assemble_x86.cc revision 69dfe51b684dd9d510dbcb63295fe180f998efde
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26  { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4, false }, "data",  "0x!0d" },
27  { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0, false }, "int 3", "" },
28  { kX86Nop,       kNop,     NO_OPERAND,             { 0, 0, 0x90, 0, 0, 0, 0, 0, false }, "nop",   "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31                     rm8_r8, rm32_r32, \
32                     r8_rm8, r32_rm32, \
33                     ax8_i8, ax32_i32, \
34                     rm8_i8, rm8_i8_modrm, \
35                     rm32_i32, rm32_i32_modrm, \
36                     rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0, true }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0, true}, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0, true }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0, true }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1, true }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, true }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, true }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1, true }, #opname "8TI", "fs:[!0d],!1d" }, \
48  \
49{ kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2, false }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2, false }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "16TI8", "fs:[!0d],!1d" }, \
64  \
65{ kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "32TI8", "fs:[!0d],!1d" }, \
80  \
81{ kX86 ## opname ## 64MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64MR", "[!0r+!1d],!2r" }, \
82{ kX86 ## opname ## 64AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
83{ kX86 ## opname ## 64TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_r32, 0, 0, 0,              0,        0, false }, #opname "64TR", "fs:[!0d],!1r" }, \
84{ kX86 ## opname ## 64RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RR", "!0r,!1r" }, \
85{ kX86 ## opname ## 64RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RM", "!0r,[!1r+!2d]" }, \
86{ kX86 ## opname ## 64RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { REX_W,             0, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
87{ kX86 ## opname ## 64RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, r32_rm32, 0, 0, 0,              0,        0, false }, #opname "64RT", "!0r,fs:[!1d]" }, \
88{ kX86 ## opname ## 64RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "64RI", "!0r,!1d" }, \
89{ kX86 ## opname ## 64MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
90{ kX86 ## opname ## 64AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
91{ kX86 ## opname ## 64TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4, false }, #opname "64TI", "fs:[!0d],!1d" }, \
92{ kX86 ## opname ## 64RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64RI8", "!0r,!1d" }, \
93{ kX86 ## opname ## 64MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64MI8", "[!0r+!1d],!2d" }, \
94{ kX86 ## opname ## 64AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { REX_W,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
95{ kX86 ## opname ## 64TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1, false }, #opname "64TI8", "fs:[!0d],!1d" }
96
97ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
98  0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
99  0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
100  0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
101  0x80, 0x0 /* RegMem8/imm8 */,
102  0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
103ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
104  0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
105  0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
106  0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
107  0x80, 0x1 /* RegMem8/imm8 */,
108  0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
109ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
110  0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
111  0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
112  0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
113  0x80, 0x2 /* RegMem8/imm8 */,
114  0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
115ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
116  0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
117  0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
118  0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
119  0x80, 0x3 /* RegMem8/imm8 */,
120  0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
121ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
122  0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
123  0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
124  0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
125  0x80, 0x4 /* RegMem8/imm8 */,
126  0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
127ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
128  0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
129  0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
130  0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
131  0x80, 0x5 /* RegMem8/imm8 */,
132  0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
133ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
134  0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
135  0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
136  0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
137  0x80, 0x6 /* RegMem8/imm8 */,
138  0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
139ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
140  0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
141  0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
142  0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
143  0x80, 0x7 /* RegMem8/imm8 */,
144  0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
145#undef ENCODING_MAP
146
147  { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RRI", "!0r,!1r,!2d" },
148  { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
149  { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
150
151  { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RRI", "!0r,!1r,!2d" },
152  { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
153  { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
154  { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RRI8", "!0r,!1r,!2d" },
155  { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
156  { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
157
158  { kX86Imul64RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RRI", "!0r,!1r,!2d" },
159  { kX86Imul64RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RMI", "!0r,[!1r+!2d],!3d" },
160  { kX86Imul64RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
161  { kX86Imul64RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RRI8", "!0r,!1r,!2d" },
162  { kX86Imul64RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RMI8", "!0r,[!1r+!2d],!3d" },
163  { kX86Imul64RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
164
165  { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8MR", "[!0r+!1d],!2r" },
166  { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
167  { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8TR", "fs:[!0d],!1r" },
168  { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RR", "!0r,!1r" },
169  { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RM", "!0r,[!1r+!2d]" },
170  { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
171  { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RT", "!0r,fs:[!1d]" },
172  { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1, true }, "Mov8RI", "!0r,!1d" },
173  { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1, true }, "Mov8MI", "[!0r+!1d],!2d" },
174  { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1, true }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
175  { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1, true }, "Mov8TI", "fs:[!0d],!1d" },
176
177  { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0, false }, "Mov16MR", "[!0r+!1d],!2r" },
178  { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0, false }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
179  { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0, false }, "Mov16TR", "fs:[!0d],!1r" },
180  { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RR", "!0r,!1r" },
181  { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RM", "!0r,[!1r+!2d]" },
182  { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0, false }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
183  { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RT", "!0r,fs:[!1d]" },
184  { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2, false }, "Mov16RI", "!0r,!1d" },
185  { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2, false }, "Mov16MI", "[!0r+!1d],!2d" },
186  { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2, false }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
187  { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16TI", "fs:[!0d],!1d" },
188
189  { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32MR", "[!0r+!1d],!2r" },
190  { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
191  { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32TR", "fs:[!0d],!1r" },
192  { kX86Mov32RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RR", "!0r,!1r" },
193  { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RM", "!0r,[!1r+!2d]" },
194  { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
195  { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RT", "!0r,fs:[!1d]" },
196  { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4, false }, "Mov32RI", "!0r,!1d" },
197  { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32MI", "[!0r+!1d],!2d" },
198  { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
199  { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32TI", "fs:[!0d],!1d" },
200
201  { kX86Lea32RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1,      { 0,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RM", "!0r,[!1r+!2d]" },
202  { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12,                 { 0,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
203
204  { kX86Mov64MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { REX_W,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64MR", "[!0r+!1d],!2r" },
205  { kX86Mov64AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { REX_W,             0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64AR", "[!0r+!1r<<!2d+!3d],!4r" },
206  { kX86Mov64TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, REX_W, 0x89, 0, 0, 0, 0, 0, false }, "Mov64TR", "fs:[!0d],!1r" },
207  { kX86Mov64RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RR", "!0r,!1r" },
208  { kX86Mov64RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RM", "!0r,[!1r+!2d]" },
209  { kX86Mov64RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { REX_W,             0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
210  { kX86Mov64RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, REX_W, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RT", "!0r,fs:[!1d]" },
211  { kX86Mov64RI32, kRegImm,             IS_BINARY_OP   | REG_DEF0,       { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64RI32", "!0r,!1d" },
212  { kX86Mov64RI64, kMovRegQuadImm,      IS_TERTIARY_OP | REG_DEF0,       { REX_W,             0, 0xB8, 0, 0, 0, 0, 8, false }, "Mov64RI64", "!0r,!1q" },
213  { kX86Mov64MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64MI", "[!0r+!1d],!2d" },
214  { kX86Mov64AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { REX_W,             0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64AI", "[!0r+!1r<<!2d+!3d],!4d" },
215  { kX86Mov64TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, REX_W, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64TI", "fs:[!0d],!1d" },
216
217  { kX86Lea64RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1,      { REX_W,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RM", "!0r,[!1r+!2d]" },
218  { kX86Lea64RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12,                 { REX_W,             0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
219
220  { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { 0,     0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RR", "!2c !0r,!1r" },
221  { kX86Cmov64RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RR", "!2c !0r,!1r" },
222
223  { kX86Cmov32RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { 0,     0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RM", "!3c !0r,[!1r+!2d]" },
224  { kX86Cmov64RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RM", "!3c !0r,[!1r+!2d]" },
225
226#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
227{ kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8RI", "!0r,!1d" }, \
228{ kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8MI", "[!0r+!1d],!2d" }, \
229{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
230{ kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8RC", "!0r,cl" }, \
231{ kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8MC", "[!0r+!1d],cl" }, \
232{ kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1, true }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
233  \
234{ kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16RI", "!0r,!1d" }, \
235{ kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
236{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
237{ kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16RC", "!0r,cl" }, \
238{ kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16MC", "[!0r+!1d],cl" }, \
239{ kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1, false }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
240  \
241{ kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32RI", "!0r,!1d" }, \
242{ kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
243{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
244{ kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32RC", "!0r,cl" }, \
245{ kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32MC", "[!0r+!1d],cl" }, \
246{ kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }, \
247  \
248{ kX86 ## opname ## 64RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64RI", "!0r,!1d" }, \
249{ kX86 ## opname ## 64MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
250{ kX86 ## opname ## 64AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { REX_W,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
251{ kX86 ## opname ## 64RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64RC", "!0r,cl" }, \
252{ kX86 ## opname ## 64MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64MC", "[!0r+!1d],cl" }, \
253{ kX86 ## opname ## 64AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { REX_W,    0, 0xD3, 0, 0, modrm_opcode, 0,    0, false }, #opname "64AC", "[!0r+!1r<<!2d+!3d],cl" }
254
255  SHIFT_ENCODING_MAP(Rol, 0x0),
256  SHIFT_ENCODING_MAP(Ror, 0x1),
257  SHIFT_ENCODING_MAP(Rcl, 0x2),
258  SHIFT_ENCODING_MAP(Rcr, 0x3),
259  SHIFT_ENCODING_MAP(Sal, 0x4),
260  SHIFT_ENCODING_MAP(Shr, 0x5),
261  SHIFT_ENCODING_MAP(Sar, 0x7),
262#undef SHIFT_ENCODING_MAP
263
264  { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0, false }, "Cmc", "" },
265  { kX86Shld32RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { 0,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32RRI", "!0r,!1r,!2d" },
266  { kX86Shld32MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32MRI", "[!0r+!1d],!2r,!3d" },
267  { kX86Shrd32RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { 0,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32RRI", "!0r,!1r,!2d" },
268  { kX86Shrd32MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32MRI", "[!0r+!1d],!2r,!3d" },
269  { kX86Shld64RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { REX_W,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64RRI", "!0r,!1r,!2d" },
270  { kX86Shld64MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W,    0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64MRI", "[!0r+!1d],!2r,!3d" },
271  { kX86Shrd64RRI,  kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES,            { REX_W,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64RRI", "!0r,!1r,!2d" },
272  { kX86Shrd64MRI,  kMemRegImm,      IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W,    0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64MRI", "[!0r+!1d],!2r,!3d" },
273
274  { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8RI", "!0r,!1d" },
275  { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8MI", "[!0r+!1d],!2d" },
276  { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,     0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
277  { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16RI", "!0r,!1d" },
278  { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16MI", "[!0r+!1d],!2d" },
279  { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66,  0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
280  { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32RI", "!0r,!1d" },
281  { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32MI", "[!0r+!1d],!2d" },
282  { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,     0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
283  { kX86Test64RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64RI", "!0r,!1d" },
284  { kX86Test64MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64MI", "[!0r+!1d],!2d" },
285  { kX86Test64AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64AI", "[!0r+!1r<<!2d+!3d],!4d" },
286
287  { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,     0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RR", "!0r,!1r" },
288  { kX86Test64RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { REX_W, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test64RR", "!0r,!1r" },
289  { kX86Test32RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,     0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RM", "!0r,[!1r+!1d]" },
290
291#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
292                           reg, reg_kind, reg_flags, \
293                           mem, mem_kind, mem_flags, \
294                           arr, arr_kind, arr_flags, imm, \
295                           b_flags, hw_flags, w_flags, \
296                           b_format, hw_format, w_format) \
297{ kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #reg, b_format "!0r" }, \
298{ kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #mem, b_format "[!0r+!1d]" }, \
299{ kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #arr, b_format "[!0r+!1r<<!2d+!3d]" }, \
300{ kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #reg, hw_format "!0r" }, \
301{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #mem, hw_format "[!0r+!1d]" }, \
302{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #arr, hw_format "[!0r+!1r<<!2d+!3d]" }, \
303{ kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #reg, w_format "!0r" }, \
304{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #mem, w_format "[!0r+!1d]" }, \
305{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #arr, w_format "[!0r+!1r<<!2d+!3d]" }, \
306{ kX86 ## opname ## 64 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #reg, w_format "!0r" }, \
307{ kX86 ## opname ## 64 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #mem, w_format "[!0r+!1d]" }, \
308{ kX86 ## opname ## 64 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #arr, w_format "[!0r+!1r<<!2d+!3d]" }
309
310  UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
311  UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
312
313  UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
314  UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
315  UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
316  UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
317#undef UNARY_ENCODING_MAP
318
319  { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA,                                  { 0,     0, 0x99, 0,    0, 0, 0, 0, false }, "Cdq", "" },
320  { kx86Cqo64Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA,                                  { REX_W, 0, 0x99, 0,    0, 0, 0, 0, false }, "Cqo", "" },
321  { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0,                                 { 0,     0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap32R", "!0r" },
322  { kX86Bswap64R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0,                                 { REX_W, 0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap64R", "!0r" },
323  { kX86Push32R,  kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0,     0, 0x50, 0,    0, 0, 0, 0, false }, "Push32R",  "!0r" },
324  { kX86Pop32R,   kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD,  { 0,     0, 0x58, 0,    0, 0, 0, 0, false }, "Pop32R",   "!0r" },
325
326#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
327{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
328{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
329{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
330
331// This is a special encoding with r8_form on the second register only
332// for Movzx8 and Movsx8.
333#define EXT_0F_R8_FORM_ENCODING_MAP(opname, prefix, opcode, reg_def) \
334{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, true }, #opname "RR", "!0r,!1r" }, \
335{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
336{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
337
338#define EXT_0F_REX_W_ENCODING_MAP(opname, prefix, opcode, reg_def) \
339{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
340{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
341{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
342
343#define EXT_0F_ENCODING2_MAP(opname, prefix, opcode, opcode2, reg_def) \
344{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
345{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1,  { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
346{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
347
348  EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
349  { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdMR", "[!0r+!1d],!2r" },
350  { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
351
352  EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
353  { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssMR", "[!0r+!1d],!2r" },
354  { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
355
356  EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
357  EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
358  EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2sd,  0xF2, 0x2A, REG_DEF0),
359  EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2ss,  0xF3, 0x2A, REG_DEF0),
360  EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
361  EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
362  EXT_0F_REX_W_ENCODING_MAP(Cvttsd2sqi, 0xF2, 0x2C, REG_DEF0),
363  EXT_0F_REX_W_ENCODING_MAP(Cvttss2sqi, 0xF3, 0x2C, REG_DEF0),
364  EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
365  EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
366  EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES|REG_USE0),
367  EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES|REG_USE0),
368  EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES|REG_USE0),
369  EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES|REG_USE0),
370  EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0_USE0),
371  EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0_USE0),
372  EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0_USE0),
373  EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0_USE0),
374  EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0_USE0),
375  EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0_USE0),
376  EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
377  EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
378  EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0_USE0),
379  EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0_USE0),
380  EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0_USE0),
381  EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0_USE0),
382  EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0_USE0),
383  EXT_0F_ENCODING_MAP(Sqrtsd,    0xF2, 0x51, REG_DEF0_USE0),
384  EXT_0F_ENCODING2_MAP(Pmulld,   0x66, 0x38, 0x40, REG_DEF0_USE0),
385  EXT_0F_ENCODING_MAP(Pmullw,    0x66, 0xD5, REG_DEF0_USE0),
386  EXT_0F_ENCODING_MAP(Mulps,     0x00, 0x59, REG_DEF0_USE0),
387  EXT_0F_ENCODING_MAP(Mulpd,     0x66, 0x59, REG_DEF0_USE0),
388  EXT_0F_ENCODING_MAP(Paddb,     0x66, 0xFC, REG_DEF0_USE0),
389  EXT_0F_ENCODING_MAP(Paddw,     0x66, 0xFD, REG_DEF0_USE0),
390  EXT_0F_ENCODING_MAP(Paddd,     0x66, 0xFE, REG_DEF0_USE0),
391  EXT_0F_ENCODING_MAP(Addps,     0x00, 0x58, REG_DEF0_USE0),
392  EXT_0F_ENCODING_MAP(Addpd,     0xF2, 0x58, REG_DEF0_USE0),
393  EXT_0F_ENCODING_MAP(Psubb,     0x66, 0xF8, REG_DEF0_USE0),
394  EXT_0F_ENCODING_MAP(Psubw,     0x66, 0xF9, REG_DEF0_USE0),
395  EXT_0F_ENCODING_MAP(Psubd,     0x66, 0xFA, REG_DEF0_USE0),
396  EXT_0F_ENCODING_MAP(Subps,     0x00, 0x5C, REG_DEF0_USE0),
397  EXT_0F_ENCODING_MAP(Subpd,     0x66, 0x5C, REG_DEF0_USE0),
398  EXT_0F_ENCODING_MAP(Pand,      0x66, 0xDB, REG_DEF0_USE0),
399  EXT_0F_ENCODING_MAP(Por,       0x66, 0xEB, REG_DEF0_USE0),
400  EXT_0F_ENCODING_MAP(Pxor,      0x66, 0xEF, REG_DEF0_USE0),
401  EXT_0F_ENCODING2_MAP(Phaddw,   0x66, 0x38, 0x01, REG_DEF0_USE0),
402  EXT_0F_ENCODING2_MAP(Phaddd,   0x66, 0x38, 0x02, REG_DEF0_USE0),
403  EXT_0F_ENCODING_MAP(Haddpd,    0x66, 0x7C, REG_DEF0_USE0),
404  EXT_0F_ENCODING_MAP(Haddps,    0xF2, 0x7C, REG_DEF0_USE0),
405
406  { kX86PextrbRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x14, 0, 0, 1, false }, "PextbRRI", "!0r,!1r,!2d" },
407  { kX86PextrwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0xC5, 0x00, 0, 0, 1, false }, "PextwRRI", "!0r,!1r,!2d" },
408  { kX86PextrdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0  | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextdRRI", "!0r,!1r,!2d" },
409  { kX86PextrbMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrbMRI", "[!0r+!1d],!2r,!3d" },
410  { kX86PextrwMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrwMRI", "[!0r+!1d],!2r,!3d" },
411  { kX86PextrdMRI, kMemRegImm, IS_QUAD_OP     | REG_USE02 | IS_STORE, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "kX86PextrdMRI", "[!0r+!1d],!2r,!3d" },
412
413  { kX86PshuflwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0xF2, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuflwRRI", "!0r,!1r,!2d" },
414  { kX86PshufdRRI,  kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuffRRI", "!0r,!1r,!2d" },
415
416  { kX86ShufpsRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x00, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "kX86ShufpsRRI", "!0r,!1r,!2d" },
417  { kX86ShufpdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0xC6, 0, 0, 0, 1, false }, "kX86ShufpdRRI", "!0r,!1r,!2d" },
418
419  { kX86PsrawRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 4, 0, 1, false }, "PsrawRI", "!0r,!1d" },
420  { kX86PsradRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 4, 0, 1, false }, "PsradRI", "!0r,!1d" },
421  { kX86PsrlwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 2, 0, 1, false }, "PsrlwRI", "!0r,!1d" },
422  { kX86PsrldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 2, 0, 1, false }, "PsrldRI", "!0r,!1d" },
423  { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1, false }, "PsrlqRI", "!0r,!1d" },
424  { kX86PsllwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 6, 0, 1, false }, "PsllwRI", "!0r,!1d" },
425  { kX86PslldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 6, 0, 1, false }, "PslldRI", "!0r,!1d" },
426  { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1, false }, "PsllqRI", "!0r,!1d" },
427
428  { kX86Fild32M,  kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDB, 0x00, 0, 0, 0, 0, false }, "Fild32M",  "[!0r,!1d]" },
429  { kX86Fild64M,  kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDF, 0x00, 0, 5, 0, 0, false }, "Fild64M",  "[!0r,!1d]" },
430  { kX86Fld32M,   kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 0, 0, 0, false }, "Fld32M",   "[!0r,!1d]" },
431  { kX86Fld64M,   kMem,     IS_LOAD    | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 0, 0, 0, false }, "Fld64M",   "[!0r,!1d]" },
432  { kX86Fstp32M,  kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 3, 0, 0, false }, "Fstps32M", "[!0r,!1d]" },
433  { kX86Fstp64M,  kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 3, 0, 0, false }, "Fstpd64M", "[!0r,!1d]" },
434  { kX86Fst32M,   kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xD9, 0x00, 0, 2, 0, 0, false }, "Fsts32M",  "[!0r,!1d]" },
435  { kX86Fst64M,   kMem,     IS_STORE   | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0,  0,    0xDD, 0x00, 0, 2, 0, 0, false }, "Fstd64M",  "[!0r,!1d]" },
436  { kX86Fprem,    kNullary, NO_OPERAND | USE_FP_STACK,                          { 0xD9, 0,    0xF8, 0,    0, 0, 0, 0, false }, "Fprem64",  "" },
437  { kX86Fucompp,  kNullary, NO_OPERAND | USE_FP_STACK,                          { 0xDA, 0,    0xE9, 0,    0, 0, 0, 0, false }, "Fucompp",  "" },
438  { kX86Fstsw16R, kNullary, NO_OPERAND | REG_DEFA | USE_FP_STACK,               { 0x9B, 0xDF, 0xE0, 0,    0, 0, 0, 0, false }, "Fstsw16R", "ax" },
439
440  EXT_0F_ENCODING_MAP(Mova128,    0x66, 0x6F, REG_DEF0),
441  { kX86Mova128MR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "Mova128MR", "[!0r+!1d],!2r" },
442  { kX86Mova128AR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "Mova128AR", "[!0r+!1r<<!2d+!3d],!4r" },
443
444
445  EXT_0F_ENCODING_MAP(Movups,    0x0, 0x10, REG_DEF0),
446  { kX86MovupsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsMR", "[!0r+!1d],!2r" },
447  { kX86MovupsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
448
449  EXT_0F_ENCODING_MAP(Movaps,    0x0, 0x28, REG_DEF0),
450  { kX86MovapsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsMR", "[!0r+!1d],!2r" },
451  { kX86MovapsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
452
453  { kX86MovlpsRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01,  { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRM", "!0r,[!1r+!2d]" },
454  { kX86MovlpsRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
455  { kX86MovlpsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,            { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsMR", "[!0r+!1d],!2r" },
456  { kX86MovlpsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014,           { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
457
458  { kX86MovhpsRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01,  { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRM", "!0r,[!1r+!2d]" },
459  { kX86MovhpsRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
460  { kX86MovhpsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,            { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsMR", "[!0r+!1d],!2r" },
461  { kX86MovhpsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014,           { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
462
463  EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
464  EXT_0F_REX_W_ENCODING_MAP(Movqxr, 0x66, 0x6E, REG_DEF0),
465  { kX86MovqrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE1,   { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxRR", "!0r,!1r" },
466  { kX86MovqrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxMR", "[!0r+!1d],!2r" },
467  { kX86MovqrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
468
469  { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE1,   { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxRR", "!0r,!1r" },
470  { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxMR", "[!0r+!1d],!2r" },
471  { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
472
473  { kX86MovsxdRR, kRegReg,      IS_BINARY_OP | REG_DEF0 | REG_USE1,              { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRR", "!0r,!1r" },
474  { kX86MovsxdRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE1,  { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRM", "!0r,[!1r+!2d]" },
475  { kX86MovsxdRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE12, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRA", "!0r,[!1r+!2r<<!3d+!4d]" },
476
477  { kX86Set8R, kRegCond,              IS_BINARY_OP   | REG_DEF0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, true }, "Set8R", "!1c !0r" },
478  { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8M", "!2c [!0r+!1d]" },
479  { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
480
481  // TODO: load/store?
482  // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
483  { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0, false }, "Mfence", "" },
484
485  EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
486  EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
487  EXT_0F_ENCODING_MAP(Imul64,  REX_W, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
488
489  { kX86CmpxchgRR, kRegRegStore,  IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES,   { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "!0r,!1r" },
490  { kX86CmpxchgMR, kMemReg,       IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1d],!2r" },
491  { kX86CmpxchgAR, kArrayReg,     IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0,    0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
492  { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
493  { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
494  { kX86LockCmpxchg64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES,    { 0xF0, REX_W, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
495  { kX86LockCmpxchg64M, kMem,     IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1d]" },
496  { kX86LockCmpxchg64A, kArray,   IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES,  { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
497  { kX86XchgMR, kMemReg,          IS_STORE | IS_LOAD | IS_TERTIARY_OP | REG_DEF2 | REG_USE02,          { 0, 0, 0x87, 0, 0, 0, 0, 0, false }, "Xchg", "[!0r+!1d],!2r" },
498
499  EXT_0F_R8_FORM_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
500  EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
501  EXT_0F_R8_FORM_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
502  EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
503  EXT_0F_ENCODING_MAP(Movzx8q,  REX_W, 0xB6, REG_DEF0),
504  EXT_0F_ENCODING_MAP(Movzx16q, REX_W, 0xB7, REG_DEF0),
505  EXT_0F_ENCODING_MAP(Movsx8q,  REX, 0xBE, REG_DEF0),
506  EXT_0F_ENCODING_MAP(Movsx16q, REX_W, 0xBF, REG_DEF0),
507#undef EXT_0F_ENCODING_MAP
508
509  { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0, false }, "Jcc8",  "!1c !0t" },
510  { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0, false }, "Jcc32", "!1c !0t" },
511  { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0, false }, "Jmp8",  "!0t" },
512  { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0, false }, "Jmp32", "!0t" },
513  { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0, false }, "JmpR",  "!0r" },
514  { kX86Jecxz8, kJmp, NO_OPERAND   | IS_BRANCH | NEEDS_FIXUP | REG_USEC,    { 0,             0, 0xE3, 0,    0, 0, 0, 0, false }, "Jecxz", "!0t" },
515  { kX86JmpT,  kJmp,  IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 4, 0, 0, false }, "JmpT",  "fs:[!0d]" },
516  { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0, false }, "CallR", "!0r" },
517  { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0, false }, "CallM", "[!0r+!1d]" },
518  { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0, false }, "CallA", "[!0r+!1r<<!2d+!3d]" },
519  { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0, false }, "CallT", "fs:[!0d]" },
520  { kX86CallI, kCall, IS_UNARY_OP  | IS_BRANCH,                             { 0,             0, 0xE8, 0,    0, 0, 0, 4, false }, "CallI", "!0d" },
521  { kX86Ret,   kNullary, NO_OPERAND | IS_BRANCH,                            { 0,             0, 0xC3, 0,    0, 0, 0, 0, false }, "Ret", "" },
522
523  { kX86StartOfMethod, kMacro,  IS_UNARY_OP | SETS_CCODES,             { 0, 0, 0,    0, 0, 0, 0, 0, false }, "StartOfMethod", "!0r" },
524  { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
525  { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4, false }, "PcRelAdr",      "!0r,!1d" },
526  { kX86RepneScasw,    kNullary, NO_OPERAND | REG_USEA | REG_USEC | SETS_CCODES, { 0x66, 0xF2, 0xAF, 0, 0, 0, 0, 0, false }, "RepNE ScasW", "" },
527};
528
529static bool NeedsRex(int32_t raw_reg) {
530  return RegStorage::RegNum(raw_reg) > 7;
531}
532
533static uint8_t LowRegisterBits(int32_t raw_reg) {
534  uint8_t low_reg = RegStorage::RegNum(raw_reg) & kRegNumMask32;  // 3 bits
535  DCHECK_LT(low_reg, 8);
536  return low_reg;
537}
538
539static bool HasModrm(const X86EncodingMap* entry) {
540  switch (entry->kind) {
541    case kNullary: return false;
542    case kRegOpcode: return false;
543    default: return true;
544  }
545}
546
547static bool HasSib(const X86EncodingMap* entry) {
548  switch (entry->kind) {
549    case kArray: return true;
550    case kArrayReg: return true;
551    case kRegArray: return true;
552    case kArrayImm: return true;
553    case kRegArrayImm: return true;
554    case kShiftArrayImm: return true;
555    case kShiftArrayCl: return true;
556    case kArrayCond: return true;
557    case kCall:
558      switch (entry->opcode) {
559        case kX86CallA: return true;
560        default: return false;
561      }
562    case kPcRel: return true;
563       switch (entry->opcode) {
564         case kX86PcRelLoadRA: return true;
565         default: return false;
566        }
567    default: return false;
568  }
569}
570
571static bool ModrmIsRegReg(const X86EncodingMap* entry) {
572  switch (entry->kind) {
573    // There is no modrm for this kind of instruction, therefore the reg doesn't form part of the
574    // modrm:
575    case kNullary: return true;
576    case kRegOpcode: return true;
577    case kMovRegImm: return true;
578    // Regular modrm value of 3 cases, when there is one register the other register holds an
579    // opcode so the base register is special.
580    case kReg: return true;
581    case kRegReg: return true;
582    case kRegRegStore: return true;
583    case kRegImm: return true;
584    case kRegRegImm: return true;
585    case kRegRegImmStore: return true;
586    case kShiftRegImm: return true;
587    case kShiftRegCl: return true;
588    case kRegCond: return true;
589    case kRegRegCond: return true;
590    case kJmp:
591      switch (entry->opcode) {
592        case kX86JmpR: return true;
593        default: return false;
594      }
595    case kCall:
596      switch (entry->opcode) {
597        case kX86CallR: return true;
598        default: return false;
599      }
600    default: return false;
601  }
602}
603
604static bool IsByteSecondOperand(const X86EncodingMap* entry) {
605  return StartsWith(entry->name, "Movzx8") || StartsWith(entry->name, "Movsx8");
606}
607
608size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
609                               int32_t raw_base, int32_t displacement) {
610  bool has_modrm = HasModrm(entry);
611  bool has_sib = HasSib(entry);
612  bool r8_form = entry->skeleton.r8_form;
613  bool modrm_is_reg_reg = ModrmIsRegReg(entry);
614  if (has_sib) {
615    DCHECK(!modrm_is_reg_reg);
616  }
617  size_t size = 0;
618  if (entry->skeleton.prefix1 > 0) {
619    ++size;
620    if (entry->skeleton.prefix2 > 0) {
621      ++size;
622    }
623  }
624  if (cu_->target64 || kIsDebugBuild) {
625    bool registers_need_rex_prefix = NeedsRex(raw_reg) || NeedsRex(raw_index) || NeedsRex(raw_base);
626    if (r8_form) {
627      // Do we need an empty REX prefix to normalize byte registers?
628      registers_need_rex_prefix = registers_need_rex_prefix ||
629          (RegStorage::RegNum(raw_reg) >= 4 && !IsByteSecondOperand(entry));
630      registers_need_rex_prefix = registers_need_rex_prefix ||
631          (modrm_is_reg_reg && (RegStorage::RegNum(raw_base) >= 4));
632    }
633    if (registers_need_rex_prefix) {
634      DCHECK(cu_->target64) << "Attempt to use a 64-bit only addressable register "
635          << RegStorage::RegNum(raw_reg) << " with instruction " << entry->name;
636      if (entry->skeleton.prefix1 != REX_W && entry->skeleton.prefix2 != REX_W
637         && entry->skeleton.prefix1 != REX && entry->skeleton.prefix2 != REX) {
638        ++size;  // rex
639      }
640    }
641  }
642  ++size;  // opcode
643  if (entry->skeleton.opcode == 0x0F) {
644    ++size;
645    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
646      ++size;
647    }
648  }
649  if (has_modrm) {
650    ++size;  // modrm
651  }
652  if (!modrm_is_reg_reg) {
653    if (has_sib || LowRegisterBits(raw_base) == rs_rX86_SP.GetRegNum()
654        || (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX)) {
655      // SP requires a SIB byte.
656      // GS access also needs a SIB byte for absolute adressing in 64-bit mode.
657      ++size;
658    }
659    if (displacement != 0 || LowRegisterBits(raw_base) == rs_rBP.GetRegNum()) {
660      // BP requires an explicit displacement, even when it's 0.
661      if (entry->opcode != kX86Lea32RA && entry->opcode != kX86Lea64RA) {
662        DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), UINT64_C(0)) << entry->name;
663      }
664      size += IS_SIMM8(displacement) ? 1 : 4;
665    }
666  }
667  size += entry->skeleton.immediate_bytes;
668  return size;
669}
670
671size_t X86Mir2Lir::GetInsnSize(LIR* lir) {
672  DCHECK(!IsPseudoLirOp(lir->opcode));
673  const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
674  DCHECK_EQ(entry->opcode, lir->opcode) << entry->name;
675
676  switch (entry->kind) {
677    case kData:
678      return 4;  // 4 bytes of data.
679    case kNop:
680      return lir->operands[0];  // Length of nop is sole operand.
681    case kNullary:
682      return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0);
683    case kRegOpcode:  // lir operands - 0: reg
684      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
685    case kReg:  // lir operands - 0: reg
686      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
687    case kMem:  // lir operands - 0: base, 1: disp
688      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
689    case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
690      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
691    case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
692      return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]);
693    case kMemRegImm:  // lir operands - 0: base, 1: disp, 2: reg 3: immediate
694      return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0], lir->operands[1]);
695    case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
696      return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
697                         lir->operands[3]);
698    case kThreadReg:  // lir operands - 0: disp, 1: reg
699      // Thread displacement size is always 32bit.
700      return ComputeSize(entry, lir->operands[1], NO_REG, NO_REG, 0x12345678);
701    case kRegReg:  // lir operands - 0: reg1, 1: reg2
702      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
703    case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
704      return ComputeSize(entry, lir->operands[1], NO_REG, lir->operands[0], 0);
705    case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
706      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
707    case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
708      return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
709                         lir->operands[4]);
710    case kRegThread:  // lir operands - 0: reg, 1: disp
711      // Thread displacement size is always 32bit.
712      return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0x12345678);
713    case kRegImm: {  // lir operands - 0: reg, 1: immediate
714      size_t size = ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0);
715      // AX opcodes don't require the modrm byte.
716      if (entry->skeleton.ax_opcode == 0) {
717        return size;
718      } else {
719        return size - (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum() ? 1 : 0);
720      }
721    }
722    case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
723      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
724    case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
725      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
726    case kThreadImm:  // lir operands - 0: disp, 1: imm
727      // Thread displacement size is always 32bit.
728      return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
729    case kRegRegImm:  // lir operands - 0: reg1, 1: reg2, 2: imm
730      // Note: RegRegImm form passes reg2 as index but encodes it using base.
731      return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, 0);
732    case kRegRegImmStore:  // lir operands - 0: reg2, 1: reg1, 2: imm
733      // Note: RegRegImmStore form passes reg1 as index but encodes it using base.
734      return ComputeSize(entry, lir->operands[1], lir->operands[0], NO_REG, 0);
735    case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
736      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
737    case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
738      return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
739                         lir->operands[4]);
740    case kMovRegImm:  // lir operands - 0: reg, 1: immediate
741    case kMovRegQuadImm:
742      return ((entry->skeleton.prefix1 != 0 || NeedsRex(lir->operands[0])) ? 1 : 0) + 1 +
743          entry->skeleton.immediate_bytes;
744    case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
745      // Shift by immediate one has a shorter opcode.
746      return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0) -
747          (lir->operands[1] == 1 ? 1 : 0);
748    case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
749      // Shift by immediate one has a shorter opcode.
750      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]) -
751          (lir->operands[2] == 1 ? 1 : 0);
752    case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
753      // Shift by immediate one has a shorter opcode.
754      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]) -
755          (lir->operands[4] == 1 ? 1 : 0);
756    case kShiftRegCl:  // lir operands - 0: reg, 1: cl
757      DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[1]));
758      // Note: ShiftRegCl form passes reg as reg but encodes it using base.
759      return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, 0);
760    case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
761      DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[2]));
762      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
763    case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cl
764      DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[4]));
765      return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
766                         lir->operands[3]);
767    case kRegCond:  // lir operands - 0: reg, 1: cond
768      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], 0);
769    case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
770      return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
771    case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
772      DCHECK_EQ(false, entry->skeleton.r8_form);
773      return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
774    case kRegRegCond:  // lir operands - 0: reg1, 1: reg2, 2: cond
775      DCHECK_EQ(false, entry->skeleton.r8_form);
776      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], 0);
777    case kRegMemCond:  // lir operands - 0: reg, 1: base, 2: disp, 3:cond
778      DCHECK_EQ(false, entry->skeleton.r8_form);
779      return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], lir->operands[2]);
780    case kJcc:
781      if (lir->opcode == kX86Jcc8) {
782        return 2;  // opcode + rel8
783      } else {
784        DCHECK(lir->opcode == kX86Jcc32);
785        return 6;  // 2 byte opcode + rel32
786      }
787    case kJmp:
788      if (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jecxz8) {
789        return 2;  // opcode + rel8
790      } else if (lir->opcode == kX86Jmp32) {
791        return 5;  // opcode + rel32
792      } else if (lir->opcode == kX86JmpT) {
793        // Thread displacement size is always 32bit.
794        return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
795      } else {
796        DCHECK(lir->opcode == kX86JmpR);
797        if (NeedsRex(lir->operands[0])) {
798          return 3;  // REX.B + opcode + modrm
799        } else {
800          return 2;  // opcode + modrm
801        }
802      }
803    case kCall:
804      switch (lir->opcode) {
805        case kX86CallI: return 5;  // opcode 0:disp
806        case kX86CallR: return 2;  // opcode modrm
807        case kX86CallM:  // lir operands - 0: base, 1: disp
808          return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], lir->operands[1]);
809        case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
810          return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], lir->operands[3]);
811        case kX86CallT:  // lir operands - 0: disp
812          // Thread displacement size is always 32bit.
813          return ComputeSize(entry, NO_REG, NO_REG, NO_REG, 0x12345678);
814        default:
815          break;
816      }
817      break;
818    case kPcRel:
819      if (entry->opcode == kX86PcRelLoadRA) {
820        // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
821        // Force the displacement size to 32bit, it will hold a computed offset later.
822        return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
823                           0x12345678);
824      } else {
825        DCHECK_EQ(entry->opcode, kX86PcRelAdr);
826        return 5;  // opcode with reg + 4 byte immediate
827      }
828    case kMacro:  // lir operands - 0: reg
829      DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
830      return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
831          ComputeSize(&X86Mir2Lir::EncodingMap[cu_->target64 ? kX86Sub64RI : kX86Sub32RI],
832                      lir->operands[0], NO_REG, NO_REG, 0) -
833              // Shorter ax encoding.
834              (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum()  ? 1 : 0);
835    case kUnimplemented:
836      break;
837  }
838  UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
839  return 0;
840}
841
842static uint8_t ModrmForDisp(int base, int disp) {
843  // BP requires an explicit disp, so do not omit it in the 0 case
844  if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
845    return 0;
846  } else if (IS_SIMM8(disp)) {
847    return 1;
848  } else {
849    return 2;
850  }
851}
852
853void X86Mir2Lir::CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg) {
854  if (kIsDebugBuild) {
855    // Sanity check r8_form is correctly specified.
856    if (entry->skeleton.r8_form) {
857      CHECK(strchr(entry->name, '8') != nullptr) << entry->name;
858    } else {
859      if (entry->skeleton.immediate_bytes != 1) {  // Ignore ...I8 instructions.
860        if (!StartsWith(entry->name, "Movzx8") && !StartsWith(entry->name, "Movsx8")
861           && !StartsWith(entry->name, "Movzx8q") && !StartsWith(entry->name, "Movsx8q")) {
862          CHECK(strchr(entry->name, '8') == nullptr) << entry->name;
863        }
864      }
865    }
866    if (RegStorage::RegNum(raw_reg) >= 4) {
867      // ah, bh, ch and dh are not valid registers in 32-bit.
868      CHECK(cu_->target64 || !entry->skeleton.r8_form)
869               << "Invalid register " << static_cast<int>(RegStorage::RegNum(raw_reg))
870               << " for instruction " << entry->name << " in "
871               << PrettyMethod(cu_->method_idx, *cu_->dex_file);
872    }
873  }
874}
875
876void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry,
877                            int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) {
878  // REX.WRXB
879  // W - 64-bit operand
880  // R - MODRM.reg
881  // X - SIB.index
882  // B - MODRM.rm/SIB.base
883  bool w = (entry->skeleton.prefix1 == REX_W) || (entry->skeleton.prefix2 == REX_W);
884  bool r = NeedsRex(raw_reg_r);
885  bool x = NeedsRex(raw_reg_x);
886  bool b = NeedsRex(raw_reg_b);
887  bool r8_form = entry->skeleton.r8_form;
888  bool modrm_is_reg_reg = ModrmIsRegReg(entry);
889
890  uint8_t rex = 0;
891  if (r8_form) {
892    // Do we need an empty REX prefix to normalize byte register addressing?
893    if (RegStorage::RegNum(raw_reg_r) >= 4 && !IsByteSecondOperand(entry)) {
894      rex |= 0x40;  // REX.0000
895    } else if (modrm_is_reg_reg && RegStorage::RegNum(raw_reg_b) >= 4) {
896      rex |= 0x40;  // REX.0000
897    }
898  }
899  if (w) {
900    rex |= 0x48;  // REX.W000
901  }
902  if (r) {
903    rex |= 0x44;  // REX.0R00
904  }
905  if (x) {
906    rex |= 0x42;  // REX.00X0
907  }
908  if (b) {
909    rex |= 0x41;  // REX.000B
910  }
911  if (entry->skeleton.prefix1 != 0) {
912    if (cu_->target64 && entry->skeleton.prefix1 == THREAD_PREFIX) {
913      // 64 bit addresses by GS, not FS.
914      code_buffer_.push_back(THREAD_PREFIX_GS);
915    } else {
916      if (entry->skeleton.prefix1 == REX_W || entry->skeleton.prefix1 == REX) {
917        DCHECK(cu_->target64);
918        rex |= entry->skeleton.prefix1;
919        code_buffer_.push_back(rex);
920        rex = 0;
921      } else {
922        code_buffer_.push_back(entry->skeleton.prefix1);
923      }
924    }
925    if (entry->skeleton.prefix2 != 0) {
926      if (entry->skeleton.prefix2 == REX_W || entry->skeleton.prefix1 == REX) {
927        DCHECK(cu_->target64);
928        rex |= entry->skeleton.prefix2;
929        code_buffer_.push_back(rex);
930        rex = 0;
931      } else {
932        code_buffer_.push_back(entry->skeleton.prefix2);
933      }
934    }
935  } else {
936    DCHECK_EQ(0, entry->skeleton.prefix2);
937  }
938  if (rex != 0) {
939    DCHECK(cu_->target64);
940    code_buffer_.push_back(rex);
941  }
942}
943
944void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
945  code_buffer_.push_back(entry->skeleton.opcode);
946  if (entry->skeleton.opcode == 0x0F) {
947    code_buffer_.push_back(entry->skeleton.extra_opcode1);
948    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
949      code_buffer_.push_back(entry->skeleton.extra_opcode2);
950    } else {
951      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
952    }
953  } else {
954    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
955    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
956  }
957}
958
959void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry,
960                                     int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b) {
961  EmitPrefix(entry, raw_reg_r, raw_reg_x, raw_reg_b);
962  EmitOpcode(entry);
963}
964
965void X86Mir2Lir::EmitDisp(uint8_t base, int32_t disp) {
966  // BP requires an explicit disp, so do not omit it in the 0 case
967  if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
968    return;
969  } else if (IS_SIMM8(disp)) {
970    code_buffer_.push_back(disp & 0xFF);
971  } else {
972    code_buffer_.push_back(disp & 0xFF);
973    code_buffer_.push_back((disp >> 8) & 0xFF);
974    code_buffer_.push_back((disp >> 16) & 0xFF);
975    code_buffer_.push_back((disp >> 24) & 0xFF);
976  }
977}
978
979void X86Mir2Lir::EmitModrmThread(uint8_t reg_or_opcode) {
980  if (cu_->target64) {
981    // Absolute adressing for GS access.
982    uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rX86_SP.GetRegNum();
983    code_buffer_.push_back(modrm);
984    uint8_t sib = (0/*TIMES_1*/ << 6) | (rs_rX86_SP.GetRegNum() << 3) | rs_rBP.GetRegNum();
985    code_buffer_.push_back(sib);
986  } else {
987    uint8_t modrm = (0 << 6) | (reg_or_opcode << 3) | rs_rBP.GetRegNum();
988    code_buffer_.push_back(modrm);
989  }
990}
991
992void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp) {
993  DCHECK_LT(reg_or_opcode, 8);
994  DCHECK_LT(base, 8);
995  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
996  code_buffer_.push_back(modrm);
997  if (base == rs_rX86_SP.GetRegNum()) {
998    // Special SIB for SP base
999    code_buffer_.push_back(0 << 6 | rs_rX86_SP.GetRegNum() << 3 | rs_rX86_SP.GetRegNum());
1000  }
1001  EmitDisp(base, disp);
1002}
1003
1004void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
1005                                  int scale, int32_t disp) {
1006  DCHECK_LT(RegStorage::RegNum(reg_or_opcode), 8);
1007  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | RegStorage::RegNum(reg_or_opcode) << 3 |
1008      rs_rX86_SP.GetRegNum();
1009  code_buffer_.push_back(modrm);
1010  DCHECK_LT(scale, 4);
1011  DCHECK_LT(RegStorage::RegNum(index), 8);
1012  DCHECK_LT(RegStorage::RegNum(base), 8);
1013  uint8_t sib = (scale << 6) | (RegStorage::RegNum(index) << 3) | RegStorage::RegNum(base);
1014  code_buffer_.push_back(sib);
1015  EmitDisp(base, disp);
1016}
1017
1018void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int64_t imm) {
1019  switch (entry->skeleton.immediate_bytes) {
1020    case 1:
1021      DCHECK(IS_SIMM8(imm));
1022      code_buffer_.push_back(imm & 0xFF);
1023      break;
1024    case 2:
1025      DCHECK(IS_SIMM16(imm));
1026      code_buffer_.push_back(imm & 0xFF);
1027      code_buffer_.push_back((imm >> 8) & 0xFF);
1028      break;
1029    case 4:
1030      DCHECK(IS_SIMM32(imm));
1031      code_buffer_.push_back(imm & 0xFF);
1032      code_buffer_.push_back((imm >> 8) & 0xFF);
1033      code_buffer_.push_back((imm >> 16) & 0xFF);
1034      code_buffer_.push_back((imm >> 24) & 0xFF);
1035      break;
1036    case 8:
1037      code_buffer_.push_back(imm & 0xFF);
1038      code_buffer_.push_back((imm >> 8) & 0xFF);
1039      code_buffer_.push_back((imm >> 16) & 0xFF);
1040      code_buffer_.push_back((imm >> 24) & 0xFF);
1041      code_buffer_.push_back((imm >> 32) & 0xFF);
1042      code_buffer_.push_back((imm >> 40) & 0xFF);
1043      code_buffer_.push_back((imm >> 48) & 0xFF);
1044      code_buffer_.push_back((imm >> 56) & 0xFF);
1045      break;
1046    default:
1047      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
1048                 << ") for instruction: " << entry->name;
1049      break;
1050  }
1051}
1052
1053void X86Mir2Lir::EmitNullary(const X86EncodingMap* entry) {
1054  DCHECK_EQ(false, entry->skeleton.r8_form);
1055  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1056  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1057  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1058  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1059}
1060
1061void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg) {
1062  DCHECK_EQ(false, entry->skeleton.r8_form);
1063  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg);
1064  // There's no 3-byte instruction with +rd
1065  DCHECK(entry->skeleton.opcode != 0x0F ||
1066         (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
1067  DCHECK(!RegStorage::IsFloat(raw_reg));
1068  uint8_t low_reg = LowRegisterBits(raw_reg);
1069  code_buffer_.back() += low_reg;
1070  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1071  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1072}
1073
1074void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg) {
1075  CheckValidByteRegister(entry, raw_reg);
1076  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg);
1077  uint8_t low_reg = LowRegisterBits(raw_reg);
1078  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1079  code_buffer_.push_back(modrm);
1080  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1081  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1082}
1083
1084void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
1085  DCHECK_EQ(false, entry->skeleton.r8_form);
1086  EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1087  code_buffer_.push_back(entry->skeleton.opcode);
1088  DCHECK_NE(0x0F, entry->skeleton.opcode);
1089  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1090  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1091  uint8_t low_base = LowRegisterBits(raw_base);
1092  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1093  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1094  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1095}
1096
1097void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
1098                             int scale, int32_t disp) {
1099  DCHECK_EQ(false, entry->skeleton.r8_form);
1100  EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base);
1101  uint8_t low_index = LowRegisterBits(raw_index);
1102  uint8_t low_base = LowRegisterBits(raw_base);
1103  EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
1104  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1105  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1106}
1107
1108void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1109                            int32_t raw_reg) {
1110  CheckValidByteRegister(entry, raw_reg);
1111  EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base);
1112  uint8_t low_reg = LowRegisterBits(raw_reg);
1113  uint8_t low_base = LowRegisterBits(raw_base);
1114  EmitModrmDisp(low_reg, low_base, disp);
1115  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1116  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1117  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1118}
1119
1120void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
1121                            int32_t disp) {
1122  // Opcode will flip operands.
1123  EmitMemReg(entry, raw_base, disp, raw_reg);
1124}
1125
1126void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
1127                              int32_t raw_index, int scale, int32_t disp) {
1128  CheckValidByteRegister(entry, raw_reg);
1129  EmitPrefixAndOpcode(entry, raw_reg, raw_index, raw_base);
1130  uint8_t low_reg = LowRegisterBits(raw_reg);
1131  uint8_t low_index = LowRegisterBits(raw_index);
1132  uint8_t low_base = LowRegisterBits(raw_base);
1133  EmitModrmSibDisp(low_reg, low_base, low_index, scale, disp);
1134  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1135  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1136  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1137}
1138
1139void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
1140                              int scale, int32_t disp, int32_t raw_reg) {
1141  // Opcode will flip operands.
1142  EmitRegArray(entry, raw_reg, raw_base, raw_index, scale, disp);
1143}
1144
1145void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1146                            int32_t imm) {
1147  DCHECK_EQ(false, entry->skeleton.r8_form);
1148  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base);
1149  uint8_t low_base = LowRegisterBits(raw_base);
1150  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1151  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1152  EmitImm(entry, imm);
1153}
1154
1155void X86Mir2Lir::EmitArrayImm(const X86EncodingMap* entry,
1156                              int32_t raw_base, int32_t raw_index, int scale, int32_t disp,
1157                              int32_t imm) {
1158  DCHECK_EQ(false, entry->skeleton.r8_form);
1159  EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base);
1160  uint8_t low_index = LowRegisterBits(raw_index);
1161  uint8_t low_base = LowRegisterBits(raw_base);
1162  EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
1163  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1164  EmitImm(entry, imm);
1165}
1166
1167void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp) {
1168  DCHECK_EQ(false, entry->skeleton.r8_form);
1169  DCHECK_NE(entry->skeleton.prefix1, 0);
1170  EmitPrefixAndOpcode(entry, raw_reg, NO_REG, NO_REG);
1171  uint8_t low_reg = LowRegisterBits(raw_reg);
1172  EmitModrmThread(low_reg);
1173  code_buffer_.push_back(disp & 0xFF);
1174  code_buffer_.push_back((disp >> 8) & 0xFF);
1175  code_buffer_.push_back((disp >> 16) & 0xFF);
1176  code_buffer_.push_back((disp >> 24) & 0xFF);
1177  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1178  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1179  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1180}
1181
1182void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2) {
1183  if (!IsByteSecondOperand(entry)) {
1184    CheckValidByteRegister(entry, raw_reg1);
1185  }
1186  CheckValidByteRegister(entry, raw_reg2);
1187  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1188  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1189  uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1190  uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
1191  code_buffer_.push_back(modrm);
1192  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1193  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1194  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1195}
1196
1197void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
1198                               int32_t imm) {
1199  DCHECK_EQ(false, entry->skeleton.r8_form);
1200  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1201  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1202  uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1203  uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
1204  code_buffer_.push_back(modrm);
1205  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1206  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1207  EmitImm(entry, imm);
1208}
1209
1210void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
1211                               int32_t raw_reg, int32_t raw_base, int disp, int32_t imm) {
1212  DCHECK(!RegStorage::IsFloat(raw_reg));
1213  CheckValidByteRegister(entry, raw_reg);
1214  EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base);
1215  uint8_t low_reg = LowRegisterBits(raw_reg);
1216  uint8_t low_base = LowRegisterBits(raw_base);
1217  EmitModrmDisp(low_reg, low_base, disp);
1218  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1219  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1220  EmitImm(entry, imm);
1221}
1222
1223void X86Mir2Lir::EmitMemRegImm(const X86EncodingMap* entry,
1224                               int32_t raw_base, int32_t disp, int32_t raw_reg, int32_t imm) {
1225  // Opcode will flip operands.
1226  EmitRegMemImm(entry, raw_reg, raw_base, disp, imm);
1227}
1228
1229void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
1230  CheckValidByteRegister(entry, raw_reg);
1231  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1232  if (RegStorage::RegNum(raw_reg) == rs_rAX.GetRegNum() && entry->skeleton.ax_opcode != 0) {
1233    code_buffer_.push_back(entry->skeleton.ax_opcode);
1234  } else {
1235    uint8_t low_reg = LowRegisterBits(raw_reg);
1236    EmitOpcode(entry);
1237    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1238    code_buffer_.push_back(modrm);
1239  }
1240  EmitImm(entry, imm);
1241}
1242
1243void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm) {
1244  DCHECK_EQ(false, entry->skeleton.r8_form);
1245  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1246  EmitModrmThread(entry->skeleton.modrm_opcode);
1247  code_buffer_.push_back(disp & 0xFF);
1248  code_buffer_.push_back((disp >> 8) & 0xFF);
1249  code_buffer_.push_back((disp >> 16) & 0xFF);
1250  code_buffer_.push_back((disp >> 24) & 0xFF);
1251  EmitImm(entry, imm);
1252  DCHECK_EQ(entry->skeleton.ax_opcode, 0);
1253}
1254
1255void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm) {
1256  DCHECK_EQ(false, entry->skeleton.r8_form);
1257  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1258  uint8_t low_reg = LowRegisterBits(raw_reg);
1259  code_buffer_.push_back(0xB8 + low_reg);
1260  switch (entry->skeleton.immediate_bytes) {
1261    case 4:
1262      code_buffer_.push_back(imm & 0xFF);
1263      code_buffer_.push_back((imm >> 8) & 0xFF);
1264      code_buffer_.push_back((imm >> 16) & 0xFF);
1265      code_buffer_.push_back((imm >> 24) & 0xFF);
1266      break;
1267    case 8:
1268      code_buffer_.push_back(imm & 0xFF);
1269      code_buffer_.push_back((imm >> 8) & 0xFF);
1270      code_buffer_.push_back((imm >> 16) & 0xFF);
1271      code_buffer_.push_back((imm >> 24) & 0xFF);
1272      code_buffer_.push_back((imm >> 32) & 0xFF);
1273      code_buffer_.push_back((imm >> 40) & 0xFF);
1274      code_buffer_.push_back((imm >> 48) & 0xFF);
1275      code_buffer_.push_back((imm >> 56) & 0xFF);
1276      break;
1277    default:
1278      LOG(FATAL) << "Unsupported immediate size for EmitMovRegImm: "
1279                 << static_cast<uint32_t>(entry->skeleton.immediate_bytes);
1280  }
1281}
1282
1283void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
1284  CheckValidByteRegister(entry, raw_reg);
1285  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1286  if (imm != 1) {
1287    code_buffer_.push_back(entry->skeleton.opcode);
1288  } else {
1289    // Shorter encoding for 1 bit shift
1290    code_buffer_.push_back(entry->skeleton.ax_opcode);
1291  }
1292  DCHECK_NE(0x0F, entry->skeleton.opcode);
1293  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1294  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1295  uint8_t low_reg = LowRegisterBits(raw_reg);
1296  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1297  code_buffer_.push_back(modrm);
1298  if (imm != 1) {
1299    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
1300    DCHECK(IS_SIMM8(imm));
1301    code_buffer_.push_back(imm & 0xFF);
1302  }
1303}
1304
1305void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl) {
1306  CheckValidByteRegister(entry, raw_reg);
1307  DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
1308  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1309  code_buffer_.push_back(entry->skeleton.opcode);
1310  DCHECK_NE(0x0F, entry->skeleton.opcode);
1311  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1312  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1313  uint8_t low_reg = LowRegisterBits(raw_reg);
1314  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1315  code_buffer_.push_back(modrm);
1316  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1317  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1318}
1319
1320void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base,
1321                                int32_t displacement, int32_t raw_cl) {
1322  DCHECK_EQ(false, entry->skeleton.r8_form);
1323  DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
1324  EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1325  code_buffer_.push_back(entry->skeleton.opcode);
1326  DCHECK_NE(0x0F, entry->skeleton.opcode);
1327  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1328  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1329  uint8_t low_base = LowRegisterBits(raw_base);
1330  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, displacement);
1331  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1332  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1333}
1334
1335void X86Mir2Lir::EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1336                                 int32_t imm) {
1337  DCHECK_EQ(false, entry->skeleton.r8_form);
1338  EmitPrefix(entry, NO_REG, NO_REG, raw_base);
1339  if (imm != 1) {
1340    code_buffer_.push_back(entry->skeleton.opcode);
1341  } else {
1342    // Shorter encoding for 1 bit shift
1343    code_buffer_.push_back(entry->skeleton.ax_opcode);
1344  }
1345  DCHECK_NE(0x0F, entry->skeleton.opcode);
1346  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1347  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1348  uint8_t low_base = LowRegisterBits(raw_base);
1349  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1350  if (imm != 1) {
1351    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
1352    DCHECK(IS_SIMM8(imm));
1353    code_buffer_.push_back(imm & 0xFF);
1354  }
1355}
1356
1357void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc) {
1358  CheckValidByteRegister(entry, raw_reg);
1359  EmitPrefix(entry, NO_REG, NO_REG, raw_reg);
1360  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1361  DCHECK_EQ(0x0F, entry->skeleton.opcode);
1362  code_buffer_.push_back(0x0F);
1363  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
1364  DCHECK_GE(cc, 0);
1365  DCHECK_LT(cc, 16);
1366  code_buffer_.push_back(0x90 | cc);
1367  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1368  uint8_t low_reg = LowRegisterBits(raw_reg);
1369  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1370  code_buffer_.push_back(modrm);
1371  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
1372}
1373
1374void X86Mir2Lir::EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
1375                             int32_t cc) {
1376  DCHECK_EQ(false, entry->skeleton.r8_form);
1377  if (entry->skeleton.prefix1 != 0) {
1378    code_buffer_.push_back(entry->skeleton.prefix1);
1379    if (entry->skeleton.prefix2 != 0) {
1380      code_buffer_.push_back(entry->skeleton.prefix2);
1381    }
1382  } else {
1383    DCHECK_EQ(0, entry->skeleton.prefix2);
1384  }
1385  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1386  DCHECK_EQ(0x0F, entry->skeleton.opcode);
1387  code_buffer_.push_back(0x0F);
1388  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
1389  DCHECK_GE(cc, 0);
1390  DCHECK_LT(cc, 16);
1391  code_buffer_.push_back(0x90 | cc);
1392  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1393  uint8_t low_base = LowRegisterBits(raw_base);
1394  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1395  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
1396}
1397
1398void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
1399                                int32_t cc) {
1400  // Generate prefix and opcode without the condition.
1401  DCHECK_EQ(false, entry->skeleton.r8_form);
1402  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2);
1403
1404  // Now add the condition. The last byte of opcode is the one that receives it.
1405  DCHECK_GE(cc, 0);
1406  DCHECK_LT(cc, 16);
1407  code_buffer_.back() += cc;
1408
1409  // Not expecting to have to encode immediate or do anything special for ModR/M since there are
1410  // two registers.
1411  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1412  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1413
1414  // For register to register encoding, the mod is 3.
1415  const uint8_t mod = (3 << 6);
1416
1417  // Encode the ModR/M byte now.
1418  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1419  uint8_t low_reg2 = LowRegisterBits(raw_reg2);
1420  const uint8_t modrm = mod | (low_reg1 << 3) | low_reg2;
1421  code_buffer_.push_back(modrm);
1422}
1423
1424void X86Mir2Lir::EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base,
1425                                int32_t disp, int32_t cc) {
1426  // Generate prefix and opcode without the condition.
1427  DCHECK_EQ(false, entry->skeleton.r8_form);
1428  EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_base);
1429
1430  // Now add the condition. The last byte of opcode is the one that receives it.
1431  DCHECK_GE(cc, 0);
1432  DCHECK_LT(cc, 16);
1433  code_buffer_.back() += cc;
1434
1435  // Not expecting to have to encode immediate or do anything special for ModR/M since there are
1436  // two registers.
1437  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1438  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1439
1440  uint8_t low_reg1 = LowRegisterBits(raw_reg1);
1441  uint8_t low_base = LowRegisterBits(raw_base);
1442  EmitModrmDisp(low_reg1, low_base, disp);
1443}
1444
1445void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int32_t rel) {
1446  if (entry->opcode == kX86Jmp8) {
1447    DCHECK(IS_SIMM8(rel));
1448    code_buffer_.push_back(0xEB);
1449    code_buffer_.push_back(rel & 0xFF);
1450  } else if (entry->opcode == kX86Jmp32) {
1451    code_buffer_.push_back(0xE9);
1452    code_buffer_.push_back(rel & 0xFF);
1453    code_buffer_.push_back((rel >> 8) & 0xFF);
1454    code_buffer_.push_back((rel >> 16) & 0xFF);
1455    code_buffer_.push_back((rel >> 24) & 0xFF);
1456  } else if (entry->opcode == kX86Jecxz8) {
1457    DCHECK(IS_SIMM8(rel));
1458    code_buffer_.push_back(0xE3);
1459    code_buffer_.push_back(rel & 0xFF);
1460  } else {
1461    DCHECK(entry->opcode == kX86JmpR);
1462    DCHECK_EQ(false, entry->skeleton.r8_form);
1463    EmitPrefix(entry, NO_REG, NO_REG, rel);
1464    code_buffer_.push_back(entry->skeleton.opcode);
1465    uint8_t low_reg = LowRegisterBits(rel);
1466    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
1467    code_buffer_.push_back(modrm);
1468  }
1469}
1470
1471void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc) {
1472  DCHECK_GE(cc, 0);
1473  DCHECK_LT(cc, 16);
1474  if (entry->opcode == kX86Jcc8) {
1475    DCHECK(IS_SIMM8(rel));
1476    code_buffer_.push_back(0x70 | cc);
1477    code_buffer_.push_back(rel & 0xFF);
1478  } else {
1479    DCHECK(entry->opcode == kX86Jcc32);
1480    code_buffer_.push_back(0x0F);
1481    code_buffer_.push_back(0x80 | cc);
1482    code_buffer_.push_back(rel & 0xFF);
1483    code_buffer_.push_back((rel >> 8) & 0xFF);
1484    code_buffer_.push_back((rel >> 16) & 0xFF);
1485    code_buffer_.push_back((rel >> 24) & 0xFF);
1486  }
1487}
1488
1489void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
1490  DCHECK_EQ(false, entry->skeleton.r8_form);
1491  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base);
1492  uint8_t low_base = LowRegisterBits(raw_base);
1493  EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
1494  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1495  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1496}
1497
1498void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int32_t disp) {
1499  DCHECK_EQ(false, entry->skeleton.r8_form);
1500  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1501  DCHECK_EQ(4, entry->skeleton.immediate_bytes);
1502  code_buffer_.push_back(disp & 0xFF);
1503  code_buffer_.push_back((disp >> 8) & 0xFF);
1504  code_buffer_.push_back((disp >> 16) & 0xFF);
1505  code_buffer_.push_back((disp >> 24) & 0xFF);
1506  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1507}
1508
1509void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int32_t disp) {
1510  DCHECK_EQ(false, entry->skeleton.r8_form);
1511  DCHECK_NE(entry->skeleton.prefix1, 0);
1512  EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
1513  EmitModrmThread(entry->skeleton.modrm_opcode);
1514  code_buffer_.push_back(disp & 0xFF);
1515  code_buffer_.push_back((disp >> 8) & 0xFF);
1516  code_buffer_.push_back((disp >> 16) & 0xFF);
1517  code_buffer_.push_back((disp >> 24) & 0xFF);
1518  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1519  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1520}
1521
1522void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
1523                           int32_t raw_index, int scale, int32_t table_or_disp) {
1524  int disp;
1525  if (entry->opcode == kX86PcRelLoadRA) {
1526    Mir2Lir::EmbeddedData *tab_rec =
1527        reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
1528    disp = tab_rec->offset;
1529  } else {
1530    DCHECK(entry->opcode == kX86PcRelAdr);
1531    Mir2Lir::EmbeddedData *tab_rec =
1532        reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(raw_base_or_table));
1533    disp = tab_rec->offset;
1534  }
1535  if (entry->opcode == kX86PcRelLoadRA) {
1536    DCHECK_EQ(false, entry->skeleton.r8_form);
1537    EmitPrefix(entry, raw_reg, raw_index, raw_base_or_table);
1538    code_buffer_.push_back(entry->skeleton.opcode);
1539    DCHECK_NE(0x0F, entry->skeleton.opcode);
1540    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1541    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1542    uint8_t low_reg = LowRegisterBits(raw_reg);
1543    uint8_t modrm = (2 << 6) | (low_reg << 3) | rs_rX86_SP.GetRegNum();
1544    code_buffer_.push_back(modrm);
1545    DCHECK_LT(scale, 4);
1546    uint8_t low_base_or_table = LowRegisterBits(raw_base_or_table);
1547    uint8_t low_index = LowRegisterBits(raw_index);
1548    uint8_t sib = (scale << 6) | (low_index << 3) | low_base_or_table;
1549    code_buffer_.push_back(sib);
1550    DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1551  } else {
1552    uint8_t low_reg = LowRegisterBits(raw_reg);
1553    code_buffer_.push_back(entry->skeleton.opcode + low_reg);
1554  }
1555  code_buffer_.push_back(disp & 0xFF);
1556  code_buffer_.push_back((disp >> 8) & 0xFF);
1557  code_buffer_.push_back((disp >> 16) & 0xFF);
1558  code_buffer_.push_back((disp >> 24) & 0xFF);
1559  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1560  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1561}
1562
1563void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset) {
1564  DCHECK_EQ(entry->opcode, kX86StartOfMethod) << entry->name;
1565  DCHECK_EQ(false, entry->skeleton.r8_form);
1566  EmitPrefix(entry, raw_reg, NO_REG, NO_REG);
1567  code_buffer_.push_back(0xE8);  // call +0
1568  code_buffer_.push_back(0);
1569  code_buffer_.push_back(0);
1570  code_buffer_.push_back(0);
1571  code_buffer_.push_back(0);
1572
1573  uint8_t low_reg = LowRegisterBits(raw_reg);
1574  code_buffer_.push_back(0x58 + low_reg);  // pop reg
1575
1576  EmitRegImm(&X86Mir2Lir::EncodingMap[cu_->target64 ? kX86Sub64RI : kX86Sub32RI],
1577             raw_reg, offset + 5 /* size of call +0 */);
1578}
1579
1580void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1581  UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1582                         << BuildInsnString(entry->fmt, lir, 0);
1583  for (size_t i = 0; i < GetInsnSize(lir); ++i) {
1584    code_buffer_.push_back(0xCC);  // push breakpoint instruction - int 3
1585  }
1586}
1587
1588/*
1589 * Assemble the LIR into binary instruction format.  Note that we may
1590 * discover that pc-relative displacements may not fit the selected
1591 * instruction.  In those cases we will try to substitute a new code
1592 * sequence or request that the trace be shortened and retried.
1593 */
1594AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
1595  LIR *lir;
1596  AssemblerStatus res = kSuccess;  // Assume success
1597
1598  const bool kVerbosePcFixup = false;
1599  for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1600    if (IsPseudoLirOp(lir->opcode)) {
1601      continue;
1602    }
1603
1604    if (lir->flags.is_nop) {
1605      continue;
1606    }
1607
1608    if (lir->flags.fixup != kFixupNone) {
1609      switch (lir->opcode) {
1610        case kX86Jcc8: {
1611          LIR *target_lir = lir->target;
1612          DCHECK(target_lir != NULL);
1613          int delta = 0;
1614          CodeOffset pc;
1615          if (IS_SIMM8(lir->operands[0])) {
1616            pc = lir->offset + 2 /* opcode + rel8 */;
1617          } else {
1618            pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1619          }
1620          CodeOffset target = target_lir->offset;
1621          delta = target - pc;
1622          if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1623            if (kVerbosePcFixup) {
1624              LOG(INFO) << "Retry for JCC growth at " << lir->offset
1625                  << " delta: " << delta << " old delta: " << lir->operands[0];
1626            }
1627            lir->opcode = kX86Jcc32;
1628            lir->flags.size = GetInsnSize(lir);
1629            DCHECK(lir->u.m.def_mask->Equals(kEncodeAll));
1630            DCHECK(lir->u.m.use_mask->Equals(kEncodeAll));
1631            res = kRetryAll;
1632          }
1633          if (kVerbosePcFixup) {
1634            LOG(INFO) << "Source:";
1635            DumpLIRInsn(lir, 0);
1636            LOG(INFO) << "Target:";
1637            DumpLIRInsn(target_lir, 0);
1638            LOG(INFO) << "Delta " << delta;
1639          }
1640          lir->operands[0] = delta;
1641          break;
1642        }
1643        case kX86Jcc32: {
1644          LIR *target_lir = lir->target;
1645          DCHECK(target_lir != NULL);
1646          CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1647          CodeOffset target = target_lir->offset;
1648          int delta = target - pc;
1649          if (kVerbosePcFixup) {
1650            LOG(INFO) << "Source:";
1651            DumpLIRInsn(lir, 0);
1652            LOG(INFO) << "Target:";
1653            DumpLIRInsn(target_lir, 0);
1654            LOG(INFO) << "Delta " << delta;
1655          }
1656          lir->operands[0] = delta;
1657          break;
1658        }
1659        case kX86Jecxz8: {
1660          LIR *target_lir = lir->target;
1661          DCHECK(target_lir != NULL);
1662          CodeOffset pc;
1663          pc = lir->offset + 2;  // opcode + rel8
1664          CodeOffset target = target_lir->offset;
1665          int delta = target - pc;
1666          lir->operands[0] = delta;
1667          DCHECK(IS_SIMM8(delta));
1668          break;
1669        }
1670        case kX86Jmp8: {
1671          LIR *target_lir = lir->target;
1672          DCHECK(target_lir != NULL);
1673          int delta = 0;
1674          CodeOffset pc;
1675          if (IS_SIMM8(lir->operands[0])) {
1676            pc = lir->offset + 2 /* opcode + rel8 */;
1677          } else {
1678            pc = lir->offset + 5 /* opcode + rel32 */;
1679          }
1680          CodeOffset target = target_lir->offset;
1681          delta = target - pc;
1682          if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1683            // Useless branch
1684            NopLIR(lir);
1685            if (kVerbosePcFixup) {
1686              LOG(INFO) << "Retry for useless branch at " << lir->offset;
1687            }
1688            res = kRetryAll;
1689          } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1690            if (kVerbosePcFixup) {
1691              LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1692            }
1693            lir->opcode = kX86Jmp32;
1694            lir->flags.size = GetInsnSize(lir);
1695            DCHECK(lir->u.m.def_mask->Equals(kEncodeAll));
1696            DCHECK(lir->u.m.use_mask->Equals(kEncodeAll));
1697            res = kRetryAll;
1698          }
1699          lir->operands[0] = delta;
1700          break;
1701        }
1702        case kX86Jmp32: {
1703          LIR *target_lir = lir->target;
1704          DCHECK(target_lir != NULL);
1705          CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1706          CodeOffset target = target_lir->offset;
1707          int delta = target - pc;
1708          lir->operands[0] = delta;
1709          break;
1710        }
1711        default:
1712          if (lir->flags.fixup == kFixupLoad) {
1713            LIR *target_lir = lir->target;
1714            DCHECK(target_lir != NULL);
1715            CodeOffset target = target_lir->offset;
1716            lir->operands[2] = target;
1717            int newSize = GetInsnSize(lir);
1718            if (newSize != lir->flags.size) {
1719              lir->flags.size = newSize;
1720              res = kRetryAll;
1721            }
1722          }
1723          break;
1724      }
1725    }
1726
1727    /*
1728     * If one of the pc-relative instructions expanded we'll have
1729     * to make another pass.  Don't bother to fully assemble the
1730     * instruction.
1731     */
1732    if (res != kSuccess) {
1733      continue;
1734    }
1735    CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1736    const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1737    size_t starting_cbuf_size = code_buffer_.size();
1738    switch (entry->kind) {
1739      case kData:  // 4 bytes of data
1740        code_buffer_.push_back(lir->operands[0]);
1741        break;
1742      case kNullary:  // 1 byte of opcode and possible prefixes.
1743        EmitNullary(entry);
1744        break;
1745      case kRegOpcode:  // lir operands - 0: reg
1746        EmitOpRegOpcode(entry, lir->operands[0]);
1747        break;
1748      case kReg:  // lir operands - 0: reg
1749        EmitOpReg(entry, lir->operands[0]);
1750        break;
1751      case kMem:  // lir operands - 0: base, 1: disp
1752        EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1753        break;
1754      case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
1755        EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1756        break;
1757      case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
1758        EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1759        break;
1760      case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
1761        EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1762        break;
1763      case kArrayImm:  // lir operands - 0: base, 1: index, 2: disp, 3:scale, 4:immediate
1764        EmitArrayImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1765                     lir->operands[3], lir->operands[4]);
1766        break;
1767      case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1768        EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1769                     lir->operands[3], lir->operands[4]);
1770        break;
1771      case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
1772        EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1773        break;
1774      case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1775        EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1776                     lir->operands[3], lir->operands[4]);
1777        break;
1778      case kRegThread:  // lir operands - 0: reg, 1: disp
1779        EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1780        break;
1781      case kRegReg:  // lir operands - 0: reg1, 1: reg2
1782        EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1783        break;
1784      case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
1785        EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1786        break;
1787      case kMemRegImm:  // lir operands - 0: base, 1: disp, 2: reg 3: immediate
1788        EmitMemRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1789                      lir->operands[3]);
1790        break;
1791      case kRegRegImm:  // lir operands - 0: reg1, 1: reg2, 2: imm
1792        EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1793        break;
1794      case kRegRegImmStore:   // lir operands - 0: reg2, 1: reg1, 2: imm
1795        EmitRegRegImm(entry, lir->operands[1], lir->operands[0], lir->operands[2]);
1796        break;
1797      case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
1798        EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1799                      lir->operands[3]);
1800        break;
1801      case kRegImm:  // lir operands - 0: reg, 1: immediate
1802        EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1803        break;
1804      case kThreadImm:  // lir operands - 0: disp, 1: immediate
1805        EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1806        break;
1807      case kMovRegImm:  // lir operands - 0: reg, 1: immediate
1808        EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1809        break;
1810      case kMovRegQuadImm: {
1811          int64_t value = static_cast<int64_t>(static_cast<int64_t>(lir->operands[1]) << 32 |
1812                          static_cast<uint32_t>(lir->operands[2]));
1813          EmitMovRegImm(entry, lir->operands[0], value);
1814        }
1815        break;
1816      case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
1817        EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1818        break;
1819      case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2:immediate
1820        EmitShiftMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1821        break;
1822      case kShiftRegCl:  // lir operands - 0: reg, 1: cl
1823        EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1824        break;
1825      case kShiftMemCl:  // lir operands - 0: base, 1:displacement, 2: cl
1826        EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1827        break;
1828      case kRegCond:  // lir operands - 0: reg, 1: condition
1829        EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1830        break;
1831      case kMemCond:  // lir operands - 0: base, 1: displacement, 2: condition
1832        EmitMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1833        break;
1834      case kRegRegCond:  // lir operands - 0: reg, 1: reg, 2: condition
1835        EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1836        break;
1837      case kRegMemCond:  // lir operands - 0: reg, 1: reg, displacement, 3: condition
1838        EmitRegMemCond(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1839                       lir->operands[3]);
1840        break;
1841      case kJmp:  // lir operands - 0: rel
1842        if (entry->opcode == kX86JmpT) {
1843          // This works since the instruction format for jmp and call is basically the same and
1844          // EmitCallThread loads opcode info.
1845          EmitCallThread(entry, lir->operands[0]);
1846        } else {
1847          EmitJmp(entry, lir->operands[0]);
1848        }
1849        break;
1850      case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
1851        EmitJcc(entry, lir->operands[0], lir->operands[1]);
1852        break;
1853      case kCall:
1854        switch (entry->opcode) {
1855          case kX86CallI:  // lir operands - 0: disp
1856            EmitCallImmediate(entry, lir->operands[0]);
1857            break;
1858          case kX86CallM:  // lir operands - 0: base, 1: disp
1859            EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1860            break;
1861          case kX86CallT:  // lir operands - 0: disp
1862            EmitCallThread(entry, lir->operands[0]);
1863            break;
1864          default:
1865            EmitUnimplemented(entry, lir);
1866            break;
1867        }
1868        break;
1869      case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1870        EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1871                  lir->operands[3], lir->operands[4]);
1872        break;
1873      case kMacro:  // lir operands - 0: reg
1874        EmitMacro(entry, lir->operands[0], lir->offset);
1875        break;
1876      case kNop:  // TODO: these instruction kinds are missing implementations.
1877      case kThreadReg:
1878      case kRegArrayImm:
1879      case kShiftArrayImm:
1880      case kShiftArrayCl:
1881      case kArrayCond:
1882      case kUnimplemented:
1883        EmitUnimplemented(entry, lir);
1884        break;
1885    }
1886    DCHECK_EQ(lir->flags.size, GetInsnSize(lir));
1887    CHECK_EQ(lir->flags.size, code_buffer_.size() - starting_cbuf_size)
1888        << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1889  }
1890  return res;
1891}
1892
1893// LIR offset assignment.
1894// TODO: consolidate w/ Arm assembly mechanism.
1895int X86Mir2Lir::AssignInsnOffsets() {
1896  LIR* lir;
1897  int offset = 0;
1898
1899  for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1900    lir->offset = offset;
1901    if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
1902      if (!lir->flags.is_nop) {
1903        offset += lir->flags.size;
1904      }
1905    } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1906      if (offset & 0x2) {
1907        offset += 2;
1908        lir->operands[0] = 1;
1909      } else {
1910        lir->operands[0] = 0;
1911      }
1912    }
1913    /* Pseudo opcodes don't consume space */
1914  }
1915  return offset;
1916}
1917
1918/*
1919 * Walk the compilation unit and assign offsets to instructions
1920 * and literals and compute the total size of the compiled unit.
1921 * TODO: consolidate w/ Arm assembly mechanism.
1922 */
1923void X86Mir2Lir::AssignOffsets() {
1924  int offset = AssignInsnOffsets();
1925
1926  if (const_vectors_ != nullptr) {
1927    /* assign offsets to vector literals */
1928
1929    // First, get offset to 12 mod 16 to align to 16 byte boundary.
1930    // This will ensure that the vector is 16 byte aligned, as the procedure is
1931    // always aligned at at 4 mod 16.
1932    int align_size = (16-4) - (offset & 0xF);
1933    if (align_size < 0) {
1934      align_size += 16;
1935    }
1936
1937    offset += align_size;
1938
1939    // Now assign each literal the right offset.
1940    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1941      p->offset = offset;
1942      offset += 16;
1943    }
1944  }
1945
1946  /* Const values have to be word aligned */
1947  offset = RoundUp(offset, 4);
1948
1949  /* Set up offsets for literals */
1950  data_offset_ = offset;
1951
1952  offset = AssignLiteralOffset(offset);
1953
1954  offset = AssignSwitchTablesOffset(offset);
1955
1956  offset = AssignFillArrayDataOffset(offset);
1957
1958  total_size_ = offset;
1959}
1960
1961/*
1962 * Go over each instruction in the list and calculate the offset from the top
1963 * before sending them off to the assembler. If out-of-range branch distance is
1964 * seen rearrange the instructions a bit to correct it.
1965 * TODO: consolidate w/ Arm assembly mechanism.
1966 */
1967void X86Mir2Lir::AssembleLIR() {
1968  cu_->NewTimingSplit("Assemble");
1969
1970  // We will remove the method address if we never ended up using it
1971  if (store_method_addr_ && !store_method_addr_used_) {
1972    setup_method_address_[0]->flags.is_nop = true;
1973    setup_method_address_[1]->flags.is_nop = true;
1974  }
1975
1976  AssignOffsets();
1977  int assembler_retries = 0;
1978  /*
1979   * Assemble here.  Note that we generate code with optimistic assumptions
1980   * and if found now to work, we'll have to redo the sequence and retry.
1981   */
1982
1983  while (true) {
1984    AssemblerStatus res = AssembleInstructions(0);
1985    if (res == kSuccess) {
1986      break;
1987    } else {
1988      assembler_retries++;
1989      if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1990        CodegenDump();
1991        LOG(FATAL) << "Assembler error - too many retries";
1992      }
1993      // Redo offsets and try again
1994      AssignOffsets();
1995      code_buffer_.clear();
1996    }
1997  }
1998
1999  // Install literals
2000  InstallLiteralPools();
2001
2002  // Install switch tables
2003  InstallSwitchTables();
2004
2005  // Install fill array data
2006  InstallFillArrayData();
2007
2008  // Create the mapping table and native offset to reference map.
2009  cu_->NewTimingSplit("PcMappingTable");
2010  CreateMappingTables();
2011
2012  cu_->NewTimingSplit("GcMap");
2013  CreateNativeGcMap();
2014}
2015
2016}  // namespace art
2017