mir_to_lir.h revision f9487c039efb4112616d438593a2ab02792e0304
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_storage.h"
25#include "dex/backend.h"
26#include "driver/compiler_driver.h"
27#include "leb128.h"
28#include "safe_map.h"
29#include "utils/arena_allocator.h"
30#include "utils/growable_array.h"
31
32namespace art {
33
34/*
35 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
36 * add type safety (see runtime/offsets.h).
37 */
38typedef uint32_t DexOffset;          // Dex offset in code units.
39typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
40typedef uint32_t CodeOffset;         // Native code offset in bytes.
41
42// Set to 1 to measure cost of suspend check.
43#define NO_SUSPEND 0
44
45#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46#define IS_BRANCH            (1ULL << kIsBranch)
47#define IS_IT                (1ULL << kIsIT)
48#define IS_LOAD              (1ULL << kMemLoad)
49#define IS_QUAD_OP           (1ULL << kIsQuadOp)
50#define IS_QUIN_OP           (1ULL << kIsQuinOp)
51#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
52#define IS_STORE             (1ULL << kMemStore)
53#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
54#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
55#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
56#define NO_OPERAND           (1ULL << kNoOperand)
57#define REG_DEF0             (1ULL << kRegDef0)
58#define REG_DEF1             (1ULL << kRegDef1)
59#define REG_DEF2             (1ULL << kRegDef2)
60#define REG_DEFA             (1ULL << kRegDefA)
61#define REG_DEFD             (1ULL << kRegDefD)
62#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
63#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
64#define REG_DEF_LIST0        (1ULL << kRegDefList0)
65#define REG_DEF_LIST1        (1ULL << kRegDefList1)
66#define REG_DEF_LR           (1ULL << kRegDefLR)
67#define REG_DEF_SP           (1ULL << kRegDefSP)
68#define REG_USE0             (1ULL << kRegUse0)
69#define REG_USE1             (1ULL << kRegUse1)
70#define REG_USE2             (1ULL << kRegUse2)
71#define REG_USE3             (1ULL << kRegUse3)
72#define REG_USE4             (1ULL << kRegUse4)
73#define REG_USEA             (1ULL << kRegUseA)
74#define REG_USEC             (1ULL << kRegUseC)
75#define REG_USED             (1ULL << kRegUseD)
76#define REG_USEB             (1ULL << kRegUseB)
77#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
78#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
79#define REG_USE_LIST0        (1ULL << kRegUseList0)
80#define REG_USE_LIST1        (1ULL << kRegUseList1)
81#define REG_USE_LR           (1ULL << kRegUseLR)
82#define REG_USE_PC           (1ULL << kRegUsePC)
83#define REG_USE_SP           (1ULL << kRegUseSP)
84#define SETS_CCODES          (1ULL << kSetsCCodes)
85#define USES_CCODES          (1ULL << kUsesCCodes)
86#define USE_FP_STACK         (1ULL << kUseFpStack)
87#define REG_USE_LO           (1ULL << kUseLo)
88#define REG_USE_HI           (1ULL << kUseHi)
89#define REG_DEF_LO           (1ULL << kDefLo)
90#define REG_DEF_HI           (1ULL << kDefHi)
91
92// Common combo register usage patterns.
93#define REG_DEF01            (REG_DEF0 | REG_DEF1)
94#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
95#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
96#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
97#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
98#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
99#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
100#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
101#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
102#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
103#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
104#define REG_USE012           (REG_USE01 | REG_USE2)
105#define REG_USE014           (REG_USE01 | REG_USE4)
106#define REG_USE01            (REG_USE0 | REG_USE1)
107#define REG_USE02            (REG_USE0 | REG_USE2)
108#define REG_USE12            (REG_USE1 | REG_USE2)
109#define REG_USE23            (REG_USE2 | REG_USE3)
110#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
111
112struct BasicBlock;
113struct CallInfo;
114struct CompilationUnit;
115struct InlineMethod;
116struct MIR;
117struct LIR;
118struct RegLocation;
119struct RegisterInfo;
120class DexFileMethodInliner;
121class MIRGraph;
122class Mir2Lir;
123
124typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
125                            const MethodReference& target_method,
126                            uint32_t method_idx, uintptr_t direct_code,
127                            uintptr_t direct_method, InvokeType type);
128
129typedef std::vector<uint8_t> CodeBuffer;
130
131struct UseDefMasks {
132  uint64_t use_mask;        // Resource mask for use.
133  uint64_t def_mask;        // Resource mask for def.
134};
135
136struct AssemblyInfo {
137  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
138};
139
140struct LIR {
141  CodeOffset offset;             // Offset of this instruction.
142  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
143  int16_t opcode;
144  LIR* next;
145  LIR* prev;
146  LIR* target;
147  struct {
148    unsigned int alias_info:17;  // For Dalvik register disambiguation.
149    bool is_nop:1;               // LIR is optimized away.
150    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
151    bool use_def_invalid:1;      // If true, masks should not be used.
152    unsigned int generation:1;   // Used to track visitation state during fixup pass.
153    unsigned int fixup:8;        // Fixup kind.
154  } flags;
155  union {
156    UseDefMasks m;               // Use & Def masks used during optimization.
157    AssemblyInfo a;              // Instruction info used during assembly phase.
158  } u;
159  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
160};
161
162// Target-specific initialization.
163Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
164                          ArenaAllocator* const arena);
165Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
166                          ArenaAllocator* const arena);
167Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
168                          ArenaAllocator* const arena);
169
170// Utility macros to traverse the LIR list.
171#define NEXT_LIR(lir) (lir->next)
172#define PREV_LIR(lir) (lir->prev)
173
174// Defines for alias_info (tracks Dalvik register references).
175#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
176#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
177#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
178#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
179
180// Common resource macros.
181#define ENCODE_CCODE            (1ULL << kCCode)
182#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
183
184// Abstract memory locations.
185#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
186#define ENCODE_LITERAL          (1ULL << kLiteral)
187#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
188#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
189
190#define ENCODE_ALL              (~0ULL)
191#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
192                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
193
194#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
195#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
196  do { \
197    low_reg = both_regs & 0xff; \
198    high_reg = (both_regs >> 8) & 0xff; \
199  } while (false)
200
201// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
202#define STARTING_DOUBLE_SREG 0x10000
203
204// TODO: replace these macros
205#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
206#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
207#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
208#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
209#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
210
211class Mir2Lir : public Backend {
212  public:
213    /*
214     * Auxiliary information describing the location of data embedded in the Dalvik
215     * byte code stream.
216     */
217    struct EmbeddedData {
218      CodeOffset offset;        // Code offset of data block.
219      const uint16_t* table;      // Original dex data.
220      DexOffset vaddr;            // Dalvik offset of parent opcode.
221    };
222
223    struct FillArrayData : EmbeddedData {
224      int32_t size;
225    };
226
227    struct SwitchTable : EmbeddedData {
228      LIR* anchor;                // Reference instruction for relative offsets.
229      LIR** targets;              // Array of case targets.
230    };
231
232    /* Static register use counts */
233    struct RefCounts {
234      int count;
235      int s_reg;
236    };
237
238    /*
239     * Data structure tracking the mapping between a Dalvik register (pair) and a
240     * native register (pair). The idea is to reuse the previously loaded value
241     * if possible, otherwise to keep the value in a native register as long as
242     * possible.
243     */
244    struct RegisterInfo {
245      int reg;                    // Reg number
246      bool in_use;                // Has it been allocated?
247      bool is_temp;               // Can allocate as temp?
248      bool pair;                  // Part of a register pair?
249      int partner;                // If pair, other reg of pair.
250      bool live;                  // Is there an associated SSA name?
251      bool dirty;                 // If live, is it dirty?
252      int s_reg;                  // Name of live value.
253      LIR *def_start;             // Starting inst in last def sequence.
254      LIR *def_end;               // Ending inst in last def sequence.
255    };
256
257    struct RegisterPool {
258       int num_core_regs;
259       RegisterInfo *core_regs;
260       int next_core_reg;
261       int num_fp_regs;
262       RegisterInfo *FPRegs;
263       int next_fp_reg;
264     };
265
266    struct PromotionMap {
267      RegLocationType core_location:3;
268      uint8_t core_reg;
269      RegLocationType fp_location:3;
270      uint8_t FpReg;
271      bool first_in_pair;
272    };
273
274    //
275    // Slow paths.  This object is used generate a sequence of code that is executed in the
276    // slow path.  For example, resolving a string or class is slow as it will only be executed
277    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
278    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
279    // branch over them.
280    //
281    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
282    // the Compile() function that will be called near the end of the code generated by the
283    // method.
284    //
285    // The basic flow for a slow path is:
286    //
287    //     CMP reg, #value
288    //     BEQ fromfast
289    //   cont:
290    //     ...
291    //     fast path code
292    //     ...
293    //     more code
294    //     ...
295    //     RETURN
296    ///
297    //   fromfast:
298    //     ...
299    //     slow path code
300    //     ...
301    //     B cont
302    //
303    // So you see we need two labels and two branches.  The first branch (called fromfast) is
304    // the conditional branch to the slow path code.  The second label (called cont) is used
305    // as an unconditional branch target for getting back to the code after the slow path
306    // has completed.
307    //
308
309    class LIRSlowPath {
310     public:
311      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
312                  LIR* cont = nullptr) :
313        m2l_(m2l), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
314      }
315      virtual ~LIRSlowPath() {}
316      virtual void Compile() = 0;
317
318      static void* operator new(size_t size, ArenaAllocator* arena) {
319        return arena->Alloc(size, kArenaAllocData);
320      }
321
322     protected:
323      LIR* GenerateTargetLabel();
324
325      Mir2Lir* const m2l_;
326      const DexOffset current_dex_pc_;
327      LIR* const fromfast_;
328      LIR* const cont_;
329    };
330
331    // This holds the data for a call to a trampoline.  An instruction is making a call
332    // to something through a trampoline and this holds the offset into the code containing
333    // the instruction, and which trampoline offset to call.
334    struct TrampolineCall {
335      TrampolineCall(uint32_t code_offset, uint32_t trampoline_offset) : code_offset_(code_offset),
336         trampoline_offset_(trampoline_offset) {
337      }
338
339      uint32_t code_offset_;          // Offset of instruction in method code stream (bytes).
340      uint32_t trampoline_offset_;    // Which trampoline to call.
341    };
342
343    virtual ~Mir2Lir() {}
344
345    int32_t s4FromSwitchData(const void* switch_data) {
346      return *reinterpret_cast<const int32_t*>(switch_data);
347    }
348
349    RegisterClass oat_reg_class_by_size(OpSize size) {
350      return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
351              size == kSignedByte) ? kCoreReg : kAnyReg;
352    }
353
354    size_t CodeBufferSizeInBytes() {
355      return code_buffer_.size() / sizeof(code_buffer_[0]);
356    }
357
358    static bool IsPseudoLirOp(int opcode) {
359      return (opcode < 0);
360    }
361
362    /*
363     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
364     * instructions which require PC-relative fixups), we need the operands to carry
365     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
366     * hold that index in the operand array.
367     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
368     * may be worth conditionally-compiling a set of identity functions here.
369     */
370    uint32_t WrapPointer(void* pointer) {
371      uint32_t res = pointer_storage_.Size();
372      pointer_storage_.Insert(pointer);
373      return res;
374    }
375
376    void* UnwrapPointer(size_t index) {
377      return pointer_storage_.Get(index);
378    }
379
380    // strdup(), but allocates from the arena.
381    char* ArenaStrdup(const char* str) {
382      size_t len = strlen(str) + 1;
383      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
384      if (res != NULL) {
385        strncpy(res, str, len);
386      }
387      return res;
388    }
389
390    // Shared by all targets - implemented in codegen_util.cc
391    void AppendLIR(LIR* lir);
392    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
393    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
394
395    /**
396     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
397     * to place in a frame.
398     * @return Returns the maximum number of compiler temporaries.
399     */
400    size_t GetMaxPossibleCompilerTemps() const;
401
402    /**
403     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
404     * @return Returns the size in bytes for space needed for compiler temporary spill region.
405     */
406    size_t GetNumBytesForCompilerTempSpillRegion();
407
408    DexOffset GetCurrentDexPc() const {
409      return current_dalvik_offset_;
410    }
411
412    int ComputeFrameSize();
413    virtual void Materialize();
414    virtual CompiledMethod* GetCompiledMethod();
415    void MarkSafepointPC(LIR* inst);
416    void SetupResourceMasks(LIR* lir);
417    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
418    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
419    void SetupRegMask(uint64_t* mask, int reg);
420    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
421    void DumpPromotionMap();
422    void CodegenDump();
423    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
424                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
425    LIR* NewLIR0(int opcode);
426    LIR* NewLIR1(int opcode, int dest);
427    LIR* NewLIR2(int opcode, int dest, int src1);
428    LIR* NewLIR2NoDest(int opcode, int src, int info);
429    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
430    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
431    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
432    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
433    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
434    LIR* AddWordData(LIR* *constant_list_p, int value);
435    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
436    void ProcessSwitchTables();
437    void DumpSparseSwitchTable(const uint16_t* table);
438    void DumpPackedSwitchTable(const uint16_t* table);
439    void MarkBoundary(DexOffset offset, const char* inst_str);
440    void NopLIR(LIR* lir);
441    void UnlinkLIR(LIR* lir);
442    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
443    bool IsInexpensiveConstant(RegLocation rl_src);
444    ConditionCode FlipComparisonOrder(ConditionCode before);
445    ConditionCode NegateComparison(ConditionCode before);
446    virtual void InstallLiteralPools();
447    void InstallSwitchTables();
448    void InstallFillArrayData();
449    bool VerifyCatchEntries();
450    void CreateMappingTables();
451    void CreateNativeGcMap();
452    int AssignLiteralOffset(CodeOffset offset);
453    int AssignSwitchTablesOffset(CodeOffset offset);
454    int AssignFillArrayDataOffset(CodeOffset offset);
455    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
456    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
457    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
458    // Handle bookkeeping to convert a wide RegLocation to a narow RegLocation.  No code generated.
459    RegLocation NarrowRegLoc(RegLocation loc);
460
461    // Shared by all targets - implemented in local_optimizations.cc
462    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
463    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
464    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
465    void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
466
467    // Shared by all targets - implemented in ralloc_util.cc
468    int GetSRegHi(int lowSreg);
469    bool oat_live_out(int s_reg);
470    int oatSSASrc(MIR* mir, int num);
471    void SimpleRegAlloc();
472    void ResetRegPool();
473    void CompilerInitPool(RegisterInfo* regs, int* reg_nums, int num);
474    void DumpRegPool(RegisterInfo* p, int num_regs);
475    void DumpCoreRegPool();
476    void DumpFpRegPool();
477    /* Mark a temp register as dead.  Does not affect allocation state. */
478    void Clobber(int reg) {
479      ClobberBody(GetRegInfo(reg));
480    }
481    void Clobber(RegStorage reg);
482    void ClobberSRegBody(RegisterInfo* p, int num_regs, int s_reg);
483    void ClobberSReg(int s_reg);
484    int SRegToPMap(int s_reg);
485    void RecordCorePromotion(RegStorage reg, int s_reg);
486    RegStorage AllocPreservedCoreReg(int s_reg);
487    void RecordFpPromotion(RegStorage reg, int s_reg);
488    RegStorage AllocPreservedSingle(int s_reg);
489    RegStorage AllocPreservedDouble(int s_reg);
490    RegStorage AllocTempBody(RegisterInfo* p, int num_regs, int* next_temp, bool required);
491    virtual RegStorage AllocTempDouble();
492    RegStorage AllocFreeTemp();
493    RegStorage AllocTemp();
494    RegStorage AllocTempFloat();
495    RegisterInfo* AllocLiveBody(RegisterInfo* p, int num_regs, int s_reg);
496    RegisterInfo* AllocLive(int s_reg, int reg_class);
497    void FreeTemp(int reg);
498    void FreeTemp(RegStorage reg);
499    RegisterInfo* IsLive(int reg);
500    bool IsLive(RegStorage reg);
501    RegisterInfo* IsTemp(int reg);
502    bool IsTemp(RegStorage reg);
503    RegisterInfo* IsPromoted(int reg);
504    bool IsPromoted(RegStorage reg);
505    bool IsDirty(int reg);
506    bool IsDirty(RegStorage reg);
507    void LockTemp(int reg);
508    void LockTemp(RegStorage reg);
509    void ResetDef(int reg);
510    void ResetDef(RegStorage reg);
511    void NullifyRange(LIR *start, LIR *finish, int s_reg1, int s_reg2);
512    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
513    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
514    RegLocation WideToNarrow(RegLocation rl);
515    void ResetDefLoc(RegLocation rl);
516    virtual void ResetDefLocWide(RegLocation rl);
517    void ResetDefTracking();
518    void ClobberAllRegs();
519    void FlushSpecificReg(RegisterInfo* info);
520    void FlushAllRegsBody(RegisterInfo* info, int num_regs);
521    void FlushAllRegs();
522    bool RegClassMatches(int reg_class, RegStorage reg);
523    void MarkLive(RegStorage reg, int s_reg);
524    void MarkTemp(int reg);
525    void MarkTemp(RegStorage reg);
526    void UnmarkTemp(int reg);
527    void UnmarkTemp(RegStorage reg);
528    void MarkPair(int low_reg, int high_reg);
529    void MarkClean(RegLocation loc);
530    void MarkDirty(RegLocation loc);
531    void MarkInUse(int reg);
532    void MarkInUse(RegStorage reg);
533    void CopyRegInfo(int new_reg, int old_reg);
534    void CopyRegInfo(RegStorage new_reg, RegStorage old_reg);
535    bool CheckCorePoolSanity();
536    RegLocation UpdateLoc(RegLocation loc);
537    virtual RegLocation UpdateLocWide(RegLocation loc);
538    RegLocation UpdateRawLoc(RegLocation loc);
539
540    /**
541     * @brief Used to load register location into a typed temporary or pair of temporaries.
542     * @see EvalLoc
543     * @param loc The register location to load from.
544     * @param reg_class Type of register needed.
545     * @param update Whether the liveness information should be updated.
546     * @return Returns the properly typed temporary in physical register pairs.
547     */
548    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
549
550    /**
551     * @brief Used to load register location into a typed temporary.
552     * @param loc The register location to load from.
553     * @param reg_class Type of register needed.
554     * @param update Whether the liveness information should be updated.
555     * @return Returns the properly typed temporary in physical register.
556     */
557    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
558
559    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
560    void DumpCounts(const RefCounts* arr, int size, const char* msg);
561    void DoPromotion();
562    int VRegOffset(int v_reg);
563    int SRegOffset(int s_reg);
564    RegLocation GetReturnWide(bool is_double);
565    RegLocation GetReturn(bool is_float);
566    RegisterInfo* GetRegInfo(int reg);
567
568    // Shared by all targets - implemented in gen_common.cc.
569    void AddIntrinsicLaunchpad(CallInfo* info, LIR* branch, LIR* resume = nullptr);
570    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
571                          RegLocation rl_src, RegLocation rl_dest, int lit);
572    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
573    void HandleSuspendLaunchPads();
574    void HandleThrowLaunchPads();
575    void HandleSlowPaths();
576    void GenBarrier();
577    void AddDivZeroSlowPath(ConditionCode c_code);
578    void AddDivZeroSlowPath(ConditionCode c_code, RegStorage reg, int imm_val);
579    void MarkPossibleNullPointerException(int opt_flags);
580    void MarkPossibleStackOverflowException();
581    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
582    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
583    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
584    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
585    LIR* GenRegRegCheck(ConditionCode c_code, RegStorage reg1, RegStorage reg2, ThrowKind kind);
586    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
587                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
588    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
589                                 LIR* taken, LIR* fall_through);
590    void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
591    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
592                         RegLocation rl_src);
593    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
594                     RegLocation rl_src);
595    void GenFilledNewArray(CallInfo* info);
596    void GenSput(MIR* mir, RegLocation rl_src,
597                 bool is_long_or_double, bool is_object);
598    void GenSget(MIR* mir, RegLocation rl_dest,
599                 bool is_long_or_double, bool is_object);
600    void GenIGet(MIR* mir, int opt_flags, OpSize size,
601                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
602    void GenIPut(MIR* mir, int opt_flags, OpSize size,
603                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
604    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
605                        RegLocation rl_src);
606
607    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
608    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
609    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
610    void GenThrow(RegLocation rl_src);
611    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
612    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
613    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
614                      RegLocation rl_src1, RegLocation rl_src2);
615    void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
616                        RegLocation rl_src1, RegLocation rl_shift);
617    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
618                          RegLocation rl_src, int lit);
619    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
620                        RegLocation rl_src1, RegLocation rl_src2);
621    void GenConversionCall(ThreadOffset<4> func_offset, RegLocation rl_dest,
622                           RegLocation rl_src);
623    void GenSuspendTest(int opt_flags);
624    void GenSuspendTestAndBranch(int opt_flags, LIR* target);
625
626    // This will be overridden by x86 implementation.
627    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
628    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
629                       RegLocation rl_src1, RegLocation rl_src2);
630    virtual LIR* CallHelper(RegStorage r_tgt, ThreadOffset<4> helper_offset, bool safepoint_pc,
631                    bool use_link = true);
632    virtual RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
633
634    // Shared by all targets - implemented in gen_invoke.cc.
635    void CallRuntimeHelper(ThreadOffset<4> helper_offset, bool safepoint_pc);
636    void CallRuntimeHelperImm(ThreadOffset<4> helper_offset, int arg0, bool safepoint_pc);
637    void CallRuntimeHelperReg(ThreadOffset<4> helper_offset, RegStorage arg0, bool safepoint_pc);
638    void CallRuntimeHelperRegLocation(ThreadOffset<4> helper_offset, RegLocation arg0,
639                                      bool safepoint_pc);
640    void CallRuntimeHelperImmImm(ThreadOffset<4> helper_offset, int arg0, int arg1,
641                                 bool safepoint_pc);
642    void CallRuntimeHelperImmRegLocation(ThreadOffset<4> helper_offset, int arg0,
643                                         RegLocation arg1, bool safepoint_pc);
644    void CallRuntimeHelperRegLocationImm(ThreadOffset<4> helper_offset, RegLocation arg0,
645                                         int arg1, bool safepoint_pc);
646    void CallRuntimeHelperImmReg(ThreadOffset<4> helper_offset, int arg0, RegStorage arg1,
647                                 bool safepoint_pc);
648    void CallRuntimeHelperRegImm(ThreadOffset<4> helper_offset, RegStorage arg0, int arg1,
649                                 bool safepoint_pc);
650    void CallRuntimeHelperImmMethod(ThreadOffset<4> helper_offset, int arg0,
651                                    bool safepoint_pc);
652    void CallRuntimeHelperRegMethod(ThreadOffset<4> helper_offset, RegStorage arg0,
653                                    bool safepoint_pc);
654    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<4> helper_offset, RegStorage arg0,
655                                               RegLocation arg2, bool safepoint_pc);
656    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<4> helper_offset,
657                                                 RegLocation arg0, RegLocation arg1,
658                                                 bool safepoint_pc);
659    void CallRuntimeHelperRegReg(ThreadOffset<4> helper_offset, RegStorage arg0, RegStorage arg1,
660                                 bool safepoint_pc);
661    void CallRuntimeHelperRegRegImm(ThreadOffset<4> helper_offset, RegStorage arg0, RegStorage arg1,
662                                    int arg2, bool safepoint_pc);
663    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<4> helper_offset, int arg0,
664                                               RegLocation arg2, bool safepoint_pc);
665    void CallRuntimeHelperImmMethodImm(ThreadOffset<4> helper_offset, int arg0, int arg2,
666                                       bool safepoint_pc);
667    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<4> helper_offset,
668                                                    int arg0, RegLocation arg1, RegLocation arg2,
669                                                    bool safepoint_pc);
670    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<4> helper_offset,
671                                                            RegLocation arg0, RegLocation arg1,
672                                                            RegLocation arg2,
673                                                            bool safepoint_pc);
674    void GenInvoke(CallInfo* info);
675    void GenInvokeNoInline(CallInfo* info);
676    void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
677    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
678                             NextCallInsn next_call_insn,
679                             const MethodReference& target_method,
680                             uint32_t vtable_idx,
681                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
682                             bool skip_this);
683    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
684                           NextCallInsn next_call_insn,
685                           const MethodReference& target_method,
686                           uint32_t vtable_idx,
687                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
688                           bool skip_this);
689
690    /**
691     * @brief Used to determine the register location of destination.
692     * @details This is needed during generation of inline intrinsics because it finds destination
693     *  of return,
694     * either the physical register or the target of move-result.
695     * @param info Information about the invoke.
696     * @return Returns the destination location.
697     */
698    RegLocation InlineTarget(CallInfo* info);
699
700    /**
701     * @brief Used to determine the wide register location of destination.
702     * @see InlineTarget
703     * @param info Information about the invoke.
704     * @return Returns the destination location.
705     */
706    RegLocation InlineTargetWide(CallInfo* info);
707
708    bool GenInlinedCharAt(CallInfo* info);
709    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
710    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
711    bool GenInlinedAbsInt(CallInfo* info);
712    bool GenInlinedAbsLong(CallInfo* info);
713    bool GenInlinedAbsFloat(CallInfo* info);
714    bool GenInlinedAbsDouble(CallInfo* info);
715    bool GenInlinedFloatCvt(CallInfo* info);
716    bool GenInlinedDoubleCvt(CallInfo* info);
717    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
718    bool GenInlinedStringCompareTo(CallInfo* info);
719    bool GenInlinedCurrentThread(CallInfo* info);
720    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
721    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
722                             bool is_volatile, bool is_ordered);
723    int LoadArgRegs(CallInfo* info, int call_state,
724                    NextCallInsn next_call_insn,
725                    const MethodReference& target_method,
726                    uint32_t vtable_idx,
727                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
728                    bool skip_this);
729
730    // Shared by all targets - implemented in gen_loadstore.cc.
731    RegLocation LoadCurrMethod();
732    void LoadCurrMethodDirect(RegStorage r_tgt);
733    LIR* LoadConstant(RegStorage r_dest, int value);
734    LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest);
735    RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
736    RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
737    void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
738    void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
739    void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
740    void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
741    LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src);
742
743    /**
744     * @brief Used to do the final store in the destination as per bytecode semantics.
745     * @param rl_dest The destination dalvik register location.
746     * @param rl_src The source register location. Can be either physical register or dalvik register.
747     */
748    void StoreValue(RegLocation rl_dest, RegLocation rl_src);
749
750    /**
751     * @brief Used to do the final store in a wide destination as per bytecode semantics.
752     * @see StoreValue
753     * @param rl_dest The destination dalvik register location.
754     * @param rl_src The source register location. Can be either physical register or dalvik
755     *  register.
756     */
757    void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
758
759    /**
760     * @brief Used to do the final store to a destination as per bytecode semantics.
761     * @see StoreValue
762     * @param rl_dest The destination dalvik register location.
763     * @param rl_src The source register location. It must be kLocPhysReg
764     *
765     * This is used for x86 two operand computations, where we have computed the correct
766     * register value that now needs to be properly registered.  This is used to avoid an
767     * extra register copy that would result if StoreValue was called.
768     */
769    void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
770
771    /**
772     * @brief Used to do the final store in a wide destination as per bytecode semantics.
773     * @see StoreValueWide
774     * @param rl_dest The destination dalvik register location.
775     * @param rl_src The source register location. It must be kLocPhysReg
776     *
777     * This is used for x86 two operand computations, where we have computed the correct
778     * register values that now need to be properly registered.  This is used to avoid an
779     * extra pair of register copies that would result if StoreValueWide was called.
780     */
781    void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
782
783    // Shared by all targets - implemented in mir_to_lir.cc.
784    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
785    void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
786    bool MethodBlockCodeGen(BasicBlock* bb);
787    bool SpecialMIR2LIR(const InlineMethod& special);
788    void MethodMIR2LIR();
789
790    /*
791     * @brief Load the address of the dex method into the register.
792     * @param target_method The MethodReference of the method to be invoked.
793     * @param type How the method will be invoked.
794     * @param register that will contain the code address.
795     * @note register will be passed to TargetReg to get physical register.
796     */
797    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
798                         SpecialTargetRegister symbolic_reg);
799
800    /*
801     * @brief Load the Method* of a dex method into the register.
802     * @param target_method The MethodReference of the method to be invoked.
803     * @param type How the method will be invoked.
804     * @param register that will contain the code address.
805     * @note register will be passed to TargetReg to get physical register.
806     */
807    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
808                                   SpecialTargetRegister symbolic_reg);
809
810    /*
811     * @brief Load the Class* of a Dex Class type into the register.
812     * @param type How the method will be invoked.
813     * @param register that will contain the code address.
814     * @note register will be passed to TargetReg to get physical register.
815     */
816    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
817
818    // Routines that work for the generic case, but may be overriden by target.
819    /*
820     * @brief Compare memory to immediate, and branch if condition true.
821     * @param cond The condition code that when true will branch to the target.
822     * @param temp_reg A temporary register that can be used if compare to memory is not
823     * supported by the architecture.
824     * @param base_reg The register holding the base address.
825     * @param offset The offset from the base.
826     * @param check_value The immediate to compare to.
827     * @returns The branch instruction that was generated.
828     */
829    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
830                                   int offset, int check_value, LIR* target);
831
832    // Required for target - codegen helpers.
833    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
834                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
835    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
836    virtual LIR* CheckSuspendUsingLoad() = 0;
837    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
838    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, OpSize size,
839                              int s_reg) = 0;
840    virtual LIR* LoadBaseDispWide(RegStorage r_base, int displacement, RegStorage r_dest,
841                                  int s_reg) = 0;
842    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
843                                 int scale, OpSize size) = 0;
844    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
845                                     int displacement, RegStorage r_dest, RegStorage r_dest_hi,
846                                     OpSize size, int s_reg) = 0;
847    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
848    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
849    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
850                               OpSize size) = 0;
851    virtual LIR* StoreBaseDispWide(RegStorage r_base, int displacement, RegStorage r_src) = 0;
852    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
853                                  int scale, OpSize size) = 0;
854    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
855                                      int displacement, RegStorage r_src, RegStorage r_src_hi,
856                                      OpSize size, int s_reg) = 0;
857    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
858
859    // Required for target - register utilities.
860    virtual bool IsFpReg(int reg) = 0;
861    virtual bool IsFpReg(RegStorage reg) = 0;
862    virtual bool SameRegType(int reg1, int reg2) = 0;
863    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class) = 0;
864    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class) = 0;
865    // TODO: elminate S2d.
866    virtual int S2d(int low_reg, int high_reg) = 0;
867    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
868    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
869    virtual RegLocation GetReturnAlt() = 0;
870    virtual RegLocation GetReturnWideAlt() = 0;
871    virtual RegLocation LocCReturn() = 0;
872    virtual RegLocation LocCReturnDouble() = 0;
873    virtual RegLocation LocCReturnFloat() = 0;
874    virtual RegLocation LocCReturnWide() = 0;
875    // TODO: use to reduce/eliminate xx_FPREG() macro use.
876    virtual uint32_t FpRegMask() = 0;
877    virtual uint64_t GetRegMaskCommon(int reg) = 0;
878    virtual void AdjustSpillMask() = 0;
879    virtual void ClobberCallerSave() = 0;
880    virtual void FlushReg(RegStorage reg) = 0;
881    virtual void FlushRegWide(RegStorage reg) = 0;
882    virtual void FreeCallTemps() = 0;
883    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0;
884    virtual void LockCallTemps() = 0;
885    virtual void MarkPreservedSingle(int v_reg, int reg) = 0;
886    virtual void CompilerInitializeRegAlloc() = 0;
887
888    // Required for target - miscellaneous.
889    virtual void AssembleLIR() = 0;
890    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
891    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
892    virtual const char* GetTargetInstFmt(int opcode) = 0;
893    virtual const char* GetTargetInstName(int opcode) = 0;
894    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
895    virtual uint64_t GetPCUseDefEncoding() = 0;
896    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
897    virtual int GetInsnSize(LIR* lir) = 0;
898    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
899
900    // Required for target - Dalvik-level generators.
901    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
902                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
903    virtual void GenMulLong(Instruction::Code,
904                            RegLocation rl_dest, RegLocation rl_src1,
905                            RegLocation rl_src2) = 0;
906    virtual void GenAddLong(Instruction::Code,
907                            RegLocation rl_dest, RegLocation rl_src1,
908                            RegLocation rl_src2) = 0;
909    virtual void GenAndLong(Instruction::Code,
910                            RegLocation rl_dest, RegLocation rl_src1,
911                            RegLocation rl_src2) = 0;
912    virtual void GenArithOpDouble(Instruction::Code opcode,
913                                  RegLocation rl_dest, RegLocation rl_src1,
914                                  RegLocation rl_src2) = 0;
915    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
916                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
917    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
918                          RegLocation rl_src1, RegLocation rl_src2) = 0;
919    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
920                               RegLocation rl_src) = 0;
921    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
922
923    /**
924     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
925     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
926     * that applies on integers. The generated code will write the smallest or largest value
927     * directly into the destination register as specified by the invoke information.
928     * @param info Information about the invoke.
929     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
930     * @return Returns true if successfully generated
931     */
932    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
933
934    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
935    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
936    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
937    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
938    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
939                           RegLocation rl_src2) = 0;
940    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
941                            RegLocation rl_src2) = 0;
942    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
943                            RegLocation rl_src2) = 0;
944    virtual LIR* GenRegMemCheck(ConditionCode c_code, RegStorage reg1, RegStorage base,
945                                int offset, ThrowKind kind) = 0;
946    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
947                                  bool is_div) = 0;
948    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
949                                     bool is_div) = 0;
950    /*
951     * @brief Generate an integer div or rem operation by a literal.
952     * @param rl_dest Destination Location.
953     * @param rl_src1 Numerator Location.
954     * @param rl_src2 Divisor Location.
955     * @param is_div 'true' if this is a division, 'false' for a remainder.
956     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
957     */
958    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
959                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
960    /*
961     * @brief Generate an integer div or rem operation by a literal.
962     * @param rl_dest Destination Location.
963     * @param rl_src Numerator Location.
964     * @param lit Divisor.
965     * @param is_div 'true' if this is a division, 'false' for a remainder.
966     */
967    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
968                                     bool is_div) = 0;
969    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
970
971    /**
972     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
973     * @details This is used for generating DivideByZero checks when divisor is held in two
974     *  separate registers.
975     * @param reg_lo The register holding the lower 32-bits.
976     * @param reg_hi The register holding the upper 32-bits.
977     */
978    virtual void GenDivZeroCheck(RegStorage reg) = 0;
979
980    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
981    virtual void GenExitSequence() = 0;
982    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
983    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
984    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
985
986    /**
987     * @brief Lowers the kMirOpSelect MIR into LIR.
988     * @param bb The basic block in which the MIR is from.
989     * @param mir The MIR whose opcode is kMirOpSelect.
990     */
991    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
992
993    /**
994     * @brief Used to generate a memory barrier in an architecture specific way.
995     * @details The last generated LIR will be considered for use as barrier. Namely,
996     * if the last LIR can be updated in a way where it will serve the semantics of
997     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
998     * that can keep the semantics.
999     * @param barrier_kind The kind of memory barrier to generate.
1000     */
1001    virtual void GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1002
1003    virtual void GenMoveException(RegLocation rl_dest) = 0;
1004    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1005                                               int first_bit, int second_bit) = 0;
1006    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1007    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1008    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1009    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1010    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1011                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1012    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1013                             RegLocation rl_index, RegLocation rl_src, int scale,
1014                             bool card_mark) = 0;
1015    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1016                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1017
1018    // Required for target - single operation generators.
1019    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1020    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1021    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1022                                LIR* target) = 0;
1023    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1024    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1025    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1026    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1027    virtual void OpEndIT(LIR* it) = 0;
1028    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1029    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1030    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1031    virtual LIR* OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1032    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1033    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1034    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1035    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1036
1037    /**
1038     * @brief Used to generate an LIR that does a load from mem to reg.
1039     * @param r_dest The destination physical register.
1040     * @param r_base The base physical register for memory operand.
1041     * @param offset The displacement for memory operand.
1042     * @param move_type Specification on the move desired (size, alignment, register kind).
1043     * @return Returns the generate move LIR.
1044     */
1045    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1046                             MoveType move_type) = 0;
1047
1048    /**
1049     * @brief Used to generate an LIR that does a store from reg to mem.
1050     * @param r_base The base physical register for memory operand.
1051     * @param offset The displacement for memory operand.
1052     * @param r_src The destination physical register.
1053     * @param bytes_to_move The number of bytes to move.
1054     * @param is_aligned Whether the memory location is known to be aligned.
1055     * @return Returns the generate move LIR.
1056     */
1057    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1058                             MoveType move_type) = 0;
1059
1060    /**
1061     * @brief Used for generating a conditional register to register operation.
1062     * @param op The opcode kind.
1063     * @param cc The condition code that when true will perform the opcode.
1064     * @param r_dest The destination physical register.
1065     * @param r_src The source physical register.
1066     * @return Returns the newly created LIR or null in case of creation failure.
1067     */
1068    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1069
1070    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1071    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1072                             RegStorage r_src2) = 0;
1073    virtual LIR* OpTestSuspend(LIR* target) = 0;
1074    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1075    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1076    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1077    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1078                       int offset) = 0;
1079    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1080    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1081    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1082    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1083    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1084    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1085
1086    // May be optimized by targets.
1087    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1088    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1089
1090    // Temp workaround
1091    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1092
1093  protected:
1094    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1095
1096    CompilationUnit* GetCompilationUnit() {
1097      return cu_;
1098    }
1099    /*
1100     * @brief Returns the index of the lowest set bit in 'x'.
1101     * @param x Value to be examined.
1102     * @returns The bit number of the lowest bit set in the value.
1103     */
1104    int32_t LowestSetBit(uint64_t x);
1105    /*
1106     * @brief Is this value a power of two?
1107     * @param x Value to be examined.
1108     * @returns 'true' if only 1 bit is set in the value.
1109     */
1110    bool IsPowerOfTwo(uint64_t x);
1111    /*
1112     * @brief Do these SRs overlap?
1113     * @param rl_op1 One RegLocation
1114     * @param rl_op2 The other RegLocation
1115     * @return 'true' if the VR pairs overlap
1116     *
1117     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1118     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1119     * dex, we'll want to make this case illegal.
1120     */
1121    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1122
1123    /*
1124     * @brief Force a location (in a register) into a temporary register
1125     * @param loc location of result
1126     * @returns update location
1127     */
1128    RegLocation ForceTemp(RegLocation loc);
1129
1130    /*
1131     * @brief Force a wide location (in registers) into temporary registers
1132     * @param loc location of result
1133     * @returns update location
1134     */
1135    RegLocation ForceTempWide(RegLocation loc);
1136
1137    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1138                                    RegLocation rl_dest, RegLocation rl_src);
1139
1140    void AddSlowPath(LIRSlowPath* slowpath);
1141
1142    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1143                                            bool type_known_abstract, bool use_declaring_class,
1144                                            bool can_assume_type_is_in_dex_cache,
1145                                            uint32_t type_idx, RegLocation rl_dest,
1146                                            RegLocation rl_src);
1147    /*
1148     * @brief Generate the debug_frame FDE information if possible.
1149     * @returns pointer to vector containg CFE information, or NULL.
1150     */
1151    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1152
1153    /**
1154     * @brief Used to insert marker that can be used to associate MIR with LIR.
1155     * @details Only inserts marker if verbosity is enabled.
1156     * @param mir The mir that is currently being generated.
1157     */
1158    void GenPrintLabel(MIR* mir);
1159
1160    /**
1161     * @brief Used to generate return sequence when there is no frame.
1162     * @details Assumes that the return registers have already been populated.
1163     */
1164    virtual void GenSpecialExitSequence() = 0;
1165
1166    /**
1167     * @brief Used to generate code for special methods that are known to be
1168     * small enough to work in frameless mode.
1169     * @param bb The basic block of the first MIR.
1170     * @param mir The first MIR of the special method.
1171     * @param special Information about the special method.
1172     * @return Returns whether or not this was handled successfully. Returns false
1173     * if caller should punt to normal MIR2LIR conversion.
1174     */
1175    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1176
1177  private:
1178    void ClobberBody(RegisterInfo* p);
1179    void ResetDefBody(RegisterInfo* p) {
1180      p->def_start = NULL;
1181      p->def_end = NULL;
1182    }
1183
1184    void SetCurrentDexPc(DexOffset dexpc) {
1185      current_dalvik_offset_ = dexpc;
1186    }
1187
1188    /**
1189     * @brief Used to lock register if argument at in_position was passed that way.
1190     * @details Does nothing if the argument is passed via stack.
1191     * @param in_position The argument number whose register to lock.
1192     * @param wide Whether the argument is wide.
1193     */
1194    void LockArg(int in_position, bool wide = false);
1195
1196    /**
1197     * @brief Used to load VR argument to a physical register.
1198     * @details The load is only done if the argument is not already in physical register.
1199     * LockArg must have been previously called.
1200     * @param in_position The argument number to load.
1201     * @param wide Whether the argument is 64-bit or not.
1202     * @return Returns the register (or register pair) for the loaded argument.
1203     */
1204    RegStorage LoadArg(int in_position, bool wide = false);
1205
1206    /**
1207     * @brief Used to load a VR argument directly to a specified register location.
1208     * @param in_position The argument number to place in register.
1209     * @param rl_dest The register location where to place argument.
1210     */
1211    void LoadArgDirect(int in_position, RegLocation rl_dest);
1212
1213    /**
1214     * @brief Used to generate LIR for special getter method.
1215     * @param mir The mir that represents the iget.
1216     * @param special Information about the special getter method.
1217     * @return Returns whether LIR was successfully generated.
1218     */
1219    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1220
1221    /**
1222     * @brief Used to generate LIR for special setter method.
1223     * @param mir The mir that represents the iput.
1224     * @param special Information about the special setter method.
1225     * @return Returns whether LIR was successfully generated.
1226     */
1227    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1228
1229    /**
1230     * @brief Used to generate LIR for special return-args method.
1231     * @param mir The mir that represents the return of argument.
1232     * @param special Information about the special return-args method.
1233     * @return Returns whether LIR was successfully generated.
1234     */
1235    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1236
1237    void AddDivZeroCheckSlowPath(LIR* branch);
1238
1239  public:
1240    // TODO: add accessors for these.
1241    LIR* literal_list_;                        // Constants.
1242    LIR* method_literal_list_;                 // Method literals requiring patching.
1243    LIR* class_literal_list_;                  // Class literals requiring patching.
1244    LIR* code_literal_list_;                   // Code literals requiring patching.
1245    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1246
1247  protected:
1248    CompilationUnit* const cu_;
1249    MIRGraph* const mir_graph_;
1250    GrowableArray<SwitchTable*> switch_tables_;
1251    GrowableArray<FillArrayData*> fill_array_data_;
1252    GrowableArray<LIR*> throw_launchpads_;
1253    GrowableArray<LIR*> suspend_launchpads_;
1254    GrowableArray<RegisterInfo*> tempreg_info_;
1255    GrowableArray<RegisterInfo*> reginfo_map_;
1256    GrowableArray<void*> pointer_storage_;
1257    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1258    CodeOffset data_offset_;            // starting offset of literal pool.
1259    size_t total_size_;                   // header + code size.
1260    LIR* block_label_list_;
1261    PromotionMap* promotion_map_;
1262    /*
1263     * TODO: The code generation utilities don't have a built-in
1264     * mechanism to propagate the original Dalvik opcode address to the
1265     * associated generated instructions.  For the trace compiler, this wasn't
1266     * necessary because the interpreter handled all throws and debugging
1267     * requests.  For now we'll handle this by placing the Dalvik offset
1268     * in the CompilationUnit struct before codegen for each instruction.
1269     * The low-level LIR creation utilites will pull it from here.  Rework this.
1270     */
1271    DexOffset current_dalvik_offset_;
1272    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1273    RegisterPool* reg_pool_;
1274    /*
1275     * Sanity checking for the register temp tracking.  The same ssa
1276     * name should never be associated with one temp register per
1277     * instruction compilation.
1278     */
1279    int live_sreg_;
1280    CodeBuffer code_buffer_;
1281    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1282    std::vector<uint8_t> encoded_mapping_table_;
1283    std::vector<uint32_t> core_vmap_table_;
1284    std::vector<uint32_t> fp_vmap_table_;
1285    std::vector<uint8_t> native_gc_map_;
1286    int num_core_spills_;
1287    int num_fp_spills_;
1288    int frame_size_;
1289    unsigned int core_spill_mask_;
1290    unsigned int fp_spill_mask_;
1291    LIR* first_lir_insn_;
1292    LIR* last_lir_insn_;
1293
1294    GrowableArray<LIRSlowPath*> slow_paths_;
1295    std::vector<TrampolineCall> trampoline_calls_;
1296};  // Class Mir2Lir
1297
1298}  // namespace art
1299
1300#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1301