int_x86.cc revision 147eb41b53729ec8d5c188d1cac90964a51afb8a
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "dex/reg_storage_eq.h"
22#include "mirror/art_method.h"
23#include "mirror/array.h"
24#include "x86_lir.h"
25
26namespace art {
27
28/*
29 * Compare two 64-bit values
30 *    x = y     return  0
31 *    x < y     return -1
32 *    x > y     return  1
33 */
34void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
35                            RegLocation rl_src2) {
36  if (cu_->target64) {
37    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
38    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
39    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
40    RegStorage temp_reg = AllocTemp();
41    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
42    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondG);   // result = (src1 > src2) ? 1 : 0
43    NewLIR2(kX86Set8R, temp_reg.GetReg(), kX86CondL);  // temp = (src1 >= src2) ? 0 : 1
44    NewLIR2(kX86Sub8RR, rl_result.reg.GetReg(), temp_reg.GetReg());
45    NewLIR2(kX86Movsx8qRR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
46
47    StoreValue(rl_dest, rl_result);
48    FreeTemp(temp_reg);
49    return;
50  }
51
52  FlushAllRegs();
53  LockCallTemps();  // Prepare for explicit register usage
54  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
55  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
56  LoadValueDirectWideFixed(rl_src1, r_tmp1);
57  LoadValueDirectWideFixed(rl_src2, r_tmp2);
58  // Compute (r1:r0) = (r1:r0) - (r3:r2)
59  OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
60  OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
61  NewLIR2(kX86Set8R, rs_r2.GetReg(), kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
62  NewLIR2(kX86Movzx8RR, rs_r2.GetReg(), rs_r2.GetReg());
63  OpReg(kOpNeg, rs_r2);         // r2 = -r2
64  OpRegReg(kOpOr, rs_r0, rs_r1);   // r0 = high | low - sets ZF
65  NewLIR2(kX86Set8R, rs_r0.GetReg(), kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
66  NewLIR2(kX86Movzx8RR, r0, r0);
67  OpRegReg(kOpOr, rs_r0, rs_r2);   // r0 = r0 | r2
68  RegLocation rl_result = LocCReturn();
69  StoreValue(rl_dest, rl_result);
70}
71
72X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
73  switch (cond) {
74    case kCondEq: return kX86CondEq;
75    case kCondNe: return kX86CondNe;
76    case kCondCs: return kX86CondC;
77    case kCondCc: return kX86CondNc;
78    case kCondUlt: return kX86CondC;
79    case kCondUge: return kX86CondNc;
80    case kCondMi: return kX86CondS;
81    case kCondPl: return kX86CondNs;
82    case kCondVs: return kX86CondO;
83    case kCondVc: return kX86CondNo;
84    case kCondHi: return kX86CondA;
85    case kCondLs: return kX86CondBe;
86    case kCondGe: return kX86CondGe;
87    case kCondLt: return kX86CondL;
88    case kCondGt: return kX86CondG;
89    case kCondLe: return kX86CondLe;
90    case kCondAl:
91    case kCondNv: LOG(FATAL) << "Should not reach here";
92  }
93  return kX86CondO;
94}
95
96LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
97  NewLIR2(src1.Is64Bit() ? kX86Cmp64RR : kX86Cmp32RR, src1.GetReg(), src2.GetReg());
98  X86ConditionCode cc = X86ConditionEncoding(cond);
99  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
100                        cc);
101  branch->target = target;
102  return branch;
103}
104
105LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg,
106                                int check_value, LIR* target) {
107  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
108    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
109    NewLIR2(reg.Is64Bit() ? kX86Test64RR: kX86Test32RR, reg.GetReg(), reg.GetReg());
110  } else {
111    if (reg.Is64Bit()) {
112      NewLIR2(IS_SIMM8(check_value) ? kX86Cmp64RI8 : kX86Cmp64RI, reg.GetReg(), check_value);
113    } else {
114      NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg.GetReg(), check_value);
115    }
116  }
117  X86ConditionCode cc = X86ConditionEncoding(cond);
118  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
119  branch->target = target;
120  return branch;
121}
122
123LIR* X86Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
124  // If src or dest is a pair, we'll be using low reg.
125  if (r_dest.IsPair()) {
126    r_dest = r_dest.GetLow();
127  }
128  if (r_src.IsPair()) {
129    r_src = r_src.GetLow();
130  }
131  if (r_dest.IsFloat() || r_src.IsFloat())
132    return OpFpRegCopy(r_dest, r_src);
133  LIR* res = RawLIR(current_dalvik_offset_, r_dest.Is64Bit() ? kX86Mov64RR : kX86Mov32RR,
134                    r_dest.GetReg(), r_src.GetReg());
135  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
136    res->flags.is_nop = true;
137  }
138  return res;
139}
140
141void X86Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
142  if (r_dest != r_src) {
143    LIR *res = OpRegCopyNoInsert(r_dest, r_src);
144    AppendLIR(res);
145  }
146}
147
148void X86Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
149  if (r_dest != r_src) {
150    bool dest_fp = r_dest.IsFloat();
151    bool src_fp = r_src.IsFloat();
152    if (dest_fp) {
153      if (src_fp) {
154        OpRegCopy(r_dest, r_src);
155      } else {
156        // TODO: Prevent this from happening in the code. The result is often
157        // unused or could have been loaded more easily from memory.
158        if (!r_src.IsPair()) {
159          DCHECK(!r_dest.IsPair());
160          NewLIR2(kX86MovqxrRR, r_dest.GetReg(), r_src.GetReg());
161        } else {
162          NewLIR2(kX86MovdxrRR, r_dest.GetReg(), r_src.GetLowReg());
163          RegStorage r_tmp = AllocTempDouble();
164          NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), r_src.GetHighReg());
165          NewLIR2(kX86PunpckldqRR, r_dest.GetReg(), r_tmp.GetReg());
166          FreeTemp(r_tmp);
167        }
168      }
169    } else {
170      if (src_fp) {
171        if (!r_dest.IsPair()) {
172          DCHECK(!r_src.IsPair());
173          NewLIR2(kX86MovqrxRR, r_dest.GetReg(), r_src.GetReg());
174        } else {
175          NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetReg());
176          RegStorage temp_reg = AllocTempDouble();
177          NewLIR2(kX86MovsdRR, temp_reg.GetReg(), r_src.GetReg());
178          NewLIR2(kX86PsrlqRI, temp_reg.GetReg(), 32);
179          NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), temp_reg.GetReg());
180        }
181      } else {
182        DCHECK_EQ(r_dest.IsPair(), r_src.IsPair());
183        if (!r_src.IsPair()) {
184          // Just copy the register directly.
185          OpRegCopy(r_dest, r_src);
186        } else {
187          // Handle overlap
188          if (r_src.GetHighReg() == r_dest.GetLowReg() &&
189              r_src.GetLowReg() == r_dest.GetHighReg()) {
190            // Deal with cycles.
191            RegStorage temp_reg = AllocTemp();
192            OpRegCopy(temp_reg, r_dest.GetHigh());
193            OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
194            OpRegCopy(r_dest.GetLow(), temp_reg);
195            FreeTemp(temp_reg);
196          } else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
197            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
198            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
199          } else {
200            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
201            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
202          }
203        }
204      }
205    }
206  }
207}
208
209void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
210  RegLocation rl_result;
211  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
212  RegLocation rl_dest = mir_graph_->GetDest(mir);
213  // Avoid using float regs here.
214  RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
215  RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
216  rl_src = LoadValue(rl_src, src_reg_class);
217  ConditionCode ccode = mir->meta.ccode;
218
219  // The kMirOpSelect has two variants, one for constants and one for moves.
220  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
221
222  if (is_constant_case) {
223    int true_val = mir->dalvikInsn.vB;
224    int false_val = mir->dalvikInsn.vC;
225    rl_result = EvalLoc(rl_dest, result_reg_class, true);
226
227    /*
228     * For ccode == kCondEq:
229     *
230     * 1) When the true case is zero and result_reg is not same as src_reg:
231     *     xor result_reg, result_reg
232     *     cmp $0, src_reg
233     *     mov t1, $false_case
234     *     cmovnz result_reg, t1
235     * 2) When the false case is zero and result_reg is not same as src_reg:
236     *     xor result_reg, result_reg
237     *     cmp $0, src_reg
238     *     mov t1, $true_case
239     *     cmovz result_reg, t1
240     * 3) All other cases (we do compare first to set eflags):
241     *     cmp $0, src_reg
242     *     mov result_reg, $false_case
243     *     mov t1, $true_case
244     *     cmovz result_reg, t1
245     */
246    // FIXME: depending on how you use registers you could get a false != mismatch when dealing
247    // with different views of the same underlying physical resource (i.e. solo32 vs. solo64).
248    const bool result_reg_same_as_src =
249        (rl_src.location == kLocPhysReg && rl_src.reg.GetRegNum() == rl_result.reg.GetRegNum());
250    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
251    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
252    const bool catch_all_case = !(true_zero_case || false_zero_case);
253
254    if (true_zero_case || false_zero_case) {
255      OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
256    }
257
258    if (true_zero_case || false_zero_case || catch_all_case) {
259      OpRegImm(kOpCmp, rl_src.reg, 0);
260    }
261
262    if (catch_all_case) {
263      OpRegImm(kOpMov, rl_result.reg, false_val);
264    }
265
266    if (true_zero_case || false_zero_case || catch_all_case) {
267      ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
268      int immediateForTemp = true_zero_case ? false_val : true_val;
269      RegStorage temp1_reg = AllocTypedTemp(false, result_reg_class);
270      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
271
272      OpCondRegReg(kOpCmov, cc, rl_result.reg, temp1_reg);
273
274      FreeTemp(temp1_reg);
275    }
276  } else {
277    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
278    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
279    rl_true = LoadValue(rl_true, result_reg_class);
280    rl_false = LoadValue(rl_false, result_reg_class);
281    rl_result = EvalLoc(rl_dest, result_reg_class, true);
282
283    /*
284     * For ccode == kCondEq:
285     *
286     * 1) When true case is already in place:
287     *     cmp $0, src_reg
288     *     cmovnz result_reg, false_reg
289     * 2) When false case is already in place:
290     *     cmp $0, src_reg
291     *     cmovz result_reg, true_reg
292     * 3) When neither cases are in place:
293     *     cmp $0, src_reg
294     *     mov result_reg, false_reg
295     *     cmovz result_reg, true_reg
296     */
297
298    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
299    OpRegImm(kOpCmp, rl_src.reg, 0);
300
301    if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
302      OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg, rl_false.reg);
303    } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
304      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
305    } else {
306      OpRegCopy(rl_result.reg, rl_false.reg);
307      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
308    }
309  }
310
311  StoreValue(rl_dest, rl_result);
312}
313
314void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
315  LIR* taken = &block_label_list_[bb->taken];
316  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
317  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
318  ConditionCode ccode = mir->meta.ccode;
319
320  if (rl_src1.is_const) {
321    std::swap(rl_src1, rl_src2);
322    ccode = FlipComparisonOrder(ccode);
323  }
324  if (rl_src2.is_const) {
325    // Do special compare/branch against simple const operand
326    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
327    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
328    return;
329  }
330
331  if (cu_->target64) {
332    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
333    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
334
335    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
336    OpCondBranch(ccode, taken);
337    return;
338  }
339
340  FlushAllRegs();
341  LockCallTemps();  // Prepare for explicit register usage
342  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
343  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
344  LoadValueDirectWideFixed(rl_src1, r_tmp1);
345  LoadValueDirectWideFixed(rl_src2, r_tmp2);
346
347  // Swap operands and condition code to prevent use of zero flag.
348  if (ccode == kCondLe || ccode == kCondGt) {
349    // Compute (r3:r2) = (r3:r2) - (r1:r0)
350    OpRegReg(kOpSub, rs_r2, rs_r0);  // r2 = r2 - r0
351    OpRegReg(kOpSbc, rs_r3, rs_r1);  // r3 = r3 - r1 - CF
352  } else {
353    // Compute (r1:r0) = (r1:r0) - (r3:r2)
354    OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
355    OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
356  }
357  switch (ccode) {
358    case kCondEq:
359    case kCondNe:
360      OpRegReg(kOpOr, rs_r0, rs_r1);  // r0 = r0 | r1
361      break;
362    case kCondLe:
363      ccode = kCondGe;
364      break;
365    case kCondGt:
366      ccode = kCondLt;
367      break;
368    case kCondLt:
369    case kCondGe:
370      break;
371    default:
372      LOG(FATAL) << "Unexpected ccode: " << ccode;
373  }
374  OpCondBranch(ccode, taken);
375}
376
377void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
378                                          int64_t val, ConditionCode ccode) {
379  int32_t val_lo = Low32Bits(val);
380  int32_t val_hi = High32Bits(val);
381  LIR* taken = &block_label_list_[bb->taken];
382  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
383  bool is_equality_test = ccode == kCondEq || ccode == kCondNe;
384
385  if (cu_->target64) {
386    if (is_equality_test && val == 0) {
387      // We can simplify of comparing for ==, != to 0.
388      NewLIR2(kX86Test64RR, rl_src1.reg.GetReg(), rl_src1.reg.GetReg());
389    } else if (is_equality_test && val_hi == 0 && val_lo > 0) {
390      OpRegImm(kOpCmp, rl_src1.reg, val_lo);
391    } else {
392      RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
393      LoadConstantWide(tmp, val);
394      OpRegReg(kOpCmp, rl_src1.reg, tmp);
395      FreeTemp(tmp);
396    }
397    OpCondBranch(ccode, taken);
398    return;
399  }
400
401  if (is_equality_test && val != 0) {
402    rl_src1 = ForceTempWide(rl_src1);
403  }
404  RegStorage low_reg = rl_src1.reg.GetLow();
405  RegStorage high_reg = rl_src1.reg.GetHigh();
406
407  if (is_equality_test) {
408    // We can simplify of comparing for ==, != to 0.
409    if (val == 0) {
410      if (IsTemp(low_reg)) {
411        OpRegReg(kOpOr, low_reg, high_reg);
412        // We have now changed it; ignore the old values.
413        Clobber(rl_src1.reg);
414      } else {
415        RegStorage t_reg = AllocTemp();
416        OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
417        FreeTemp(t_reg);
418      }
419      OpCondBranch(ccode, taken);
420      return;
421    }
422
423    // Need to compute the actual value for ==, !=.
424    OpRegImm(kOpSub, low_reg, val_lo);
425    NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
426    OpRegReg(kOpOr, high_reg, low_reg);
427    Clobber(rl_src1.reg);
428  } else if (ccode == kCondLe || ccode == kCondGt) {
429    // Swap operands and condition code to prevent use of zero flag.
430    RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
431    LoadConstantWide(tmp, val);
432    OpRegReg(kOpSub, tmp.GetLow(), low_reg);
433    OpRegReg(kOpSbc, tmp.GetHigh(), high_reg);
434    ccode = (ccode == kCondLe) ? kCondGe : kCondLt;
435    FreeTemp(tmp);
436  } else {
437    // We can use a compare for the low word to set CF.
438    OpRegImm(kOpCmp, low_reg, val_lo);
439    if (IsTemp(high_reg)) {
440      NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
441      // We have now changed it; ignore the old values.
442      Clobber(rl_src1.reg);
443    } else {
444      // mov temp_reg, high_reg; sbb temp_reg, high_constant
445      RegStorage t_reg = AllocTemp();
446      OpRegCopy(t_reg, high_reg);
447      NewLIR2(kX86Sbb32RI, t_reg.GetReg(), val_hi);
448      FreeTemp(t_reg);
449    }
450  }
451
452  OpCondBranch(ccode, taken);
453}
454
455void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
456  // It does not make sense to calculate magic and shift for zero divisor.
457  DCHECK_NE(divisor, 0);
458
459  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
460   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
461   * The magic number M and shift S can be calculated in the following way:
462   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
463   * where divisor(d) >=2.
464   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
465   * where divisor(d) <= -2.
466   * Thus nc can be calculated like:
467   * nc = 2^31 + 2^31 % d - 1, where d >= 2
468   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
469   *
470   * So the shift p is the smallest p satisfying
471   * 2^p > nc * (d - 2^p % d), where d >= 2
472   * 2^p > nc * (d + 2^p % d), where d <= -2.
473   *
474   * the magic number M is calcuated by
475   * M = (2^p + d - 2^p % d) / d, where d >= 2
476   * M = (2^p - d - 2^p % d) / d, where d <= -2.
477   *
478   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
479   * the shift number S.
480   */
481
482  int32_t p = 31;
483  const uint32_t two31 = 0x80000000U;
484
485  // Initialize the computations.
486  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
487  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
488  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
489  uint32_t quotient1 = two31 / abs_nc;
490  uint32_t remainder1 = two31 % abs_nc;
491  uint32_t quotient2 = two31 / abs_d;
492  uint32_t remainder2 = two31 % abs_d;
493
494  /*
495   * To avoid handling both positive and negative divisor, Hacker's Delight
496   * introduces a method to handle these 2 cases together to avoid duplication.
497   */
498  uint32_t delta;
499  do {
500    p++;
501    quotient1 = 2 * quotient1;
502    remainder1 = 2 * remainder1;
503    if (remainder1 >= abs_nc) {
504      quotient1++;
505      remainder1 = remainder1 - abs_nc;
506    }
507    quotient2 = 2 * quotient2;
508    remainder2 = 2 * remainder2;
509    if (remainder2 >= abs_d) {
510      quotient2++;
511      remainder2 = remainder2 - abs_d;
512    }
513    delta = abs_d - remainder2;
514  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
515
516  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
517  shift = p - 32;
518}
519
520RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) {
521  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
522  return rl_dest;
523}
524
525RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
526                                     int imm, bool is_div) {
527  // Use a multiply (and fixup) to perform an int div/rem by a constant.
528
529  // We have to use fixed registers, so flush all the temps.
530  FlushAllRegs();
531  LockCallTemps();  // Prepare for explicit register usage.
532
533  // Assume that the result will be in EDX.
534  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r2, INVALID_SREG, INVALID_SREG};
535
536  // handle div/rem by 1 special case.
537  if (imm == 1) {
538    if (is_div) {
539      // x / 1 == x.
540      StoreValue(rl_result, rl_src);
541    } else {
542      // x % 1 == 0.
543      LoadConstantNoClobber(rs_r0, 0);
544      // For this case, return the result in EAX.
545      rl_result.reg.SetReg(r0);
546    }
547  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
548    if (is_div) {
549      LIR *minint_branch = 0;
550      LoadValueDirectFixed(rl_src, rs_r0);
551      OpRegImm(kOpCmp, rs_r0, 0x80000000);
552      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
553
554      // for x != MIN_INT, x / -1 == -x.
555      NewLIR1(kX86Neg32R, r0);
556
557      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
558      // The target for cmp/jmp above.
559      minint_branch->target = NewLIR0(kPseudoTargetLabel);
560      // EAX already contains the right value (0x80000000),
561      branch_around->target = NewLIR0(kPseudoTargetLabel);
562    } else {
563      // x % -1 == 0.
564      LoadConstantNoClobber(rs_r0, 0);
565    }
566    // For this case, return the result in EAX.
567    rl_result.reg.SetReg(r0);
568  } else {
569    CHECK(imm <= -2 || imm >= 2);
570    // Use H.S.Warren's Hacker's Delight Chapter 10 and
571    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
572    int magic, shift;
573    CalculateMagicAndShift(imm, magic, shift);
574
575    /*
576     * For imm >= 2,
577     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
578     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
579     * For imm <= -2,
580     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
581     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
582     * We implement this algorithm in the following way:
583     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
584     * 2. if imm > 0 and magic < 0, add numerator to EDX
585     *    if imm < 0 and magic > 0, sub numerator from EDX
586     * 3. if S !=0, SAR S bits for EDX
587     * 4. add 1 to EDX if EDX < 0
588     * 5. Thus, EDX is the quotient
589     */
590
591    // Numerator into EAX.
592    RegStorage numerator_reg;
593    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
594      // We will need the value later.
595      if (rl_src.location == kLocPhysReg) {
596        // We can use it directly.
597        DCHECK(rl_src.reg.GetReg() != rs_r0.GetReg() && rl_src.reg.GetReg() != rs_r2.GetReg());
598        numerator_reg = rl_src.reg;
599      } else {
600        numerator_reg = rs_r1;
601        LoadValueDirectFixed(rl_src, numerator_reg);
602      }
603      OpRegCopy(rs_r0, numerator_reg);
604    } else {
605      // Only need this once.  Just put it into EAX.
606      LoadValueDirectFixed(rl_src, rs_r0);
607    }
608
609    // EDX = magic.
610    LoadConstantNoClobber(rs_r2, magic);
611
612    // EDX:EAX = magic & dividend.
613    NewLIR1(kX86Imul32DaR, rs_r2.GetReg());
614
615    if (imm > 0 && magic < 0) {
616      // Add numerator to EDX.
617      DCHECK(numerator_reg.Valid());
618      NewLIR2(kX86Add32RR, rs_r2.GetReg(), numerator_reg.GetReg());
619    } else if (imm < 0 && magic > 0) {
620      DCHECK(numerator_reg.Valid());
621      NewLIR2(kX86Sub32RR, rs_r2.GetReg(), numerator_reg.GetReg());
622    }
623
624    // Do we need the shift?
625    if (shift != 0) {
626      // Shift EDX by 'shift' bits.
627      NewLIR2(kX86Sar32RI, rs_r2.GetReg(), shift);
628    }
629
630    // Add 1 to EDX if EDX < 0.
631
632    // Move EDX to EAX.
633    OpRegCopy(rs_r0, rs_r2);
634
635    // Move sign bit to bit 0, zeroing the rest.
636    NewLIR2(kX86Shr32RI, rs_r2.GetReg(), 31);
637
638    // EDX = EDX + EAX.
639    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r0.GetReg());
640
641    // Quotient is in EDX.
642    if (!is_div) {
643      // We need to compute the remainder.
644      // Remainder is divisor - (quotient * imm).
645      DCHECK(numerator_reg.Valid());
646      OpRegCopy(rs_r0, numerator_reg);
647
648      // EAX = numerator * imm.
649      OpRegRegImm(kOpMul, rs_r2, rs_r2, imm);
650
651      // EDX -= EAX.
652      NewLIR2(kX86Sub32RR, rs_r0.GetReg(), rs_r2.GetReg());
653
654      // For this case, return the result in EAX.
655      rl_result.reg.SetReg(r0);
656    }
657  }
658
659  return rl_result;
660}
661
662RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
663                                  bool is_div) {
664  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
665  return rl_dest;
666}
667
668RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
669                                  RegLocation rl_src2, bool is_div, bool check_zero) {
670  // We have to use fixed registers, so flush all the temps.
671  FlushAllRegs();
672  LockCallTemps();  // Prepare for explicit register usage.
673
674  // Load LHS into EAX.
675  LoadValueDirectFixed(rl_src1, rs_r0);
676
677  // Load RHS into EBX.
678  LoadValueDirectFixed(rl_src2, rs_r1);
679
680  // Copy LHS sign bit into EDX.
681  NewLIR0(kx86Cdq32Da);
682
683  if (check_zero) {
684    // Handle division by zero case.
685    GenDivZeroCheck(rs_r1);
686  }
687
688  // Have to catch 0x80000000/-1 case, or we will get an exception!
689  OpRegImm(kOpCmp, rs_r1, -1);
690  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
691
692  // RHS is -1.
693  OpRegImm(kOpCmp, rs_r0, 0x80000000);
694  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
695
696  // In 0x80000000/-1 case.
697  if (!is_div) {
698    // For DIV, EAX is already right. For REM, we need EDX 0.
699    LoadConstantNoClobber(rs_r2, 0);
700  }
701  LIR* done = NewLIR1(kX86Jmp8, 0);
702
703  // Expected case.
704  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
705  minint_branch->target = minus_one_branch->target;
706  NewLIR1(kX86Idivmod32DaR, rs_r1.GetReg());
707  done->target = NewLIR0(kPseudoTargetLabel);
708
709  // Result is in EAX for div and EDX for rem.
710  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r0, INVALID_SREG, INVALID_SREG};
711  if (!is_div) {
712    rl_result.reg.SetReg(r2);
713  }
714  return rl_result;
715}
716
717bool X86Mir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) {
718  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
719
720  if (is_long && cu_->instruction_set == kX86) {
721    return false;
722  }
723
724  // Get the two arguments to the invoke and place them in GP registers.
725  RegLocation rl_src1 = info->args[0];
726  RegLocation rl_src2 = (is_long) ? info->args[2] : info->args[1];
727  rl_src1 = (is_long) ? LoadValueWide(rl_src1, kCoreReg) : LoadValue(rl_src1, kCoreReg);
728  rl_src2 = (is_long) ? LoadValueWide(rl_src2, kCoreReg) : LoadValue(rl_src2, kCoreReg);
729
730  RegLocation rl_dest = (is_long) ? InlineTargetWide(info) : InlineTarget(info);
731  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
732
733  /*
734   * If the result register is the same as the second element, then we need to be careful.
735   * The reason is that the first copy will inadvertently clobber the second element with
736   * the first one thus yielding the wrong result. Thus we do a swap in that case.
737   */
738  if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
739    std::swap(rl_src1, rl_src2);
740  }
741
742  // Pick the first integer as min/max.
743  OpRegCopy(rl_result.reg, rl_src1.reg);
744
745  // If the integers are both in the same register, then there is nothing else to do
746  // because they are equal and we have already moved one into the result.
747  if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
748    // It is possible we didn't pick correctly so do the actual comparison now.
749    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
750
751    // Conditionally move the other integer into the destination register.
752    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
753    OpCondRegReg(kOpCmov, condition_code, rl_result.reg, rl_src2.reg);
754  }
755
756  if (is_long) {
757    StoreValueWide(rl_dest, rl_result);
758  } else {
759    StoreValue(rl_dest, rl_result);
760  }
761  return true;
762}
763
764bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
765  RegLocation rl_src_address = info->args[0];  // long address
766  RegLocation rl_address;
767  if (!cu_->target64) {
768    rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[0]
769    rl_address = LoadValue(rl_src_address, kCoreReg);
770  } else {
771    rl_address = LoadValueWide(rl_src_address, kCoreReg);
772  }
773  RegLocation rl_dest = size == k64 ? InlineTargetWide(info) : InlineTarget(info);
774  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
775  // Unaligned access is allowed on x86.
776  LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile);
777  if (size == k64) {
778    StoreValueWide(rl_dest, rl_result);
779  } else {
780    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
781    StoreValue(rl_dest, rl_result);
782  }
783  return true;
784}
785
786bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
787  RegLocation rl_src_address = info->args[0];  // long address
788  RegLocation rl_address;
789  if (!cu_->target64) {
790    rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[0]
791    rl_address = LoadValue(rl_src_address, kCoreReg);
792  } else {
793    rl_address = LoadValueWide(rl_src_address, kCoreReg);
794  }
795  RegLocation rl_src_value = info->args[2];  // [size] value
796  RegLocation rl_value;
797  if (size == k64) {
798    // Unaligned access is allowed on x86.
799    rl_value = LoadValueWide(rl_src_value, kCoreReg);
800  } else {
801    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
802    // In 32-bit mode the only EAX..EDX registers can be used with Mov8MR.
803    if (!cu_->target64 && size == kSignedByte) {
804      rl_src_value = UpdateLocTyped(rl_src_value, kCoreReg);
805      if (rl_src_value.location == kLocPhysReg && !IsByteRegister(rl_src_value.reg)) {
806        RegStorage temp = AllocateByteRegister();
807        OpRegCopy(temp, rl_src_value.reg);
808        rl_value.reg = temp;
809      } else {
810        rl_value = LoadValue(rl_src_value, kCoreReg);
811      }
812    } else {
813      rl_value = LoadValue(rl_src_value, kCoreReg);
814    }
815  }
816  StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
817  return true;
818}
819
820void X86Mir2Lir::OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset) {
821  NewLIR5(kX86Lea32RA, r_base.GetReg(), reg1.GetReg(), reg2.GetReg(), scale, offset);
822}
823
824void X86Mir2Lir::OpTlsCmp(ThreadOffset<4> offset, int val) {
825  DCHECK_EQ(kX86, cu_->instruction_set);
826  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
827}
828
829void X86Mir2Lir::OpTlsCmp(ThreadOffset<8> offset, int val) {
830  DCHECK_EQ(kX86_64, cu_->instruction_set);
831  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
832}
833
834static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, RegStorage reg) {
835  return rl.reg.Valid() && rl.reg.GetReg() == reg.GetReg() && (pMir2Lir->IsLive(reg) || rl.home);
836}
837
838bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
839  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
840  // Unused - RegLocation rl_src_unsafe = info->args[0];
841  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
842  RegLocation rl_src_offset = info->args[2];  // long low
843  if (!cu_->target64) {
844    rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
845  }
846  RegLocation rl_src_expected = info->args[4];  // int, long or Object
847  // If is_long, high half is in info->args[5]
848  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
849  // If is_long, high half is in info->args[7]
850
851  if (is_long && cu_->target64) {
852    // RAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in RAX.
853    FlushReg(rs_r0q);
854    Clobber(rs_r0q);
855    LockTemp(rs_r0q);
856
857    RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
858    RegLocation rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg);
859    RegLocation rl_offset = LoadValueWide(rl_src_offset, kCoreReg);
860    LoadValueDirectWide(rl_src_expected, rs_r0q);
861    NewLIR5(kX86LockCmpxchg64AR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0,
862            rl_new_value.reg.GetReg());
863
864    // After a store we need to insert barrier in case of potential load. Since the
865    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
866    GenMemBarrier(kAnyAny);
867
868    FreeTemp(rs_r0q);
869  } else if (is_long) {
870    // TODO: avoid unnecessary loads of SI and DI when the values are in registers.
871    // TODO: CFI support.
872    FlushAllRegs();
873    LockCallTemps();
874    RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_rAX, rs_rDX);
875    RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_rBX, rs_rCX);
876    LoadValueDirectWideFixed(rl_src_expected, r_tmp1);
877    LoadValueDirectWideFixed(rl_src_new_value, r_tmp2);
878    // FIXME: needs 64-bit update.
879    const bool obj_in_di = IsInReg(this, rl_src_obj, rs_rDI);
880    const bool obj_in_si = IsInReg(this, rl_src_obj, rs_rSI);
881    DCHECK(!obj_in_si || !obj_in_di);
882    const bool off_in_di = IsInReg(this, rl_src_offset, rs_rDI);
883    const bool off_in_si = IsInReg(this, rl_src_offset, rs_rSI);
884    DCHECK(!off_in_si || !off_in_di);
885    // If obj/offset is in a reg, use that reg. Otherwise, use the empty reg.
886    RegStorage rs_obj = obj_in_di ? rs_rDI : obj_in_si ? rs_rSI : !off_in_di ? rs_rDI : rs_rSI;
887    RegStorage rs_off = off_in_si ? rs_rSI : off_in_di ? rs_rDI : !obj_in_si ? rs_rSI : rs_rDI;
888    bool push_di = (!obj_in_di && !off_in_di) && (rs_obj == rs_rDI || rs_off == rs_rDI);
889    bool push_si = (!obj_in_si && !off_in_si) && (rs_obj == rs_rSI || rs_off == rs_rSI);
890    if (push_di) {
891      NewLIR1(kX86Push32R, rs_rDI.GetReg());
892      MarkTemp(rs_rDI);
893      LockTemp(rs_rDI);
894    }
895    if (push_si) {
896      NewLIR1(kX86Push32R, rs_rSI.GetReg());
897      MarkTemp(rs_rSI);
898      LockTemp(rs_rSI);
899    }
900    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
901    const size_t push_offset = (push_si ? 4u : 0u) + (push_di ? 4u : 0u);
902    if (!obj_in_si && !obj_in_di) {
903      LoadWordDisp(rs_rX86_SP, SRegOffset(rl_src_obj.s_reg_low) + push_offset, rs_obj);
904      // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
905      DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
906      int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - push_offset / 4u;
907      AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
908    }
909    if (!off_in_si && !off_in_di) {
910      LoadWordDisp(rs_rX86_SP, SRegOffset(rl_src_offset.s_reg_low) + push_offset, rs_off);
911      // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
912      DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
913      int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - push_offset / 4u;
914      AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
915    }
916    NewLIR4(kX86LockCmpxchg64A, rs_obj.GetReg(), rs_off.GetReg(), 0, 0);
917
918    // After a store we need to insert barrier to prevent reordering with either
919    // earlier or later memory accesses.  Since
920    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated,
921    // and it will be associated with the cmpxchg instruction, preventing both.
922    GenMemBarrier(kAnyAny);
923
924    if (push_si) {
925      FreeTemp(rs_rSI);
926      UnmarkTemp(rs_rSI);
927      NewLIR1(kX86Pop32R, rs_rSI.GetReg());
928    }
929    if (push_di) {
930      FreeTemp(rs_rDI);
931      UnmarkTemp(rs_rDI);
932      NewLIR1(kX86Pop32R, rs_rDI.GetReg());
933    }
934    FreeCallTemps();
935  } else {
936    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
937    FlushReg(rs_r0);
938    Clobber(rs_r0);
939    LockTemp(rs_r0);
940
941    RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
942    RegLocation rl_new_value = LoadValue(rl_src_new_value);
943
944    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
945      // Mark card for object assuming new value is stored.
946      FreeTemp(rs_r0);  // Temporarily release EAX for MarkGCCard().
947      MarkGCCard(rl_new_value.reg, rl_object.reg);
948      LockTemp(rs_r0);
949    }
950
951    RegLocation rl_offset;
952    if (cu_->target64) {
953      rl_offset = LoadValueWide(rl_src_offset, kCoreReg);
954    } else {
955      rl_offset = LoadValue(rl_src_offset, kCoreReg);
956    }
957    LoadValueDirect(rl_src_expected, rs_r0);
958    NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0,
959            rl_new_value.reg.GetReg());
960
961    // After a store we need to insert barrier to prevent reordering with either
962    // earlier or later memory accesses.  Since
963    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated,
964    // and it will be associated with the cmpxchg instruction, preventing both.
965    GenMemBarrier(kAnyAny);
966
967    FreeTemp(rs_r0);
968  }
969
970  // Convert ZF to boolean
971  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
972  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
973  RegStorage result_reg = rl_result.reg;
974
975  // For 32-bit, SETcc only works with EAX..EDX.
976  if (!IsByteRegister(result_reg)) {
977    result_reg = AllocateByteRegister();
978  }
979  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondZ);
980  NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), result_reg.GetReg());
981  if (IsTemp(result_reg)) {
982    FreeTemp(result_reg);
983  }
984  StoreValue(rl_dest, rl_result);
985  return true;
986}
987
988LIR* X86Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
989  CHECK(base_of_code_ != nullptr);
990
991  // Address the start of the method
992  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
993  if (rl_method.wide) {
994    LoadValueDirectWideFixed(rl_method, reg);
995  } else {
996    LoadValueDirectFixed(rl_method, reg);
997  }
998  store_method_addr_used_ = true;
999
1000  // Load the proper value from the literal area.
1001  // We don't know the proper offset for the value, so pick one that will force
1002  // 4 byte offset.  We will fix this up in the assembler later to have the right
1003  // value.
1004  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1005  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg.GetReg(), reg.GetReg(), 256,
1006                    0, 0, target);
1007  res->target = target;
1008  res->flags.fixup = kFixupLoad;
1009  store_method_addr_used_ = true;
1010  return res;
1011}
1012
1013LIR* X86Mir2Lir::OpVldm(RegStorage r_base, int count) {
1014  LOG(FATAL) << "Unexpected use of OpVldm for x86";
1015  return NULL;
1016}
1017
1018LIR* X86Mir2Lir::OpVstm(RegStorage r_base, int count) {
1019  LOG(FATAL) << "Unexpected use of OpVstm for x86";
1020  return NULL;
1021}
1022
1023void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
1024                                               RegLocation rl_result, int lit,
1025                                               int first_bit, int second_bit) {
1026  RegStorage t_reg = AllocTemp();
1027  OpRegRegImm(kOpLsl, t_reg, rl_src.reg, second_bit - first_bit);
1028  OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, t_reg);
1029  FreeTemp(t_reg);
1030  if (first_bit != 0) {
1031    OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
1032  }
1033}
1034
1035void X86Mir2Lir::GenDivZeroCheckWide(RegStorage reg) {
1036  if (cu_->target64) {
1037    DCHECK(reg.Is64Bit());
1038
1039    NewLIR2(kX86Cmp64RI8, reg.GetReg(), 0);
1040  } else {
1041    DCHECK(reg.IsPair());
1042
1043    // We are not supposed to clobber the incoming storage, so allocate a temporary.
1044    RegStorage t_reg = AllocTemp();
1045    // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
1046    OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
1047    // The temp is no longer needed so free it at this time.
1048    FreeTemp(t_reg);
1049  }
1050
1051  // In case of zero, throw ArithmeticException.
1052  GenDivZeroCheck(kCondEq);
1053}
1054
1055void X86Mir2Lir::GenArrayBoundsCheck(RegStorage index,
1056                                     RegStorage array_base,
1057                                     int len_offset) {
1058  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
1059   public:
1060    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
1061                             RegStorage index, RegStorage array_base, int32_t len_offset)
1062        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
1063          index_(index), array_base_(array_base), len_offset_(len_offset) {
1064    }
1065
1066    void Compile() OVERRIDE {
1067      m2l_->ResetRegPool();
1068      m2l_->ResetDefTracking();
1069      GenerateTargetLabel(kPseudoThrowTarget);
1070
1071      RegStorage new_index = index_;
1072      // Move index out of kArg1, either directly to kArg0, or to kArg2.
1073      // TODO: clean-up to check not a number but with type
1074      if (index_ == m2l_->TargetReg(kArg1, kNotWide)) {
1075        if (array_base_ == m2l_->TargetReg(kArg0, kRef)) {
1076          m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kNotWide), index_);
1077          new_index = m2l_->TargetReg(kArg2, kNotWide);
1078        } else {
1079          m2l_->OpRegCopy(m2l_->TargetReg(kArg0, kNotWide), index_);
1080          new_index = m2l_->TargetReg(kArg0, kNotWide);
1081        }
1082      }
1083      // Load array length to kArg1.
1084      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1, kNotWide), array_base_, len_offset_);
1085      if (cu_->target64) {
1086        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
1087                                      new_index, m2l_->TargetReg(kArg1, kNotWide), true);
1088      } else {
1089        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
1090                                      new_index, m2l_->TargetReg(kArg1, kNotWide), true);
1091      }
1092    }
1093
1094   private:
1095    const RegStorage index_;
1096    const RegStorage array_base_;
1097    const int32_t len_offset_;
1098  };
1099
1100  OpRegMem(kOpCmp, index, array_base, len_offset);
1101  MarkPossibleNullPointerException(0);
1102  LIR* branch = OpCondBranch(kCondUge, nullptr);
1103  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
1104                                                    index, array_base, len_offset));
1105}
1106
1107void X86Mir2Lir::GenArrayBoundsCheck(int32_t index,
1108                                     RegStorage array_base,
1109                                     int32_t len_offset) {
1110  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
1111   public:
1112    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
1113                             int32_t index, RegStorage array_base, int32_t len_offset)
1114        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
1115          index_(index), array_base_(array_base), len_offset_(len_offset) {
1116    }
1117
1118    void Compile() OVERRIDE {
1119      m2l_->ResetRegPool();
1120      m2l_->ResetDefTracking();
1121      GenerateTargetLabel(kPseudoThrowTarget);
1122
1123      // Load array length to kArg1.
1124      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1, kNotWide), array_base_, len_offset_);
1125      m2l_->LoadConstant(m2l_->TargetReg(kArg0, kNotWide), index_);
1126      if (cu_->target64) {
1127        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
1128                                      m2l_->TargetReg(kArg0, kNotWide),
1129                                      m2l_->TargetReg(kArg1, kNotWide), true);
1130      } else {
1131        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
1132                                      m2l_->TargetReg(kArg0, kNotWide),
1133                                      m2l_->TargetReg(kArg1, kNotWide), true);
1134      }
1135    }
1136
1137   private:
1138    const int32_t index_;
1139    const RegStorage array_base_;
1140    const int32_t len_offset_;
1141  };
1142
1143  NewLIR3(IS_SIMM8(index) ? kX86Cmp32MI8 : kX86Cmp32MI, array_base.GetReg(), len_offset, index);
1144  MarkPossibleNullPointerException(0);
1145  LIR* branch = OpCondBranch(kCondLs, nullptr);
1146  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
1147                                                    index, array_base, len_offset));
1148}
1149
1150// Test suspend flag, return target of taken suspend branch
1151LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
1152  if (cu_->target64) {
1153    OpTlsCmp(Thread::ThreadFlagsOffset<8>(), 0);
1154  } else {
1155    OpTlsCmp(Thread::ThreadFlagsOffset<4>(), 0);
1156  }
1157  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
1158}
1159
1160// Decrement register and branch on condition
1161LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
1162  OpRegImm(kOpSub, reg, 1);
1163  return OpCondBranch(c_code, target);
1164}
1165
1166bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1167                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
1168  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
1169  return false;
1170}
1171
1172bool X86Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1173  LOG(FATAL) << "Unexpected use of easyMultiply in x86";
1174  return false;
1175}
1176
1177LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
1178  LOG(FATAL) << "Unexpected use of OpIT in x86";
1179  return NULL;
1180}
1181
1182void X86Mir2Lir::OpEndIT(LIR* it) {
1183  LOG(FATAL) << "Unexpected use of OpEndIT in x86";
1184}
1185
1186void X86Mir2Lir::GenImulRegImm(RegStorage dest, RegStorage src, int val) {
1187  switch (val) {
1188    case 0:
1189      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1190      break;
1191    case 1:
1192      OpRegCopy(dest, src);
1193      break;
1194    default:
1195      OpRegRegImm(kOpMul, dest, src, val);
1196      break;
1197  }
1198}
1199
1200void X86Mir2Lir::GenImulMemImm(RegStorage dest, int sreg, int displacement, int val) {
1201  // All memory accesses below reference dalvik regs.
1202  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1203
1204  LIR *m;
1205  switch (val) {
1206    case 0:
1207      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1208      break;
1209    case 1:
1210      LoadBaseDisp(rs_rX86_SP, displacement, dest, k32, kNotVolatile);
1211      break;
1212    default:
1213      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest.GetReg(),
1214                  rs_rX86_SP.GetReg(), displacement, val);
1215      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
1216      break;
1217  }
1218}
1219
1220void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1221                            RegLocation rl_src2) {
1222  // All memory accesses below reference dalvik regs.
1223  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1224
1225  if (cu_->target64) {
1226    if (rl_src1.is_const) {
1227      std::swap(rl_src1, rl_src2);
1228    }
1229    // Are we multiplying by a constant?
1230    if (rl_src2.is_const) {
1231      int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1232      if (val == 0) {
1233        RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1234        OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
1235        StoreValueWide(rl_dest, rl_result);
1236        return;
1237      } else if (val == 1) {
1238        StoreValueWide(rl_dest, rl_src1);
1239        return;
1240      } else if (val == 2) {
1241        GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1242        return;
1243      } else if (IsPowerOfTwo(val)) {
1244        int shift_amount = LowestSetBit(val);
1245        if (!BadOverlap(rl_src1, rl_dest)) {
1246          rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1247          RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1248                                                    rl_src1, shift_amount);
1249          StoreValueWide(rl_dest, rl_result);
1250          return;
1251        }
1252      }
1253    }
1254    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1255    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1256    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1257    if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
1258        rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
1259      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
1260    } else if (rl_result.reg.GetReg() != rl_src1.reg.GetReg() &&
1261               rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
1262      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src1.reg.GetReg());
1263    } else if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
1264               rl_result.reg.GetReg() != rl_src2.reg.GetReg()) {
1265      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1266    } else {
1267      OpRegCopy(rl_result.reg, rl_src1.reg);
1268      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1269    }
1270    StoreValueWide(rl_dest, rl_result);
1271    return;
1272  }
1273
1274  if (rl_src1.is_const) {
1275    std::swap(rl_src1, rl_src2);
1276  }
1277  // Are we multiplying by a constant?
1278  if (rl_src2.is_const) {
1279    // Do special compare/branch against simple const operand
1280    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1281    if (val == 0) {
1282      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1283      OpRegReg(kOpXor, rl_result.reg.GetLow(), rl_result.reg.GetLow());
1284      OpRegReg(kOpXor, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());
1285      StoreValueWide(rl_dest, rl_result);
1286      return;
1287    } else if (val == 1) {
1288      StoreValueWide(rl_dest, rl_src1);
1289      return;
1290    } else if (val == 2) {
1291      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1292      return;
1293    } else if (IsPowerOfTwo(val)) {
1294      int shift_amount = LowestSetBit(val);
1295      if (!BadOverlap(rl_src1, rl_dest)) {
1296        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1297        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1298                                                  rl_src1, shift_amount);
1299        StoreValueWide(rl_dest, rl_result);
1300        return;
1301      }
1302    }
1303
1304    // Okay, just bite the bullet and do it.
1305    int32_t val_lo = Low32Bits(val);
1306    int32_t val_hi = High32Bits(val);
1307    FlushAllRegs();
1308    LockCallTemps();  // Prepare for explicit register usage.
1309    rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1310    bool src1_in_reg = rl_src1.location == kLocPhysReg;
1311    int displacement = SRegOffset(rl_src1.s_reg_low);
1312
1313    // ECX <- 1H * 2L
1314    // EAX <- 1L * 2H
1315    if (src1_in_reg) {
1316      GenImulRegImm(rs_r1, rl_src1.reg.GetHigh(), val_lo);
1317      GenImulRegImm(rs_r0, rl_src1.reg.GetLow(), val_hi);
1318    } else {
1319      GenImulMemImm(rs_r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
1320      GenImulMemImm(rs_r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
1321    }
1322
1323    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1324    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1325
1326    // EAX <- 2L
1327    LoadConstantNoClobber(rs_r0, val_lo);
1328
1329    // EDX:EAX <- 2L * 1L (double precision)
1330    if (src1_in_reg) {
1331      NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1332    } else {
1333      LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1334      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1335                              true /* is_load */, true /* is_64bit */);
1336    }
1337
1338    // EDX <- EDX + ECX (add high words)
1339    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1340
1341    // Result is EDX:EAX
1342    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1343                             RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1344    StoreValueWide(rl_dest, rl_result);
1345    return;
1346  }
1347
1348  // Nope.  Do it the hard way
1349  // Check for V*V.  We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
1350  bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
1351                   mir_graph_->SRegToVReg(rl_src2.s_reg_low);
1352
1353  FlushAllRegs();
1354  LockCallTemps();  // Prepare for explicit register usage.
1355  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1356  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1357
1358  // At this point, the VRs are in their home locations.
1359  bool src1_in_reg = rl_src1.location == kLocPhysReg;
1360  bool src2_in_reg = rl_src2.location == kLocPhysReg;
1361
1362  // ECX <- 1H
1363  if (src1_in_reg) {
1364    NewLIR2(kX86Mov32RR, rs_r1.GetReg(), rl_src1.reg.GetHighReg());
1365  } else {
1366    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, rs_r1, k32,
1367                 kNotVolatile);
1368  }
1369
1370  if (is_square) {
1371    // Take advantage of the fact that the values are the same.
1372    // ECX <- ECX * 2L  (1H * 2L)
1373    if (src2_in_reg) {
1374      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1375    } else {
1376      int displacement = SRegOffset(rl_src2.s_reg_low);
1377      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1378                       displacement + LOWORD_OFFSET);
1379      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1380                              true /* is_load */, true /* is_64bit */);
1381    }
1382
1383    // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1384    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r1.GetReg());
1385  } else {
1386    // EAX <- 2H
1387    if (src2_in_reg) {
1388      NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetHighReg());
1389    } else {
1390      LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, rs_r0, k32,
1391                   kNotVolatile);
1392    }
1393
1394    // EAX <- EAX * 1L  (2H * 1L)
1395    if (src1_in_reg) {
1396      NewLIR2(kX86Imul32RR, rs_r0.GetReg(), rl_src1.reg.GetLowReg());
1397    } else {
1398      int displacement = SRegOffset(rl_src1.s_reg_low);
1399      LIR *m = NewLIR3(kX86Imul32RM, rs_r0.GetReg(), rs_rX86_SP.GetReg(),
1400                       displacement + LOWORD_OFFSET);
1401      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1402                              true /* is_load */, true /* is_64bit */);
1403    }
1404
1405    // ECX <- ECX * 2L  (1H * 2L)
1406    if (src2_in_reg) {
1407      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1408    } else {
1409      int displacement = SRegOffset(rl_src2.s_reg_low);
1410      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1411                       displacement + LOWORD_OFFSET);
1412      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1413                              true /* is_load */, true /* is_64bit */);
1414    }
1415
1416    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1417    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1418  }
1419
1420  // EAX <- 2L
1421  if (src2_in_reg) {
1422    NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetLowReg());
1423  } else {
1424    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, rs_r0, k32,
1425                 kNotVolatile);
1426  }
1427
1428  // EDX:EAX <- 2L * 1L (double precision)
1429  if (src1_in_reg) {
1430    NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1431  } else {
1432    int displacement = SRegOffset(rl_src1.s_reg_low);
1433    LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1434    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1435                            true /* is_load */, true /* is_64bit */);
1436  }
1437
1438  // EDX <- EDX + ECX (add high words)
1439  NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1440
1441  // Result is EDX:EAX
1442  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1443                           RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1444  StoreValueWide(rl_dest, rl_result);
1445}
1446
1447void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1448                                   Instruction::Code op) {
1449  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1450  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1451  if (rl_src.location == kLocPhysReg) {
1452    // Both operands are in registers.
1453    // But we must ensure that rl_src is in pair
1454    if (cu_->target64) {
1455      NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
1456    } else {
1457      rl_src = LoadValueWide(rl_src, kCoreReg);
1458      if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
1459        // The registers are the same, so we would clobber it before the use.
1460        RegStorage temp_reg = AllocTemp();
1461        OpRegCopy(temp_reg, rl_dest.reg);
1462        rl_src.reg.SetHighReg(temp_reg.GetReg());
1463      }
1464      NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
1465
1466      x86op = GetOpcode(op, rl_dest, rl_src, true);
1467      NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1468      FreeTemp(rl_src.reg);  // ???
1469    }
1470    return;
1471  }
1472
1473  // RHS is in memory.
1474  DCHECK((rl_src.location == kLocDalvikFrame) ||
1475         (rl_src.location == kLocCompilerTemp));
1476  int r_base = rs_rX86_SP.GetReg();
1477  int displacement = SRegOffset(rl_src.s_reg_low);
1478
1479  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1480  LIR *lir = NewLIR3(x86op, cu_->target64 ? rl_dest.reg.GetReg() : rl_dest.reg.GetLowReg(),
1481                     r_base, displacement + LOWORD_OFFSET);
1482  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1483                          true /* is_load */, true /* is64bit */);
1484  if (!cu_->target64) {
1485    x86op = GetOpcode(op, rl_dest, rl_src, true);
1486    lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
1487    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1488                            true /* is_load */, true /* is64bit */);
1489  }
1490}
1491
1492void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1493  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
1494  if (rl_dest.location == kLocPhysReg) {
1495    // Ensure we are in a register pair
1496    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1497
1498    rl_src = UpdateLocWideTyped(rl_src, kCoreReg);
1499    GenLongRegOrMemOp(rl_result, rl_src, op);
1500    StoreFinalValueWide(rl_dest, rl_result);
1501    return;
1502  }
1503
1504  // It wasn't in registers, so it better be in memory.
1505  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1506         (rl_dest.location == kLocCompilerTemp));
1507  rl_src = LoadValueWide(rl_src, kCoreReg);
1508
1509  // Operate directly into memory.
1510  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1511  int r_base = rs_rX86_SP.GetReg();
1512  int displacement = SRegOffset(rl_dest.s_reg_low);
1513
1514  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1515  LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET,
1516                     cu_->target64 ? rl_src.reg.GetReg() : rl_src.reg.GetLowReg());
1517  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1518                          true /* is_load */, true /* is64bit */);
1519  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1520                          false /* is_load */, true /* is64bit */);
1521  if (!cu_->target64) {
1522    x86op = GetOpcode(op, rl_dest, rl_src, true);
1523    lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
1524    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1525                            true /* is_load */, true /* is64bit */);
1526    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1527                            false /* is_load */, true /* is64bit */);
1528  }
1529  FreeTemp(rl_src.reg);
1530}
1531
1532void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1533                              RegLocation rl_src2, Instruction::Code op,
1534                              bool is_commutative) {
1535  // Is this really a 2 operand operation?
1536  switch (op) {
1537    case Instruction::ADD_LONG_2ADDR:
1538    case Instruction::SUB_LONG_2ADDR:
1539    case Instruction::AND_LONG_2ADDR:
1540    case Instruction::OR_LONG_2ADDR:
1541    case Instruction::XOR_LONG_2ADDR:
1542      if (GenerateTwoOperandInstructions()) {
1543        GenLongArith(rl_dest, rl_src2, op);
1544        return;
1545      }
1546      break;
1547
1548    default:
1549      break;
1550  }
1551
1552  if (rl_dest.location == kLocPhysReg) {
1553    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1554
1555    // We are about to clobber the LHS, so it needs to be a temp.
1556    rl_result = ForceTempWide(rl_result);
1557
1558    // Perform the operation using the RHS.
1559    rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1560    GenLongRegOrMemOp(rl_result, rl_src2, op);
1561
1562    // And now record that the result is in the temp.
1563    StoreFinalValueWide(rl_dest, rl_result);
1564    return;
1565  }
1566
1567  // It wasn't in registers, so it better be in memory.
1568  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1569         (rl_dest.location == kLocCompilerTemp));
1570  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1571  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1572
1573  // Get one of the source operands into temporary register.
1574  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1575  if (cu_->target64) {
1576    if (IsTemp(rl_src1.reg)) {
1577      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1578    } else if (is_commutative) {
1579      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1580      // We need at least one of them to be a temporary.
1581      if (!IsTemp(rl_src2.reg)) {
1582        rl_src1 = ForceTempWide(rl_src1);
1583        GenLongRegOrMemOp(rl_src1, rl_src2, op);
1584      } else {
1585        GenLongRegOrMemOp(rl_src2, rl_src1, op);
1586        StoreFinalValueWide(rl_dest, rl_src2);
1587        return;
1588      }
1589    } else {
1590      // Need LHS to be the temp.
1591      rl_src1 = ForceTempWide(rl_src1);
1592      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1593    }
1594  } else {
1595    if (IsTemp(rl_src1.reg.GetLow()) && IsTemp(rl_src1.reg.GetHigh())) {
1596      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1597    } else if (is_commutative) {
1598      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1599      // We need at least one of them to be a temporary.
1600      if (!(IsTemp(rl_src2.reg.GetLow()) && IsTemp(rl_src2.reg.GetHigh()))) {
1601        rl_src1 = ForceTempWide(rl_src1);
1602        GenLongRegOrMemOp(rl_src1, rl_src2, op);
1603      } else {
1604        GenLongRegOrMemOp(rl_src2, rl_src1, op);
1605        StoreFinalValueWide(rl_dest, rl_src2);
1606        return;
1607      }
1608    } else {
1609      // Need LHS to be the temp.
1610      rl_src1 = ForceTempWide(rl_src1);
1611      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1612    }
1613  }
1614
1615  StoreFinalValueWide(rl_dest, rl_src1);
1616}
1617
1618void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1619                            RegLocation rl_src1, RegLocation rl_src2) {
1620  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1621}
1622
1623void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1624                            RegLocation rl_src1, RegLocation rl_src2) {
1625  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1626}
1627
1628void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1629                            RegLocation rl_src1, RegLocation rl_src2) {
1630  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1631}
1632
1633void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1634                           RegLocation rl_src1, RegLocation rl_src2) {
1635  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1636}
1637
1638void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1639                            RegLocation rl_src1, RegLocation rl_src2) {
1640  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1641}
1642
1643void X86Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
1644  if (cu_->target64) {
1645    rl_src = LoadValueWide(rl_src, kCoreReg);
1646    RegLocation rl_result;
1647    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1648    OpRegCopy(rl_result.reg, rl_src.reg);
1649    OpReg(kOpNot, rl_result.reg);
1650    StoreValueWide(rl_dest, rl_result);
1651  } else {
1652    LOG(FATAL) << "Unexpected use GenNotLong()";
1653  }
1654}
1655
1656void X86Mir2Lir::GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1657                           RegLocation rl_src2, bool is_div) {
1658  if (!cu_->target64) {
1659    LOG(FATAL) << "Unexpected use GenDivRemLong()";
1660    return;
1661  }
1662
1663  // We have to use fixed registers, so flush all the temps.
1664  FlushAllRegs();
1665  LockCallTemps();  // Prepare for explicit register usage.
1666
1667  // Load LHS into RAX.
1668  LoadValueDirectWideFixed(rl_src1, rs_r0q);
1669
1670  // Load RHS into RCX.
1671  LoadValueDirectWideFixed(rl_src2, rs_r1q);
1672
1673  // Copy LHS sign bit into RDX.
1674  NewLIR0(kx86Cqo64Da);
1675
1676  // Handle division by zero case.
1677  GenDivZeroCheckWide(rs_r1q);
1678
1679  // Have to catch 0x8000000000000000/-1 case, or we will get an exception!
1680  NewLIR2(kX86Cmp64RI8, rs_r1q.GetReg(), -1);
1681  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
1682
1683  // RHS is -1.
1684  LoadConstantWide(rs_r6q, 0x8000000000000000);
1685  NewLIR2(kX86Cmp64RR, rs_r0q.GetReg(), rs_r6q.GetReg());
1686  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
1687
1688  // In 0x8000000000000000/-1 case.
1689  if (!is_div) {
1690    // For DIV, RAX is already right. For REM, we need RDX 0.
1691    NewLIR2(kX86Xor64RR, rs_r2q.GetReg(), rs_r2q.GetReg());
1692  }
1693  LIR* done = NewLIR1(kX86Jmp8, 0);
1694
1695  // Expected case.
1696  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
1697  minint_branch->target = minus_one_branch->target;
1698  NewLIR1(kX86Idivmod64DaR, rs_r1q.GetReg());
1699  done->target = NewLIR0(kPseudoTargetLabel);
1700
1701  // Result is in RAX for div and RDX for rem.
1702  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, rs_r0q, INVALID_SREG, INVALID_SREG};
1703  if (!is_div) {
1704    rl_result.reg.SetReg(r2q);
1705  }
1706
1707  StoreValueWide(rl_dest, rl_result);
1708}
1709
1710void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1711  rl_src = LoadValueWide(rl_src, kCoreReg);
1712  RegLocation rl_result;
1713  if (cu_->target64) {
1714    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1715    OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1716  } else {
1717    rl_result = ForceTempWide(rl_src);
1718    if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1719        ((rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()))) {
1720      // The registers are the same, so we would clobber it before the use.
1721      RegStorage temp_reg = AllocTemp();
1722      OpRegCopy(temp_reg, rl_result.reg);
1723      rl_result.reg.SetHighReg(temp_reg.GetReg());
1724    }
1725    OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow());    // rLow = -rLow
1726    OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0);                   // rHigh = rHigh + CF
1727    OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());  // rHigh = -rHigh
1728  }
1729  StoreValueWide(rl_dest, rl_result);
1730}
1731
1732void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset) {
1733  DCHECK_EQ(kX86, cu_->instruction_set);
1734  X86OpCode opcode = kX86Bkpt;
1735  switch (op) {
1736  case kOpCmp: opcode = kX86Cmp32RT;  break;
1737  case kOpMov: opcode = kX86Mov32RT;  break;
1738  default:
1739    LOG(FATAL) << "Bad opcode: " << op;
1740    break;
1741  }
1742  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1743}
1744
1745void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset) {
1746  DCHECK_EQ(kX86_64, cu_->instruction_set);
1747  X86OpCode opcode = kX86Bkpt;
1748  if (cu_->target64 && r_dest.Is64BitSolo()) {
1749    switch (op) {
1750    case kOpCmp: opcode = kX86Cmp64RT;  break;
1751    case kOpMov: opcode = kX86Mov64RT;  break;
1752    default:
1753      LOG(FATAL) << "Bad opcode(OpRegThreadMem 64): " << op;
1754      break;
1755    }
1756  } else {
1757    switch (op) {
1758    case kOpCmp: opcode = kX86Cmp32RT;  break;
1759    case kOpMov: opcode = kX86Mov32RT;  break;
1760    default:
1761      LOG(FATAL) << "Bad opcode: " << op;
1762      break;
1763    }
1764  }
1765  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1766}
1767
1768/*
1769 * Generate array load
1770 */
1771void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1772                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1773  RegisterClass reg_class = RegClassBySize(size);
1774  int len_offset = mirror::Array::LengthOffset().Int32Value();
1775  RegLocation rl_result;
1776  rl_array = LoadValue(rl_array, kRefReg);
1777
1778  int data_offset;
1779  if (size == k64 || size == kDouble) {
1780    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1781  } else {
1782    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1783  }
1784
1785  bool constant_index = rl_index.is_const;
1786  int32_t constant_index_value = 0;
1787  if (!constant_index) {
1788    rl_index = LoadValue(rl_index, kCoreReg);
1789  } else {
1790    constant_index_value = mir_graph_->ConstantValue(rl_index);
1791    // If index is constant, just fold it into the data offset
1792    data_offset += constant_index_value << scale;
1793    // treat as non array below
1794    rl_index.reg = RegStorage::InvalidReg();
1795  }
1796
1797  /* null object? */
1798  GenNullCheck(rl_array.reg, opt_flags);
1799
1800  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1801    if (constant_index) {
1802      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1803    } else {
1804      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1805    }
1806  }
1807  rl_result = EvalLoc(rl_dest, reg_class, true);
1808  LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg, size);
1809  if ((size == k64) || (size == kDouble)) {
1810    StoreValueWide(rl_dest, rl_result);
1811  } else {
1812    StoreValue(rl_dest, rl_result);
1813  }
1814}
1815
1816/*
1817 * Generate array store
1818 *
1819 */
1820void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1821                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1822  RegisterClass reg_class = RegClassBySize(size);
1823  int len_offset = mirror::Array::LengthOffset().Int32Value();
1824  int data_offset;
1825
1826  if (size == k64 || size == kDouble) {
1827    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1828  } else {
1829    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1830  }
1831
1832  rl_array = LoadValue(rl_array, kRefReg);
1833  bool constant_index = rl_index.is_const;
1834  int32_t constant_index_value = 0;
1835  if (!constant_index) {
1836    rl_index = LoadValue(rl_index, kCoreReg);
1837  } else {
1838    // If index is constant, just fold it into the data offset
1839    constant_index_value = mir_graph_->ConstantValue(rl_index);
1840    data_offset += constant_index_value << scale;
1841    // treat as non array below
1842    rl_index.reg = RegStorage::InvalidReg();
1843  }
1844
1845  /* null object? */
1846  GenNullCheck(rl_array.reg, opt_flags);
1847
1848  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1849    if (constant_index) {
1850      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1851    } else {
1852      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1853    }
1854  }
1855  if ((size == k64) || (size == kDouble)) {
1856    rl_src = LoadValueWide(rl_src, reg_class);
1857  } else {
1858    rl_src = LoadValue(rl_src, reg_class);
1859  }
1860  // If the src reg can't be byte accessed, move it to a temp first.
1861  if ((size == kSignedByte || size == kUnsignedByte) && !IsByteRegister(rl_src.reg)) {
1862    RegStorage temp = AllocTemp();
1863    OpRegCopy(temp, rl_src.reg);
1864    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, temp, size);
1865  } else {
1866    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_src.reg, size);
1867  }
1868  if (card_mark) {
1869    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1870    if (!constant_index) {
1871      FreeTemp(rl_index.reg);
1872    }
1873    MarkGCCard(rl_src.reg, rl_array.reg);
1874  }
1875}
1876
1877RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1878                                          RegLocation rl_src, int shift_amount) {
1879  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1880  if (cu_->target64) {
1881    OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1882    switch (opcode) {
1883      case Instruction::SHL_LONG:
1884      case Instruction::SHL_LONG_2ADDR:
1885        op = kOpLsl;
1886        break;
1887      case Instruction::SHR_LONG:
1888      case Instruction::SHR_LONG_2ADDR:
1889        op = kOpAsr;
1890        break;
1891      case Instruction::USHR_LONG:
1892      case Instruction::USHR_LONG_2ADDR:
1893        op = kOpLsr;
1894        break;
1895      default:
1896        LOG(FATAL) << "Unexpected case";
1897    }
1898    OpRegRegImm(op, rl_result.reg, rl_src.reg, shift_amount);
1899  } else {
1900    switch (opcode) {
1901      case Instruction::SHL_LONG:
1902      case Instruction::SHL_LONG_2ADDR:
1903        DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1904        if (shift_amount == 32) {
1905          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1906          LoadConstant(rl_result.reg.GetLow(), 0);
1907        } else if (shift_amount > 31) {
1908          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1909          NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1910          LoadConstant(rl_result.reg.GetLow(), 0);
1911        } else {
1912          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1913          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1914          NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(),
1915                  shift_amount);
1916          NewLIR2(kX86Sal32RI, rl_result.reg.GetLowReg(), shift_amount);
1917        }
1918        break;
1919      case Instruction::SHR_LONG:
1920      case Instruction::SHR_LONG_2ADDR:
1921        if (shift_amount == 32) {
1922          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1923          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1924          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1925        } else if (shift_amount > 31) {
1926          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1927          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1928          NewLIR2(kX86Sar32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1929          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1930        } else {
1931          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1932          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1933          NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
1934                  shift_amount);
1935          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
1936        }
1937        break;
1938      case Instruction::USHR_LONG:
1939      case Instruction::USHR_LONG_2ADDR:
1940        if (shift_amount == 32) {
1941          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1942          LoadConstant(rl_result.reg.GetHigh(), 0);
1943        } else if (shift_amount > 31) {
1944          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1945          NewLIR2(kX86Shr32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1946          LoadConstant(rl_result.reg.GetHigh(), 0);
1947        } else {
1948          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1949          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1950          NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
1951                  shift_amount);
1952          NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
1953        }
1954        break;
1955      default:
1956        LOG(FATAL) << "Unexpected case";
1957    }
1958  }
1959  return rl_result;
1960}
1961
1962void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1963                                   RegLocation rl_src, RegLocation rl_shift) {
1964  // Per spec, we only care about low 6 bits of shift amount.
1965  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1966  if (shift_amount == 0) {
1967    rl_src = LoadValueWide(rl_src, kCoreReg);
1968    StoreValueWide(rl_dest, rl_src);
1969    return;
1970  } else if (shift_amount == 1 &&
1971            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1972    // Need to handle this here to avoid calling StoreValueWide twice.
1973    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1974    return;
1975  }
1976  if (BadOverlap(rl_src, rl_dest)) {
1977    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1978    return;
1979  }
1980  rl_src = LoadValueWide(rl_src, kCoreReg);
1981  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1982  StoreValueWide(rl_dest, rl_result);
1983}
1984
1985void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1986                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1987  bool isConstSuccess = false;
1988  switch (opcode) {
1989    case Instruction::ADD_LONG:
1990    case Instruction::AND_LONG:
1991    case Instruction::OR_LONG:
1992    case Instruction::XOR_LONG:
1993      if (rl_src2.is_const) {
1994        isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1995      } else {
1996        DCHECK(rl_src1.is_const);
1997        isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1998      }
1999      break;
2000    case Instruction::SUB_LONG:
2001    case Instruction::SUB_LONG_2ADDR:
2002      if (rl_src2.is_const) {
2003        isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
2004      } else {
2005        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
2006        isConstSuccess = true;
2007      }
2008      break;
2009    case Instruction::ADD_LONG_2ADDR:
2010    case Instruction::OR_LONG_2ADDR:
2011    case Instruction::XOR_LONG_2ADDR:
2012    case Instruction::AND_LONG_2ADDR:
2013      if (rl_src2.is_const) {
2014        if (GenerateTwoOperandInstructions()) {
2015          isConstSuccess = GenLongImm(rl_dest, rl_src2, opcode);
2016        } else {
2017          isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
2018        }
2019      } else {
2020        DCHECK(rl_src1.is_const);
2021        isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
2022      }
2023      break;
2024    default:
2025      isConstSuccess = false;
2026      break;
2027  }
2028
2029  if (!isConstSuccess) {
2030    // Default - bail to non-const handler.
2031    GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
2032  }
2033}
2034
2035bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
2036  switch (op) {
2037    case Instruction::AND_LONG_2ADDR:
2038    case Instruction::AND_LONG:
2039      return value == -1;
2040    case Instruction::OR_LONG:
2041    case Instruction::OR_LONG_2ADDR:
2042    case Instruction::XOR_LONG:
2043    case Instruction::XOR_LONG_2ADDR:
2044      return value == 0;
2045    default:
2046      return false;
2047  }
2048}
2049
2050X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
2051                                bool is_high_op) {
2052  bool rhs_in_mem = rhs.location != kLocPhysReg;
2053  bool dest_in_mem = dest.location != kLocPhysReg;
2054  bool is64Bit = cu_->target64;
2055  DCHECK(!rhs_in_mem || !dest_in_mem);
2056  switch (op) {
2057    case Instruction::ADD_LONG:
2058    case Instruction::ADD_LONG_2ADDR:
2059      if (dest_in_mem) {
2060        return is64Bit ? kX86Add64MR : is_high_op ? kX86Adc32MR : kX86Add32MR;
2061      } else if (rhs_in_mem) {
2062        return is64Bit ? kX86Add64RM : is_high_op ? kX86Adc32RM : kX86Add32RM;
2063      }
2064      return is64Bit ? kX86Add64RR : is_high_op ? kX86Adc32RR : kX86Add32RR;
2065    case Instruction::SUB_LONG:
2066    case Instruction::SUB_LONG_2ADDR:
2067      if (dest_in_mem) {
2068        return is64Bit ? kX86Sub64MR : is_high_op ? kX86Sbb32MR : kX86Sub32MR;
2069      } else if (rhs_in_mem) {
2070        return is64Bit ? kX86Sub64RM : is_high_op ? kX86Sbb32RM : kX86Sub32RM;
2071      }
2072      return is64Bit ? kX86Sub64RR : is_high_op ? kX86Sbb32RR : kX86Sub32RR;
2073    case Instruction::AND_LONG_2ADDR:
2074    case Instruction::AND_LONG:
2075      if (dest_in_mem) {
2076        return is64Bit ? kX86And64MR : kX86And32MR;
2077      }
2078      if (is64Bit) {
2079        return rhs_in_mem ? kX86And64RM : kX86And64RR;
2080      }
2081      return rhs_in_mem ? kX86And32RM : kX86And32RR;
2082    case Instruction::OR_LONG:
2083    case Instruction::OR_LONG_2ADDR:
2084      if (dest_in_mem) {
2085        return is64Bit ? kX86Or64MR : kX86Or32MR;
2086      }
2087      if (is64Bit) {
2088        return rhs_in_mem ? kX86Or64RM : kX86Or64RR;
2089      }
2090      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
2091    case Instruction::XOR_LONG:
2092    case Instruction::XOR_LONG_2ADDR:
2093      if (dest_in_mem) {
2094        return is64Bit ? kX86Xor64MR : kX86Xor32MR;
2095      }
2096      if (is64Bit) {
2097        return rhs_in_mem ? kX86Xor64RM : kX86Xor64RR;
2098      }
2099      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
2100    default:
2101      LOG(FATAL) << "Unexpected opcode: " << op;
2102      return kX86Add32RR;
2103  }
2104}
2105
2106X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
2107                                int32_t value) {
2108  bool in_mem = loc.location != kLocPhysReg;
2109  bool is64Bit = cu_->target64;
2110  bool byte_imm = IS_SIMM8(value);
2111  DCHECK(in_mem || !loc.reg.IsFloat());
2112  switch (op) {
2113    case Instruction::ADD_LONG:
2114    case Instruction::ADD_LONG_2ADDR:
2115      if (byte_imm) {
2116        if (in_mem) {
2117          return is64Bit ? kX86Add64MI8 : is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
2118        }
2119        return is64Bit ? kX86Add64RI8 : is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
2120      }
2121      if (in_mem) {
2122        return is64Bit ? kX86Add64MI : is_high_op ? kX86Adc32MI : kX86Add32MI;
2123      }
2124      return is64Bit ? kX86Add64RI : is_high_op ? kX86Adc32RI : kX86Add32RI;
2125    case Instruction::SUB_LONG:
2126    case Instruction::SUB_LONG_2ADDR:
2127      if (byte_imm) {
2128        if (in_mem) {
2129          return is64Bit ? kX86Sub64MI8 : is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
2130        }
2131        return is64Bit ? kX86Sub64RI8 : is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
2132      }
2133      if (in_mem) {
2134        return is64Bit ? kX86Sub64MI : is_high_op ? kX86Sbb32MI : kX86Sub32MI;
2135      }
2136      return is64Bit ? kX86Sub64RI : is_high_op ? kX86Sbb32RI : kX86Sub32RI;
2137    case Instruction::AND_LONG_2ADDR:
2138    case Instruction::AND_LONG:
2139      if (byte_imm) {
2140        if (is64Bit) {
2141          return in_mem ? kX86And64MI8 : kX86And64RI8;
2142        }
2143        return in_mem ? kX86And32MI8 : kX86And32RI8;
2144      }
2145      if (is64Bit) {
2146        return in_mem ? kX86And64MI : kX86And64RI;
2147      }
2148      return in_mem ? kX86And32MI : kX86And32RI;
2149    case Instruction::OR_LONG:
2150    case Instruction::OR_LONG_2ADDR:
2151      if (byte_imm) {
2152        if (is64Bit) {
2153          return in_mem ? kX86Or64MI8 : kX86Or64RI8;
2154        }
2155        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
2156      }
2157      if (is64Bit) {
2158        return in_mem ? kX86Or64MI : kX86Or64RI;
2159      }
2160      return in_mem ? kX86Or32MI : kX86Or32RI;
2161    case Instruction::XOR_LONG:
2162    case Instruction::XOR_LONG_2ADDR:
2163      if (byte_imm) {
2164        if (is64Bit) {
2165          return in_mem ? kX86Xor64MI8 : kX86Xor64RI8;
2166        }
2167        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
2168      }
2169      if (is64Bit) {
2170        return in_mem ? kX86Xor64MI : kX86Xor64RI;
2171      }
2172      return in_mem ? kX86Xor32MI : kX86Xor32RI;
2173    default:
2174      LOG(FATAL) << "Unexpected opcode: " << op;
2175      return kX86Add32MI;
2176  }
2177}
2178
2179bool X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
2180  DCHECK(rl_src.is_const);
2181  int64_t val = mir_graph_->ConstantValueWide(rl_src);
2182
2183  if (cu_->target64) {
2184    // We can do with imm only if it fits 32 bit
2185    if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
2186      return false;
2187    }
2188
2189    rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2190
2191    if ((rl_dest.location == kLocDalvikFrame) ||
2192        (rl_dest.location == kLocCompilerTemp)) {
2193      int r_base = rs_rX86_SP.GetReg();
2194      int displacement = SRegOffset(rl_dest.s_reg_low);
2195
2196      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2197      X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
2198      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val);
2199      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2200                              true /* is_load */, true /* is64bit */);
2201      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2202                              false /* is_load */, true /* is64bit */);
2203      return true;
2204    }
2205
2206    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2207    DCHECK_EQ(rl_result.location, kLocPhysReg);
2208    DCHECK(!rl_result.reg.IsFloat());
2209
2210    X86OpCode x86op = GetOpcode(op, rl_result, false, val);
2211    NewLIR2(x86op, rl_result.reg.GetReg(), val);
2212
2213    StoreValueWide(rl_dest, rl_result);
2214    return true;
2215  }
2216
2217  int32_t val_lo = Low32Bits(val);
2218  int32_t val_hi = High32Bits(val);
2219  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2220
2221  // Can we just do this into memory?
2222  if ((rl_dest.location == kLocDalvikFrame) ||
2223      (rl_dest.location == kLocCompilerTemp)) {
2224    int r_base = rs_rX86_SP.GetReg();
2225    int displacement = SRegOffset(rl_dest.s_reg_low);
2226
2227    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2228    if (!IsNoOp(op, val_lo)) {
2229      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
2230      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val_lo);
2231      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2232                              true /* is_load */, true /* is64bit */);
2233      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2234                              false /* is_load */, true /* is64bit */);
2235    }
2236    if (!IsNoOp(op, val_hi)) {
2237      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
2238      LIR *lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, val_hi);
2239      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
2240                                true /* is_load */, true /* is64bit */);
2241      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
2242                                false /* is_load */, true /* is64bit */);
2243    }
2244    return true;
2245  }
2246
2247  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2248  DCHECK_EQ(rl_result.location, kLocPhysReg);
2249  DCHECK(!rl_result.reg.IsFloat());
2250
2251  if (!IsNoOp(op, val_lo)) {
2252    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
2253    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
2254  }
2255  if (!IsNoOp(op, val_hi)) {
2256    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
2257    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
2258  }
2259  StoreValueWide(rl_dest, rl_result);
2260  return true;
2261}
2262
2263bool X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
2264                                RegLocation rl_src2, Instruction::Code op) {
2265  DCHECK(rl_src2.is_const);
2266  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
2267
2268  if (cu_->target64) {
2269    // We can do with imm only if it fits 32 bit
2270    if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
2271      return false;
2272    }
2273    if (rl_dest.location == kLocPhysReg &&
2274        rl_src1.location == kLocPhysReg && !rl_dest.reg.IsFloat()) {
2275      X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
2276      OpRegCopy(rl_dest.reg, rl_src1.reg);
2277      NewLIR2(x86op, rl_dest.reg.GetReg(), val);
2278      StoreFinalValueWide(rl_dest, rl_dest);
2279      return true;
2280    }
2281
2282    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2283    // We need the values to be in a temporary
2284    RegLocation rl_result = ForceTempWide(rl_src1);
2285
2286    X86OpCode x86op = GetOpcode(op, rl_result, false, val);
2287    NewLIR2(x86op, rl_result.reg.GetReg(), val);
2288
2289    StoreFinalValueWide(rl_dest, rl_result);
2290    return true;
2291  }
2292
2293  int32_t val_lo = Low32Bits(val);
2294  int32_t val_hi = High32Bits(val);
2295  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2296  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
2297
2298  // Can we do this directly into the destination registers?
2299  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
2300      rl_dest.reg.GetLowReg() == rl_src1.reg.GetLowReg() &&
2301      rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() && !rl_dest.reg.IsFloat()) {
2302    if (!IsNoOp(op, val_lo)) {
2303      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
2304      NewLIR2(x86op, rl_dest.reg.GetLowReg(), val_lo);
2305    }
2306    if (!IsNoOp(op, val_hi)) {
2307      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
2308      NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
2309    }
2310
2311    StoreFinalValueWide(rl_dest, rl_dest);
2312    return true;
2313  }
2314
2315  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2316  DCHECK_EQ(rl_src1.location, kLocPhysReg);
2317
2318  // We need the values to be in a temporary
2319  RegLocation rl_result = ForceTempWide(rl_src1);
2320  if (!IsNoOp(op, val_lo)) {
2321    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
2322    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
2323  }
2324  if (!IsNoOp(op, val_hi)) {
2325    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
2326    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
2327  }
2328
2329  StoreFinalValueWide(rl_dest, rl_result);
2330  return true;
2331}
2332
2333// For final classes there are no sub-classes to check and so we can answer the instance-of
2334// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
2335void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
2336                                    RegLocation rl_dest, RegLocation rl_src) {
2337  RegLocation object = LoadValue(rl_src, kRefReg);
2338  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2339  RegStorage result_reg = rl_result.reg;
2340
2341  // For 32-bit, SETcc only works with EAX..EDX.
2342  RegStorage object_32reg = object.reg.Is64Bit() ? As32BitReg(object.reg) : object.reg;
2343  if (result_reg.GetRegNum() == object_32reg.GetRegNum() || !IsByteRegister(result_reg)) {
2344    result_reg = AllocateByteRegister();
2345  }
2346
2347  // Assume that there is no match.
2348  LoadConstant(result_reg, 0);
2349  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
2350
2351  // We will use this register to compare to memory below.
2352  // References are 32 bit in memory, and 64 bit in registers (in 64 bit mode).
2353  // For this reason, force allocation of a 32 bit register to use, so that the
2354  // compare to memory will be done using a 32 bit comparision.
2355  // The LoadRefDisp(s) below will work normally, even in 64 bit mode.
2356  RegStorage check_class = AllocTemp();
2357
2358  // If Method* is already in a register, we can save a copy.
2359  RegLocation rl_method = mir_graph_->GetMethodLoc();
2360  int32_t offset_of_type = mirror::Array::DataOffset(
2361      sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
2362      (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
2363
2364  if (rl_method.location == kLocPhysReg) {
2365    if (use_declaring_class) {
2366      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2367                  check_class, kNotVolatile);
2368    } else {
2369      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2370                  check_class, kNotVolatile);
2371      LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
2372    }
2373  } else {
2374    LoadCurrMethodDirect(check_class);
2375    if (use_declaring_class) {
2376      LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2377                  check_class, kNotVolatile);
2378    } else {
2379      LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2380                  check_class, kNotVolatile);
2381      LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
2382    }
2383  }
2384
2385  // Compare the computed class to the class in the object.
2386  DCHECK_EQ(object.location, kLocPhysReg);
2387  OpRegMem(kOpCmp, check_class, object.reg, mirror::Object::ClassOffset().Int32Value());
2388
2389  // Set the low byte of the result to 0 or 1 from the compare condition code.
2390  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondEq);
2391
2392  LIR* target = NewLIR0(kPseudoTargetLabel);
2393  null_branchover->target = target;
2394  FreeTemp(check_class);
2395  if (IsTemp(result_reg)) {
2396    OpRegCopy(rl_result.reg, result_reg);
2397    FreeTemp(result_reg);
2398  }
2399  StoreValue(rl_dest, rl_result);
2400}
2401
2402void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
2403                                            bool type_known_abstract, bool use_declaring_class,
2404                                            bool can_assume_type_is_in_dex_cache,
2405                                            uint32_t type_idx, RegLocation rl_dest,
2406                                            RegLocation rl_src) {
2407  FlushAllRegs();
2408  // May generate a call - use explicit registers.
2409  LockCallTemps();
2410  RegStorage method_reg = TargetReg(kArg1, kRef);  // kArg1 gets current Method*.
2411  LoadCurrMethodDirect(method_reg);
2412  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*.
2413  RegStorage ref_reg = TargetReg(kArg0, kRef);  // kArg2 will hold the ref.
2414  // Reference must end up in kArg0.
2415  if (needs_access_check) {
2416    // Check we have access to type_idx and if not throw IllegalAccessError,
2417    // Caller function returns Class* in kArg0.
2418    if (cu_->target64) {
2419      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
2420                           type_idx, true);
2421    } else {
2422      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
2423                           type_idx, true);
2424    }
2425    OpRegCopy(class_reg, TargetReg(kRet0, kRef));
2426    LoadValueDirectFixed(rl_src, ref_reg);
2427  } else if (use_declaring_class) {
2428    LoadValueDirectFixed(rl_src, ref_reg);
2429    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2430                class_reg, kNotVolatile);
2431  } else {
2432    // Load dex cache entry into class_reg (kArg2).
2433    LoadValueDirectFixed(rl_src, ref_reg);
2434    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2435                class_reg, kNotVolatile);
2436    int32_t offset_of_type =
2437        mirror::Array::DataOffset(sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
2438        (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
2439    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
2440    if (!can_assume_type_is_in_dex_cache) {
2441      // Need to test presence of type in dex cache at runtime.
2442      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
2443      // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
2444      if (cu_->target64) {
2445        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx, true);
2446      } else {
2447        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
2448      }
2449      OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path.
2450      LoadValueDirectFixed(rl_src, ref_reg);  /* Reload Ref. */
2451      // Rejoin code paths
2452      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
2453      hop_branch->target = hop_target;
2454    }
2455  }
2456  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
2457  RegLocation rl_result = GetReturn(kRefReg);
2458
2459  // On x86-64 kArg0 is not EAX, so we have to copy ref from kArg0 to EAX.
2460  if (cu_->target64) {
2461    OpRegCopy(rl_result.reg, ref_reg);
2462  }
2463
2464  // For 32-bit, SETcc only works with EAX..EDX.
2465  DCHECK_LT(rl_result.reg.GetRegNum(), 4);
2466
2467  // Is the class NULL?
2468  LIR* branch1 = OpCmpImmBranch(kCondEq, ref_reg, 0, NULL);
2469
2470  RegStorage ref_class_reg = TargetReg(kArg1, kRef);  // kArg2 will hold the Class*.
2471  /* Load object->klass_. */
2472  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
2473  LoadRefDisp(ref_reg,  mirror::Object::ClassOffset().Int32Value(), ref_class_reg,
2474              kNotVolatile);
2475  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
2476  LIR* branchover = nullptr;
2477  if (type_known_final) {
2478    // Ensure top 3 bytes of result are 0.
2479    LoadConstant(rl_result.reg, 0);
2480    OpRegReg(kOpCmp, ref_class_reg, class_reg);
2481    // Set the low byte of the result to 0 or 1 from the compare condition code.
2482    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
2483  } else {
2484    if (!type_known_abstract) {
2485      LoadConstant(rl_result.reg, 1);     // Assume result succeeds.
2486      branchover = OpCmpBranch(kCondEq, ref_class_reg, class_reg, NULL);
2487    }
2488    OpRegCopy(TargetReg(kArg0, kRef), class_reg);
2489    if (cu_->target64) {
2490      OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial));
2491    } else {
2492      OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
2493    }
2494  }
2495  // TODO: only clobber when type isn't final?
2496  ClobberCallerSave();
2497  /* Branch targets here. */
2498  LIR* target = NewLIR0(kPseudoTargetLabel);
2499  StoreValue(rl_dest, rl_result);
2500  branch1->target = target;
2501  if (branchover != nullptr) {
2502    branchover->target = target;
2503  }
2504}
2505
2506void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
2507                            RegLocation rl_lhs, RegLocation rl_rhs) {
2508  OpKind op = kOpBkpt;
2509  bool is_div_rem = false;
2510  bool unary = false;
2511  bool shift_op = false;
2512  bool is_two_addr = false;
2513  RegLocation rl_result;
2514  switch (opcode) {
2515    case Instruction::NEG_INT:
2516      op = kOpNeg;
2517      unary = true;
2518      break;
2519    case Instruction::NOT_INT:
2520      op = kOpMvn;
2521      unary = true;
2522      break;
2523    case Instruction::ADD_INT_2ADDR:
2524      is_two_addr = true;
2525      // Fallthrough
2526    case Instruction::ADD_INT:
2527      op = kOpAdd;
2528      break;
2529    case Instruction::SUB_INT_2ADDR:
2530      is_two_addr = true;
2531      // Fallthrough
2532    case Instruction::SUB_INT:
2533      op = kOpSub;
2534      break;
2535    case Instruction::MUL_INT_2ADDR:
2536      is_two_addr = true;
2537      // Fallthrough
2538    case Instruction::MUL_INT:
2539      op = kOpMul;
2540      break;
2541    case Instruction::DIV_INT_2ADDR:
2542      is_two_addr = true;
2543      // Fallthrough
2544    case Instruction::DIV_INT:
2545      op = kOpDiv;
2546      is_div_rem = true;
2547      break;
2548    /* NOTE: returns in kArg1 */
2549    case Instruction::REM_INT_2ADDR:
2550      is_two_addr = true;
2551      // Fallthrough
2552    case Instruction::REM_INT:
2553      op = kOpRem;
2554      is_div_rem = true;
2555      break;
2556    case Instruction::AND_INT_2ADDR:
2557      is_two_addr = true;
2558      // Fallthrough
2559    case Instruction::AND_INT:
2560      op = kOpAnd;
2561      break;
2562    case Instruction::OR_INT_2ADDR:
2563      is_two_addr = true;
2564      // Fallthrough
2565    case Instruction::OR_INT:
2566      op = kOpOr;
2567      break;
2568    case Instruction::XOR_INT_2ADDR:
2569      is_two_addr = true;
2570      // Fallthrough
2571    case Instruction::XOR_INT:
2572      op = kOpXor;
2573      break;
2574    case Instruction::SHL_INT_2ADDR:
2575      is_two_addr = true;
2576      // Fallthrough
2577    case Instruction::SHL_INT:
2578      shift_op = true;
2579      op = kOpLsl;
2580      break;
2581    case Instruction::SHR_INT_2ADDR:
2582      is_two_addr = true;
2583      // Fallthrough
2584    case Instruction::SHR_INT:
2585      shift_op = true;
2586      op = kOpAsr;
2587      break;
2588    case Instruction::USHR_INT_2ADDR:
2589      is_two_addr = true;
2590      // Fallthrough
2591    case Instruction::USHR_INT:
2592      shift_op = true;
2593      op = kOpLsr;
2594      break;
2595    default:
2596      LOG(FATAL) << "Invalid word arith op: " << opcode;
2597  }
2598
2599  // Can we convert to a two address instruction?
2600  if (!is_two_addr &&
2601        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2602         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
2603    is_two_addr = true;
2604  }
2605
2606  if (!GenerateTwoOperandInstructions()) {
2607    is_two_addr = false;
2608  }
2609
2610  // Get the div/rem stuff out of the way.
2611  if (is_div_rem) {
2612    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
2613    StoreValue(rl_dest, rl_result);
2614    return;
2615  }
2616
2617  // If we generate any memory access below, it will reference a dalvik reg.
2618  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2619
2620  if (unary) {
2621    rl_lhs = LoadValue(rl_lhs, kCoreReg);
2622    rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2623    rl_result = EvalLoc(rl_dest, kCoreReg, true);
2624    OpRegReg(op, rl_result.reg, rl_lhs.reg);
2625  } else {
2626    if (shift_op) {
2627      // X86 doesn't require masking and must use ECX.
2628      RegStorage t_reg = TargetReg(kCount, kNotWide);  // rCX
2629      LoadValueDirectFixed(rl_rhs, t_reg);
2630      if (is_two_addr) {
2631        // Can we do this directly into memory?
2632        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2633        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2634        if (rl_result.location != kLocPhysReg) {
2635          // Okay, we can do this into memory
2636          OpMemReg(op, rl_result, t_reg.GetReg());
2637          FreeTemp(t_reg);
2638          return;
2639        } else if (!rl_result.reg.IsFloat()) {
2640          // Can do this directly into the result register
2641          OpRegReg(op, rl_result.reg, t_reg);
2642          FreeTemp(t_reg);
2643          StoreFinalValue(rl_dest, rl_result);
2644          return;
2645        }
2646      }
2647      // Three address form, or we can't do directly.
2648      rl_lhs = LoadValue(rl_lhs, kCoreReg);
2649      rl_result = EvalLoc(rl_dest, kCoreReg, true);
2650      OpRegRegReg(op, rl_result.reg, rl_lhs.reg, t_reg);
2651      FreeTemp(t_reg);
2652    } else {
2653      // Multiply is 3 operand only (sort of).
2654      if (is_two_addr && op != kOpMul) {
2655        // Can we do this directly into memory?
2656        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2657        if (rl_result.location == kLocPhysReg) {
2658          // Ensure res is in a core reg
2659          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2660          // Can we do this from memory directly?
2661          rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2662          if (rl_rhs.location != kLocPhysReg) {
2663            OpRegMem(op, rl_result.reg, rl_rhs);
2664            StoreFinalValue(rl_dest, rl_result);
2665            return;
2666          } else if (!rl_rhs.reg.IsFloat()) {
2667            OpRegReg(op, rl_result.reg, rl_rhs.reg);
2668            StoreFinalValue(rl_dest, rl_result);
2669            return;
2670          }
2671        }
2672        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2673        // It might happen rl_rhs and rl_dest are the same VR
2674        // in this case rl_dest is in reg after LoadValue while
2675        // rl_result is not updated yet, so do this
2676        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2677        if (rl_result.location != kLocPhysReg) {
2678          // Okay, we can do this into memory.
2679          OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
2680          return;
2681        } else if (!rl_result.reg.IsFloat()) {
2682          // Can do this directly into the result register.
2683          OpRegReg(op, rl_result.reg, rl_rhs.reg);
2684          StoreFinalValue(rl_dest, rl_result);
2685          return;
2686        } else {
2687          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2688          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2689          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2690        }
2691      } else {
2692        // Try to use reg/memory instructions.
2693        rl_lhs = UpdateLocTyped(rl_lhs, kCoreReg);
2694        rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2695        // We can't optimize with FP registers.
2696        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2697          // Something is difficult, so fall back to the standard case.
2698          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2699          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2700          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2701          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2702        } else {
2703          // We can optimize by moving to result and using memory operands.
2704          if (rl_rhs.location != kLocPhysReg) {
2705            // Force LHS into result.
2706            // We should be careful with order here
2707            // If rl_dest and rl_lhs points to the same VR we should load first
2708            // If the are different we should find a register first for dest
2709            if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2710                mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2711              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2712              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2713              // No-op if these are the same.
2714              OpRegCopy(rl_result.reg, rl_lhs.reg);
2715            } else {
2716              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2717              LoadValueDirect(rl_lhs, rl_result.reg);
2718            }
2719            OpRegMem(op, rl_result.reg, rl_rhs);
2720          } else if (rl_lhs.location != kLocPhysReg) {
2721            // RHS is in a register; LHS is in memory.
2722            if (op != kOpSub) {
2723              // Force RHS into result and operate on memory.
2724              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2725              OpRegCopy(rl_result.reg, rl_rhs.reg);
2726              OpRegMem(op, rl_result.reg, rl_lhs);
2727            } else {
2728              // Subtraction isn't commutative.
2729              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2730              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2731              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2732              OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2733            }
2734          } else {
2735            // Both are in registers.
2736            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2737            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2738            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2739            OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2740          }
2741        }
2742      }
2743    }
2744  }
2745  StoreValue(rl_dest, rl_result);
2746}
2747
2748bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2749  // If we have non-core registers, then we can't do good things.
2750  if (rl_lhs.location == kLocPhysReg && rl_lhs.reg.IsFloat()) {
2751    return false;
2752  }
2753  if (rl_rhs.location == kLocPhysReg && rl_rhs.reg.IsFloat()) {
2754    return false;
2755  }
2756
2757  // Everything will be fine :-).
2758  return true;
2759}
2760
2761void X86Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
2762  if (!cu_->target64) {
2763    Mir2Lir::GenIntToLong(rl_dest, rl_src);
2764    return;
2765  }
2766  rl_src = UpdateLocTyped(rl_src, kCoreReg);
2767  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2768  if (rl_src.location == kLocPhysReg) {
2769    NewLIR2(kX86MovsxdRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
2770  } else {
2771    int displacement = SRegOffset(rl_src.s_reg_low);
2772    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2773    LIR *m = NewLIR3(kX86MovsxdRM, rl_result.reg.GetReg(), rs_rX86_SP.GetReg(),
2774                     displacement + LOWORD_OFFSET);
2775    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
2776                            true /* is_load */, true /* is_64bit */);
2777  }
2778  StoreValueWide(rl_dest, rl_result);
2779}
2780
2781void X86Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
2782                        RegLocation rl_src1, RegLocation rl_shift) {
2783  if (!cu_->target64) {
2784    Mir2Lir::GenShiftOpLong(opcode, rl_dest, rl_src1, rl_shift);
2785    return;
2786  }
2787
2788  bool is_two_addr = false;
2789  OpKind op = kOpBkpt;
2790  RegLocation rl_result;
2791
2792  switch (opcode) {
2793    case Instruction::SHL_LONG_2ADDR:
2794      is_two_addr = true;
2795      // Fallthrough
2796    case Instruction::SHL_LONG:
2797      op = kOpLsl;
2798      break;
2799    case Instruction::SHR_LONG_2ADDR:
2800      is_two_addr = true;
2801      // Fallthrough
2802    case Instruction::SHR_LONG:
2803      op = kOpAsr;
2804      break;
2805    case Instruction::USHR_LONG_2ADDR:
2806      is_two_addr = true;
2807      // Fallthrough
2808    case Instruction::USHR_LONG:
2809      op = kOpLsr;
2810      break;
2811    default:
2812      op = kOpBkpt;
2813  }
2814
2815  // X86 doesn't require masking and must use ECX.
2816  RegStorage t_reg = TargetReg(kCount, kNotWide);  // rCX
2817  LoadValueDirectFixed(rl_shift, t_reg);
2818  if (is_two_addr) {
2819    // Can we do this directly into memory?
2820    rl_result = UpdateLocWideTyped(rl_dest, kCoreReg);
2821    if (rl_result.location != kLocPhysReg) {
2822      // Okay, we can do this into memory
2823      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2824      OpMemReg(op, rl_result, t_reg.GetReg());
2825    } else if (!rl_result.reg.IsFloat()) {
2826      // Can do this directly into the result register
2827      OpRegReg(op, rl_result.reg, t_reg);
2828      StoreFinalValueWide(rl_dest, rl_result);
2829    }
2830  } else {
2831    // Three address form, or we can't do directly.
2832    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2833    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2834    OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
2835    StoreFinalValueWide(rl_dest, rl_result);
2836  }
2837
2838  FreeTemp(t_reg);
2839}
2840
2841}  // namespace art
2842