166    UseDefMasks m;               // Use & Def masks used during optimization.
167    AssemblyInfo a;              // Instruction info used during assembly phase.
168  } u;
169  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
170};
171
172// Target-specific initialization.
173Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
174                          ArenaAllocator* const arena);
175Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
176                            ArenaAllocator* const arena);
177Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
178                          ArenaAllocator* const arena);
179Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
180                          ArenaAllocator* const arena);
181
182// Utility macros to traverse the LIR list.
183#define NEXT_LIR(lir) (lir->next)
184#define PREV_LIR(lir) (lir->prev)
185
186// Defines for alias_info (tracks Dalvik register references).
187#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
188#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
189#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
190#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
191
192#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
193#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
194  do { \
195    low_reg = both_regs & 0xff; \
196    high_reg = (both_regs >> 8) & 0xff; \
197  } while (false)
198
199// Mask to denote sreg as the start of a 64-bit item.  Must not interfere with low 16 bits.
200#define STARTING_WIDE_SREG 0x10000
201
202// TODO: replace these macros
203#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
204#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
205#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
206#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
207#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
208
209class Mir2Lir : public Backend {
210  public:
211    static constexpr bool kFailOnSizeError = true && kIsDebugBuild;
212    static constexpr bool kReportSizeError = true && kIsDebugBuild;
213
214    /*
215     * Auxiliary information describing the location of data embedded in the Dalvik
216     * byte code stream.
217     */
218    struct EmbeddedData {
219      CodeOffset offset;        // Code offset of data block.
220      const uint16_t* table;      // Original dex data.
221      DexOffset vaddr;            // Dalvik offset of parent opcode.
222    };
223
224    struct FillArrayData : EmbeddedData {
225      int32_t size;
226    };
227
228    struct SwitchTable : EmbeddedData {
229      LIR* anchor;                // Reference instruction for relative offsets.
230      LIR** targets;              // Array of case targets.
231    };
232
233    /* Static register use counts */
234    struct RefCounts {
235      int count;
236      int s_reg;
237    };
238
239    /*
240     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
241     * and native register storage.  The primary purpose is to reuse previuosly
242     * loaded values, if possible, and otherwise to keep the value in register
243     * storage as long as possible.
244     *
245     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
246     * this register (or pair).  For example, a 64-bit register containing a 32-bit
247     * Dalvik value would have wide_value==false even though the storage container itself
248     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
249     * would have wide_value==true (and additionally would have its partner field set to the
250     * other half whose wide_value field would also be true.
251     *
252     * NOTE 2: In the case of a register pair, you can determine which of the partners
253     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
254     *
255     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
256     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
257     * value, and the s_reg of the high word is implied (s_reg + 1).
258     *
259     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
260     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
261     * If is_temp==true and live==false, no other fields have
262     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
263     * and def_end describe the relationship between the temp register/register pair and
264     * the Dalvik value[s] described by s_reg/s_reg+1.
265     *
266     * The fields used_storage, master_storage and storage_mask are used to track allocation
267     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
268     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
269     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
270     * change once initialized.  The "used_storage" field tracks current allocation status.
271     * Although each record contains this field, only the field from the largest member of
272     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
273     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
274     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
275     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
276     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
277     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
278     *
279     * For an X86 vector register example, storage_mask would be:
280     *    0x00000001 for 32-bit view of xmm1
281     *    0x00000003 for 64-bit view of xmm1
282     *    0x0000000f for 128-bit view of xmm1
283     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
284     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
285     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
286     *
287     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
288     * held in the widest member of an aliased set.  Note, though, that for a temp register to
289     * reused as live, it must both be marked live and the associated SReg() must match the
290     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
291     * members of an aliased set will share the same liveness flags, but each will individually
292     * maintain s_reg_.  In this way we can know that at least one member of an
293     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
294     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
295     * because it is wide), its aliases s2 and s3 will show as live, but will have
296     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
297     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
298     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
299     * report that v9 is currently not live as a single (which is what we want).
300     *
301     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
302     * to treat xmm registers:
303     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
304     *         o This more closely matches reality, but means you'd need to be able to get
305     *           to the associated RegisterInfo struct to figure out how it's being used.
306     *         o This is how 64-bit core registers will be used - always 64 bits, but the
307     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
308     *     2. View the xmm registers based on contents.
309     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
310     *           be a k64BitVector.
311     *         o Note that the two uses above would be considered distinct registers (but with
312     *           the aliasing mechanism, we could detect interference).
313     *         o This is how aliased double and single float registers will be handled on
314     *           Arm and MIPS.
315     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
316     * mechanism 2 for aliased float registers and x86 vector registers.
317     */
318    class RegisterInfo {
319     public:
320      RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll);
321      ~RegisterInfo() {}
322      static void* operator new(size_t size, ArenaAllocator* arena) {
323        return arena->Alloc(size, kArenaAllocRegAlloc);
324      }
325
326      static const uint32_t k32SoloStorageMask     = 0x00000001;
327      static const uint32_t kLowSingleStorageMask  = 0x00000001;
328      static const uint32_t kHighSingleStorageMask = 0x00000002;
329      static const uint32_t k64SoloStorageMask     = 0x00000003;
330      static const uint32_t k128SoloStorageMask    = 0x0000000f;
331      static const uint32_t k256SoloStorageMask    = 0x000000ff;
332      static const uint32_t k512SoloStorageMask    = 0x0000ffff;
333      static const uint32_t k1024SoloStorageMask   = 0xffffffff;
334
335      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
336      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
337      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
338      // No part of the containing storage is live in this view.
339      bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
340      // Liveness of this view matches.  Note: not equivalent to !IsDead().
341      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
342      void MarkLive(int s_reg) {
343        // TODO: Anything useful to assert here?
344        s_reg_ = s_reg;
345        master_->liveness_ |= storage_mask_;
346      }
347      void MarkDead() {
348        if (SReg() != INVALID_SREG) {
349          s_reg_ = INVALID_SREG;
350          master_->liveness_ &= ~storage_mask_;
351          ResetDefBody();
352        }
353      }
354      RegStorage GetReg() { return reg_; }
355      void SetReg(RegStorage reg) { reg_ = reg; }
356      bool IsTemp() { return is_temp_; }
357      void SetIsTemp(bool val) { is_temp_ = val; }
358      bool IsWide() { return wide_value_; }
359      void SetIsWide(bool val) {
360        wide_value_ = val;
361        if (!val) {
362          // If not wide, reset partner to self.
363          SetPartner(GetReg());
364        }
365      }
366      bool IsDirty() { return dirty_; }
367      void SetIsDirty(bool val) { dirty_ = val; }
368      RegStorage Partner() { return partner_; }
369      void SetPartner(RegStorage partner) { partner_ = partner; }
370      int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
371      const ResourceMask& DefUseMask() { return def_use_mask_; }
372      void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; }
373      RegisterInfo* Master() { return master_; }
374      void SetMaster(RegisterInfo* master) {
375        master_ = master;
376        if (master != this) {
377          master_->aliased_ = true;
378          DCHECK(alias_chain_ == nullptr);
379          alias_chain_ = master_->alias_chain_;
380          master_->alias_chain_ = this;
381        }
382      }
383      bool IsAliased() { return aliased_; }
384      RegisterInfo* GetAliasChain() { return alias_chain_; }
385      uint32_t StorageMask() { return storage_mask_; }
386      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
387      LIR* DefStart() { return def_start_; }
388      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
389      LIR* DefEnd() { return def_end_; }
390      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
391      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
392      // Find member of aliased set matching storage_used; return nullptr if none.
393      RegisterInfo* FindMatchingView(uint32_t storage_used) {
394        RegisterInfo* res = Master();
395        for (; res != nullptr; res = res->GetAliasChain()) {
396          if (res->StorageMask() == storage_used)
397            break;
398        }
399        return res;
400      }
401
402     private:
403      RegStorage reg_;
404      bool is_temp_;               // Can allocate as temp?
405      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
406      bool dirty_;                 // If live, is it dirty?
407      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
408      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
409      int s_reg_;                  // Name of live value.
410      ResourceMask def_use_mask_;  // Resources for this element.
411      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
412      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
413      RegisterInfo* master_;       // Pointer to controlling storage mask.
414      uint32_t storage_mask_;      // Track allocation of sub-units.
415      LIR *def_start_;             // Starting inst in last def sequence.
416      LIR *def_end_;               // Ending inst in last def sequence.
417      RegisterInfo* alias_chain_;  // Chain of aliased registers.
418    };
419
420    class RegisterPool {
421     public:
422      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
423                   const ArrayRef<const RegStorage>& core_regs,
424                   const ArrayRef<const RegStorage>& core64_regs,
425                   const ArrayRef<const RegStorage>& sp_regs,
426                   const ArrayRef<const RegStorage>& dp_regs,
427                   const ArrayRef<const RegStorage>& reserved_regs,
428                   const ArrayRef<const RegStorage>& reserved64_regs,
429                   const ArrayRef<const RegStorage>& core_temps,
430                   const ArrayRef<const RegStorage>& core64_temps,
431                   const ArrayRef<const RegStorage>& sp_temps,
432                   const ArrayRef<const RegStorage>& dp_temps);
433      ~RegisterPool() {}
434      static void* operator new(size_t size, ArenaAllocator* arena) {
435        return arena->Alloc(size, kArenaAllocRegAlloc);
436      }
437      void ResetNextTemp() {
438        next_core_reg_ = 0;
439        next_sp_reg_ = 0;
440        next_dp_reg_ = 0;
441      }
442      GrowableArray<RegisterInfo*> core_regs_;
443      int next_core_reg_;
444      GrowableArray<RegisterInfo*> core64_regs_;
445      int next_core64_reg_;
446      GrowableArray<RegisterInfo*> sp_regs_;    // Single precision float.
447      int next_sp_reg_;
448      GrowableArray<RegisterInfo*> dp_regs_;    // Double precision float.
449      int next_dp_reg_;
450      GrowableArray<RegisterInfo*>* ref_regs_;  // Points to core_regs_ or core64_regs_
451      int* next_ref_reg_;
452
453     private:
454      Mir2Lir* const m2l_;
455    };
456
457    struct PromotionMap {
458      RegLocationType core_location:3;
459      uint8_t core_reg;
460      RegLocationType fp_location:3;
461      uint8_t fp_reg;
462      bool first_in_pair;
463    };
464
465    //
466    // Slow paths.  This object is used generate a sequence of code that is executed in the
467    // slow path.  For example, resolving a string or class is slow as it will only be executed
468    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
469    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
470    // branch over them.
471    //
472    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
473    // the Compile() function that will be called near the end of the code generated by the
474    // method.
475    //
476    // The basic flow for a slow path is:
477    //
478    //     CMP reg, #value
479    //     BEQ fromfast
480    //   cont:
481    //     ...
482    //     fast path code
483    //     ...
484    //     more code
485    //     ...
486    //     RETURN
487    ///
488    //   fromfast:
489    //     ...
490    //     slow path code
491    //     ...
492    //     B cont
493    //
494    // So you see we need two labels and two branches.  The first branch (called fromfast) is
495    // the conditional branch to the slow path code.  The second label (called cont) is used
496    // as an unconditional branch target for getting back to the code after the slow path
497    // has completed.
498    //
499
500    class LIRSlowPath {
501     public:
502      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
503                  LIR* cont = nullptr) :
504        m2l_(m2l), cu_(m2l->cu_), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
505          m2l->StartSlowPath(this);
506      }
507      virtual ~LIRSlowPath() {}
508      virtual void Compile() = 0;
509
510      static void* operator new(size_t size, ArenaAllocator* arena) {
511        return arena->Alloc(size, kArenaAllocData);
512      }
513
514      LIR *GetContinuationLabel() {
515        return cont_;
516      }
517
518      LIR *GetFromFast() {
519        return fromfast_;
520      }
521
522     protected:
523      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
524
525      Mir2Lir* const m2l_;
526      CompilationUnit* const cu_;
527      const DexOffset current_dex_pc_;
528      LIR* const fromfast_;
529      LIR* const cont_;
530    };
531
532    // Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_.
533    class ScopedMemRefType {
534     public:
535      ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type)
536          : m2l_(m2l),
537            old_mem_ref_type_(m2l->mem_ref_type_) {
538        m2l_->mem_ref_type_ = new_mem_ref_type;
539      }
540
541      ~ScopedMemRefType() {
542        m2l_->mem_ref_type_ = old_mem_ref_type_;
543      }
544
545     private:
546      Mir2Lir* const m2l_;
547      ResourceMask::ResourceBit old_mem_ref_type_;
548
549      DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType);
550    };
551
552    virtual ~Mir2Lir() {}
553
554    int32_t s4FromSwitchData(const void* switch_data) {
555      return *reinterpret_cast<const int32_t*>(switch_data);
556    }
557
558    /*
559     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
560     * it was introduced, it was intended to be a quick best guess of type without having to
561     * take the time to do type analysis.  Currently, though, we have a much better idea of
562     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
563     * just use our knowledge of type to select the most appropriate register class?
564     */
565    RegisterClass RegClassBySize(OpSize size) {
566      if (size == kReference) {
567        return kRefReg;
568      } else {
569        return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
570                size == kSignedByte) ? kCoreReg : kAnyReg;
571      }
572    }
573
574    size_t CodeBufferSizeInBytes() {
575      return code_buffer_.size() / sizeof(code_buffer_[0]);
576    }
577
578    static bool IsPseudoLirOp(int opcode) {
579      return (opcode < 0);
580    }
581
582    /*
583     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
584     * instructions which require PC-relative fixups), we need the operands to carry
585     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
586     * hold that index in the operand array.
587     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
588     * may be worth conditionally-compiling a set of identity functions here.
589     */
590    uint32_t WrapPointer(void* pointer) {
591      uint32_t res = pointer_storage_.Size();
592      pointer_storage_.Insert(pointer);
593      return res;
594    }
595
596    void* UnwrapPointer(size_t index) {
597      return pointer_storage_.Get(index);
598    }
599
600    // strdup(), but allocates from the arena.
601    char* ArenaStrdup(const char* str) {
602      size_t len = strlen(str) + 1;
603      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
604      if (res != NULL) {
605        strncpy(res, str, len);
606      }
607      return res;
608    }
609
610    // Shared by all targets - implemented in codegen_util.cc
611    void AppendLIR(LIR* lir);
612    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
613    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
614
615    /**
616     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
617     * to place in a frame.
618     * @return Returns the maximum number of compiler temporaries.
619     */
620    size_t GetMaxPossibleCompilerTemps() const;
621
622    /**
623     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
624     * @return Returns the size in bytes for space needed for compiler temporary spill region.
625     */
626    size_t GetNumBytesForCompilerTempSpillRegion();
627
628    DexOffset GetCurrentDexPc() const {
629      return current_dalvik_offset_;
630    }
631
632    RegisterClass ShortyToRegClass(char shorty_type);
633    RegisterClass LocToRegClass(RegLocation loc);
634    int ComputeFrameSize();
635    virtual void Materialize();
636    virtual CompiledMethod* GetCompiledMethod();
637    void MarkSafepointPC(LIR* inst);
638    void MarkSafepointPCAfter(LIR* after);
639    void SetupResourceMasks(LIR* lir);
640    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
641    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
642    void SetupRegMask(ResourceMask* mask, int reg);
643    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
644    void DumpPromotionMap();
645    void CodegenDump();
646    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
647                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
648    LIR* NewLIR0(int opcode);
649    LIR* NewLIR1(int opcode, int dest);
650    LIR* NewLIR2(int opcode, int dest, int src1);
651    LIR* NewLIR2NoDest(int opcode, int src, int info);
652    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
653    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
654    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
655    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
656    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
657    LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
658    LIR* AddWordData(LIR* *constant_list_p, int value);
659    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
660    void ProcessSwitchTables();
661    void DumpSparseSwitchTable(const uint16_t* table);
662    void DumpPackedSwitchTable(const uint16_t* table);
663    void MarkBoundary(DexOffset offset, const char* inst_str);
664    void NopLIR(LIR* lir);
665    void UnlinkLIR(LIR* lir);
666    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
667    bool IsInexpensiveConstant(RegLocation rl_src);
668    ConditionCode FlipComparisonOrder(ConditionCode before);
669    ConditionCode NegateComparison(ConditionCode before);
670    virtual void InstallLiteralPools();
671    void InstallSwitchTables();
672    void InstallFillArrayData();
673    bool VerifyCatchEntries();
674    void CreateMappingTables();
675    void CreateNativeGcMap();
676    int AssignLiteralOffset(CodeOffset offset);
677    int AssignSwitchTablesOffset(CodeOffset offset);
678    int AssignFillArrayDataOffset(CodeOffset offset);
679    virtual LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
680    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
681    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
682
683    virtual void StartSlowPath(LIRSlowPath* slowpath) {}
684    virtual void BeginInvoke(CallInfo* info) {}
685    virtual void EndInvoke(CallInfo* info) {}
686
687
688    // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
689    virtual RegLocation NarrowRegLoc(RegLocation loc);
690
691    // Shared by all targets - implemented in local_optimizations.cc
692    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
693    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
694    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
695    virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
696
697    // Shared by all targets - implemented in ralloc_util.cc
698    int GetSRegHi(int lowSreg);
699    bool LiveOut(int s_reg);
700    void SimpleRegAlloc();
701    void ResetRegPool();
702    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
703    void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
704    void DumpCoreRegPool();
705    void DumpFpRegPool();
706    void DumpRegPools();
707    /* Mark a temp register as dead.  Does not affect allocation state. */
708    void Clobber(RegStorage reg);
709    void ClobberSReg(int s_reg);
710    void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
711    int SRegToPMap(int s_reg);
712    void RecordCorePromotion(RegStorage reg, int s_reg);
713    RegStorage AllocPreservedCoreReg(int s_reg);
714    void RecordFpPromotion(RegStorage reg, int s_reg);
715    RegStorage AllocPreservedFpReg(int s_reg);
716    virtual RegStorage AllocPreservedSingle(int s_reg);
717    virtual RegStorage AllocPreservedDouble(int s_reg);
718    RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
719    virtual RegStorage AllocTemp(bool required = true);
720    virtual RegStorage AllocTempWide(bool required = true);
721    virtual RegStorage AllocTempRef(bool required = true);
722    virtual RegStorage AllocTempSingle(bool required = true);
723    virtual RegStorage AllocTempDouble(bool required = true);
724    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class, bool required = true);
725    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class, bool required = true);
726    void FlushReg(RegStorage reg);
727    void FlushRegWide(RegStorage reg);
728    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
729    RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
730    virtual void FreeTemp(RegStorage reg);
731    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
732    virtual bool IsLive(RegStorage reg);
733    virtual bool IsTemp(RegStorage reg);
734    bool IsPromoted(RegStorage reg);
735    bool IsDirty(RegStorage reg);
736    virtual void LockTemp(RegStorage reg);
737    void ResetDef(RegStorage reg);
738    void NullifyRange(RegStorage reg, int s_reg);
739    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
740    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
741    void ResetDefLoc(RegLocation rl);
742    void ResetDefLocWide(RegLocation rl);
743    void ResetDefTracking();
744    void ClobberAllTemps();
745    void FlushSpecificReg(RegisterInfo* info);
746    void FlushAllRegs();
747    bool RegClassMatches(int reg_class, RegStorage reg);
748    void MarkLive(RegLocation loc);
749    void MarkTemp(RegStorage reg);
750    void UnmarkTemp(RegStorage reg);
751    void MarkWide(RegStorage reg);
752    void MarkNarrow(RegStorage reg);
753    void MarkClean(RegLocation loc);
754    void MarkDirty(RegLocation loc);
755    void MarkInUse(RegStorage reg);
756    bool CheckCorePoolSanity();
757    virtual RegLocation UpdateLoc(RegLocation loc);
758    virtual RegLocation UpdateLocWide(RegLocation loc);
759    RegLocation UpdateRawLoc(RegLocation loc);
760
761    /**
762     * @brief Used to prepare a register location to receive a wide value.
763     * @see EvalLoc
764     * @param loc the location where the value will be stored.
765     * @param reg_class Type of register needed.
766     * @param update Whether the liveness information should be updated.
767     * @return Returns the properly typed temporary in physical register pairs.
768     */
769    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
770
771    /**
772     * @brief Used to prepare a register location to receive a value.
773     * @param loc the location where the value will be stored.
774     * @param reg_class Type of register needed.
775     * @param update Whether the liveness information should be updated.
776     * @return Returns the properly typed temporary in physical register.
777     */
778    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
779
780    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
781    void DumpCounts(const RefCounts* arr, int size, const char* msg);
782    void DoPromotion();
783    int VRegOffset(int v_reg);
784    int SRegOffset(int s_reg);
785    RegLocation GetReturnWide(RegisterClass reg_class);
786    RegLocation GetReturn(RegisterClass reg_class);
787    RegisterInfo* GetRegInfo(RegStorage reg);
788
789    // Shared by all targets - implemented in gen_common.cc.
790    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
791    virtual bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
792                                  RegLocation rl_src, RegLocation rl_dest, int lit);
793    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
794    virtual void HandleSlowPaths();
795    void GenBarrier();
796    void GenDivZeroException();
797    // c_code holds condition code that's generated from testing divisor against 0.
798    void GenDivZeroCheck(ConditionCode c_code);
799    // reg holds divisor.
800    void GenDivZeroCheck(RegStorage reg);
801    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
802    void GenArrayBoundsCheck(int32_t index, RegStorage length);
803    LIR* GenNullCheck(RegStorage reg);
804    void MarkPossibleNullPointerException(int opt_flags);
805    void MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after);
806    void MarkPossibleStackOverflowException();
807    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
808    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
809    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
810    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
811    virtual void GenImplicitNullCheck(RegStorage reg, int opt_flags);
812    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
813                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
814    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
815                                 LIR* taken, LIR* fall_through);
816    virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
817    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
818                         RegLocation rl_src);
819    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
820                     RegLocation rl_src);
821    void GenFilledNewArray(CallInfo* info);
822    void GenSput(MIR* mir, RegLocation rl_src,
823                 bool is_long_or_double, bool is_object);
824    void GenSget(MIR* mir, RegLocation rl_dest,
825                 bool is_long_or_double, bool is_object);
826    void GenIGet(MIR* mir, int opt_flags, OpSize size,
827                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
828    void GenIPut(MIR* mir, int opt_flags, OpSize size,
829                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
830    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
831                        RegLocation rl_src);
832
833    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
834    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
835    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
836    void GenThrow(RegLocation rl_src);
837    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
838    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
839    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
840                      RegLocation rl_src1, RegLocation rl_src2);
841    virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
842                        RegLocation rl_src1, RegLocation rl_shift);
843    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
844                          RegLocation rl_src, int lit);
845    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
846                        RegLocation rl_src1, RegLocation rl_src2);
847    template <size_t pointer_size>
848    void GenConversionCall(ThreadOffset<pointer_size> func_offset, RegLocation rl_dest,
849                           RegLocation rl_src);
850    virtual void GenSuspendTest(int opt_flags);
851    virtual void GenSuspendTestAndBranch(int opt_flags, LIR* target);
852
853    // This will be overridden by x86 implementation.
854    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
855    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
856                       RegLocation rl_src1, RegLocation rl_src2);
857
858    // Shared by all targets - implemented in gen_invoke.cc.
859    template <size_t pointer_size>
860    LIR* CallHelper(RegStorage r_tgt, ThreadOffset<pointer_size> helper_offset, bool safepoint_pc,
861                    bool use_link = true);
862    RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
863    RegStorage CallHelperSetup(ThreadOffset<8> helper_offset);
864    template <size_t pointer_size>
865    void CallRuntimeHelper(ThreadOffset<pointer_size> helper_offset, bool safepoint_pc);
866    template <size_t pointer_size>
867    void CallRuntimeHelperImm(ThreadOffset<pointer_size> helper_offset, int arg0, bool safepoint_pc);
868    template <size_t pointer_size>
869    void CallRuntimeHelperReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, bool safepoint_pc);
870    template <size_t pointer_size>
871    void CallRuntimeHelperRegLocation(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
872                                      bool safepoint_pc);
873    template <size_t pointer_size>
874    void CallRuntimeHelperImmImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg1,
875                                 bool safepoint_pc);
876    template <size_t pointer_size>
877    void CallRuntimeHelperImmRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
878                                         RegLocation arg1, bool safepoint_pc);
879    template <size_t pointer_size>
880    void CallRuntimeHelperRegLocationImm(ThreadOffset<pointer_size> helper_offset, RegLocation arg0,
881                                         int arg1, bool safepoint_pc);
882    template <size_t pointer_size>
883    void CallRuntimeHelperImmReg(ThreadOffset<pointer_size> helper_offset, int arg0, RegStorage arg1,
884                                 bool safepoint_pc);
885    template <size_t pointer_size>
886    void CallRuntimeHelperRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0, int arg1,
887                                 bool safepoint_pc);
888    template <size_t pointer_size>
889    void CallRuntimeHelperImmMethod(ThreadOffset<pointer_size> helper_offset, int arg0,
890                                    bool safepoint_pc);
891    template <size_t pointer_size>
892    void CallRuntimeHelperRegMethod(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
893                                    bool safepoint_pc);
894    template <size_t pointer_size>
895    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<pointer_size> helper_offset,
896                                               RegStorage arg0, RegLocation arg2, bool safepoint_pc);
897    template <size_t pointer_size>
898    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
899                                                 RegLocation arg0, RegLocation arg1,
900                                                 bool safepoint_pc);
901    template <size_t pointer_size>
902    void CallRuntimeHelperRegReg(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
903                                 RegStorage arg1, bool safepoint_pc);
904    template <size_t pointer_size>
905    void CallRuntimeHelperRegRegImm(ThreadOffset<pointer_size> helper_offset, RegStorage arg0,
906                                    RegStorage arg1, int arg2, bool safepoint_pc);
907    template <size_t pointer_size>
908    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<pointer_size> helper_offset, int arg0,
909                                               RegLocation arg2, bool safepoint_pc);
910    template <size_t pointer_size>
911    void CallRuntimeHelperImmMethodImm(ThreadOffset<pointer_size> helper_offset, int arg0, int arg2,
912                                       bool safepoint_pc);
913    template <size_t pointer_size>
914    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
915                                                    int arg0, RegLocation arg1, RegLocation arg2,
916                                                    bool safepoint_pc);
917    template <size_t pointer_size>
918    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<pointer_size> helper_offset,
919                                                            RegLocation arg0, RegLocation arg1,
920                                                            RegLocation arg2,
921                                                            bool safepoint_pc);
922    void GenInvoke(CallInfo* info);
923    void GenInvokeNoInline(CallInfo* info);
924    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
925    virtual int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
926                             NextCallInsn next_call_insn,
927                             const MethodReference& target_method,
928                             uint32_t vtable_idx,
929                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
930                             bool skip_this);
931    virtual int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
932                           NextCallInsn next_call_insn,
933                           const MethodReference& target_method,
934                           uint32_t vtable_idx,
935                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
936                           bool skip_this);
937
938    /**
939     * @brief Used to determine the register location of destination.
940     * @details This is needed during generation of inline intrinsics because it finds destination
941     *  of return,
942     * either the physical register or the target of move-result.
943     * @param info Information about the invoke.
944     * @return Returns the destination location.
945     */
946    RegLocation InlineTarget(CallInfo* info);
947
948    /**
949     * @brief Used to determine the wide register location of destination.
950     * @see InlineTarget
951     * @param info Information about the invoke.
952     * @return Returns the destination location.
953     */
954    RegLocation InlineTargetWide(CallInfo* info);
955
956    bool GenInlinedGet(CallInfo* info);
957    bool GenInlinedCharAt(CallInfo* info);
958    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
959    virtual bool GenInlinedReverseBits(CallInfo* info, OpSize size);
960    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
961    bool GenInlinedAbsInt(CallInfo* info);
962    virtual bool GenInlinedAbsLong(CallInfo* info);
963    virtual bool GenInlinedAbsFloat(CallInfo* info) = 0;
964    virtual bool GenInlinedAbsDouble(CallInfo* info) = 0;
965    bool GenInlinedFloatCvt(CallInfo* info);
966    bool GenInlinedDoubleCvt(CallInfo* info);
967    virtual bool GenInlinedArrayCopyCharArray(CallInfo* info);
968    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
969    bool GenInlinedStringCompareTo(CallInfo* info);
970    bool GenInlinedCurrentThread(CallInfo* info);
971    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
972    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
973                             bool is_volatile, bool is_ordered);
974    virtual int LoadArgRegs(CallInfo* info, int call_state,
975                    NextCallInsn next_call_insn,
976                    const MethodReference& target_method,
977                    uint32_t vtable_idx,
978                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
979                    bool skip_this);
980
981    // Shared by all targets - implemented in gen_loadstore.cc.
982    RegLocation LoadCurrMethod();
983    void LoadCurrMethodDirect(RegStorage r_tgt);
984    virtual LIR* LoadConstant(RegStorage r_dest, int value);
985    // Natural word size.
986    virtual LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
987      return LoadBaseDisp(r_base, displacement, r_dest, kWord, kNotVolatile);
988    }
989    // Load 32 bits, regardless of target.
990    virtual LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
991      return LoadBaseDisp(r_base, displacement, r_dest, k32, kNotVolatile);
992    }
993    // Load a reference at base + displacement and decompress into register.
994    virtual LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest,
995                             VolatileKind is_volatile) {
996      return LoadBaseDisp(r_base, displacement, r_dest, kReference, is_volatile);
997    }
998    // Load a reference at base + index and decompress into register.
999    virtual LIR* LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1000                                int scale) {
1001      return LoadBaseIndexed(r_base, r_index, r_dest, scale, kReference);
1002    }
1003    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1004    virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
1005    // Same as above, but derive the target register class from the location record.
1006    virtual RegLocation LoadValue(RegLocation rl_src);
1007    // Load Dalvik value with 64-bit memory storage.
1008    virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
1009    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1010    virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
1011    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
1012    virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
1013    // Load Dalvik value with 64-bit memory storage.
1014    virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
1015    // Load Dalvik value with 64-bit memory storage.
1016    virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
1017    // Store an item of natural word size.
1018    virtual LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
1019      return StoreBaseDisp(r_base, displacement, r_src, kWord, kNotVolatile);
1020    }
1021    // Store an uncompressed reference into a compressed 32-bit container.
1022    virtual LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src,
1023                              VolatileKind is_volatile) {
1024      return StoreBaseDisp(r_base, displacement, r_src, kReference, is_volatile);
1025    }
1026    // Store an uncompressed reference into a compressed 32-bit container by index.
1027    virtual LIR* StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1028                                 int scale) {
1029      return StoreBaseIndexed(r_base, r_index, r_src, scale, kReference);
1030    }
1031    // Store 32 bits, regardless of target.
1032    virtual LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
1033      return StoreBaseDisp(r_base, displacement, r_src, k32, kNotVolatile);
1034    }
1035
1036    /**
1037     * @brief Used to do the final store in the destination as per bytecode semantics.
1038     * @param rl_dest The destination dalvik register location.
1039     * @param rl_src The source register location. Can be either physical register or dalvik register.
1040     */
1041    virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
1042
1043    /**
1044     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1045     * @see StoreValue
1046     * @param rl_dest The destination dalvik register location.
1047     * @param rl_src The source register location. Can be either physical register or dalvik
1048     *  register.
1049     */
1050    virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
1051
1052    /**
1053     * @brief Used to do the final store to a destination as per bytecode semantics.
1054     * @see StoreValue
1055     * @param rl_dest The destination dalvik register location.
1056     * @param rl_src The source register location. It must be kLocPhysReg
1057     *
1058     * This is used for x86 two operand computations, where we have computed the correct
1059     * register value that now needs to be properly registered.  This is used to avoid an
1060     * extra register copy that would result if StoreValue was called.
1061     */
1062    virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
1063
1064    /**
1065     * @brief Used to do the final store in a wide destination as per bytecode semantics.
1066     * @see StoreValueWide
1067     * @param rl_dest The destination dalvik register location.
1068     * @param rl_src The source register location. It must be kLocPhysReg
1069     *
1070     * This is used for x86 two operand computations, where we have computed the correct
1071     * register values that now need to be properly registered.  This is used to avoid an
1072     * extra pair of register copies that would result if StoreValueWide was called.
1073     */
1074    virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
1075
1076    // Shared by all targets - implemented in mir_to_lir.cc.
1077    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
1078    virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1079    bool MethodBlockCodeGen(BasicBlock* bb);
1080    bool SpecialMIR2LIR(const InlineMethod& special);
1081    virtual void MethodMIR2LIR();
1082    // Update LIR for verbose listings.
1083    void UpdateLIROffsets();
1084
1085    /*
1086     * @brief Load the address of the dex method into the register.
1087     * @param target_method The MethodReference of the method to be invoked.
1088     * @param type How the method will be invoked.
1089     * @param register that will contain the code address.
1090     * @note register will be passed to TargetReg to get physical register.
1091     */
1092    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1093                         SpecialTargetRegister symbolic_reg);
1094
1095    /*
1096     * @brief Load the Method* of a dex method into the register.
1097     * @param target_method The MethodReference of the method to be invoked.
1098     * @param type How the method will be invoked.
1099     * @param register that will contain the code address.
1100     * @note register will be passed to TargetReg to get physical register.
1101     */
1102    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1103                                   SpecialTargetRegister symbolic_reg);
1104
1105    /*
1106     * @brief Load the Class* of a Dex Class type into the register.
1107     * @param type How the method will be invoked.
1108     * @param register that will contain the code address.
1109     * @note register will be passed to TargetReg to get physical register.
1110     */
1111    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
1112
1113    // Routines that work for the generic case, but may be overriden by target.
1114    /*
1115     * @brief Compare memory to immediate, and branch if condition true.
1116     * @param cond The condition code that when true will branch to the target.
1117     * @param temp_reg A temporary register that can be used if compare to memory is not
1118     * supported by the architecture.
1119     * @param base_reg The register holding the base address.
1120     * @param offset The offset from the base.
1121     * @param check_value The immediate to compare to.
1122     * @param target branch target (or nullptr)
1123     * @param compare output for getting LIR for comparison (or nullptr)
1124     * @returns The branch instruction that was generated.
1125     */
1126    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1127                                   int offset, int check_value, LIR* target, LIR** compare);
1128
1129    // Required for target - codegen helpers.
1130    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1131                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1132    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1133    virtual LIR* CheckSuspendUsingLoad() = 0;
1134
1135    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
1136    virtual RegStorage LoadHelper(ThreadOffset<8> offset) = 0;
1137
1138    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1139                              OpSize size, VolatileKind is_volatile) = 0;
1140    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1141                                 int scale, OpSize size) = 0;
1142    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1143                                     int displacement, RegStorage r_dest, OpSize size) = 0;
1144    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1145    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1146    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1147                               OpSize size, VolatileKind is_volatile) = 0;
1148    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1149                                  int scale, OpSize size) = 0;
1150    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1151                                      int displacement, RegStorage r_src, OpSize size) = 0;
1152    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
1153
1154    // Required for target - register utilities.
1155
1156    bool IsSameReg(RegStorage reg1, RegStorage reg2) {
1157      RegisterInfo* info1 = GetRegInfo(reg1);
1158      RegisterInfo* info2 = GetRegInfo(reg2);
1159      return (info1->Master() == info2->Master() &&
1160             (info1->StorageMask() & info2->StorageMask()) != 0);
1161    }
1162
1163    /**
1164     * @brief Portable way of getting special registers from the backend.
1165     * @param reg Enumeration describing the purpose of the register.
1166     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1167     * @note This function is currently allowed to return any suitable view of the registers
1168     *   (e.g. this could be 64-bit solo or 32-bit solo for 64-bit backends).
1169     */
1170    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1171
1172    /**
1173     * @brief Portable way of getting special registers from the backend.
1174     * @param reg Enumeration describing the purpose of the register.
1175     * @param wide_kind What kind of view of the special register is required.
1176     * @return Return the #RegStorage corresponding to the given purpose @p reg.
1177     *
1178     * @note For 32b system, wide (kWide) views only make sense for the argument registers and the
1179     *       return. In that case, this function should return a pair where the first component of
1180     *       the result will be the indicated special register.
1181     */
1182    virtual RegStorage TargetReg(SpecialTargetRegister reg, WideKind wide_kind) {
1183      if (wide_kind == kWide) {
1184        DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg7) || (kRet0 == reg));
1185        COMPILE_ASSERT((kArg1 == kArg0 + 1) && (kArg2 == kArg1 + 1) && (kArg3 == kArg2 + 1) &&
1186                       (kArg4 == kArg3 + 1) && (kArg5 == kArg4 + 1) && (kArg6 == kArg5 + 1) &&
1187                       (kArg7 == kArg6 + 1), kargs_range_unexpected);
1188        COMPILE_ASSERT((kFArg1 == kFArg0 + 1) && (kFArg2 == kFArg1 + 1) && (kFArg3 == kFArg2 + 1) &&
1189                       (kFArg4 == kFArg3 + 1) && (kFArg5 == kFArg4 + 1) && (kFArg6 == kFArg5 + 1) &&
1190                       (kFArg7 == kFArg6 + 1), kfargs_range_unexpected);
1191        COMPILE_ASSERT(kRet1 == kRet0 + 1, kret_range_unexpected);
1192        return RegStorage::MakeRegPair(TargetReg(reg),
1193                                       TargetReg(static_cast<SpecialTargetRegister>(reg + 1)));
1194      } else {
1195        return TargetReg(reg);
1196      }
1197    }
1198
1199    /**
1200     * @brief Portable way of getting a special register for storing a pointer.
1201     * @see TargetReg()
1202     */
1203    virtual RegStorage TargetPtrReg(SpecialTargetRegister reg) {
1204      return TargetReg(reg);
1205    }
1206
1207    // Get a reg storage corresponding to the wide & ref flags of the reg location.
1208    virtual RegStorage TargetReg(SpecialTargetRegister reg, RegLocation loc) {
1209      if (loc.ref) {
1210        return TargetReg(reg, kRef);
1211      } else {
1212        return TargetReg(reg, loc.wide ? kWide : kNotWide);
1213      }
1214    }
1215
1216    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
1217    virtual RegLocation GetReturnAlt() = 0;
1218    virtual RegLocation GetReturnWideAlt() = 0;
1219    virtual RegLocation LocCReturn() = 0;
1220    virtual RegLocation LocCReturnRef() = 0;
1221    virtual RegLocation LocCReturnDouble() = 0;
1222    virtual RegLocation LocCReturnFloat() = 0;
1223    virtual RegLocation LocCReturnWide() = 0;
1224    virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0;
1225    virtual void AdjustSpillMask() = 0;
1226    virtual void ClobberCallerSave() = 0;
1227    virtual void FreeCallTemps() = 0;
1228    virtual void LockCallTemps() = 0;
1229    virtual void CompilerInitializeRegAlloc() = 0;
1230
1231    // Required for target - miscellaneous.
1232    virtual void AssembleLIR() = 0;
1233    virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0;
1234    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
1235                                          ResourceMask* use_mask, ResourceMask* def_mask) = 0;
1236    virtual const char* GetTargetInstFmt(int opcode) = 0;
1237    virtual const char* GetTargetInstName(int opcode) = 0;
1238    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1239
1240    // Note: This may return kEncodeNone on architectures that do not expose a PC. The caller must
1241    //       take care of this.
1242    virtual ResourceMask GetPCUseDefEncoding() const = 0;
1243    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1244    virtual size_t GetInsnSize(LIR* lir) = 0;
1245    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1246
1247    // Get the register class for load/store of a field.
1248    virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
1249
1250    // Required for target - Dalvik-level generators.
1251    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1252                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
1253    virtual void GenMulLong(Instruction::Code,
1254                            RegLocation rl_dest, RegLocation rl_src1,
1255                            RegLocation rl_src2) = 0;
1256    virtual void GenAddLong(Instruction::Code,
1257                            RegLocation rl_dest, RegLocation rl_src1,
1258                            RegLocation rl_src2) = 0;
1259    virtual void GenAndLong(Instruction::Code,
1260                            RegLocation rl_dest, RegLocation rl_src1,
1261                            RegLocation rl_src2) = 0;
1262    virtual void GenArithOpDouble(Instruction::Code opcode,
1263                                  RegLocation rl_dest, RegLocation rl_src1,
1264                                  RegLocation rl_src2) = 0;
1265    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1266                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1267    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1268                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1269    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1270                               RegLocation rl_src) = 0;
1271    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1272
1273    /**
1274     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1275     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1276     * that applies on integers. The generated code will write the smallest or largest value
1277     * directly into the destination register as specified by the invoke information.
1278     * @param info Information about the invoke.
1279     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1280     * @param is_long If true the value value is Long. Otherwise the value is Int.
1281     * @return Returns true if successfully generated
1282     */
1283    virtual bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) = 0;
1284    virtual bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
1285
1286    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1287    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1288    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1289    virtual void GenNotLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1290    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1291    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1292                           RegLocation rl_src2) = 0;
1293    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1294                            RegLocation rl_src2) = 0;
1295    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1296                            RegLocation rl_src2) = 0;
1297    virtual void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1298                            RegLocation rl_src2, bool is_div) = 0;
1299    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1300                                  bool is_div) = 0;
1301    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1302                                     bool is_div) = 0;
1303    /*
1304     * @brief Generate an integer div or rem operation by a literal.
1305     * @param rl_dest Destination Location.
1306     * @param rl_src1 Numerator Location.
1307     * @param rl_src2 Divisor Location.
1308     * @param is_div 'true' if this is a division, 'false' for a remainder.
1309     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
1310     */
1311    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1312                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
1313    /*
1314     * @brief Generate an integer div or rem operation by a literal.
1315     * @param rl_dest Destination Location.
1316     * @param rl_src Numerator Location.
1317     * @param lit Divisor.
1318     * @param is_div 'true' if this is a division, 'false' for a remainder.
1319     */
1320    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1321                                     bool is_div) = 0;
1322    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1323
1324    /**
1325     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1326     * @details This is used for generating DivideByZero checks when divisor is held in two
1327     *  separate registers.
1328     * @param reg The register holding the pair of 32-bit values.
1329     */
1330    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1331
1332    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1333    virtual void GenExitSequence() = 0;
1334    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1335    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1336    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1337
1338    /*
1339     * @brief Handle Machine Specific MIR Extended opcodes.
1340     * @param bb The basic block in which the MIR is from.
1341     * @param mir The MIR whose opcode is not standard extended MIR.
1342     * @note Base class implementation will abort for unknown opcodes.
1343     */
1344    virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
1345
1346    /**
1347     * @brief Lowers the kMirOpSelect MIR into LIR.
1348     * @param bb The basic block in which the MIR is from.
1349     * @param mir The MIR whose opcode is kMirOpSelect.
1350     */
1351    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1352
1353    /**
1354     * @brief Generates code to select one of the given constants depending on the given opcode.
1355     */
1356    virtual void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
1357                                  int32_t true_val, int32_t false_val, RegStorage rs_dest,
1358                                  int dest_reg_class) = 0;
1359
1360    /**
1361     * @brief Used to generate a memory barrier in an architecture specific way.
1362     * @details The last generated LIR will be considered for use as barrier. Namely,
1363     * if the last LIR can be updated in a way where it will serve the semantics of
1364     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1365     * that can keep the semantics.
1366     * @param barrier_kind The kind of memory barrier to generate.
1367     * @return whether a new instruction was generated.
1368     */
1369    virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1370
1371    virtual void GenMoveException(RegLocation rl_dest) = 0;
1372    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1373                                               int first_bit, int second_bit) = 0;
1374    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1375    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1376    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1377    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1378    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1379                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1380    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1381                             RegLocation rl_index, RegLocation rl_src, int scale,
1382                             bool card_mark) = 0;
1383    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1384                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1385
1386    // Required for target - single operation generators.
1387    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1388    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1389    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1390                                LIR* target) = 0;
1391    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1392    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1393    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1394    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1395    virtual void OpEndIT(LIR* it) = 0;
1396    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1397    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1398    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1399    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1400    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1401    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1402    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1403    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1404
1405    /**
1406     * @brief Used to generate an LIR that does a load from mem to reg.
1407     * @param r_dest The destination physical register.
1408     * @param r_base The base physical register for memory operand.
1409     * @param offset The displacement for memory operand.
1410     * @param move_type Specification on the move desired (size, alignment, register kind).
1411     * @return Returns the generate move LIR.
1412     */
1413    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1414                             MoveType move_type) = 0;
1415
1416    /**
1417     * @brief Used to generate an LIR that does a store from reg to mem.
1418     * @param r_base The base physical register for memory operand.
1419     * @param offset The displacement for memory operand.
1420     * @param r_src The destination physical register.
1421     * @param bytes_to_move The number of bytes to move.
1422     * @param is_aligned Whether the memory location is known to be aligned.
1423     * @return Returns the generate move LIR.
1424     */
1425    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1426                             MoveType move_type) = 0;
1427
1428    /**
1429     * @brief Used for generating a conditional register to register operation.
1430     * @param op The opcode kind.
1431     * @param cc The condition code that when true will perform the opcode.
1432     * @param r_dest The destination physical register.
1433     * @param r_src The source physical register.
1434     * @return Returns the newly created LIR or null in case of creation failure.
1435     */
1436    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1437
1438    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1439    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1440                             RegStorage r_src2) = 0;
1441    virtual LIR* OpTestSuspend(LIR* target) = 0;
1442    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1443    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) = 0;
1444    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1445    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1446    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1447                       int offset) = 0;
1448    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1449    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1450    virtual void OpTlsCmp(ThreadOffset<8> offset, int val) = 0;
1451    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1452    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1453    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1454    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1455
1456    // May be optimized by targets.
1457    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1458    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1459
1460    // Temp workaround
1461    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1462
1463  protected:
1464    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1465
1466    CompilationUnit* GetCompilationUnit() {
1467      return cu_;
1468    }
1469    /*
1470     * @brief Returns the index of the lowest set bit in 'x'.
1471     * @param x Value to be examined.
1472     * @returns The bit number of the lowest bit set in the value.
1473     */
1474    int32_t LowestSetBit(uint64_t x);
1475    /*
1476     * @brief Is this value a power of two?
1477     * @param x Value to be examined.
1478     * @returns 'true' if only 1 bit is set in the value.
1479     */
1480    bool IsPowerOfTwo(uint64_t x);
1481    /*
1482     * @brief Do these SRs overlap?
1483     * @param rl_op1 One RegLocation
1484     * @param rl_op2 The other RegLocation
1485     * @return 'true' if the VR pairs overlap
1486     *
1487     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1488     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1489     * dex, we'll want to make this case illegal.
1490     */
1491    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1492
1493    /*
1494     * @brief Force a location (in a register) into a temporary register
1495     * @param loc location of result
1496     * @returns update location
1497     */
1498    virtual RegLocation ForceTemp(RegLocation loc);
1499
1500    /*
1501     * @brief Force a wide location (in registers) into temporary registers
1502     * @param loc location of result
1503     * @returns update location
1504     */
1505    virtual RegLocation ForceTempWide(RegLocation loc);
1506
1507    static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
1508      return wide ? k64 : ref ? kReference : k32;
1509    }
1510
1511    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1512                                    RegLocation rl_dest, RegLocation rl_src);
1513
1514    void AddSlowPath(LIRSlowPath* slowpath);
1515
1516    /*
1517     *
1518     * @brief Implement Set up instanceof a class.
1519     * @param needs_access_check 'true' if we must check the access.
1520     * @param type_known_final 'true' if the type is known to be a final class.
1521     * @param type_known_abstract 'true' if the type is known to be an abstract class.
1522     * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
1523     * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
1524     * @param type_idx Type index to use if use_declaring_class is 'false'.
1525     * @param rl_dest Result to be set to 0 or 1.
1526     * @param rl_src Object to be tested.
1527     */
1528    void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1529                                    bool type_known_abstract, bool use_declaring_class,
1530                                    bool can_assume_type_is_in_dex_cache,
1531                                    uint32_t type_idx, RegLocation rl_dest,
1532                                    RegLocation rl_src);
1533    /*
1534     * @brief Generate the debug_frame FDE information if possible.
1535     * @returns pointer to vector containg CFE information, or NULL.
1536     */
1537    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1538
1539    /**
1540     * @brief Used to insert marker that can be used to associate MIR with LIR.
1541     * @details Only inserts marker if verbosity is enabled.
1542     * @param mir The mir that is currently being generated.
1543     */
1544    void GenPrintLabel(MIR* mir);
1545
1546    /**
1547     * @brief Used to generate return sequence when there is no frame.
1548     * @details Assumes that the return registers have already been populated.
1549     */
1550    virtual void GenSpecialExitSequence() = 0;
1551
1552    /**
1553     * @brief Used to generate code for special methods that are known to be
1554     * small enough to work in frameless mode.
1555     * @param bb The basic block of the first MIR.
1556     * @param mir The first MIR of the special method.
1557     * @param special Information about the special method.
1558     * @return Returns whether or not this was handled successfully. Returns false
1559     * if caller should punt to normal MIR2LIR conversion.
1560     */
1561    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1562
1563  protected:
1564    void ClobberBody(RegisterInfo* p);
1565    void SetCurrentDexPc(DexOffset dexpc) {
1566      current_dalvik_offset_ = dexpc;
1567    }
1568
1569    /**
1570     * @brief Used to lock register if argument at in_position was passed that way.
1571     * @details Does nothing if the argument is passed via stack.
1572     * @param in_position The argument number whose register to lock.
1573     * @param wide Whether the argument is wide.
1574     */
1575    void LockArg(int in_position, bool wide = false);
1576
1577    /**
1578     * @brief Used to load VR argument to a physical register.
1579     * @details The load is only done if the argument is not already in physical register.
1580     * LockArg must have been previously called.
1581     * @param in_position The argument number to load.
1582     * @param wide Whether the argument is 64-bit or not.
1583     * @return Returns the register (or register pair) for the loaded argument.
1584     */
1585    RegStorage LoadArg(int in_position, RegisterClass reg_class, bool wide = false);
1586
1587    /**
1588     * @brief Used to load a VR argument directly to a specified register location.
1589     * @param in_position The argument number to place in register.
1590     * @param rl_dest The register location where to place argument.
1591     */
1592    void LoadArgDirect(int in_position, RegLocation rl_dest);
1593
1594    /**
1595     * @brief Used to generate LIR for special getter method.
1596     * @param mir The mir that represents the iget.
1597     * @param special Information about the special getter method.
1598     * @return Returns whether LIR was successfully generated.
1599     */
1600    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1601
1602    /**
1603     * @brief Used to generate LIR for special setter method.
1604     * @param mir The mir that represents the iput.
1605     * @param special Information about the special setter method.
1606     * @return Returns whether LIR was successfully generated.
1607     */
1608    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1609
1610    /**
1611     * @brief Used to generate LIR for special return-args method.
1612     * @param mir The mir that represents the return of argument.
1613     * @param special Information about the special return-args method.
1614     * @return Returns whether LIR was successfully generated.
1615     */
1616    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1617
1618    void AddDivZeroCheckSlowPath(LIR* branch);
1619
1620    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1621    // kArg2 as temp.
1622    virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1623
1624    /**
1625     * @brief Load Constant into RegLocation
1626     * @param rl_dest Destination RegLocation
1627     * @param value Constant value
1628     */
1629    virtual void GenConst(RegLocation rl_dest, int value);
1630
1631    /**
1632     * Returns true iff wide GPRs are just different views on the same physical register.
1633     */
1634    virtual bool WideGPRsAreAliases() = 0;
1635
1636    /**
1637     * Returns true iff wide FPRs are just different views on the same physical register.
1638     */
1639    virtual bool WideFPRsAreAliases() = 0;
1640
1641
1642    enum class WidenessCheck {  // private
1643      kIgnoreWide,
1644      kCheckWide,
1645      kCheckNotWide
1646    };
1647
1648    enum class RefCheck {  // private
1649      kIgnoreRef,
1650      kCheckRef,
1651      kCheckNotRef
1652    };
1653
1654    enum class FPCheck {  // private
1655      kIgnoreFP,
1656      kCheckFP,
1657      kCheckNotFP
1658    };
1659
1660    /**
1661     * Check whether a reg storage seems well-formed, that is, if a reg storage is valid,
1662     * that it has the expected form for the flags.
1663     * A flag value of 0 means ignore. A flag value of -1 means false. A flag value of 1 means true.
1664     */
1665    void CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail,
1666                             bool report)
1667        const;
1668
1669    /**
1670     * Check whether a reg location seems well-formed, that is, if a reg storage is encoded,
1671     * that it has the expected size.
1672     */
1673    void CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const;
1674
1675    // See CheckRegStorageImpl. Will print or fail depending on kFailOnSizeError and
1676    // kReportSizeError.
1677    void CheckRegStorage(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp) const;
1678    // See CheckRegLocationImpl.
1679    void CheckRegLocation(RegLocation rl) const;
1680
1681  public:
1682    // TODO: add accessors for these.
1683    LIR* literal_list_;                        // Constants.
1684    LIR* method_literal_list_;                 // Method literals requiring patching.
1685    LIR* class_literal_list_;                  // Class literals requiring patching.
1686    LIR* code_literal_list_;                   // Code literals requiring patching.
1687    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1688
1689  protected:
1690    CompilationUnit* const cu_;
1691    MIRGraph* const mir_graph_;
1692    GrowableArray<SwitchTable*> switch_tables_;
1693    GrowableArray<FillArrayData*> fill_array_data_;
1694    GrowableArray<RegisterInfo*> tempreg_info_;
1695    GrowableArray<RegisterInfo*> reginfo_map_;
1696    GrowableArray<void*> pointer_storage_;
1697    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1698    CodeOffset data_offset_;            // starting offset of literal pool.
1699    size_t total_size_;                   // header + code size.
1700    LIR* block_label_list_;
1701    PromotionMap* promotion_map_;
1702    /*
1703     * TODO: The code generation utilities don't have a built-in
1704     * mechanism to propagate the original Dalvik opcode address to the
1705     * associated generated instructions.  For the trace compiler, this wasn't
1706     * necessary because the interpreter handled all throws and debugging
1707     * requests.  For now we'll handle this by placing the Dalvik offset
1708     * in the CompilationUnit struct before codegen for each instruction.
1709     * The low-level LIR creation utilites will pull it from here.  Rework this.
1710     */
1711    DexOffset current_dalvik_offset_;
1712    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1713    RegisterPool* reg_pool_;
1714    /*
1715     * Sanity checking for the register temp tracking.  The same ssa
1716     * name should never be associated with one temp register per
1717     * instruction compilation.
1718     */
1719    int live_sreg_;
1720    CodeBuffer code_buffer_;
1721    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1722    std::vector<uint8_t> encoded_mapping_table_;
1723    std::vector<uint32_t> core_vmap_table_;
1724    std::vector<uint32_t> fp_vmap_table_;
1725    std::vector<uint8_t> native_gc_map_;
1726    int num_core_spills_;
1727    int num_fp_spills_;
1728    int frame_size_;
1729    unsigned int core_spill_mask_;
1730    unsigned int fp_spill_mask_;
1731    LIR* first_lir_insn_;
1732    LIR* last_lir_insn_;
1733
1734    GrowableArray<LIRSlowPath*> slow_paths_;
1735
1736    // The memory reference type for new LIRs.
1737    // NOTE: Passing this as an explicit parameter by all functions that directly or indirectly
1738    // invoke RawLIR() would clutter the code and reduce the readability.
1739    ResourceMask::ResourceBit mem_ref_type_;
1740
1741    // Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR
1742    // would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks
1743    // (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache
1744    // to deduplicate the masks.
1745    ResourceMaskCache mask_cache_;
1746};  // Class Mir2Lir
1747
1748}  // namespace art
1749
1750#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1751