codegen_x86.h revision 69dfe51b684dd9d510dbcb63295fe180f998efde
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
18#define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
19
20#include "dex/compiler_internals.h"
21#include "x86_lir.h"
22
23#include <map>
24
25namespace art {
26
27class X86Mir2Lir : public Mir2Lir {
28 protected:
29  class InToRegStorageMapper {
30   public:
31    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref) = 0;
32    virtual ~InToRegStorageMapper() {}
33  };
34
35  class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
36   public:
37    explicit InToRegStorageX86_64Mapper(Mir2Lir* ml) : ml_(ml), cur_core_reg_(0), cur_fp_reg_(0) {}
38    virtual ~InToRegStorageX86_64Mapper() {}
39    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref);
40   protected:
41    Mir2Lir* ml_;
42   private:
43    int cur_core_reg_;
44    int cur_fp_reg_;
45  };
46
47  class InToRegStorageMapping {
48   public:
49    InToRegStorageMapping() : max_mapped_in_(0), is_there_stack_mapped_(false),
50    initialized_(false) {}
51    void Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper);
52    int GetMaxMappedIn() { return max_mapped_in_; }
53    bool IsThereStackMapped() { return is_there_stack_mapped_; }
54    RegStorage Get(int in_position);
55    bool IsInitialized() { return initialized_; }
56   private:
57    std::map<int, RegStorage> mapping_;
58    int max_mapped_in_;
59    bool is_there_stack_mapped_;
60    bool initialized_;
61  };
62
63 public:
64  X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
65
66  // Required for target - codegen helpers.
67  bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
68                          RegLocation rl_dest, int lit);
69  bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
70  LIR* CheckSuspendUsingLoad() OVERRIDE;
71  RegStorage LoadHelper(ThreadOffset<4> offset) OVERRIDE;
72  RegStorage LoadHelper(ThreadOffset<8> offset) OVERRIDE;
73  LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
74                    OpSize size, VolatileKind is_volatile) OVERRIDE;
75  LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
76                       OpSize size) OVERRIDE;
77  LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
78                           RegStorage r_dest, OpSize size) OVERRIDE;
79  LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
80  LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
81  LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
82                     OpSize size, VolatileKind is_volatile) OVERRIDE;
83  LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
84                        OpSize size) OVERRIDE;
85  LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
86                            RegStorage r_src, OpSize size) OVERRIDE;
87  void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
88  void GenImplicitNullCheck(RegStorage reg, int opt_flags);
89
90  // Required for target - register utilities.
91  RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE;
92  RegStorage TargetReg32(SpecialTargetRegister reg);
93  RegStorage TargetReg(SpecialTargetRegister symbolic_reg, WideKind wide_kind) OVERRIDE {
94    if (wide_kind == kWide) {
95      if (cu_->target64) {
96        return As64BitReg(TargetReg32(symbolic_reg));
97      } else {
98        // x86: construct a pair.
99        DCHECK((kArg0 <= symbolic_reg && symbolic_reg < kArg3) ||
100               (kFArg0 <= symbolic_reg && symbolic_reg < kFArg3) ||
101               (kRet0 == symbolic_reg));
102        return RegStorage::MakeRegPair(TargetReg32(symbolic_reg),
103                                 TargetReg32(static_cast<SpecialTargetRegister>(symbolic_reg + 1)));
104      }
105    } else if (wide_kind == kRef && cu_->target64) {
106      return As64BitReg(TargetReg32(symbolic_reg));
107    } else {
108      return TargetReg32(symbolic_reg);
109    }
110  }
111  RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
112    return TargetReg(symbolic_reg, cu_->target64 ? kWide : kNotWide);
113  }
114  RegStorage GetArgMappingToPhysicalReg(int arg_num);
115  RegStorage GetCoreArgMappingToPhysicalReg(int core_arg_num);
116  RegLocation GetReturnAlt();
117  RegLocation GetReturnWideAlt();
118  RegLocation LocCReturn();
119  RegLocation LocCReturnRef();
120  RegLocation LocCReturnDouble();
121  RegLocation LocCReturnFloat();
122  RegLocation LocCReturnWide();
123  ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE;
124  void AdjustSpillMask();
125  void ClobberCallerSave();
126  void FreeCallTemps();
127  void LockCallTemps();
128  void CompilerInitializeRegAlloc();
129  int VectorRegisterSize();
130  int NumReservableVectorRegisters(bool fp_used);
131
132  // Required for target - miscellaneous.
133  void AssembleLIR();
134  int AssignInsnOffsets();
135  void AssignOffsets();
136  AssemblerStatus AssembleInstructions(CodeOffset start_addr);
137  void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE;
138  void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
139                                ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE;
140  const char* GetTargetInstFmt(int opcode);
141  const char* GetTargetInstName(int opcode);
142  std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
143  ResourceMask GetPCUseDefEncoding() const OVERRIDE;
144  uint64_t GetTargetInstFlags(int opcode);
145  size_t GetInsnSize(LIR* lir) OVERRIDE;
146  bool IsUnconditionalBranch(LIR* lir);
147
148  // Check support for volatile load/store of a given size.
149  bool SupportsVolatileLoadStore(OpSize size) OVERRIDE;
150  // Get the register class for load/store of a field.
151  RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
152
153  // Required for target - Dalvik-level generators.
154  void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
155                         RegLocation rl_src2);
156  void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
157                   RegLocation rl_dest, int scale);
158  void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
159                   RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
160  void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
161                         RegLocation rl_src1, RegLocation rl_shift);
162  void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
163                  RegLocation rl_src2);
164  void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
165                  RegLocation rl_src2);
166  void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
167                  RegLocation rl_src2);
168  void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
169                        RegLocation rl_src2);
170  void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
171                       RegLocation rl_src2);
172  void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double);
173  void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
174                RegLocation rl_src2);
175  void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
176  bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
177  bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long);
178  bool GenInlinedSqrt(CallInfo* info);
179  bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE;
180  bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE;
181  bool GenInlinedPeek(CallInfo* info, OpSize size);
182  bool GenInlinedPoke(CallInfo* info, OpSize size);
183  void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
184  void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
185  void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
186                 RegLocation rl_src2);
187  void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
188                  RegLocation rl_src2);
189  void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
190                  RegLocation rl_src2);
191  void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
192                     RegLocation rl_src2, bool is_div);
193  // TODO: collapse reg_lo, reg_hi
194  RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
195  RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
196  void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
197  void GenDivZeroCheckWide(RegStorage reg);
198  void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
199  void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
200  void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
201  void GenExitSequence();
202  void GenSpecialExitSequence();
203  void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
204  void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
205  void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
206  void GenSelect(BasicBlock* bb, MIR* mir);
207  bool GenMemBarrier(MemBarrierKind barrier_kind);
208  void GenMoveException(RegLocation rl_dest);
209  void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
210                                     int first_bit, int second_bit);
211  void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
212  void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
213  void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
214  void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
215  void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
216
217  /*
218   * @brief Generate a two address long operation with a constant value
219   * @param rl_dest location of result
220   * @param rl_src constant source operand
221   * @param op Opcode to be generated
222   * @return success or not
223   */
224  bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
225  /*
226   * @brief Generate a three address long operation with a constant value
227   * @param rl_dest location of result
228   * @param rl_src1 source operand
229   * @param rl_src2 constant source operand
230   * @param op Opcode to be generated
231   * @return success or not
232   */
233  bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
234                      Instruction::Code op);
235
236  /**
237   * @brief Generate a long arithmetic operation.
238   * @param rl_dest The destination.
239   * @param rl_src1 First operand.
240   * @param rl_src2 Second operand.
241   * @param op The DEX opcode for the operation.
242   * @param is_commutative The sources can be swapped if needed.
243   */
244  virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
245                            Instruction::Code op, bool is_commutative);
246
247  /**
248   * @brief Generate a two operand long arithmetic operation.
249   * @param rl_dest The destination.
250   * @param rl_src Second operand.
251   * @param op The DEX opcode for the operation.
252   */
253  void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
254
255  /**
256   * @brief Generate a long operation.
257   * @param rl_dest The destination.  Must be in a register
258   * @param rl_src The other operand.  May be in a register or in memory.
259   * @param op The DEX opcode for the operation.
260   */
261  virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
262
263  /**
264   * @brief Implement instanceof a final class with x86 specific code.
265   * @param use_declaring_class 'true' if we can use the class itself.
266   * @param type_idx Type index to use if use_declaring_class is 'false'.
267   * @param rl_dest Result to be set to 0 or 1.
268   * @param rl_src Object to be tested.
269   */
270  void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
271                          RegLocation rl_src);
272  /*
273   *
274   * @brief Implement Set up instanceof a class with x86 specific code.
275   * @param needs_access_check 'true' if we must check the access.
276   * @param type_known_final 'true' if the type is known to be a final class.
277   * @param type_known_abstract 'true' if the type is known to be an abstract class.
278   * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
279   * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
280   * @param type_idx Type index to use if use_declaring_class is 'false'.
281   * @param rl_dest Result to be set to 0 or 1.
282   * @param rl_src Object to be tested.
283   */
284  void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
285                                  bool type_known_abstract, bool use_declaring_class,
286                                  bool can_assume_type_is_in_dex_cache,
287                                  uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
288
289  void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
290                      RegLocation rl_src1, RegLocation rl_shift);
291
292  // Single operation generators.
293  LIR* OpUnconditionalBranch(LIR* target);
294  LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
295  LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
296  LIR* OpCondBranch(ConditionCode cc, LIR* target);
297  LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
298  LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
299  LIR* OpIT(ConditionCode cond, const char* guide);
300  void OpEndIT(LIR* it);
301  LIR* OpMem(OpKind op, RegStorage r_base, int disp);
302  LIR* OpPcRelLoad(RegStorage reg, LIR* target);
303  LIR* OpReg(OpKind op, RegStorage r_dest_src);
304  void OpRegCopy(RegStorage r_dest, RegStorage r_src);
305  LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
306  LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
307  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
308  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
309  LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
310  LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
311  LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
312  LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
313  LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
314  LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
315  LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
316  LIR* OpTestSuspend(LIR* target);
317  LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) OVERRIDE;
318  LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) OVERRIDE;
319  LIR* OpVldm(RegStorage r_base, int count);
320  LIR* OpVstm(RegStorage r_base, int count);
321  void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
322  void OpRegCopyWide(RegStorage dest, RegStorage src);
323  void OpTlsCmp(ThreadOffset<4> offset, int val) OVERRIDE;
324  void OpTlsCmp(ThreadOffset<8> offset, int val) OVERRIDE;
325
326  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
327  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
328  void SpillCoreRegs();
329  void UnSpillCoreRegs();
330  void UnSpillFPRegs();
331  void SpillFPRegs();
332  static const X86EncodingMap EncodingMap[kX86Last];
333  bool InexpensiveConstantInt(int32_t value);
334  bool InexpensiveConstantFloat(int32_t value);
335  bool InexpensiveConstantLong(int64_t value);
336  bool InexpensiveConstantDouble(int64_t value);
337
338  /*
339   * @brief Should try to optimize for two address instructions?
340   * @return true if we try to avoid generating three operand instructions.
341   */
342  virtual bool GenerateTwoOperandInstructions() const { return true; }
343
344  /*
345   * @brief x86 specific codegen for int operations.
346   * @param opcode Operation to perform.
347   * @param rl_dest Destination for the result.
348   * @param rl_lhs Left hand operand.
349   * @param rl_rhs Right hand operand.
350   */
351  void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
352                     RegLocation rl_rhs);
353
354  /*
355   * @brief Dump a RegLocation using printf
356   * @param loc Register location to dump
357   */
358  static void DumpRegLocation(RegLocation loc);
359
360  /*
361   * @brief Load the Method* of a dex method into the register.
362   * @param target_method The MethodReference of the method to be invoked.
363   * @param type How the method will be invoked.
364   * @param register that will contain the code address.
365   * @note register will be passed to TargetReg to get physical register.
366   */
367  void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
368                         SpecialTargetRegister symbolic_reg);
369
370  /*
371   * @brief Load the Class* of a Dex Class type into the register.
372   * @param type How the method will be invoked.
373   * @param register that will contain the code address.
374   * @note register will be passed to TargetReg to get physical register.
375   */
376  void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
377
378  void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
379
380  int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
381                           NextCallInsn next_call_insn,
382                           const MethodReference& target_method,
383                           uint32_t vtable_idx,
384                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
385                           bool skip_this);
386
387  int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
388                         NextCallInsn next_call_insn,
389                         const MethodReference& target_method,
390                         uint32_t vtable_idx,
391                         uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
392                         bool skip_this);
393
394  /*
395   * @brief Generate a relative call to the method that will be patched at link time.
396   * @param target_method The MethodReference of the method to be invoked.
397   * @param type How the method will be invoked.
398   * @returns Call instruction
399   */
400  virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
401
402  /*
403   * @brief Handle x86 specific literals
404   */
405  void InstallLiteralPools();
406
407  /*
408   * @brief Generate the debug_frame CFI information.
409   * @returns pointer to vector containing CFE information
410   */
411  static std::vector<uint8_t>* ReturnCommonCallFrameInformation();
412
413  /*
414   * @brief Generate the debug_frame FDE information.
415   * @returns pointer to vector containing CFE information
416   */
417  std::vector<uint8_t>* ReturnCallFrameInformation();
418
419 protected:
420  // Casting of RegStorage
421  RegStorage As32BitReg(RegStorage reg) {
422    DCHECK(!reg.IsPair());
423    if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) {
424      if (kFailOnSizeError) {
425        LOG(FATAL) << "Expected 64b register " << reg.GetReg();
426      } else {
427        LOG(WARNING) << "Expected 64b register " << reg.GetReg();
428        return reg;
429      }
430    }
431    RegStorage ret_val = RegStorage(RegStorage::k32BitSolo,
432                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
433    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask)
434                             ->GetReg().GetReg(),
435              ret_val.GetReg());
436    return ret_val;
437  }
438
439  RegStorage As64BitReg(RegStorage reg) {
440    DCHECK(!reg.IsPair());
441    if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) {
442      if (kFailOnSizeError) {
443        LOG(FATAL) << "Expected 32b register " << reg.GetReg();
444      } else {
445        LOG(WARNING) << "Expected 32b register " << reg.GetReg();
446        return reg;
447      }
448    }
449    RegStorage ret_val = RegStorage(RegStorage::k64BitSolo,
450                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
451    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask)
452                             ->GetReg().GetReg(),
453              ret_val.GetReg());
454    return ret_val;
455  }
456
457  size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
458                     int32_t raw_base, int32_t displacement);
459  void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
460  void EmitPrefix(const X86EncodingMap* entry,
461                  int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b);
462  void EmitOpcode(const X86EncodingMap* entry);
463  void EmitPrefixAndOpcode(const X86EncodingMap* entry,
464                           int32_t reg_r, int32_t reg_x, int32_t reg_b);
465  void EmitDisp(uint8_t base, int32_t disp);
466  void EmitModrmThread(uint8_t reg_or_opcode);
467  void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
468  void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
469                        int32_t disp);
470  void EmitImm(const X86EncodingMap* entry, int64_t imm);
471  void EmitNullary(const X86EncodingMap* entry);
472  void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
473  void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
474  void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
475  void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
476                   int32_t disp);
477  void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
478  void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
479  void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
480                    int32_t raw_index, int scale, int32_t disp);
481  void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
482                    int32_t disp, int32_t raw_reg);
483  void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
484  void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
485                    int32_t raw_disp, int32_t imm);
486  void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
487  void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
488  void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
489  void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
490                     int32_t imm);
491  void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
492                     int32_t imm);
493  void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
494  void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
495  void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
496  void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
497  void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
498  void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
499  void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
500  void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
501  void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
502  void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
503  void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
504                      int32_t cc);
505
506  void EmitJmp(const X86EncodingMap* entry, int32_t rel);
507  void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
508  void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
509  void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
510  void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
511  void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
512                 int32_t raw_index, int scale, int32_t table_or_disp);
513  void EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset);
514  void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
515  void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
516                                int64_t val, ConditionCode ccode);
517  void GenConstWide(RegLocation rl_dest, int64_t value);
518  void GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir);
519  void GenShiftByteVector(BasicBlock *bb, MIR *mir);
520  void AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
521  void MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
522  void AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir);
523
524  static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
525
526  /*
527   * @brief Ensure that a temporary register is byte addressable.
528   * @returns a temporary guarenteed to be byte addressable.
529   */
530  virtual RegStorage AllocateByteRegister();
531
532  /*
533   * @brief Use a wide temporary as a 128-bit register
534   * @returns a 128-bit temporary register.
535   */
536  virtual RegStorage Get128BitRegister(RegStorage reg);
537
538  /*
539   * @brief Check if a register is byte addressable.
540   * @returns true if a register is byte addressable.
541   */
542  bool IsByteRegister(RegStorage reg);
543  bool GenInlinedArrayCopyCharArray(CallInfo* info) OVERRIDE;
544
545  /*
546   * @brief generate inline code for fast case of Strng.indexOf.
547   * @param info Call parameters
548   * @param zero_based 'true' if the index into the string is 0.
549   * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
550   * generated.
551   */
552  bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
553
554  /**
555   * @brief Reserve a fixed number of vector  registers from the register pool
556   * @details The mir->dalvikInsn.vA specifies an N such that vector registers
557   * [0..N-1] are removed from the temporary pool. The caller must call
558   * ReturnVectorRegisters before calling ReserveVectorRegisters again.
559   * Also sets the num_reserved_vector_regs_ to the specified value
560   * @param mir whose vA specifies the number of registers to reserve
561   */
562  void ReserveVectorRegisters(MIR* mir);
563
564  /**
565   * @brief Return all the reserved vector registers to the temp pool
566   * @details Returns [0..num_reserved_vector_regs_]
567   */
568  void ReturnVectorRegisters();
569
570  /*
571   * @brief Load 128 bit constant into vector register.
572   * @param bb The basic block in which the MIR is from.
573   * @param mir The MIR whose opcode is kMirConstVector
574   * @note vA is the TypeSize for the register.
575   * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
576   */
577  void GenConst128(BasicBlock* bb, MIR* mir);
578
579  /*
580   * @brief MIR to move a vectorized register to another.
581   * @param bb The basic block in which the MIR is from.
582   * @param mir The MIR whose opcode is kMirConstVector.
583   * @note vA: TypeSize
584   * @note vB: destination
585   * @note vC: source
586   */
587  void GenMoveVector(BasicBlock *bb, MIR *mir);
588
589  /*
590   * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
591   * @param bb The basic block in which the MIR is from.
592   * @param mir The MIR whose opcode is kMirConstVector.
593   * @note vA: TypeSize
594   * @note vB: destination and source
595   * @note vC: source
596   */
597  void GenMultiplyVector(BasicBlock *bb, MIR *mir);
598
599  /*
600   * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
601   * @param bb The basic block in which the MIR is from.
602   * @param mir The MIR whose opcode is kMirConstVector.
603   * @note vA: TypeSize
604   * @note vB: destination and source
605   * @note vC: source
606   */
607  void GenAddVector(BasicBlock *bb, MIR *mir);
608
609  /*
610   * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
611   * @param bb The basic block in which the MIR is from.
612   * @param mir The MIR whose opcode is kMirConstVector.
613   * @note vA: TypeSize
614   * @note vB: destination and source
615   * @note vC: source
616   */
617  void GenSubtractVector(BasicBlock *bb, MIR *mir);
618
619  /*
620   * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
621   * @param bb The basic block in which the MIR is from.
622   * @param mir The MIR whose opcode is kMirConstVector.
623   * @note vA: TypeSize
624   * @note vB: destination and source
625   * @note vC: immediate
626   */
627  void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
628
629  /*
630   * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
631   * @param bb The basic block in which the MIR is from.
632   * @param mir The MIR whose opcode is kMirConstVector.
633   * @note vA: TypeSize
634   * @note vB: destination and source
635   * @note vC: immediate
636   */
637  void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
638
639  /*
640   * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
641   * @param bb The basic block in which the MIR is from..
642   * @param mir The MIR whose opcode is kMirConstVector.
643   * @note vA: TypeSize
644   * @note vB: destination and source
645   * @note vC: immediate
646   */
647  void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
648
649  /*
650   * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
651   * @note vA: TypeSize
652   * @note vB: destination and source
653   * @note vC: source
654   */
655  void GenAndVector(BasicBlock *bb, MIR *mir);
656
657  /*
658   * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
659   * @param bb The basic block in which the MIR is from.
660   * @param mir The MIR whose opcode is kMirConstVector.
661   * @note vA: TypeSize
662   * @note vB: destination and source
663   * @note vC: source
664   */
665  void GenOrVector(BasicBlock *bb, MIR *mir);
666
667  /*
668   * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
669   * @param bb The basic block in which the MIR is from.
670   * @param mir The MIR whose opcode is kMirConstVector.
671   * @note vA: TypeSize
672   * @note vB: destination and source
673   * @note vC: source
674   */
675  void GenXorVector(BasicBlock *bb, MIR *mir);
676
677  /*
678   * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
679   * @param bb The basic block in which the MIR is from.
680   * @param mir The MIR whose opcode is kMirConstVector.
681   * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
682   * @note vA: TypeSize
683   * @note vB: destination and source VR (not vector register)
684   * @note vC: source (vector register)
685   */
686  void GenAddReduceVector(BasicBlock *bb, MIR *mir);
687
688  /*
689   * @brief Extract a packed element into a single VR.
690   * @param bb The basic block in which the MIR is from.
691   * @param mir The MIR whose opcode is kMirConstVector.
692   * @note vA: TypeSize
693   * @note vB: destination VR (not vector register)
694   * @note vC: source (vector register)
695   * @note arg[0]: The index to use for extraction from vector register (which packed element).
696   */
697  void GenReduceVector(BasicBlock *bb, MIR *mir);
698
699  /*
700   * @brief Create a vector value, with all TypeSize values equal to vC
701   * @param bb The basic block in which the MIR is from.
702   * @param mir The MIR whose opcode is kMirConstVector.
703   * @note vA: TypeSize.
704   * @note vB: destination vector register.
705   * @note vC: source VR (not vector register).
706   */
707  void GenSetVector(BasicBlock *bb, MIR *mir);
708
709  /*
710   * @brief Generate code for a vector opcode.
711   * @param bb The basic block in which the MIR is from.
712   * @param mir The MIR whose opcode is a non-standard opcode.
713   */
714  void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
715
716  /*
717   * @brief Return the correct x86 opcode for the Dex operation
718   * @param op Dex opcode for the operation
719   * @param loc Register location of the operand
720   * @param is_high_op 'true' if this is an operation on the high word
721   * @param value Immediate value for the operation.  Used for byte variants
722   * @returns the correct x86 opcode to perform the operation
723   */
724  X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
725
726  /*
727   * @brief Return the correct x86 opcode for the Dex operation
728   * @param op Dex opcode for the operation
729   * @param dest location of the destination.  May be register or memory.
730   * @param rhs Location for the rhs of the operation.  May be in register or memory.
731   * @param is_high_op 'true' if this is an operation on the high word
732   * @returns the correct x86 opcode to perform the operation
733   * @note at most one location may refer to memory
734   */
735  X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
736                      bool is_high_op);
737
738  /*
739   * @brief Is this operation a no-op for this opcode and value
740   * @param op Dex opcode for the operation
741   * @param value Immediate value for the operation.
742   * @returns 'true' if the operation will have no effect
743   */
744  bool IsNoOp(Instruction::Code op, int32_t value);
745
746  /**
747   * @brief Calculate magic number and shift for a given divisor
748   * @param divisor divisor number for calculation
749   * @param magic hold calculated magic number
750   * @param shift hold calculated shift
751   */
752  void CalculateMagicAndShift(int divisor, int& magic, int& shift);
753
754  /*
755   * @brief Generate an integer div or rem operation.
756   * @param rl_dest Destination Location.
757   * @param rl_src1 Numerator Location.
758   * @param rl_src2 Divisor Location.
759   * @param is_div 'true' if this is a division, 'false' for a remainder.
760   * @param check_zero 'true' if an exception should be generated if the divisor is 0.
761   */
762  RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
763                        bool is_div, bool check_zero);
764
765  /*
766   * @brief Generate an integer div or rem operation by a literal.
767   * @param rl_dest Destination Location.
768   * @param rl_src Numerator Location.
769   * @param lit Divisor.
770   * @param is_div 'true' if this is a division, 'false' for a remainder.
771   */
772  RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
773
774  /*
775   * Generate code to implement long shift operations.
776   * @param opcode The DEX opcode to specify the shift type.
777   * @param rl_dest The destination.
778   * @param rl_src The value to be shifted.
779   * @param shift_amount How much to shift.
780   * @returns the RegLocation of the result.
781   */
782  RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
783                                RegLocation rl_src, int shift_amount);
784  /*
785   * Generate an imul of a register by a constant or a better sequence.
786   * @param dest Destination Register.
787   * @param src Source Register.
788   * @param val Constant multiplier.
789   */
790  void GenImulRegImm(RegStorage dest, RegStorage src, int val);
791
792  /*
793   * Generate an imul of a memory location by a constant or a better sequence.
794   * @param dest Destination Register.
795   * @param sreg Symbolic register.
796   * @param displacement Displacement on stack of Symbolic Register.
797   * @param val Constant multiplier.
798   */
799  void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
800
801  /*
802   * @brief Compare memory to immediate, and branch if condition true.
803   * @param cond The condition code that when true will branch to the target.
804   * @param temp_reg A temporary register that can be used if compare memory is not
805   * supported by the architecture.
806   * @param base_reg The register holding the base address.
807   * @param offset The offset from the base.
808   * @param check_value The immediate to compare to.
809   * @param target branch target (or nullptr)
810   * @param compare output for getting LIR for comparison (or nullptr)
811   */
812  LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
813                         int offset, int check_value, LIR* target, LIR** compare);
814
815  /*
816   * Can this operation be using core registers without temporaries?
817   * @param rl_lhs Left hand operand.
818   * @param rl_rhs Right hand operand.
819   * @returns 'true' if the operation can proceed without needing temporary regs.
820   */
821  bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
822
823  /**
824   * @brief Generates inline code for conversion of long to FP by using x87/
825   * @param rl_dest The destination of the FP.
826   * @param rl_src The source of the long.
827   * @param is_double 'true' if dealing with double, 'false' for float.
828   */
829  virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
830
831  /*
832   * @brief Perform MIR analysis before compiling method.
833   * @note Invokes Mir2LiR::Materialize after analysis.
834   */
835  void Materialize();
836
837  /*
838   * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
839   * without regard to data type.  In practice, this can result in UpdateLoc returning a
840   * location record for a Dalvik float value in a core register, and vis-versa.  For targets
841   * which can inexpensively move data between core and float registers, this can often be a win.
842   * However, for x86 this is generally not a win.  These variants of UpdateLoc()
843   * take a register class argument - and will return an in-register location record only if
844   * the value is live in a temp register of the correct class.  Additionally, if the value is in
845   * a temp register of the wrong register class, it will be clobbered.
846   */
847  RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
848  RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
849
850  /*
851   * @brief Analyze MIR before generating code, to prepare for the code generation.
852   */
853  void AnalyzeMIR();
854
855  /*
856   * @brief Analyze one basic block.
857   * @param bb Basic block to analyze.
858   */
859  void AnalyzeBB(BasicBlock * bb);
860
861  /*
862   * @brief Analyze one extended MIR instruction
863   * @param opcode MIR instruction opcode.
864   * @param bb Basic block containing instruction.
865   * @param mir Extended instruction to analyze.
866   */
867  void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
868
869  /*
870   * @brief Analyze one MIR instruction
871   * @param opcode MIR instruction opcode.
872   * @param bb Basic block containing instruction.
873   * @param mir Instruction to analyze.
874   */
875  virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
876
877  /*
878   * @brief Analyze one MIR float/double instruction
879   * @param opcode MIR instruction opcode.
880   * @param bb Basic block containing instruction.
881   * @param mir Instruction to analyze.
882   */
883  void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
884
885  /*
886   * @brief Analyze one use of a double operand.
887   * @param rl_use Double RegLocation for the operand.
888   */
889  void AnalyzeDoubleUse(RegLocation rl_use);
890
891  /*
892   * @brief Analyze one invoke-static MIR instruction
893   * @param opcode MIR instruction opcode.
894   * @param bb Basic block containing instruction.
895   * @param mir Instruction to analyze.
896   */
897  void AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir);
898
899  // Information derived from analysis of MIR
900
901  // The compiler temporary for the code address of the method.
902  CompilerTemp *base_of_code_;
903
904  // Have we decided to compute a ptr to code and store in temporary VR?
905  bool store_method_addr_;
906
907  // Have we used the stored method address?
908  bool store_method_addr_used_;
909
910  // Instructions to remove if we didn't use the stored method address.
911  LIR* setup_method_address_[2];
912
913  // Instructions needing patching with Method* values.
914  GrowableArray<LIR*> method_address_insns_;
915
916  // Instructions needing patching with Class Type* values.
917  GrowableArray<LIR*> class_type_address_insns_;
918
919  // Instructions needing patching with PC relative code addresses.
920  GrowableArray<LIR*> call_method_insns_;
921
922  // Prologue decrement of stack pointer.
923  LIR* stack_decrement_;
924
925  // Epilogue increment of stack pointer.
926  LIR* stack_increment_;
927
928  // The list of const vector literals.
929  LIR *const_vectors_;
930
931  /*
932   * @brief Search for a matching vector literal
933   * @param mir A kMirOpConst128b MIR instruction to match.
934   * @returns pointer to matching LIR constant, or nullptr if not found.
935   */
936  LIR *ScanVectorLiteral(MIR *mir);
937
938  /*
939   * @brief Add a constant vector literal
940   * @param mir A kMirOpConst128b MIR instruction to match.
941   */
942  LIR *AddVectorLiteral(MIR *mir);
943
944  InToRegStorageMapping in_to_reg_storage_mapping_;
945
946  bool WideGPRsAreAliases() OVERRIDE {
947    return cu_->target64;  // On 64b, we have 64b GPRs.
948  }
949  bool WideFPRsAreAliases() OVERRIDE {
950    return true;  // xmm registers have 64b views even on x86.
951  }
952
953 private:
954  // The number of vector registers [0..N] reserved by a call to ReserveVectorRegisters
955  int num_reserved_vector_regs_;
956};
957
958}  // namespace art
959
960#endif  // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
961