codegen_x86.h revision 9ee4519afd97121f893f82d41d23164fc6c9ed34
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
18#define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
19
20#include "dex/compiler_internals.h"
21#include "x86_lir.h"
22
23#include <map>
24
25namespace art {
26
27class X86Mir2Lir : public Mir2Lir {
28 protected:
29  class InToRegStorageMapper {
30   public:
31    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref) = 0;
32    virtual ~InToRegStorageMapper() {}
33  };
34
35  class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
36   public:
37    explicit InToRegStorageX86_64Mapper(Mir2Lir* ml) : ml_(ml), cur_core_reg_(0), cur_fp_reg_(0) {}
38    virtual ~InToRegStorageX86_64Mapper() {}
39    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref);
40   protected:
41    Mir2Lir* ml_;
42   private:
43    int cur_core_reg_;
44    int cur_fp_reg_;
45  };
46
47  class InToRegStorageMapping {
48   public:
49    InToRegStorageMapping() : max_mapped_in_(0), is_there_stack_mapped_(false),
50    initialized_(false) {}
51    void Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper);
52    int GetMaxMappedIn() { return max_mapped_in_; }
53    bool IsThereStackMapped() { return is_there_stack_mapped_; }
54    RegStorage Get(int in_position);
55    bool IsInitialized() { return initialized_; }
56   private:
57    std::map<int, RegStorage> mapping_;
58    int max_mapped_in_;
59    bool is_there_stack_mapped_;
60    bool initialized_;
61  };
62
63 public:
64  X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
65
66  // Required for target - codegen helpers.
67  bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
68                          RegLocation rl_dest, int lit);
69  bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
70  LIR* CheckSuspendUsingLoad() OVERRIDE;
71  RegStorage LoadHelper(ThreadOffset<4> offset) OVERRIDE;
72  RegStorage LoadHelper(ThreadOffset<8> offset) OVERRIDE;
73  LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
74                    OpSize size, VolatileKind is_volatile) OVERRIDE;
75  LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
76                       OpSize size) OVERRIDE;
77  LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
78                           RegStorage r_dest, OpSize size) OVERRIDE;
79  LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
80  LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
81  LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
82                     OpSize size, VolatileKind is_volatile) OVERRIDE;
83  LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
84                        OpSize size) OVERRIDE;
85  LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
86                            RegStorage r_src, OpSize size) OVERRIDE;
87  void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
88  void GenImplicitNullCheck(RegStorage reg, int opt_flags);
89
90  // Required for target - register utilities.
91  RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE;
92  RegStorage TargetReg32(SpecialTargetRegister reg);
93  RegStorage TargetReg(SpecialTargetRegister symbolic_reg, WideKind wide_kind) OVERRIDE {
94    if (wide_kind == kWide) {
95      if (cu_->target64) {
96        return As64BitReg(TargetReg32(symbolic_reg));
97      } else {
98        // x86: construct a pair.
99        DCHECK((kArg0 <= symbolic_reg && symbolic_reg < kArg3) ||
100               (kFArg0 <= symbolic_reg && symbolic_reg < kFArg3) ||
101               (kRet0 == symbolic_reg));
102        return RegStorage::MakeRegPair(TargetReg32(symbolic_reg),
103                                 TargetReg32(static_cast<SpecialTargetRegister>(symbolic_reg + 1)));
104      }
105    } else if (wide_kind == kRef && cu_->target64) {
106      return As64BitReg(TargetReg32(symbolic_reg));
107    } else {
108      return TargetReg32(symbolic_reg);
109    }
110  }
111  RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
112    return TargetReg(symbolic_reg, cu_->target64 ? kWide : kNotWide);
113  }
114  RegStorage GetArgMappingToPhysicalReg(int arg_num);
115  RegStorage GetCoreArgMappingToPhysicalReg(int core_arg_num);
116  RegLocation GetReturnAlt();
117  RegLocation GetReturnWideAlt();
118  RegLocation LocCReturn();
119  RegLocation LocCReturnRef();
120  RegLocation LocCReturnDouble();
121  RegLocation LocCReturnFloat();
122  RegLocation LocCReturnWide();
123  ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE;
124  void AdjustSpillMask();
125  void ClobberCallerSave();
126  void FreeCallTemps();
127  void LockCallTemps();
128  void CompilerInitializeRegAlloc();
129  int VectorRegisterSize();
130  int NumReservableVectorRegisters(bool fp_used);
131
132  // Required for target - miscellaneous.
133  void AssembleLIR();
134  int AssignInsnOffsets();
135  void AssignOffsets();
136  AssemblerStatus AssembleInstructions(CodeOffset start_addr);
137  void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE;
138  void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
139                                ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE;
140  const char* GetTargetInstFmt(int opcode);
141  const char* GetTargetInstName(int opcode);
142  std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
143  ResourceMask GetPCUseDefEncoding() const OVERRIDE;
144  uint64_t GetTargetInstFlags(int opcode);
145  size_t GetInsnSize(LIR* lir) OVERRIDE;
146  bool IsUnconditionalBranch(LIR* lir);
147
148  // Get the register class for load/store of a field.
149  RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
150
151  // Required for target - Dalvik-level generators.
152  void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
153                         RegLocation rl_src2);
154  void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
155                   RegLocation rl_dest, int scale);
156  void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
157                   RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
158  void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
159                         RegLocation rl_src1, RegLocation rl_shift);
160  void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
161                  RegLocation rl_src2);
162  void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
163                  RegLocation rl_src2);
164  void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
165                  RegLocation rl_src2);
166  void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
167                        RegLocation rl_src2);
168  void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
169                       RegLocation rl_src2);
170  void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double);
171  void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
172                RegLocation rl_src2);
173  void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
174  bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
175  bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long);
176  bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
177  bool GenInlinedSqrt(CallInfo* info);
178  bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE;
179  bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE;
180  bool GenInlinedPeek(CallInfo* info, OpSize size);
181  bool GenInlinedPoke(CallInfo* info, OpSize size);
182  void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
183  void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
184  void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
185                 RegLocation rl_src2);
186  void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
187                  RegLocation rl_src2);
188  void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
189                  RegLocation rl_src2);
190  void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
191                     RegLocation rl_src2, bool is_div);
192  // TODO: collapse reg_lo, reg_hi
193  RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
194  RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
195  void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
196  void GenDivZeroCheckWide(RegStorage reg);
197  void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
198  void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
199  void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
200  void GenExitSequence();
201  void GenSpecialExitSequence();
202  void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
203  void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
204  void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
205  void GenSelect(BasicBlock* bb, MIR* mir);
206  void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
207                        int32_t true_val, int32_t false_val, RegStorage rs_dest,
208                        int dest_reg_class) OVERRIDE;
209  bool GenMemBarrier(MemBarrierKind barrier_kind);
210  void GenMoveException(RegLocation rl_dest);
211  void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
212                                     int first_bit, int second_bit);
213  void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
214  void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
215  void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
216  void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
217  void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
218
219  /*
220   * @brief Generate a two address long operation with a constant value
221   * @param rl_dest location of result
222   * @param rl_src constant source operand
223   * @param op Opcode to be generated
224   * @return success or not
225   */
226  bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
227  /*
228   * @brief Generate a three address long operation with a constant value
229   * @param rl_dest location of result
230   * @param rl_src1 source operand
231   * @param rl_src2 constant source operand
232   * @param op Opcode to be generated
233   * @return success or not
234   */
235  bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
236                      Instruction::Code op);
237
238  /**
239   * @brief Generate a long arithmetic operation.
240   * @param rl_dest The destination.
241   * @param rl_src1 First operand.
242   * @param rl_src2 Second operand.
243   * @param op The DEX opcode for the operation.
244   * @param is_commutative The sources can be swapped if needed.
245   */
246  virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
247                            Instruction::Code op, bool is_commutative);
248
249  /**
250   * @brief Generate a two operand long arithmetic operation.
251   * @param rl_dest The destination.
252   * @param rl_src Second operand.
253   * @param op The DEX opcode for the operation.
254   */
255  void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
256
257  /**
258   * @brief Generate a long operation.
259   * @param rl_dest The destination.  Must be in a register
260   * @param rl_src The other operand.  May be in a register or in memory.
261   * @param op The DEX opcode for the operation.
262   */
263  virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
264
265  /**
266   * @brief Implement instanceof a final class with x86 specific code.
267   * @param use_declaring_class 'true' if we can use the class itself.
268   * @param type_idx Type index to use if use_declaring_class is 'false'.
269   * @param rl_dest Result to be set to 0 or 1.
270   * @param rl_src Object to be tested.
271   */
272  void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
273                          RegLocation rl_src);
274
275  void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
276                      RegLocation rl_src1, RegLocation rl_shift);
277
278  // Single operation generators.
279  LIR* OpUnconditionalBranch(LIR* target);
280  LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
281  LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
282  LIR* OpCondBranch(ConditionCode cc, LIR* target);
283  LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
284  LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
285  LIR* OpIT(ConditionCode cond, const char* guide);
286  void OpEndIT(LIR* it);
287  LIR* OpMem(OpKind op, RegStorage r_base, int disp);
288  LIR* OpPcRelLoad(RegStorage reg, LIR* target);
289  LIR* OpReg(OpKind op, RegStorage r_dest_src);
290  void OpRegCopy(RegStorage r_dest, RegStorage r_src);
291  LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
292  LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
293  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
294  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
295  LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
296  LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
297  LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
298  LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
299  LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
300  LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
301  LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
302  LIR* OpTestSuspend(LIR* target);
303  LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) OVERRIDE;
304  LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) OVERRIDE;
305  LIR* OpVldm(RegStorage r_base, int count);
306  LIR* OpVstm(RegStorage r_base, int count);
307  void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
308  void OpRegCopyWide(RegStorage dest, RegStorage src);
309  void OpTlsCmp(ThreadOffset<4> offset, int val) OVERRIDE;
310  void OpTlsCmp(ThreadOffset<8> offset, int val) OVERRIDE;
311
312  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
313  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
314  void SpillCoreRegs();
315  void UnSpillCoreRegs();
316  void UnSpillFPRegs();
317  void SpillFPRegs();
318  static const X86EncodingMap EncodingMap[kX86Last];
319  bool InexpensiveConstantInt(int32_t value);
320  bool InexpensiveConstantFloat(int32_t value);
321  bool InexpensiveConstantLong(int64_t value);
322  bool InexpensiveConstantDouble(int64_t value);
323
324  /*
325   * @brief Should try to optimize for two address instructions?
326   * @return true if we try to avoid generating three operand instructions.
327   */
328  virtual bool GenerateTwoOperandInstructions() const { return true; }
329
330  /*
331   * @brief x86 specific codegen for int operations.
332   * @param opcode Operation to perform.
333   * @param rl_dest Destination for the result.
334   * @param rl_lhs Left hand operand.
335   * @param rl_rhs Right hand operand.
336   */
337  void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
338                     RegLocation rl_rhs);
339
340  /*
341   * @brief Dump a RegLocation using printf
342   * @param loc Register location to dump
343   */
344  static void DumpRegLocation(RegLocation loc);
345
346  /*
347   * @brief Load the Method* of a dex method into the register.
348   * @param target_method The MethodReference of the method to be invoked.
349   * @param type How the method will be invoked.
350   * @param register that will contain the code address.
351   * @note register will be passed to TargetReg to get physical register.
352   */
353  void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
354                         SpecialTargetRegister symbolic_reg);
355
356  /*
357   * @brief Load the Class* of a Dex Class type into the register.
358   * @param type How the method will be invoked.
359   * @param register that will contain the code address.
360   * @note register will be passed to TargetReg to get physical register.
361   */
362  void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
363
364  void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
365
366  int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
367                           NextCallInsn next_call_insn,
368                           const MethodReference& target_method,
369                           uint32_t vtable_idx,
370                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
371                           bool skip_this);
372
373  int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
374                         NextCallInsn next_call_insn,
375                         const MethodReference& target_method,
376                         uint32_t vtable_idx,
377                         uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
378                         bool skip_this);
379
380  /*
381   * @brief Generate a relative call to the method that will be patched at link time.
382   * @param target_method The MethodReference of the method to be invoked.
383   * @param type How the method will be invoked.
384   * @returns Call instruction
385   */
386  virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
387
388  /*
389   * @brief Handle x86 specific literals
390   */
391  void InstallLiteralPools();
392
393  /*
394   * @brief Generate the debug_frame CFI information.
395   * @returns pointer to vector containing CFE information
396   */
397  static std::vector<uint8_t>* ReturnCommonCallFrameInformation();
398
399  /*
400   * @brief Generate the debug_frame FDE information.
401   * @returns pointer to vector containing CFE information
402   */
403  std::vector<uint8_t>* ReturnCallFrameInformation();
404
405 protected:
406  // Casting of RegStorage
407  RegStorage As32BitReg(RegStorage reg) {
408    DCHECK(!reg.IsPair());
409    if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) {
410      if (kFailOnSizeError) {
411        LOG(FATAL) << "Expected 64b register " << reg.GetReg();
412      } else {
413        LOG(WARNING) << "Expected 64b register " << reg.GetReg();
414        return reg;
415      }
416    }
417    RegStorage ret_val = RegStorage(RegStorage::k32BitSolo,
418                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
419    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask)
420                             ->GetReg().GetReg(),
421              ret_val.GetReg());
422    return ret_val;
423  }
424
425  RegStorage As64BitReg(RegStorage reg) {
426    DCHECK(!reg.IsPair());
427    if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) {
428      if (kFailOnSizeError) {
429        LOG(FATAL) << "Expected 32b register " << reg.GetReg();
430      } else {
431        LOG(WARNING) << "Expected 32b register " << reg.GetReg();
432        return reg;
433      }
434    }
435    RegStorage ret_val = RegStorage(RegStorage::k64BitSolo,
436                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
437    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask)
438                             ->GetReg().GetReg(),
439              ret_val.GetReg());
440    return ret_val;
441  }
442
443  size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
444                     int32_t raw_base, int32_t displacement);
445  void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
446  void EmitPrefix(const X86EncodingMap* entry,
447                  int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b);
448  void EmitOpcode(const X86EncodingMap* entry);
449  void EmitPrefixAndOpcode(const X86EncodingMap* entry,
450                           int32_t reg_r, int32_t reg_x, int32_t reg_b);
451  void EmitDisp(uint8_t base, int32_t disp);
452  void EmitModrmThread(uint8_t reg_or_opcode);
453  void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
454  void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
455                        int32_t disp);
456  void EmitImm(const X86EncodingMap* entry, int64_t imm);
457  void EmitNullary(const X86EncodingMap* entry);
458  void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
459  void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
460  void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
461  void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
462                   int32_t disp);
463  void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
464  void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
465  void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
466                    int32_t raw_index, int scale, int32_t disp);
467  void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
468                    int32_t disp, int32_t raw_reg);
469  void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
470  void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
471                    int32_t raw_disp, int32_t imm);
472  void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
473  void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
474  void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
475  void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
476                     int32_t imm);
477  void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
478                     int32_t imm);
479  void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
480  void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
481  void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
482  void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
483  void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
484  void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
485  void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
486  void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
487  void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
488  void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
489  void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
490                      int32_t cc);
491
492  void EmitJmp(const X86EncodingMap* entry, int32_t rel);
493  void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
494  void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
495  void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
496  void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
497  void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
498                 int32_t raw_index, int scale, int32_t table_or_disp);
499  void EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset);
500  void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
501  void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
502                                int64_t val, ConditionCode ccode);
503  void GenConstWide(RegLocation rl_dest, int64_t value);
504  void GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir);
505  void GenShiftByteVector(BasicBlock *bb, MIR *mir);
506  void AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
507  void MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
508  void AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir);
509
510  static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
511
512  /*
513   * @brief Ensure that a temporary register is byte addressable.
514   * @returns a temporary guarenteed to be byte addressable.
515   */
516  virtual RegStorage AllocateByteRegister();
517
518  /*
519   * @brief Use a wide temporary as a 128-bit register
520   * @returns a 128-bit temporary register.
521   */
522  virtual RegStorage Get128BitRegister(RegStorage reg);
523
524  /*
525   * @brief Check if a register is byte addressable.
526   * @returns true if a register is byte addressable.
527   */
528  bool IsByteRegister(RegStorage reg);
529  bool GenInlinedArrayCopyCharArray(CallInfo* info) OVERRIDE;
530
531  /*
532   * @brief generate inline code for fast case of Strng.indexOf.
533   * @param info Call parameters
534   * @param zero_based 'true' if the index into the string is 0.
535   * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
536   * generated.
537   */
538  bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
539
540  /**
541   * @brief Reserve a fixed number of vector  registers from the register pool
542   * @details The mir->dalvikInsn.vA specifies an N such that vector registers
543   * [0..N-1] are removed from the temporary pool. The caller must call
544   * ReturnVectorRegisters before calling ReserveVectorRegisters again.
545   * Also sets the num_reserved_vector_regs_ to the specified value
546   * @param mir whose vA specifies the number of registers to reserve
547   */
548  void ReserveVectorRegisters(MIR* mir);
549
550  /**
551   * @brief Return all the reserved vector registers to the temp pool
552   * @details Returns [0..num_reserved_vector_regs_]
553   */
554  void ReturnVectorRegisters();
555
556  /*
557   * @brief Load 128 bit constant into vector register.
558   * @param bb The basic block in which the MIR is from.
559   * @param mir The MIR whose opcode is kMirConstVector
560   * @note vA is the TypeSize for the register.
561   * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
562   */
563  void GenConst128(BasicBlock* bb, MIR* mir);
564
565  /*
566   * @brief MIR to move a vectorized register to another.
567   * @param bb The basic block in which the MIR is from.
568   * @param mir The MIR whose opcode is kMirConstVector.
569   * @note vA: TypeSize
570   * @note vB: destination
571   * @note vC: source
572   */
573  void GenMoveVector(BasicBlock *bb, MIR *mir);
574
575  /*
576   * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
577   * @param bb The basic block in which the MIR is from.
578   * @param mir The MIR whose opcode is kMirConstVector.
579   * @note vA: TypeSize
580   * @note vB: destination and source
581   * @note vC: source
582   */
583  void GenMultiplyVector(BasicBlock *bb, MIR *mir);
584
585  /*
586   * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
587   * @param bb The basic block in which the MIR is from.
588   * @param mir The MIR whose opcode is kMirConstVector.
589   * @note vA: TypeSize
590   * @note vB: destination and source
591   * @note vC: source
592   */
593  void GenAddVector(BasicBlock *bb, MIR *mir);
594
595  /*
596   * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
597   * @param bb The basic block in which the MIR is from.
598   * @param mir The MIR whose opcode is kMirConstVector.
599   * @note vA: TypeSize
600   * @note vB: destination and source
601   * @note vC: source
602   */
603  void GenSubtractVector(BasicBlock *bb, MIR *mir);
604
605  /*
606   * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
607   * @param bb The basic block in which the MIR is from.
608   * @param mir The MIR whose opcode is kMirConstVector.
609   * @note vA: TypeSize
610   * @note vB: destination and source
611   * @note vC: immediate
612   */
613  void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
614
615  /*
616   * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
617   * @param bb The basic block in which the MIR is from.
618   * @param mir The MIR whose opcode is kMirConstVector.
619   * @note vA: TypeSize
620   * @note vB: destination and source
621   * @note vC: immediate
622   */
623  void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
624
625  /*
626   * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
627   * @param bb The basic block in which the MIR is from..
628   * @param mir The MIR whose opcode is kMirConstVector.
629   * @note vA: TypeSize
630   * @note vB: destination and source
631   * @note vC: immediate
632   */
633  void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
634
635  /*
636   * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
637   * @note vA: TypeSize
638   * @note vB: destination and source
639   * @note vC: source
640   */
641  void GenAndVector(BasicBlock *bb, MIR *mir);
642
643  /*
644   * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
645   * @param bb The basic block in which the MIR is from.
646   * @param mir The MIR whose opcode is kMirConstVector.
647   * @note vA: TypeSize
648   * @note vB: destination and source
649   * @note vC: source
650   */
651  void GenOrVector(BasicBlock *bb, MIR *mir);
652
653  /*
654   * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
655   * @param bb The basic block in which the MIR is from.
656   * @param mir The MIR whose opcode is kMirConstVector.
657   * @note vA: TypeSize
658   * @note vB: destination and source
659   * @note vC: source
660   */
661  void GenXorVector(BasicBlock *bb, MIR *mir);
662
663  /*
664   * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
665   * @param bb The basic block in which the MIR is from.
666   * @param mir The MIR whose opcode is kMirConstVector.
667   * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
668   * @note vA: TypeSize
669   * @note vB: destination and source VR (not vector register)
670   * @note vC: source (vector register)
671   */
672  void GenAddReduceVector(BasicBlock *bb, MIR *mir);
673
674  /*
675   * @brief Extract a packed element into a single VR.
676   * @param bb The basic block in which the MIR is from.
677   * @param mir The MIR whose opcode is kMirConstVector.
678   * @note vA: TypeSize
679   * @note vB: destination VR (not vector register)
680   * @note vC: source (vector register)
681   * @note arg[0]: The index to use for extraction from vector register (which packed element).
682   */
683  void GenReduceVector(BasicBlock *bb, MIR *mir);
684
685  /*
686   * @brief Create a vector value, with all TypeSize values equal to vC
687   * @param bb The basic block in which the MIR is from.
688   * @param mir The MIR whose opcode is kMirConstVector.
689   * @note vA: TypeSize.
690   * @note vB: destination vector register.
691   * @note vC: source VR (not vector register).
692   */
693  void GenSetVector(BasicBlock *bb, MIR *mir);
694
695  /*
696   * @brief Generate code for a vector opcode.
697   * @param bb The basic block in which the MIR is from.
698   * @param mir The MIR whose opcode is a non-standard opcode.
699   */
700  void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
701
702  /*
703   * @brief Return the correct x86 opcode for the Dex operation
704   * @param op Dex opcode for the operation
705   * @param loc Register location of the operand
706   * @param is_high_op 'true' if this is an operation on the high word
707   * @param value Immediate value for the operation.  Used for byte variants
708   * @returns the correct x86 opcode to perform the operation
709   */
710  X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
711
712  /*
713   * @brief Return the correct x86 opcode for the Dex operation
714   * @param op Dex opcode for the operation
715   * @param dest location of the destination.  May be register or memory.
716   * @param rhs Location for the rhs of the operation.  May be in register or memory.
717   * @param is_high_op 'true' if this is an operation on the high word
718   * @returns the correct x86 opcode to perform the operation
719   * @note at most one location may refer to memory
720   */
721  X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
722                      bool is_high_op);
723
724  /*
725   * @brief Is this operation a no-op for this opcode and value
726   * @param op Dex opcode for the operation
727   * @param value Immediate value for the operation.
728   * @returns 'true' if the operation will have no effect
729   */
730  bool IsNoOp(Instruction::Code op, int32_t value);
731
732  /**
733   * @brief Calculate magic number and shift for a given divisor
734   * @param divisor divisor number for calculation
735   * @param magic hold calculated magic number
736   * @param shift hold calculated shift
737   */
738  void CalculateMagicAndShift(int divisor, int& magic, int& shift);
739
740  /*
741   * @brief Generate an integer div or rem operation.
742   * @param rl_dest Destination Location.
743   * @param rl_src1 Numerator Location.
744   * @param rl_src2 Divisor Location.
745   * @param is_div 'true' if this is a division, 'false' for a remainder.
746   * @param check_zero 'true' if an exception should be generated if the divisor is 0.
747   */
748  RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
749                        bool is_div, bool check_zero);
750
751  /*
752   * @brief Generate an integer div or rem operation by a literal.
753   * @param rl_dest Destination Location.
754   * @param rl_src Numerator Location.
755   * @param lit Divisor.
756   * @param is_div 'true' if this is a division, 'false' for a remainder.
757   */
758  RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
759
760  /*
761   * Generate code to implement long shift operations.
762   * @param opcode The DEX opcode to specify the shift type.
763   * @param rl_dest The destination.
764   * @param rl_src The value to be shifted.
765   * @param shift_amount How much to shift.
766   * @returns the RegLocation of the result.
767   */
768  RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
769                                RegLocation rl_src, int shift_amount);
770  /*
771   * Generate an imul of a register by a constant or a better sequence.
772   * @param dest Destination Register.
773   * @param src Source Register.
774   * @param val Constant multiplier.
775   */
776  void GenImulRegImm(RegStorage dest, RegStorage src, int val);
777
778  /*
779   * Generate an imul of a memory location by a constant or a better sequence.
780   * @param dest Destination Register.
781   * @param sreg Symbolic register.
782   * @param displacement Displacement on stack of Symbolic Register.
783   * @param val Constant multiplier.
784   */
785  void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
786
787  /*
788   * @brief Compare memory to immediate, and branch if condition true.
789   * @param cond The condition code that when true will branch to the target.
790   * @param temp_reg A temporary register that can be used if compare memory is not
791   * supported by the architecture.
792   * @param base_reg The register holding the base address.
793   * @param offset The offset from the base.
794   * @param check_value The immediate to compare to.
795   * @param target branch target (or nullptr)
796   * @param compare output for getting LIR for comparison (or nullptr)
797   */
798  LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
799                         int offset, int check_value, LIR* target, LIR** compare);
800
801  /*
802   * Can this operation be using core registers without temporaries?
803   * @param rl_lhs Left hand operand.
804   * @param rl_rhs Right hand operand.
805   * @returns 'true' if the operation can proceed without needing temporary regs.
806   */
807  bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
808
809  /**
810   * @brief Generates inline code for conversion of long to FP by using x87/
811   * @param rl_dest The destination of the FP.
812   * @param rl_src The source of the long.
813   * @param is_double 'true' if dealing with double, 'false' for float.
814   */
815  virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
816
817  /*
818   * @brief Perform MIR analysis before compiling method.
819   * @note Invokes Mir2LiR::Materialize after analysis.
820   */
821  void Materialize();
822
823  /*
824   * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
825   * without regard to data type.  In practice, this can result in UpdateLoc returning a
826   * location record for a Dalvik float value in a core register, and vis-versa.  For targets
827   * which can inexpensively move data between core and float registers, this can often be a win.
828   * However, for x86 this is generally not a win.  These variants of UpdateLoc()
829   * take a register class argument - and will return an in-register location record only if
830   * the value is live in a temp register of the correct class.  Additionally, if the value is in
831   * a temp register of the wrong register class, it will be clobbered.
832   */
833  RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
834  RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
835
836  /*
837   * @brief Analyze MIR before generating code, to prepare for the code generation.
838   */
839  void AnalyzeMIR();
840
841  /*
842   * @brief Analyze one basic block.
843   * @param bb Basic block to analyze.
844   */
845  void AnalyzeBB(BasicBlock * bb);
846
847  /*
848   * @brief Analyze one extended MIR instruction
849   * @param opcode MIR instruction opcode.
850   * @param bb Basic block containing instruction.
851   * @param mir Extended instruction to analyze.
852   */
853  void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
854
855  /*
856   * @brief Analyze one MIR instruction
857   * @param opcode MIR instruction opcode.
858   * @param bb Basic block containing instruction.
859   * @param mir Instruction to analyze.
860   */
861  virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
862
863  /*
864   * @brief Analyze one MIR float/double instruction
865   * @param opcode MIR instruction opcode.
866   * @param bb Basic block containing instruction.
867   * @param mir Instruction to analyze.
868   */
869  void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
870
871  /*
872   * @brief Analyze one use of a double operand.
873   * @param rl_use Double RegLocation for the operand.
874   */
875  void AnalyzeDoubleUse(RegLocation rl_use);
876
877  /*
878   * @brief Analyze one invoke-static MIR instruction
879   * @param opcode MIR instruction opcode.
880   * @param bb Basic block containing instruction.
881   * @param mir Instruction to analyze.
882   */
883  void AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir);
884
885  // Information derived from analysis of MIR
886
887  // The compiler temporary for the code address of the method.
888  CompilerTemp *base_of_code_;
889
890  // Have we decided to compute a ptr to code and store in temporary VR?
891  bool store_method_addr_;
892
893  // Have we used the stored method address?
894  bool store_method_addr_used_;
895
896  // Instructions to remove if we didn't use the stored method address.
897  LIR* setup_method_address_[2];
898
899  // Instructions needing patching with Method* values.
900  GrowableArray<LIR*> method_address_insns_;
901
902  // Instructions needing patching with Class Type* values.
903  GrowableArray<LIR*> class_type_address_insns_;
904
905  // Instructions needing patching with PC relative code addresses.
906  GrowableArray<LIR*> call_method_insns_;
907
908  // Prologue decrement of stack pointer.
909  LIR* stack_decrement_;
910
911  // Epilogue increment of stack pointer.
912  LIR* stack_increment_;
913
914  // The list of const vector literals.
915  LIR *const_vectors_;
916
917  /*
918   * @brief Search for a matching vector literal
919   * @param mir A kMirOpConst128b MIR instruction to match.
920   * @returns pointer to matching LIR constant, or nullptr if not found.
921   */
922  LIR *ScanVectorLiteral(MIR *mir);
923
924  /*
925   * @brief Add a constant vector literal
926   * @param mir A kMirOpConst128b MIR instruction to match.
927   */
928  LIR *AddVectorLiteral(MIR *mir);
929
930  InToRegStorageMapping in_to_reg_storage_mapping_;
931
932  bool WideGPRsAreAliases() OVERRIDE {
933    return cu_->target64;  // On 64b, we have 64b GPRs.
934  }
935  bool WideFPRsAreAliases() OVERRIDE {
936    return true;  // xmm registers have 64b views even on x86.
937  }
938
939 private:
940  // The number of vector registers [0..N] reserved by a call to ReserveVectorRegisters
941  int num_reserved_vector_regs_;
942};
943
944}  // namespace art
945
946#endif  // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
947