assemble_x86.cc revision 35690630b82dc1dbf4a7ada37225893a550ea1e0
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26  { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4, false }, "data",  "0x!0d" },
27  { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0, false }, "int 3", "" },
28  { kX86Nop,       kNop,     NO_OPERAND,             { 0, 0, 0x90, 0, 0, 0, 0, 0, false }, "nop",   "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31                     rm8_r8, rm32_r32, \
32                     r8_rm8, r32_rm32, \
33                     ax8_i8, ax32_i32, \
34                     rm8_i8, rm8_i8_modrm, \
35                     rm32_i32, rm32_i32_modrm, \
36                     rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0, true }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0, true}, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0, true }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1, true }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, true }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, true }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, true }, #opname "8TI", "fs:[!0d],!1d" }, \
48  \
49{ kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2, false }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16TI8", "fs:[!0d],!1d" }, \
64  \
65{ kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32TI8", "fs:[!0d],!1d" }, \
80  \
81{ kX86 ## opname ## 64MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64MR", "[!0r+!1d],!2r" }, \
82{ kX86 ## opname ## 64AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
83{ kX86 ## opname ## 64TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64TR", "fs:[!0d],!1r" }, \
84{ kX86 ## opname ## 64RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RR", "!0r,!1r" }, \
85{ kX86 ## opname ## 64RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RM", "!0r,[!1r+!2d]" }, \
86{ kX86 ## opname ## 64RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
87{ kX86 ## opname ## 64RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RT", "!0r,fs:[!1d]" }, \
88{ kX86 ## opname ## 64RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "64RI", "!0r,!1d" }, \
89{ kX86 ## opname ## 64MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
90{ kX86 ## opname ## 64AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
91{ kX86 ## opname ## 64TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64TI", "fs:[!0d],!1d" }, \
92{ kX86 ## opname ## 64RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64RI8", "!0r,!1d" }, \
93{ kX86 ## opname ## 64MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64MI8", "[!0r+!1d],!2d" }, \
94{ kX86 ## opname ## 64AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
95{ kX86 ## opname ## 64TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64TI8", "fs:[!0d],!1d" }
96
97ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
98  0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
99  0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
100  0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
101  0x80, 0x0 /* RegMem8/imm8 */,
102  0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
103ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
104  0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
105  0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
106  0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
107  0x80, 0x1 /* RegMem8/imm8 */,
108  0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
109ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
110  0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
111  0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
112  0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
113  0x80, 0x2 /* RegMem8/imm8 */,
114  0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
115ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
116  0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
117  0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
118  0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
119  0x80, 0x3 /* RegMem8/imm8 */,
120  0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
121ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
122  0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
123  0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
124  0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
125  0x80, 0x4 /* RegMem8/imm8 */,
126  0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
127ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
128  0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
129  0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
130  0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
131  0x80, 0x5 /* RegMem8/imm8 */,
132  0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
133ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
134  0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
135  0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
136  0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
137  0x80, 0x6 /* RegMem8/imm8 */,
138  0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
139ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
140  0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
141  0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
142  0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
143  0x80, 0x7 /* RegMem8/imm8 */,
144  0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
145#undef ENCODING_MAP
146
147  { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RRI", "!0r,!1r,!2d" },
148  { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
149  { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
150
151  { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RRI", "!0r,!1r,!2d" },
152  { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
153  { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
154  { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RRI8", "!0r,!1r,!2d" },
155  { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
156  { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
157
158  { kX86Imul64RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RRI", "!0r,!1r,!2d" },
159  { kX86Imul64RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RMI", "!0r,[!1r+!2d],!3d" },
160  { kX86Imul64RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
161  { kX86Imul64RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RRI8", "!0r,!1r,!2d" },
162  { kX86Imul64RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RMI8", "!0r,[!1r+!2d],!3d" },
163  { kX86Imul64RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
164
165  { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8MR", "[!0r+!1d],!2r" },
166  { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
167  { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8TR", "fs:[!0d],!1r" },
168  { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RR", "!0r,!1r" },
169  { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RM", "!0r,[!1r+!2d]" },
170  { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
171  { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RT", "!0r,fs:[!1d]" },
172  { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1, true }, "Mov8RI", "!0r,!1d" },
173  { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1, true }, "Mov8MI", "[!0r+!1d],!2d" },
174  { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1, true }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
175  { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1, true }, "Mov8TI", "fs:[!0d],!1d" },
176
177  { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0, false }, "Mov16MR", "[!0r+!1d],!2r" },
178  { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0, false }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
179  { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0, false }, "Mov16TR", "fs:[!0d],!1r" },
180  { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RR", "!0r,!1r" },
181  { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RM", "!0r,[!1r+!2d]" },
182  { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
183  { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RT", "!0r,fs:[!1d]" },
184  { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2, false }, "Mov16RI", "!0r,!1d" },
185  { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2, false }, "Mov16MI", "[!0r+!1d],!2d" },
186  { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2, false }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
187  { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16TI", "fs:[!0d],!1d" },
188
189  { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32MR", "[!0r+!1d],!2r" },
190  { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
191  { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32TR", "fs:[!0d],!1r" },
192  { kX86Mov32RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RR", "!0r,!1r" },
193  { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RM", "!0r,[!1r+!2d]" },
194  { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
195  { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RT", "!0r,fs:[!1d]" },
196  { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4, false }, "Mov32RI", "!0r,!1d" },
197  { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32MI", "[!0r+!1d],!2d" },
198  { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
199  { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32TI", "fs:[!0d],!1d" },
200
201  { kX86Lea32RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1,      { 0,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RM", "!0r,[!1r+!2d]" },
202  { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12,                 { 0,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
203
204  { kX86Mov64MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { REX_W,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64MR", "[!0r+!1d],!2r" },
205  { kX86Mov64AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { REX_W,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64AR", "[!0r+!1r<<!2d+!3d],!4r" },
206  { kX86Mov64TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, REX_W, 0x89, 0, 0, 0, 0, 0, false }, "Mov64TR", "fs:[!0d],!1r" },
207  { kX86Mov64RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RR", "!0r,!1r" },
208  { kX86Mov64RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RM", "!0r,[!1r+!2d]" },
209  { kX86Mov64RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
210  { kX86Mov64RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, REX_W, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RT", "!0r,fs:[!1d]" },
211  { kX86Mov64RI32, kRegImm,             IS_BINARY_OP   | REG_DEF0,       { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64RI32", "!0r,!1d" },
212  { kX86Mov64RI64, kMovRegQuadImm,      IS_TERTIARY_OP | REG_DEF0,       { REX_W,             0, 0xB8, 0, 0, 0, 0, 8, false }, "Mov64RI64", "!0r,!1q" },
213  { kX86Mov64MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64MI", "[!0r+!1d],!2d" },
214  { kX86Mov64AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64AI", "[!0r+!1r<<!2d+!3d],!4d" },
215  { kX86Mov64TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, REX_W, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64TI", "fs:[!0d],!1d" },
216
217  { kX86Lea64RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1,      { REX_W,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RM", "!0r,[!1r+!2d]" },
218  { kX86Lea64RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12,                 { REX_W,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
219
220  { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { 0,     0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RR", "!2c !0r,!1r" },
221  { kX86Cmov64RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RR", "!2c !0r,!1r" },
222
223  { kX86Cmov32RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { 0,     0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RM", "!3c !0r,[!1r+!2d]" },
224  { kX86Cmov64RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RM", "!3c !0r,[!1r+!2d]" },
225
226#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
227{ kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8RI", "!0r,!1d" }, \
228{ kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8MI", "[!0r+!1d],!2d" }, \
229{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
230{ kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8RC", "!0r,cl" }, \
231{ kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8MC", "[!0r+!1d],cl" }, \
232{ kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
233  \
234{ kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16RI", "!0r,!1d" }, \
235{ kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
236{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
237{ kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16RC", "!0r,cl" }, \
238{ kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16MC", "[!0r+!1d],cl" }, \
239{ kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
240  \
241{ kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32RI", "!0r,!1d" }, \
242{ kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
243{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
244{ kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32RC", "!0r,cl" }, \
245{ kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32MC", "[!0r+!1d],cl" }, \
246{ kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }, \
247  \
248{ kX86 ## opname ## 64RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64RI", "!0r,!1d" }, \
249{ kX86 ## opname ## 64MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
250{ kX86 ## opname ## 64AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
251{ kX86 ## opname ## 64RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64RC", "!0r,cl" }, \
252{ kX86 ## opname ## 64MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64MC", "[!0r+!1d],cl" }, \
253{ kX86 ## opname ## 64AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64AC", "[!0r+!1r<<!2d+!3d],cl" }
254
255  SHIFT_ENCODING_MAP(Rol, 0x0),
256  SHIFT_ENCODING_MAP(Ror, 0x1),
257  SHIFT_ENCODING_MAP(Rcl, 0x2),
258  SHIFT_ENCODING_MAP(Rcr, 0x3),
259  SHIFT_ENCODING_MAP(Sal, 0x4),
260  SHIFT_ENCODING_MAP(Shr, 0x5),
261  SHIFT_ENCODING_MAP(Sar, 0x7),
262#undef SHIFT_ENCODING_MAP
263
264  { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0, false }, "Cmc", "" },
265  { kX86Shld32RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { 0,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32RRI", "!0r,!1r,!2d" },
266  { kX86Shld32MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32MRI", "[!0r+!1d],!2r,!3d" },
267  { kX86Shrd32RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { 0,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32RRI", "!0r,!1r,!2d" },
268  { kX86Shrd32MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32MRI", "[!0r+!1d],!2r,!3d" },
269  { kX86Shld64RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { REX_W,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64RRI", "!0r,!1r,!2d" },
270  { kX86Shld64MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64MRI", "[!0r+!1d],!2r,!3d" },
271  { kX86Shrd64RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { REX_W,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64RRI", "!0r,!1r,!2d" },
272  { kX86Shrd64MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64MRI", "[!0r+!1d],!2r,!3d" },
273
274  { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8RI", "!0r,!1d" },
275  { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8MI", "[!0r+!1d],!2d" },
276  { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
277  { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16RI", "!0r,!1d" },
278  { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16MI", "[!0r+!1d],!2d" },
279  { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
280  { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32RI", "!0r,!1d" },
281  { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32MI", "[!0r+!1d],!2d" },
282  { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
283  { kX86Test64RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64RI", "!0r,!1d" },
284  { kX86Test64MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64MI", "[!0r+!1d],!2d" },
285  { kX86Test64AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64AI", "[!0r+!1r<<!2d+!3d],!4d" },
286
287  { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,     0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RR", "!0r,!1r" },
288  { kX86Test64RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { REX_W, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test64RR", "!0r,!1r" },
289  { kX86Test32RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,     0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RM", "!0r,[!1r+!1d]" },
290
291#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
292                           reg, reg_kind, reg_flags, \
293                           mem, mem_kind, mem_flags, \
294                           arr, arr_kind, arr_flags, imm, \
295                           b_flags, hw_flags, w_flags, \
296                           b_format, hw_format, w_format) \
297{ kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #reg, b_format "!0r" }, \
298{ kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #mem, b_format "[!0r+!1d]" }, \
299{ kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #arr, b_format "[!0r+!1r<<!2d+!3d]" }, \
300{ kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #reg, hw_format "!0r" }, \
301{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #mem, hw_format "[!0r+!1d]" }, \
302{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #arr, hw_format "[!0r+!1r<<!2d+!3d]" }, \
303{ kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #reg, w_format "!0r" }, \
304{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #mem, w_format "[!0r+!1d]" }, \
305{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #arr, w_format "[!0r+!1r<<!2d+!3d]" }, \
306{ kX86 ## opname ## 64 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #reg, w_format "!0r" }, \
307{ kX86 ## opname ## 64 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #mem, w_format "[!0r+!1d]" }, \
308{ kX86 ## opname ## 64 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #arr, w_format "[!0r+!1r<<!2d+!3d]" }
309
310  UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
311  UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
312
313  UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
314  UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
315  UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
316  UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
317#undef UNARY_ENCODING_MAP
318
319  { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA,                                  { 0,     0, 0x99, 0,    0, 0, 0, 0, false }, "Cdq", "" },
320  { kx86Cqo64Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA,                                  { REX_W, 0, 0x99, 0,    0, 0, 0, 0, false }, "Cqo", "" },
321  { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0,                                 { 0,     0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap32R", "!0r" },
322  { kX86Bswap64R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0,                                 { REX_W, 0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap64R", "!0r" },
323  { kX86Push32R,  kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0,     0, 0x50, 0,    0, 0, 0, 0, false }, "Push32R",  "!0r" },
324  { kX86Pop32R,   kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD,  { 0,     0, 0x58, 0,    0, 0, 0, 0, false }, "Pop32R",   "!0r" },
325
326#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
327{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
328{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
329{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
330
331// This is a special encoding with r8_form on the second register only
332// for Movzx8 and Movsx8.
333#define EXT_0F_R8_FORM_ENCODING_MAP(opname, prefix, opcode, reg_def) \
334{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, true }, #opname "RR", "!0r,!1r" }, \
335{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
336{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
337
338#define EXT_0F_REX_W_ENCODING_MAP(opname, prefix, opcode, reg_def) \
339{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
340{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
341{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
342
343#define EXT_0F_ENCODING2_MAP(opname, prefix, opcode, opcode2, reg_def) \
344{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
345{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
346{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
347
348  EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
349  { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdMR", "[!0r+!1d],!2r" },
350  { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
351
352  EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
353  { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssMR", "[!0r+!1d],!2r" },
354  { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
355
356  EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
357  EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
358  EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2sd,  0xF2, 0x2A, REG_DEF0),
359  EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2ss,  0xF3, 0x2A, REG_DEF0),
360  EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
361  EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
362  EXT_0F_REX_W_ENCODING_MAP(Cvttsd2sqi, 0xF2, 0x2C, REG_DEF0),
363  EXT_0F_REX_W_ENCODING_MAP(Cvttss2sqi, 0xF3, 0x2C, REG_DEF0),
364  EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
365  EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
366  EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES|REG_USE0),
367  EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES|REG_USE0),
368  EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES|REG_USE0),
369  EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES|REG_USE0),
370  EXT_0F_ENCODING_MAP(Orpd,      0x66, 0x56, REG_DEF0_USE0),
371  EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0_USE0),
372  EXT_0F_ENCODING_MAP(Andpd,     0x66, 0x54, REG_DEF0_USE0),
373  EXT_0F_ENCODING_MAP(Andps,     0x00, 0x54, REG_DEF0_USE0),
374  EXT_0F_ENCODING_MAP(Xorpd,     0x66, 0x57, REG_DEF0_USE0),
375  EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0_USE0),
376  EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0_USE0),
377  EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0_USE0),
378  EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0_USE0),
379  EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0_USE0),
380  EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
381  EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
382  EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0_USE0),
383  EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0_USE0),
384  EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0_USE0),
385  EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0_USE0),
386  EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0_USE0),
387  EXT_0F_ENCODING_MAP(Sqrtsd,    0xF2, 0x51, REG_DEF0_USE0),
388  EXT_0F_ENCODING2_MAP(Pmulld,   0x66, 0x38, 0x40, REG_DEF0_USE0),
389  EXT_0F_ENCODING_MAP(Pmullw,    0x66, 0xD5, REG_DEF0_USE0),
390  EXT_0F_ENCODING_MAP(Mulps,     0x00, 0x59, REG_DEF0_USE0),
391  EXT_0F_ENCODING_MAP(Mulpd,     0x66, 0x59, REG_DEF0_USE0),
392  EXT_0F_ENCODING_MAP(Paddb,     0x66, 0xFC, REG_DEF0_USE0),
393  EXT_0F_ENCODING_MAP(Paddw,     0x66, 0xFD, REG_DEF0_USE0),
394  EXT_0F_ENCODING_MAP(Paddd,     0x66, 0xFE, REG_DEF0_USE0),
395  EXT_0F_ENCODING_MAP(Addps,     0x00, 0x58, REG_DEF0_USE0),
396  EXT_0F_ENCODING_MAP(Addpd,     0xF2, 0x58, REG_DEF0_USE0),
397  EXT_0F_ENCODING_MAP(Psubb,     0x66, 0xF8, REG_DEF0_USE0),
398  EXT_0F_ENCODING_MAP(Psubw,     0x66, 0xF9, REG_DEF0_USE0),
399  EXT_0F_ENCODING_MAP(Psubd,     0x66, 0xFA, REG_DEF0_USE0),
400  EXT_0F_ENCODING_MAP(Subps,     0x00, 0x5C, REG_DEF0_USE0),
401  EXT_0F_ENCODING_MAP(Subpd,     0x66, 0x5C, REG_DEF0_USE0),
402  EXT_0F_ENCODING_MAP(Pand,      0x66, 0xDB, REG_DEF0_USE0),
403  EXT_0F_ENCODING_MAP(Por,       0x66, 0xEB, REG_DEF0_USE0),
404  EXT_0F_ENCODING_MAP(Pxor,      0x66, 0xEF, REG_DEF0_USE0),
405  EXT_0F_ENCODING2_MAP(Phaddw,   0x66, 0x38, 0x01, REG_DEF0_USE0),
406  EXT_0F_ENCODING2_MAP(Phaddd,   0x66, 0x38, 0x02, REG_DEF0_USE0),
407  EXT_0F_ENCODING_MAP(Haddpd,    0x66, 0x7C, REG_DEF0_USE0),
408  EXT_0F_ENCODING_MAP(Haddps,    0xF2, 0x7C, REG_DEF0_USE0),
409
410  { kX86PextrbRRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x14, 0, 0, 1, false }, "PextbRRI", "!0r,!1r,!2d" },
411  { kX86PextrwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0xC5, 0x00, 0, 0, 1, false }, "PextwRRI", "!0r,!1r,!2d" },
412  { kX86PextrdRRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextdRRI", "!0r,!1r,!2d" },
413  { kX86PextrbMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrbMRI", "[!0r+!1d],!2r,!3d" },
414  { kX86PextrwMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrwMRI", "[!0r+!1d],!2r,!3d" },
415  { kX86PextrdMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrdMRI", "[!0r+!1d],!2r,!3d" },
416
417  { kX86PshuflwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0xF2, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuflwRRI", "!0r,!1r,!2d" },
418  { kX86PshufdRRI,  kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuffRRI", "!0r,!1r,!2d" },
419
420  { kX86ShufpsRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x00, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "kX86ShufpsRRI", "!0r,!1r,!2d" },
421  { kX86ShufpdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "kX86ShufpdRRI", "!0r,!1r,!2d" },
422
423  { kX86PsrawRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 4, 0, 1, false }, "PsrawRI", "!0r,!1d" },
424  { kX86PsradRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 4, 0, 1, false }, "PsradRI", "!0r,!1d" },
425  { kX86PsrlwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 2, 0, 1, false }, "PsrlwRI", "!0r,!1d" },
426  { kX86PsrldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 2, 0, 1, false }, "PsrldRI", "!0r,!1d" },
427  { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1, false }, "PsrlqRI", "!0r,!1d" },
428  { kX86PsllwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 6, 0, 1, false }, "PsllwRI", "!0r,!1d" },
429  { kX86PslldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 6, 0, 1, false }, "PslldRI", "!0r,!1d" },
430  { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1, false }, "PsllqRI", "!0r,!1d" },
431
432  { kX86Fild32M,  kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDB, 0x00, 0, 0, 0, 0, false }, "Fild32M",  "[!0r,!1d]" },
433  { kX86Fild64M,  kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDF, 0x00, 0, 5, 0, 0, false }, "Fild64M",  "[!0r,!1d]" },
434  { kX86Fld32M,   kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 0, 0, 0, false }, "Fld32M",   "[!0r,!1d]" },
435  { kX86Fld64M,   kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 0, 0, 0, false }, "Fld64M",   "[!0r,!1d]" },
436  { kX86Fstp32M,  kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 3, 0, 0, false }, "Fstps32M", "[!0r,!1d]" },
437  { kX86Fstp64M,  kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 3, 0, 0, false }, "Fstpd64M", "[!0r,!1d]" },
438  { kX86Fst32M,   kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 2, 0, 0, false }, "Fsts32M",  "[!0r,!1d]" },
439  { kX86Fst64M,   kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 2, 0, 0, false }, "Fstd64M",  "[!0r,!1d]" },
440  { kX86Fprem,    kNullary, NO_OPERAND | USE_FP_STACK,                          { 0xD9, 0,    0xF8, 0,    0, 0, 0, 0, false }, "Fprem64",  "" },
441  { kX86Fucompp,  kNullary, NO_OPERAND | USE_FP_STACK,                          { 0xDA, 0,    0xE9, 0,    0, 0, 0, 0, false }, "Fucompp",  "" },
442  { kX86Fstsw16R, kNullary, NO_OPERAND | REG_DEFA | USE_FP_STACK,               { 0x9B, 0xDF, 0xE0, 0,    0, 0, 0, 0, false }, "Fstsw16R", "ax" },
443
444  EXT_0F_ENCODING_MAP(Mova128,    0x66, 0x6F, REG_DEF0),
445  { kX86Mova128MR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "Mova128MR", "[!0r+!1d],!2r" },
446  { kX86Mova128AR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "Mova128AR", "[!0r+!1r<<!2d+!3d],!4r" },
447
448
449  EXT_0F_ENCODING_MAP(Movups,    0x0, 0x10, REG_DEF0),
450  { kX86MovupsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsMR", "[!0r+!1d],!2r" },
451  { kX86MovupsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
452
453  EXT_0F_ENCODING_MAP(Movaps,    0x0, 0x28, REG_DEF0),
454  { kX86MovapsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsMR", "[!0r+!1d],!2r" },
455  { kX86MovapsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
456
457  { kX86MovlpsRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01,  { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRM", "!0r,[!1r+!2d]" },
458  { kX86MovlpsRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
459  { kX86MovlpsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,            { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsMR", "[!0r+!1d],!2r" },
460  { kX86MovlpsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014,           { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
461
462  { kX86MovhpsRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01,  { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRM", "!0r,[!1r+!2d]" },
463  { kX86MovhpsRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
464  { kX86MovhpsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,            { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsMR", "[!0r+!1d],!2r" },
465  { kX86MovhpsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014,           { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
466
467  EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
468  EXT_0F_REX_W_ENCODING_MAP(Movqxr, 0x66, 0x6E, REG_DEF0),
469  { kX86MovqrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE1,   { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxRR", "!0r,!1r" },
470  { kX86MovqrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxMR", "[!0r+!1d],!2r" },
471  { kX86MovqrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
472
473  { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE1,   { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxRR", "!0r,!1r" },
474  { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxMR", "[!0r+!1d],!2r" },
475  { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
476
477  { kX86MovsxdRR, kRegReg,      IS_BINARY_OP | REG_DEF0 | REG_USE1,              { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRR", "!0r,!1r" },
478  { kX86MovsxdRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE1,  { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRM", "!0r,[!1r+!2d]" },
479  { kX86MovsxdRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE12, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRA", "!0r,[!1r+!2r<<!3d+!4d]" },
480
481  { kX86Set8R, kRegCond,              IS_BINARY_OP   | REG_DEF0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, true }, "Set8R", "!1c !0r" },
482  { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8M", "!2c [!0r+!1d]" },
483  { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
484
485  // TODO: load/store?
486  // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
487  { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0, false }, "Mfence", "" },
488
489  EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
490  EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
491  EXT_0F_ENCODING_MAP(Imul64,  REX_W, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
492
493  { kX86CmpxchgRR, kRegRegStore,  IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES,   { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "!0r,!1r" },
494  { kX86CmpxchgMR, kMemReg,       IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1d],!2r" },
495  { kX86CmpxchgAR, kArrayReg,     IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
496  { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
497  { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
498  { kX86LockCmpxchg64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0xF0, REX_W, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
499  { kX86LockCmpxchg64M, kMem,     IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1d]" },
500  { kX86LockCmpxchg64A, kArray,   IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES,  { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
501  { kX86XchgMR, kMemReg,          IS_STORE | IS_LOAD | IS_TERTIARY_OP | REG_DEF2 | REG_USE02,          { 0, 0, 0x87, 0, 0, 0, 0, 0, false }, "Xchg", "[!0r+!1d],!2r" },
502
503  EXT_0F_R8_FORM_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
504  EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
505  EXT_0F_R8_FORM_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
506  EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
507  EXT_0F_ENCODING_MAP(Movzx8q,  REX_W, 0xB6, REG_DEF0),
508  EXT_0F_ENCODING_MAP(Movzx16q, REX_W, 0xB7, REG_DEF0),
509  EXT_0F_ENCODING_MAP(Movsx8q,  REX, 0xBE, REG_DEF0),
510  EXT_0F_ENCODING_MAP(Movsx16q, REX_W, 0xBF, REG_DEF0),
511#undef EXT_0F_ENCODING_MAP
512
513  { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0, false }, "Jcc8",  "!1c !0t" },
514  { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0, false }, "Jcc32", "!1c !0t" },
515  { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0, false }, "Jmp8",  "!0t" },
516  { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0, false }, "Jmp32", "!0t" },
517  { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0, false }, "JmpR",  "!0r" },
518  { kX86Jecxz8, kJmp, NO_OPERAND   | IS_BRANCH | NEEDS_FIXUP | REG_USEC,    { 0,             0, 0xE3, 0,    0, 0, 0, 0, false }, "Jecxz", "!0t" },
519  { kX86JmpT,  kJmp,  IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 4, 0, 0, false }, "JmpT",  "fs:[!0d]" },
520  { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0, false }, "CallR", "!0r" },
521  { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0, false }, "CallM", "[!0r+!1d]" },
522  { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0, false }, "CallA", "[!0r+!1r<<!2d+!3d]" },
523  { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0, false }, "CallT", "fs:[!0d]" },
524  { kX86CallI, kCall, IS_UNARY_OP  | IS_BRANCH,                             { 0,             0, 0xE8, 0,    0, 0, 0, 4, false }, "CallI", "!0d" },
525  { kX86Ret,   kNullary, NO_OPERAND | IS_BRANCH,                            { 0,             0, 0xC3, 0,    0, 0, 0, 0, false }, "Ret", "" },
526
527  { kX86StartOfMethod, kMacro,  IS_UNARY_OP | SETS_CCODES,             { 0, 0, 0,    0, 0, 0, 0, 0, false }, "StartOfMethod", "!0r" },
528  { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
529  { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4, false }, "PcRelAdr",      "!0r,!1d" },
530  { kX86RepneScasw,    kNullary, NO_OPERAND | REG_USEA | REG_USEC | SETS_CCODES, { 0x66, 0xF2, 0xAF, 0, 0, 0, 0, 0, false }, "RepNE ScasW", "" },
531};
532
533static bool NeedsRex(int32_t raw_reg) {
534  return RegStorage::RegNum(raw_reg) > 7;
535}
536
537static uint8_t LowRegisterBits(int32_t raw_reg) {
538  uint8_t low_reg = RegStorage::RegNum(raw_reg) & kRegNumMask32;  // 3 bits
539  DCHECK_LT(low_reg, 8);
540  return low_reg;
541}
542
543static bool HasModrm(const X86EncodingMap* entry) {
544  switch (entry->kind) {
545    case kNullary: return false;
546    case kRegOpcode: return false;
547    default: return true;
548  }
549}
550
551static bool HasSib(const X86EncodingMap* entry) {
552  switch (entry->kind) {
553    case kArray: return true;
554    case kArrayReg: return true;
555    case kRegArray: return true;
556    case kArrayImm: return true;
557    case kRegArrayImm: return true;
558    case kShiftArrayImm: return true;
559    case kShiftArrayCl: return true;
560    case kArrayCond: return true;
561    case kCall:
562      switch (entry->opcode) {
563        case kX86CallA: return true;
564        default: return false;
565      }
566    case kPcRel: return true;
567       switch (entry->opcode) {
568         case kX86PcRelLoadRA: return true;
569         default: return false;
570        }
571    default: return false;
572  }
573}
574
575static bool ModrmIsRegReg(const X86EncodingMap* entry) {
576  switch (entry->kind) {
577    // There is no modrm for this kind of instruction, therefore the reg doesn't form part of the
578    // modrm:
579    case kNullary: return true;
580    case kRegOpcode: return true;
581    case kMovRegImm: return true;
582    // Regular modrm value of 3 cases, when there is one register the other register holds an
583    // opcode so the base register is special.
584    case kReg: return true;
585    case kRegReg: return true;
586    case kRegRegStore: return true;
587    case kRegImm: return true;
588    case kRegRegImm: return true;
589    case kRegRegImmStore: return true;
590    case kShiftRegImm: return true;
591    case kShiftRegCl: return true;
592    case kRegCond: return true;
593    case kRegRegCond: return true;
594    case kJmp:
595      switch (entry->opcode) {
596        case kX86JmpR: return true;
597        default: return false;
598      }
599    case kCall:
600      switch (entry->opcode) {
601        case kX86CallR: return true;
602        default: return false;
603      }
604    default: return false;
605  }
606}
607
608static bool IsByteSecondOperand(const X86EncodingMap* entry) {
609  return StartsWith(entry->name, "Movzx8") || StartsWith(entry->name, "Movsx8");
610}
611
612size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
613                               int32_t raw_base, int32_t displacement) {
614  bool has_modrm = HasModrm(entry);
615  bool has_sib = HasSib(entry);
616  bool r8_form = entry->skeleton.r8_form;
617  bool modrm_is_reg_reg = ModrmIsRegReg(entry);
618  if (has_sib) {
619    DCHECK(!modrm_is_reg_reg);
620  }
621  size_t size = 0;
622  if (entry->skeleton.prefix1 > 0) {
623    ++size;
624    if (entry->skeleton.prefix2 > 0) {
625      ++size;
626    }
627  }
628  if (cu_->target64 || kIsDebugBuild) {
629    bool registers_need_rex_prefix = NeedsRex(raw_reg) || NeedsRex(raw_index) || NeedsRex(raw_base);
630    if (r8_form) {
631      // Do we need an empty REX prefix to normalize byte registers?
632      registers_need_rex_prefix = registers_need_rex_prefix ||
633          (RegStorage::RegNum(raw_reg) >= 4 && !IsByteSecondOperand(entry));
634      registers_need_rex_prefix = registers_need_rex_prefix ||
635          (modrm_is_reg_reg && (RegStorage::RegNum(raw_base) >= 4));
636    }
637    if (registers_need_rex_prefix) {
638      DCHECK(cu_->target64) << "Attempt to use a 64-bit only addressable register "
639          << RegStorage::RegNum(raw_reg) << " with instruction " << entry->name;
640      if (entry->skeleton.prefix1 != REX_W && entry->skeleton.prefix2 != REX_W
641         && entry->skeleton.prefix1 != REX && entry->skeleton.prefix2 != REX) {
642        ++size;  // rex
643      }
644    }
645  }
646  ++size;  // opcode
647  if (entry->skeleton.opcode == 0x0F) {
648    ++size;
649    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
650      ++size;
651    }
652  }
653  if (has_modrm) {
654    ++size;  // modrm
655  }
656  if (!modrm_is_reg_reg) {
657    if (has_sib || LowRegisterBits(raw_base) == rs_rX86_SP.GetRegNum()
658        || (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX)) {
659      // SP requires a SIB byte.
660      // GS access also needs a SIB byte for absolute adressing in 64-bit mode.
661      ++size;
662    }
663    if (displacement != 0 || LowRegisterBits(raw_base) == rs_rBP.GetRegNum()) {
664      // BP requires an explicit displacement, even when it's 0.
665      if (entry->opcode != kX86Lea32RA && entry->opcode != kX86Lea64RA) {
666        DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), UINT64_C(0)) << entry->name;
667      }
668      size += IS_SIMM8(displacement) ? 1 : 4;
669    }
670  }
671  size += entry->skeleton.immediate_bytes;
672  return size;
673}
674
675size_t X86Mir2Lir::GetInsnSize(LIR* lir) {
676  DCHECK(!IsPseudoLirOp(lir->opcode));
677  const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
678  DCHECK_EQ(entry->opcode, lir->opcode) << entry->name;
679
680  switch (entry->kind) {
681    case kData:
682      return 4;  // 4 bytes of data.
683    case kNop:
684      return lir->operands[0];  // Length of nop is sole operand.
685    case kNullary:
686      return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0);
687    case kRegOpcode:  // lir operands - 0: reg
688      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
689    case kReg:  // lir operands - 0: reg
690      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
691    case kMem:  // lir operands - 0: base, 1: disp
692      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
693    case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
694      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
695    case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
696      return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]);
697    case kMemRegImm:  // lir operands - 0: base, 1: disp, 2: reg 3: immediate
698      return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]);
699    case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
700      return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
701                         lir->operands[3]);
702    case kThreadReg:  // lir operands - 0: disp, 1: reg
703      // Thread displacement size is always 32bit.
704      return ComputeSize(entry, lir->operands[1], NO_REG, NO_REG, 0x12345678);
705    case kRegReg:  // lir operands - 0: reg1, 1: reg2
706      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
707    case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
708      return ComputeSize(entry, lir->operands[1], NO_REG, lir->operands[0], 0);
709    case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
710      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
711    case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
712      return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
713                         lir->operands[4]);
714    case kRegThread:  // lir operands - 0: reg, 1: disp
715      // Thread displacement size is always 32bit.
716      return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0x12345678);
717    case kRegImm: {  // lir operands - 0: reg, 1: immediate
718      size_t size = ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0);
719      // AX opcodes don't require the modrm byte.
720      if (entry->skeleton.ax_opcode == 0) {
721        return size;
722      } else {
723        return size - (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum() ? 1 : 0);
724      }
725    }
726    case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
727      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
728    case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
729      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
730    case kThreadImm:  // lir operands - 0: disp, 1: imm
731      // Thread displacement size is always 32bit.
732      return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
733    case kRegRegImm:  // lir operands - 0: reg1, 1: reg2, 2: imm
734      // Note: RegRegImm form passes reg2 as index but encodes it using base.
735      return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, 0);
736    case kRegRegImmStore:  // lir operands - 0: reg2, 1: reg1, 2: imm
737      // Note: RegRegImmStore form passes reg1 as index but encodes it using base.
738      return ComputeSize(entry, lir->operands[1], lir->operands[0], NO_REG, 0);
739    case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
740      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
741    case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
742      return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
743                         lir->operands[4]);
744    case kMovRegImm:  // lir operands - 0: reg, 1: immediate
745    case kMovRegQuadImm:
746      return ((entry->skeleton.prefix1 != 0 || NeedsRex(lir->operands[0])) ? 1 : 0) + 1 +
747          entry->skeleton.immediate_bytes;
748    case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
749      // Shift by immediate one has a shorter opcode.
750      return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0) -
751          (lir->operands[1] == 1 ? 1 : 0);
752    case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
753      // Shift by immediate one has a shorter opcode.
754      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]) -
755          (lir->operands[2] == 1 ? 1 : 0);
756    case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
757      // Shift by immediate one has a shorter opcode.
758      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]) -
759          (lir->operands[4] == 1 ? 1 : 0);
760    case kShiftRegCl:  // lir operands - 0: reg, 1: cl
761      DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[1]));
762      // Note: ShiftRegCl form passes reg as reg but encodes it using base.
763      return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0);
764    case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
765      DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[2]));
766      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
767    case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cl
768      DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[4]));
769      return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
770                         lir->operands[3]);
771    case kRegCond:  // lir operands - 0: reg, 1: cond
772      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
773    case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
774      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
775    case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
776      DCHECK_EQ(false, entry->skeleton.r8_form);
777      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
778    case kRegRegCond:  // lir operands - 0: reg1, 1: reg2, 2: cond
779      DCHECK_EQ(false, entry->skeleton.r8_form);
780      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
781    case kRegMemCond:  // lir operands - 0: reg, 1: base, 2: disp, 3:cond
782      DCHECK_EQ(false, entry->skeleton.r8_form);
783      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
784    case kJcc:
785      if (lir->opcode == kX86Jcc8) {
786        return 2;  // opcode + rel8
787      } else {
788        DCHECK(lir->opcode == kX86Jcc32);
789        return 6;  // 2 byte opcode + rel32
790      }
791    case kJmp:
792      if (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jecxz8) {
793        return 2;  // opcode + rel8
794      } else if (lir->opcode == kX86Jmp32) {
795        return 5;  // opcode + rel32
796      } else if (lir->opcode == kX86JmpT) {
797        // Thread displacement size is always 32bit.
798        return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
799      } else {
800        DCHECK(lir->opcode == kX86JmpR);
801        if (NeedsRex(lir->operands[0])) {
802          return 3;  // REX.B + opcode + modrm
803        } else {
804          return 2;  // opcode + modrm
805        }
806      }
807    case kCall:
808      switch (lir->opcode) {
809        case kX86CallI: return 5;  // opcode 0:disp
810        case kX86CallR: return 2;  // opcode modrm
811        case kX86CallM:  // lir operands - 0: base, 1: disp
812          return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
813        case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
814          return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
815        case kX86CallT:  // lir operands - 0: disp
816          // Thread displacement size is always 32bit.
817          return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
818        default:
819          break;
820      }
821      break;
822    case kPcRel:
823      if (entry->opcode == kX86PcRelLoadRA) {
824        // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
825        // Force the displacement size to 32bit, it will hold a computed offset later.
826        return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
827                           0x12345678);
828      } else {
829        DCHECK_EQ(entry->opcode, kX86PcRelAdr);
830        return 5;  // opcode with reg + 4 byte immediate
831      }
832    case kMacro:  // lir operands - 0: reg
833      DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
834      return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
835          ComputeSize(&X86Mir2Lir::EncodingMap[cu_->target64 ? kX86Sub64RI : kX86Sub32RI],
836                      lir->operands[0], NO_REG, NO_REG, 0) -
837              // Shorter ax encoding.
838              (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum()  ? 1 : 0);
839    case kUnimplemented:
840      break;
841  }
842  UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
843  return 0;
844}
845
846static uint8_t ModrmForDisp(int base, int disp) {
847  // BP requires an explicit disp, so do not omit it in the 0 case
848  if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
849    return 0;
850  } else if (IS_SIMM8(disp)) {
851    return 1;
852  } else {
853    return 2;
854  }
855}
856
857void X86Mir2Lir::CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg) {
858  if (kIsDebugBuild) {
859    // Sanity check r8_form is correctly specified.
860    if (entry->skeleton.r8_form) {
861      CHECK(strchr(entry->name, '8') != nullptr) << entry->name;
862    } else {
863      if (entry->skeleton.immediate_bytes != 1) {  // Ignore ...I8 instructions.
864        if (!StartsWith(entry->name, "Movzx8") && !StartsWith(entry->name, "Movsx8")
865           && !StartsWith(entry->name, "Movzx8q") && !StartsWith(entry->name, "Movsx8q")) {
866          CHECK(strchr(entry->name, '8') == nullptr) << entry->name;
867        }
868      }
869    }
870    if (RegStorage::RegNum(raw_reg) >= 4) {
871      // ah, bh, ch and dh are not valid registers in 32-bit.
872      CHECK(cu_->target64 || !entry->skeleton.r8_form)
873               << "Invalid register " << static_cast<int>(RegStorage::RegNum(raw_reg))
874               << " for instruction " << entry->name << " in "
875               << PrettyMethod(cu_->method_idx, *cu_->dex_file);
876    }
877  }
878}
879
880void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry,
881                            int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) {
882  // REX.WRXB
883  // W - 64-bit operand
884  // R - MODRM.reg
885  // X - SIB.index
886  // B - MODRM.rm/SIB.base
887  bool w = (entry->skeleton.prefix1 == REX_W) || (entry->skeleton.prefix2 == REX_W);
888  bool r = NeedsRex(raw_reg_r);
889  bool x = NeedsRex(raw_reg_x);
890  bool b = NeedsRex(raw_reg_b);
891  bool r8_form = entry->skeleton.r8_form;
892  bool modrm_is_reg_reg = ModrmIsRegReg(entry);
893
894  uint8_t rex = 0;
895  if (r8_form) {
896    // Do we need an empty REX prefix to normalize byte register addressing?
897    if (RegStorage::RegNum(raw_reg_r) >= 4 && !IsByteSecondOperand(entry)) {
898      rex |= 0x40;  // REX.0000
899    } else if (modrm_is_reg_reg && RegStorage::RegNum(raw_reg_b) >= 4) {
900      rex |= 0x40;  // REX.0000
901    }
902  }
903  if (w) {
904    rex |= 0x48;  // REX.W000
905  }
906  if (r) {
907    rex |= 0x44;  // REX.0R00
908  }
909  if (x) {
910    rex |= 0x42;  // REX.00X0
911  }
912  if (b) {
913    rex |= 0x41;  // REX.000B
914  }
915  if (entry->skeleton.prefix1 != 0) {
916    if (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX) {
917      // 64 bit addresses by GS, not FS.
918      code_buffer_.push_back(THREAD_PREFIX_GS);
919    } else {
920      if (entry->skeleton.prefix1 == REX_W || entry->skeleton.prefix1 == REX) {
921        DCHECK(cu_->target64);
922        rex |= entry->skeleton.prefix1;
923        code_buffer_.push_back(rex);
924        rex = 0;
925      } else {
926        code_buffer_.push_back(entry->skeleton.prefix1);
927      }
928    }
929    if (entry->skeleton.prefix2 != 0) {
930      if (entry->skeleton.prefix2 == REX_W || entry->skeleton.prefix1 == REX) {
931        DCHECK(cu_->target64);
932        rex |= entry->skeleton.prefix2;
933        code_buffer_.push_back(rex);
934        rex = 0;
935      } else {
936        code_buffer_.push_back(entry->skeleton.prefix2);
937      }
938    }
939  } else {
940    DCHECK_EQ(0, entry->skeleton.prefix2);
941  }
942  if (rex != 0) {
943    DCHECK(cu_->target64);
944    code_buffer_.push_back(rex);
945  }
946}
947
948void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
949  code_buffer_.push_back(entry->skeleton.opcode);
950  if (entry->skeleton.opcode == 0x0F) {
951    code_buffer_.push_back(entry->skeleton.extra_opcode1);
952    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
953      code_buffer_.push_back(entry->skeleton.extra_opcode2);
954    } else {
955      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
956    }
957  } else {
958    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
959    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
960  }
961}
962
963void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry,
964                                     int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) {
965  EmitPrefix(entry, raw_reg_r, raw_reg_x, raw_reg_b);
966  EmitOpcode(entry);
967}
968
969void X86Mir2Lir::EmitDisp(uint8_t base, int32_t disp) {
970  // BP requires an explicit disp, so do not omit it in the 0 case
971  if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
972    return;
973  } else if (IS_SIMM8(disp)) {
974    code_buffer_.push_back(disp & 0xFF);
975  } else {
976    code_buffer_.push_back(disp & 0xFF);
977    code_buffer_.push_back((disp >> 8) & 0xFF);
978    code_buffer_.push_back((disp >> 16) & 0xFF);
979    code_buffer_.push_back((disp >> 24) & 0xFF);
980  }
981}
982
983void X86Mir2Lir::EmitModrmThread(uint8_t reg_or_opcode) {
984  if (cu_->target64) {
985    // Absolute adressing for GS access.
986    uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rX86_SP.GetRegNum();
987    code_buffer_.push_back(modrm);
988    uint8_t sib = (0/*TIMES_1*/ << 6) | (rs_rX86_SP.GetRegNum() << 3) | rs_rBP.GetRegNum();
989    code_buffer_.push_back(sib);
990  } else {
991    uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rBP.GetRegNum();
992    code_buffer_.push_back(modrm);
993  }
994}
995
996void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp) {
997  DCHECK_LT(reg_or_opcode, 8);
998  DCHECK_LT(base, 8);
999  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
1000  code_buffer_.push_back(modrm);
1001  if (base == rs_rX86_SP.GetRegNum()) {
1002    // Special SIB for SP base
1003    code_buffer_.push_back(0 << 6 | rs_rX86_SP.GetRegNum() << 3 | rs_rX86_SP.GetRegNum());
1004  }
1005  EmitDisp(base, disp);
1006}
1007
1008void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
1009                                  int scale, int32_t disp) {
1010  DCHECK_LT(RegStorage::RegNum(reg_or_opcode), 8);
1011  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | RegStorage::RegNum(reg_or_opcode) << 3 |
1012      rs_rX86_SP.GetRegNum();
1013  code_buffer_.push_back(modrm);
1014  DCHECK_LT(scale, 4);
1015  DCHECK_LT(RegStorage::RegNum(index), 8);
1016  DCHECK_LT(RegStorage::RegNum(base), 8);
1017  uint8_t sib = (scale << 6) | (RegStorage::RegNum(index) << 3) | RegStorage::RegNum(base);
1018  code_buffer_.push_back(sib);
1019  EmitDisp(base, disp);
1020}
1021
1022void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int64_t imm) {
1023  switch (entry->skeleton.immediate_bytes) {
1024    case 1:
1025      DCHECK(IS_SIMM8(imm));
1026      code_buffer_.push_back(imm & 0xFF);
1027      break;
1028    case 2:
1029      DCHECK(IS_SIMM16(imm));
1030      code_buffer_.push_back(imm & 0xFF);
1031      code_buffer_.push_back((imm >> 8) & 0xFF);
1032      break;
1033    case 4:
1034      DCHECK(IS_SIMM32(imm));
1035      code_buffer_.push_back(imm & 0xFF);
1036      code_buffer_.push_back((imm >> 8) & 0xFF);
1037      code_buffer_.push_back((imm >> 16) & 0xFF);
1038      code_buffer_.push_back((imm >> 24) & 0xFF);
1039      break;
1040    case 8:
1041      code_buffer_.push_back(imm & 0xFF);
1042      code_buffer_.push_back((imm >> 8) & 0xFF);
1043      code_buffer_.push_back((imm >> 16) & 0xFF);
1044      code_buffer_.push_back((imm >> 24) & 0xFF);
1045      code_buffer_.push_back((imm >> 32) & 0xFF);
1046      code_buffer_.push_back((imm >> 40) & 0xFF);
1047      code_buffer_.push_back((imm >> 48) & 0xFF);
1048      code_buffer_.push_back((imm >> 56) & 0xFF);
1049      break;
1050    default:
1051      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
1052                 << ") for instruction: " << entry->name;
1053      break;
1054  }
1055}
1056
1057void X86Mir2Lir::EmitNullary(const X86EncodingMap* entry) {
1058  DCHECK_EQ(false, entry->skeleton.r8_form);
1059  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1060  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1061  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1062  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1063}
1064
1065void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg) {
1066  DCHECK_EQ(false, entry->skeleton.r8_form);
1067  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg);
1068  // There's no 3-byte instruction with +rd
1069  DCHECK(entry->skeleton.opcode != 0x0F ||
1070         (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
1071  DCHECK(!RegStorage::IsFloat(raw_reg));
1072  uint8_t low_reg = LowRegisterBits(raw_reg);
1073  code_buffer_.back() += low_reg;
1074  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1075  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1076}
1077
1078void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg) {
1079  CheckValidByteRegister(entry, raw_reg);
1080  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg);
1081  uint8_t low_reg = LowRegisterBits(raw_reg);
1082  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1083  code_buffer_.push_back(modrm);
1084  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1085  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1086}
1087
1088void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
1089  DCHECK_EQ(false, entry->skeleton.r8_form);
1090  EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1091  code_buffer_.push_back(entry->skeleton.opcode);
1092  DCHECK_NE(0x0F, entry->skeleton.opcode);
1093  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1094  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1095  uint8_t low_base = LowRegisterBits(raw_base);
1096  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1097  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1098  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1099}
1100
1101void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
1102                             int scale, int32_t disp) {
1103  DCHECK_EQ(false, entry->skeleton.r8_form);
1104  EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base);
1105  uint8_t low_index = LowRegisterBits(raw_index);
1106  uint8_t low_base = LowRegisterBits(raw_base);
1107  EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
1108  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1109  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1110}
1111
1112void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1113                            int32_t raw_reg) {
1114  CheckValidByteRegister(entry, raw_reg);
1115  EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base);
1116  uint8_t low_reg = LowRegisterBits(raw_reg);
1117  uint8_t low_base = LowRegisterBits(raw_base);
1118  EmitModrmDisp(low_reg, low_base, disp);
1119  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1120  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1121  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1122}
1123
1124void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
1125                            int32_t disp) {
1126  // Opcode will flip operands.
1127  EmitMemReg(entry, raw_base, disp, raw_reg);
1128}
1129
1130void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
1131                              int32_t raw_index, int scale, int32_t disp) {
1132  CheckValidByteRegister(entry, raw_reg);
1133  EmitPrefixAndOpcode(entry, raw_reg, raw_index, raw_base);
1134  uint8_t low_reg = LowRegisterBits(raw_reg);
1135  uint8_t low_index = LowRegisterBits(raw_index);
1136  uint8_t low_base = LowRegisterBits(raw_base);
1137  EmitModrmSibDisp(low_reg, low_base, low_index, scale, disp);
1138  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1139  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1140  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1141}
1142
1143void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
1144                              int scale, int32_t disp, int32_t raw_reg) {
1145  // Opcode will flip operands.
1146  EmitRegArray(entry, raw_reg, raw_base, raw_index, scale, disp);
1147}
1148
1149void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1150                            int32_t imm) {
1151  DCHECK_EQ(false, entry->skeleton.r8_form);
1152  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base);
1153  uint8_t low_base = LowRegisterBits(raw_base);
1154  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1155  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1156  EmitImm(entry, imm);
1157}
1158
1159void X86Mir2Lir::EmitArrayImm(const X86EncodingMap* entry,
1160                              int32_t raw_base, int32_t raw_index, int scale, int32_t disp,
1161                              int32_t imm) {
1162  DCHECK_EQ(false, entry->skeleton.r8_form);
1163  EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base);
1164  uint8_t low_index = LowRegisterBits(raw_index);
1165  uint8_t low_base = LowRegisterBits(raw_base);
1166  EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
1167  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1168  EmitImm(entry, imm);
1169}
1170
1171void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp) {
1172  DCHECK_EQ(false, entry->skeleton.r8_form);
1173  DCHECK_NE(entry->skeleton.prefix1, 0);
1174  EmitPrefixAndOpcode(entry, raw_reg, NO_REG, NO_REG);
1175  uint8_t low_reg = LowRegisterBits(raw_reg);
1176  EmitModrmThread(low_reg);
1177  code_buffer_.push_back(disp & 0xFF);
1178  code_buffer_.push_back((disp >> 8) & 0xFF);
1179  code_buffer_.push_back((disp >> 16) & 0xFF);
1180  code_buffer_.push_back((disp >> 24) & 0xFF);
1181  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1182  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1183  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1184}
1185
1186void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2) {
1187  if (!IsByteSecondOperand(entry)) {
1188    CheckValidByteRegister(entry, raw_reg1);
1189  }
1190  CheckValidByteRegister(entry, raw_reg2);
1191  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1192  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1193  uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1194  uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
1195  code_buffer_.push_back(modrm);
1196  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1197  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1198  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1199}
1200
1201void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
1202                               int32_t imm) {
1203  DCHECK_EQ(false, entry->skeleton.r8_form);
1204  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1205  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1206  uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1207  uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
1208  code_buffer_.push_back(modrm);
1209  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1210  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1211  EmitImm(entry, imm);
1212}
1213
1214void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
1215                               int32_t raw_reg, int32_t raw_base, int disp, int32_t imm) {
1216  DCHECK(!RegStorage::IsFloat(raw_reg));
1217  CheckValidByteRegister(entry, raw_reg);
1218  EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base);
1219  uint8_t low_reg = LowRegisterBits(raw_reg);
1220  uint8_t low_base = LowRegisterBits(raw_base);
1221  EmitModrmDisp(low_reg, low_base, disp);
1222  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1223  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1224  EmitImm(entry, imm);
1225}
1226
1227void X86Mir2Lir::EmitMemRegImm(const X86EncodingMap* entry,
1228                               int32_t raw_base, int32_t disp, int32_t raw_reg, int32_t imm) {
1229  // Opcode will flip operands.
1230  EmitRegMemImm(entry, raw_reg, raw_base, disp, imm);
1231}
1232
1233void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
1234  CheckValidByteRegister(entry, raw_reg);
1235  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1236  if (RegStorage::RegNum(raw_reg) == rs_rAX.GetRegNum() && entry->skeleton.ax_opcode != 0) {
1237    code_buffer_.push_back(entry->skeleton.ax_opcode);
1238  } else {
1239    uint8_t low_reg = LowRegisterBits(raw_reg);
1240    EmitOpcode(entry);
1241    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1242    code_buffer_.push_back(modrm);
1243  }
1244  EmitImm(entry, imm);
1245}
1246
1247void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm) {
1248  DCHECK_EQ(false, entry->skeleton.r8_form);
1249  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1250  EmitModrmThread(entry->skeleton.modrm_opcode);
1251  code_buffer_.push_back(disp & 0xFF);
1252  code_buffer_.push_back((disp >> 8) & 0xFF);
1253  code_buffer_.push_back((disp >> 16) & 0xFF);
1254  code_buffer_.push_back((disp >> 24) & 0xFF);
1255  EmitImm(entry, imm);
1256  DCHECK_EQ(entry->skeleton.ax_opcode, 0);
1257}
1258
1259void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm) {
1260  DCHECK_EQ(false, entry->skeleton.r8_form);
1261  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1262  uint8_t low_reg = LowRegisterBits(raw_reg);
1263  code_buffer_.push_back(0xB8 + low_reg);
1264  switch (entry->skeleton.immediate_bytes) {
1265    case 4:
1266      code_buffer_.push_back(imm & 0xFF);
1267      code_buffer_.push_back((imm >> 8) & 0xFF);
1268      code_buffer_.push_back((imm >> 16) & 0xFF);
1269      code_buffer_.push_back((imm >> 24) & 0xFF);
1270      break;
1271    case 8:
1272      code_buffer_.push_back(imm & 0xFF);
1273      code_buffer_.push_back((imm >> 8) & 0xFF);
1274      code_buffer_.push_back((imm >> 16) & 0xFF);
1275      code_buffer_.push_back((imm >> 24) & 0xFF);
1276      code_buffer_.push_back((imm >> 32) & 0xFF);
1277      code_buffer_.push_back((imm >> 40) & 0xFF);
1278      code_buffer_.push_back((imm >> 48) & 0xFF);
1279      code_buffer_.push_back((imm >> 56) & 0xFF);
1280      break;
1281    default:
1282      LOG(FATAL) << "Unsupported immediate size for EmitMovRegImm: "
1283                 << static_cast<uint32_t>(entry->skeleton.immediate_bytes);
1284  }
1285}
1286
1287void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
1288  CheckValidByteRegister(entry, raw_reg);
1289  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1290  if (imm != 1) {
1291    code_buffer_.push_back(entry->skeleton.opcode);
1292  } else {
1293    // Shorter encoding for 1 bit shift
1294    code_buffer_.push_back(entry->skeleton.ax_opcode);
1295  }
1296  DCHECK_NE(0x0F, entry->skeleton.opcode);
1297  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1298  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1299  uint8_t low_reg = LowRegisterBits(raw_reg);
1300  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1301  code_buffer_.push_back(modrm);
1302  if (imm != 1) {
1303    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
1304    DCHECK(IS_SIMM8(imm));
1305    code_buffer_.push_back(imm & 0xFF);
1306  }
1307}
1308
1309void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl) {
1310  CheckValidByteRegister(entry, raw_reg);
1311  DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
1312  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1313  code_buffer_.push_back(entry->skeleton.opcode);
1314  DCHECK_NE(0x0F, entry->skeleton.opcode);
1315  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1316  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1317  uint8_t low_reg = LowRegisterBits(raw_reg);
1318  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1319  code_buffer_.push_back(modrm);
1320  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1321  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1322}
1323
1324void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base,
1325                                int32_t displacement, int32_t raw_cl) {
1326  DCHECK_EQ(false, entry->skeleton.r8_form);
1327  DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
1328  EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1329  code_buffer_.push_back(entry->skeleton.opcode);
1330  DCHECK_NE(0x0F, entry->skeleton.opcode);
1331  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1332  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1333  uint8_t low_base = LowRegisterBits(raw_base);
1334  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, displacement);
1335  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1336  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1337}
1338
1339void X86Mir2Lir::EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1340                                 int32_t imm) {
1341  DCHECK_EQ(false, entry->skeleton.r8_form);
1342  EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1343  if (imm != 1) {
1344    code_buffer_.push_back(entry->skeleton.opcode);
1345  } else {
1346    // Shorter encoding for 1 bit shift
1347    code_buffer_.push_back(entry->skeleton.ax_opcode);
1348  }
1349  DCHECK_NE(0x0F, entry->skeleton.opcode);
1350  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1351  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1352  uint8_t low_base = LowRegisterBits(raw_base);
1353  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1354  if (imm != 1) {
1355    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
1356    DCHECK(IS_SIMM8(imm));
1357    code_buffer_.push_back(imm & 0xFF);
1358  }
1359}
1360
1361void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc) {
1362  CheckValidByteRegister(entry, raw_reg);
1363  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1364  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1365  DCHECK_EQ(0x0F, entry->skeleton.opcode);
1366  code_buffer_.push_back(0x0F);
1367  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
1368  DCHECK_GE(cc, 0);
1369  DCHECK_LT(cc, 16);
1370  code_buffer_.push_back(0x90 | cc);
1371  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1372  uint8_t low_reg = LowRegisterBits(raw_reg);
1373  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1374  code_buffer_.push_back(modrm);
1375  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
1376}
1377
1378void X86Mir2Lir::EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1379                             int32_t cc) {
1380  DCHECK_EQ(false, entry->skeleton.r8_form);
1381  if (entry->skeleton.prefix1 != 0) {
1382    code_buffer_.push_back(entry->skeleton.prefix1);
1383    if (entry->skeleton.prefix2 != 0) {
1384      code_buffer_.push_back(entry->skeleton.prefix2);
1385    }
1386  } else {
1387    DCHECK_EQ(0, entry->skeleton.prefix2);
1388  }
1389  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1390  DCHECK_EQ(0x0F, entry->skeleton.opcode);
1391  code_buffer_.push_back(0x0F);
1392  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
1393  DCHECK_GE(cc, 0);
1394  DCHECK_LT(cc, 16);
1395  code_buffer_.push_back(0x90 | cc);
1396  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1397  uint8_t low_base = LowRegisterBits(raw_base);
1398  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1399  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
1400}
1401
1402void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
1403                                int32_t cc) {
1404  // Generate prefix and opcode without the condition.
1405  DCHECK_EQ(false, entry->skeleton.r8_form);
1406  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1407
1408  // Now add the condition. The last byte of opcode is the one that receives it.
1409  DCHECK_GE(cc, 0);
1410  DCHECK_LT(cc, 16);
1411  code_buffer_.back() += cc;
1412
1413  // Not expecting to have to encode immediate or do anything special for ModR/M since there are
1414  // two registers.
1415  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1416  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1417
1418  // For register to register encoding, the mod is 3.
1419  const uint8_t mod = (3 << 6);
1420
1421  // Encode the ModR/M byte now.
1422  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1423  uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1424  const uint8_t modrm = mod | (low_reg1 << 3) | low_reg2;
1425  code_buffer_.push_back(modrm);
1426}
1427
1428void X86Mir2Lir::EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base,
1429                                int32_t disp, int32_t cc) {
1430  // Generate prefix and opcode without the condition.
1431  DCHECK_EQ(false, entry->skeleton.r8_form);
1432  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_base);
1433
1434  // Now add the condition. The last byte of opcode is the one that receives it.
1435  DCHECK_GE(cc, 0);
1436  DCHECK_LT(cc, 16);
1437  code_buffer_.back() += cc;
1438
1439  // Not expecting to have to encode immediate or do anything special for ModR/M since there are
1440  // two registers.
1441  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1442  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1443
1444  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1445  uint8_t low_base = LowRegisterBits(raw_base);
1446  EmitModrmDisp(low_reg1, low_base, disp);
1447}
1448
1449void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int32_t rel) {
1450  if (entry->opcode == kX86Jmp8) {
1451    DCHECK(IS_SIMM8(rel));
1452    code_buffer_.push_back(0xEB);
1453    code_buffer_.push_back(rel & 0xFF);
1454  } else if (entry->opcode == kX86Jmp32) {
1455    code_buffer_.push_back(0xE9);
1456    code_buffer_.push_back(rel & 0xFF);
1457    code_buffer_.push_back((rel >> 8) & 0xFF);
1458    code_buffer_.push_back((rel >> 16) & 0xFF);
1459    code_buffer_.push_back((rel >> 24) & 0xFF);
1460  } else if (entry->opcode == kX86Jecxz8) {
1461    DCHECK(IS_SIMM8(rel));
1462    code_buffer_.push_back(0xE3);
1463    code_buffer_.push_back(rel & 0xFF);
1464  } else {
1465    DCHECK(entry->opcode == kX86JmpR);
1466    DCHECK_EQ(false, entry->skeleton.r8_form);
1467    EmitPrefix(entry, NO_REG, NO_REG, rel);
1468    code_buffer_.push_back(entry->skeleton.opcode);
1469    uint8_t low_reg = LowRegisterBits(rel);
1470    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1471    code_buffer_.push_back(modrm);
1472  }
1473}
1474
1475void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc) {
1476  DCHECK_GE(cc, 0);
1477  DCHECK_LT(cc, 16);
1478  if (entry->opcode == kX86Jcc8) {
1479    DCHECK(IS_SIMM8(rel));
1480    code_buffer_.push_back(0x70 | cc);
1481    code_buffer_.push_back(rel & 0xFF);
1482  } else {
1483    DCHECK(entry->opcode == kX86Jcc32);
1484    code_buffer_.push_back(0x0F);
1485    code_buffer_.push_back(0x80 | cc);
1486    code_buffer_.push_back(rel & 0xFF);
1487    code_buffer_.push_back((rel >> 8) & 0xFF);
1488    code_buffer_.push_back((rel >> 16) & 0xFF);
1489    code_buffer_.push_back((rel >> 24) & 0xFF);
1490  }
1491}
1492
1493void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
1494  DCHECK_EQ(false, entry->skeleton.r8_form);
1495  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base);
1496  uint8_t low_base = LowRegisterBits(raw_base);
1497  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1498  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1499  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1500}
1501
1502void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int32_t disp) {
1503  DCHECK_EQ(false, entry->skeleton.r8_form);
1504  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1505  DCHECK_EQ(4, entry->skeleton.immediate_bytes);
1506  code_buffer_.push_back(disp & 0xFF);
1507  code_buffer_.push_back((disp >> 8) & 0xFF);
1508  code_buffer_.push_back((disp >> 16) & 0xFF);
1509  code_buffer_.push_back((disp >> 24) & 0xFF);
1510  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1511}
1512
1513void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int32_t disp) {
1514  DCHECK_EQ(false, entry->skeleton.r8_form);
1515  DCHECK_NE(entry->skeleton.prefix1, 0);
1516  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1517  EmitModrmThread(entry->skeleton.modrm_opcode);
1518  code_buffer_.push_back(disp & 0xFF);
1519  code_buffer_.push_back((disp >> 8) & 0xFF);
1520  code_buffer_.push_back((disp >> 16) & 0xFF);
1521  code_buffer_.push_back((disp >> 24) & 0xFF);
1522  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1523  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1524}
1525
1526void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
1527                           int32_t raw_index, int scale, int32_t table_or_disp) {
1528  int disp;
1529  if (entry->opcode == kX86PcRelLoadRA) {
1530    Mir2Lir::EmbeddedData *tab_rec =
1531        reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
1532    disp = tab_rec->offset;
1533  } else {
1534    DCHECK(entry->opcode == kX86PcRelAdr);
1535    Mir2Lir::EmbeddedData *tab_rec =
1536        reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(raw_base_or_table));
1537    disp = tab_rec->offset;
1538  }
1539  if (entry->opcode == kX86PcRelLoadRA) {
1540    DCHECK_EQ(false, entry->skeleton.r8_form);
1541    EmitPrefix(entry, raw_reg, raw_index, raw_base_or_table);
1542    code_buffer_.push_back(entry->skeleton.opcode);
1543    DCHECK_NE(0x0F, entry->skeleton.opcode);
1544    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1545    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1546    uint8_t low_reg = LowRegisterBits(raw_reg);
1547    uint8_t modrm = (2 << 6) | (low_reg << 3) | rs_rX86_SP.GetRegNum();
1548    code_buffer_.push_back(modrm);
1549    DCHECK_LT(scale, 4);
1550    uint8_t low_base_or_table = LowRegisterBits(raw_base_or_table);
1551    uint8_t low_index = LowRegisterBits(raw_index);
1552    uint8_t sib = (scale << 6) | (low_index << 3) | low_base_or_table;
1553    code_buffer_.push_back(sib);
1554    DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1555  } else {
1556    uint8_t low_reg = LowRegisterBits(raw_reg);
1557    code_buffer_.push_back(entry->skeleton.opcode + low_reg);
1558  }
1559  code_buffer_.push_back(disp & 0xFF);
1560  code_buffer_.push_back((disp >> 8) & 0xFF);
1561  code_buffer_.push_back((disp >> 16) & 0xFF);
1562  code_buffer_.push_back((disp >> 24) & 0xFF);
1563  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1564  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1565}
1566
1567void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset) {
1568  DCHECK_EQ(entry->opcode, kX86StartOfMethod) << entry->name;
1569  DCHECK_EQ(false, entry->skeleton.r8_form);
1570  EmitPrefix(entry, raw_reg, NO_REG, NO_REG);
1571  code_buffer_.push_back(0xE8);  // call +0
1572  code_buffer_.push_back(0);
1573  code_buffer_.push_back(0);
1574  code_buffer_.push_back(0);
1575  code_buffer_.push_back(0);
1576
1577  uint8_t low_reg = LowRegisterBits(raw_reg);
1578  code_buffer_.push_back(0x58 + low_reg);  // pop reg
1579
1580  EmitRegImm(&X86Mir2Lir::EncodingMap[cu_->target64 ? kX86Sub64RI : kX86Sub32RI],
1581             raw_reg, offset + 5 /* size of call +0 */);
1582}
1583
1584void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1585  UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1586                         << BuildInsnString(entry->fmt, lir, 0);
1587  for (size_t i = 0; i < GetInsnSize(lir); ++i) {
1588    code_buffer_.push_back(0xCC);  // push breakpoint instruction - int 3
1589  }
1590}
1591
1592/*
1593 * Assemble the LIR into binary instruction format.  Note that we may
1594 * discover that pc-relative displacements may not fit the selected
1595 * instruction.  In those cases we will try to substitute a new code
1596 * sequence or request that the trace be shortened and retried.
1597 */
1598AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
1599  LIR *lir;
1600  AssemblerStatus res = kSuccess;  // Assume success
1601
1602  const bool kVerbosePcFixup = false;
1603  for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1604    if (IsPseudoLirOp(lir->opcode)) {
1605      continue;
1606    }
1607
1608    if (lir->flags.is_nop) {
1609      continue;
1610    }
1611
1612    if (lir->flags.fixup != kFixupNone) {
1613      switch (lir->opcode) {
1614        case kX86Jcc8: {
1615          LIR *target_lir = lir->target;
1616          DCHECK(target_lir != NULL);
1617          int delta = 0;
1618          CodeOffset pc;
1619          if (IS_SIMM8(lir->operands[0])) {
1620            pc = lir->offset + 2 /* opcode + rel8 */;
1621          } else {
1622            pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1623          }
1624          CodeOffset target = target_lir->offset;
1625          delta = target - pc;
1626          if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1627            if (kVerbosePcFixup) {
1628              LOG(INFO) << "Retry for JCC growth at " << lir->offset
1629                  << " delta: " << delta << " old delta: " << lir->operands[0];
1630            }
1631            lir->opcode = kX86Jcc32;
1632            lir->flags.size = GetInsnSize(lir);
1633            DCHECK(lir->u.m.def_mask->Equals(kEncodeAll));
1634            DCHECK(lir->u.m.use_mask->Equals(kEncodeAll));
1635            res = kRetryAll;
1636          }
1637          if (kVerbosePcFixup) {
1638            LOG(INFO) << "Source:";
1639            DumpLIRInsn(lir, 0);
1640            LOG(INFO) << "Target:";
1641            DumpLIRInsn(target_lir, 0);
1642            LOG(INFO) << "Delta " << delta;
1643          }
1644          lir->operands[0] = delta;
1645          break;
1646        }
1647        case kX86Jcc32: {
1648          LIR *target_lir = lir->target;
1649          DCHECK(target_lir != NULL);
1650          CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1651          CodeOffset target = target_lir->offset;
1652          int delta = target - pc;
1653          if (kVerbosePcFixup) {
1654            LOG(INFO) << "Source:";
1655            DumpLIRInsn(lir, 0);
1656            LOG(INFO) << "Target:";
1657            DumpLIRInsn(target_lir, 0);
1658            LOG(INFO) << "Delta " << delta;
1659          }
1660          lir->operands[0] = delta;
1661          break;
1662        }
1663        case kX86Jecxz8: {
1664          LIR *target_lir = lir->target;
1665          DCHECK(target_lir != NULL);
1666          CodeOffset pc;
1667          pc = lir->offset + 2;  // opcode + rel8
1668          CodeOffset target = target_lir->offset;
1669          int delta = target - pc;
1670          lir->operands[0] = delta;
1671          DCHECK(IS_SIMM8(delta));
1672          break;
1673        }
1674        case kX86Jmp8: {
1675          LIR *target_lir = lir->target;
1676          DCHECK(target_lir != NULL);
1677          int delta = 0;
1678          CodeOffset pc;
1679          if (IS_SIMM8(lir->operands[0])) {
1680            pc = lir->offset + 2 /* opcode + rel8 */;
1681          } else {
1682            pc = lir->offset + 5 /* opcode + rel32 */;
1683          }
1684          CodeOffset target = target_lir->offset;
1685          delta = target - pc;
1686          if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1687            // Useless branch
1688            NopLIR(lir);
1689            if (kVerbosePcFixup) {
1690              LOG(INFO) << "Retry for useless branch at " << lir->offset;
1691            }
1692            res = kRetryAll;
1693          } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1694            if (kVerbosePcFixup) {
1695              LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1696            }
1697            lir->opcode = kX86Jmp32;
1698            lir->flags.size = GetInsnSize(lir);
1699            DCHECK(lir->u.m.def_mask->Equals(kEncodeAll));
1700            DCHECK(lir->u.m.use_mask->Equals(kEncodeAll));
1701            res = kRetryAll;
1702          }
1703          lir->operands[0] = delta;
1704          break;
1705        }
1706        case kX86Jmp32: {
1707          LIR *target_lir = lir->target;
1708          DCHECK(target_lir != NULL);
1709          CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1710          CodeOffset target = target_lir->offset;
1711          int delta = target - pc;
1712          lir->operands[0] = delta;
1713          break;
1714        }
1715        default:
1716          if (lir->flags.fixup == kFixupLoad) {
1717            LIR *target_lir = lir->target;
1718            DCHECK(target_lir != NULL);
1719            CodeOffset target = target_lir->offset;
1720            lir->operands[2] = target;
1721            int newSize = GetInsnSize(lir);
1722            if (newSize != lir->flags.size) {
1723              lir->flags.size = newSize;
1724              res = kRetryAll;
1725            }
1726          }
1727          break;
1728      }
1729    }
1730
1731    /*
1732     * If one of the pc-relative instructions expanded we'll have
1733     * to make another pass.  Don't bother to fully assemble the
1734     * instruction.
1735     */
1736    if (res != kSuccess) {
1737      continue;
1738    }
1739    CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1740    const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1741    size_t starting_cbuf_size = code_buffer_.size();
1742    switch (entry->kind) {
1743      case kData:  // 4 bytes of data
1744        code_buffer_.push_back(lir->operands[0]);
1745        break;
1746      case kNullary:  // 1 byte of opcode and possible prefixes.
1747        EmitNullary(entry);
1748        break;
1749      case kRegOpcode:  // lir operands - 0: reg
1750        EmitOpRegOpcode(entry, lir->operands[0]);
1751        break;
1752      case kReg:  // lir operands - 0: reg
1753        EmitOpReg(entry, lir->operands[0]);
1754        break;
1755      case kMem:  // lir operands - 0: base, 1: disp
1756        EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1757        break;
1758      case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
1759        EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1760        break;
1761      case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
1762        EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1763        break;
1764      case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
1765        EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1766        break;
1767      case kArrayImm:  // lir operands - 0: base, 1: index, 2: disp, 3:scale, 4:immediate
1768        EmitArrayImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1769                     lir->operands[3], lir->operands[4]);
1770        break;
1771      case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1772        EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1773                     lir->operands[3], lir->operands[4]);
1774        break;
1775      case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
1776        EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1777        break;
1778      case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1779        EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1780                     lir->operands[3], lir->operands[4]);
1781        break;
1782      case kRegThread:  // lir operands - 0: reg, 1: disp
1783        EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1784        break;
1785      case kRegReg:  // lir operands - 0: reg1, 1: reg2
1786        EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1787        break;
1788      case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
1789        EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1790        break;
1791      case kMemRegImm:  // lir operands - 0: base, 1: disp, 2: reg 3: immediate
1792        EmitMemRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1793                      lir->operands[3]);
1794        break;
1795      case kRegRegImm:  // lir operands - 0: reg1, 1: reg2, 2: imm
1796        EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1797        break;
1798      case kRegRegImmStore:   // lir operands - 0: reg2, 1: reg1, 2: imm
1799        EmitRegRegImm(entry, lir->operands[1], lir->operands[0], lir->operands[2]);
1800        break;
1801      case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
1802        EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1803                      lir->operands[3]);
1804        break;
1805      case kRegImm:  // lir operands - 0: reg, 1: immediate
1806        EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1807        break;
1808      case kThreadImm:  // lir operands - 0: disp, 1: immediate
1809        EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1810        break;
1811      case kMovRegImm:  // lir operands - 0: reg, 1: immediate
1812        EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1813        break;
1814      case kMovRegQuadImm: {
1815          int64_t value = static_cast<int64_t>(static_cast<int64_t>(lir->operands[1]) << 32 |
1816                          static_cast<uint32_t>(lir->operands[2]));
1817          EmitMovRegImm(entry, lir->operands[0], value);
1818        }
1819        break;
1820      case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
1821        EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1822        break;
1823      case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2:immediate
1824        EmitShiftMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1825        break;
1826      case kShiftRegCl:  // lir operands - 0: reg, 1: cl
1827        EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1828        break;
1829      case kShiftMemCl:  // lir operands - 0: base, 1:displacement, 2: cl
1830        EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1831        break;
1832      case kRegCond:  // lir operands - 0: reg, 1: condition
1833        EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1834        break;
1835      case kMemCond:  // lir operands - 0: base, 1: displacement, 2: condition
1836        EmitMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1837        break;
1838      case kRegRegCond:  // lir operands - 0: reg, 1: reg, 2: condition
1839        EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1840        break;
1841      case kRegMemCond:  // lir operands - 0: reg, 1: reg, displacement, 3: condition
1842        EmitRegMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1843                       lir->operands[3]);
1844        break;
1845      case kJmp:  // lir operands - 0: rel
1846        if (entry->opcode == kX86JmpT) {
1847          // This works since the instruction format for jmp and call is basically the same and
1848          // EmitCallThread loads opcode info.
1849          EmitCallThread(entry, lir->operands[0]);
1850        } else {
1851          EmitJmp(entry, lir->operands[0]);
1852        }
1853        break;
1854      case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
1855        EmitJcc(entry, lir->operands[0], lir->operands[1]);
1856        break;
1857      case kCall:
1858        switch (entry->opcode) {
1859          case kX86CallI:  // lir operands - 0: disp
1860            EmitCallImmediate(entry, lir->operands[0]);
1861            break;
1862          case kX86CallM:  // lir operands - 0: base, 1: disp
1863            EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1864            break;
1865          case kX86CallT:  // lir operands - 0: disp
1866            EmitCallThread(entry, lir->operands[0]);
1867            break;
1868          default:
1869            EmitUnimplemented(entry, lir);
1870            break;
1871        }
1872        break;
1873      case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1874        EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1875                  lir->operands[3], lir->operands[4]);
1876        break;
1877      case kMacro:  // lir operands - 0: reg
1878        EmitMacro(entry, lir->operands[0], lir->offset);
1879        break;
1880      case kNop:  // TODO: these instruction kinds are missing implementations.
1881      case kThreadReg:
1882      case kRegArrayImm:
1883      case kShiftArrayImm:
1884      case kShiftArrayCl:
1885      case kArrayCond:
1886      case kUnimplemented:
1887        EmitUnimplemented(entry, lir);
1888        break;
1889    }
1890    DCHECK_EQ(lir->flags.size, GetInsnSize(lir));
1891    CHECK_EQ(lir->flags.size, code_buffer_.size() - starting_cbuf_size)
1892        << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1893  }
1894  return res;
1895}
1896
1897// LIR offset assignment.
1898// TODO: consolidate w/ Arm assembly mechanism.
1899int X86Mir2Lir::AssignInsnOffsets() {
1900  LIR* lir;
1901  int offset = 0;
1902
1903  for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1904    lir->offset = offset;
1905    if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
1906      if (!lir->flags.is_nop) {
1907        offset += lir->flags.size;
1908      }
1909    } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1910      if (offset & 0x2) {
1911        offset += 2;
1912        lir->operands[0] = 1;
1913      } else {
1914        lir->operands[0] = 0;
1915      }
1916    }
1917    /* Pseudo opcodes don't consume space */
1918  }
1919  return offset;
1920}
1921
1922/*
1923 * Walk the compilation unit and assign offsets to instructions
1924 * and literals and compute the total size of the compiled unit.
1925 * TODO: consolidate w/ Arm assembly mechanism.
1926 */
1927void X86Mir2Lir::AssignOffsets() {
1928  int offset = AssignInsnOffsets();
1929
1930  if (const_vectors_ != nullptr) {
1931    /* assign offsets to vector literals */
1932
1933    // First, get offset to 12 mod 16 to align to 16 byte boundary.
1934    // This will ensure that the vector is 16 byte aligned, as the procedure is
1935    // always aligned at at 4 mod 16.
1936    int align_size = (16-4) - (offset & 0xF);
1937    if (align_size < 0) {
1938      align_size += 16;
1939    }
1940
1941    offset += align_size;
1942
1943    // Now assign each literal the right offset.
1944    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1945      p->offset = offset;
1946      offset += 16;
1947    }
1948  }
1949
1950  /* Const values have to be word aligned */
1951  offset = RoundUp(offset, 4);
1952
1953  /* Set up offsets for literals */
1954  data_offset_ = offset;
1955
1956  offset = AssignLiteralOffset(offset);
1957
1958  offset = AssignSwitchTablesOffset(offset);
1959
1960  offset = AssignFillArrayDataOffset(offset);
1961
1962  total_size_ = offset;
1963}
1964
1965/*
1966 * Go over each instruction in the list and calculate the offset from the top
1967 * before sending them off to the assembler. If out-of-range branch distance is
1968 * seen rearrange the instructions a bit to correct it.
1969 * TODO: consolidate w/ Arm assembly mechanism.
1970 */
1971void X86Mir2Lir::AssembleLIR() {
1972  cu_->NewTimingSplit("Assemble");
1973
1974  // We will remove the method address if we never ended up using it
1975  if (store_method_addr_ && !store_method_addr_used_) {
1976    setup_method_address_[0]->flags.is_nop = true;
1977    setup_method_address_[1]->flags.is_nop = true;
1978  }
1979
1980  AssignOffsets();
1981  int assembler_retries = 0;
1982  /*
1983   * Assemble here.  Note that we generate code with optimistic assumptions
1984   * and if found now to work, we'll have to redo the sequence and retry.
1985   */
1986
1987  while (true) {
1988    AssemblerStatus res = AssembleInstructions(0);
1989    if (res == kSuccess) {
1990      break;
1991    } else {
1992      assembler_retries++;
1993      if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1994        CodegenDump();
1995        LOG(FATAL) << "Assembler error - too many retries";
1996      }
1997      // Redo offsets and try again
1998      AssignOffsets();
1999      code_buffer_.clear();
2000    }
2001  }
2002
2003  // Install literals
2004  InstallLiteralPools();
2005
2006  // Install switch tables
2007  InstallSwitchTables();
2008
2009  // Install fill array data
2010  InstallFillArrayData();
2011
2012  // Create the mapping table and native offset to reference map.
2013  cu_->NewTimingSplit("PcMappingTable");
2014  CreateMappingTables();
2015
2016  cu_->NewTimingSplit("GcMap");
2017  CreateNativeGcMap();
2018}
2019
2020}  // namespace art
2021