int_x86.cc revision 9ee4519afd97121f893f82d41d23164fc6c9ed34
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "dex/reg_storage_eq.h"
22#include "mirror/art_method.h"
23#include "mirror/array.h"
24#include "x86_lir.h"
25
26namespace art {
27
28/*
29 * Compare two 64-bit values
30 *    x = y     return  0
31 *    x < y     return -1
32 *    x > y     return  1
33 */
34void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
35                            RegLocation rl_src2) {
36  if (cu_->target64) {
37    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
38    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
39    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
40    RegStorage temp_reg = AllocTemp();
41    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
42    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondG);   // result = (src1 > src2) ? 1 : 0
43    NewLIR2(kX86Set8R, temp_reg.GetReg(), kX86CondL);  // temp = (src1 >= src2) ? 0 : 1
44    NewLIR2(kX86Sub8RR, rl_result.reg.GetReg(), temp_reg.GetReg());
45    NewLIR2(kX86Movsx8qRR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
46
47    StoreValue(rl_dest, rl_result);
48    FreeTemp(temp_reg);
49    return;
50  }
51
52  FlushAllRegs();
53  LockCallTemps();  // Prepare for explicit register usage
54  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
55  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
56  LoadValueDirectWideFixed(rl_src1, r_tmp1);
57  LoadValueDirectWideFixed(rl_src2, r_tmp2);
58  // Compute (r1:r0) = (r1:r0) - (r3:r2)
59  OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
60  OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
61  NewLIR2(kX86Set8R, rs_r2.GetReg(), kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
62  NewLIR2(kX86Movzx8RR, rs_r2.GetReg(), rs_r2.GetReg());
63  OpReg(kOpNeg, rs_r2);         // r2 = -r2
64  OpRegReg(kOpOr, rs_r0, rs_r1);   // r0 = high | low - sets ZF
65  NewLIR2(kX86Set8R, rs_r0.GetReg(), kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
66  NewLIR2(kX86Movzx8RR, r0, r0);
67  OpRegReg(kOpOr, rs_r0, rs_r2);   // r0 = r0 | r2
68  RegLocation rl_result = LocCReturn();
69  StoreValue(rl_dest, rl_result);
70}
71
72X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
73  switch (cond) {
74    case kCondEq: return kX86CondEq;
75    case kCondNe: return kX86CondNe;
76    case kCondCs: return kX86CondC;
77    case kCondCc: return kX86CondNc;
78    case kCondUlt: return kX86CondC;
79    case kCondUge: return kX86CondNc;
80    case kCondMi: return kX86CondS;
81    case kCondPl: return kX86CondNs;
82    case kCondVs: return kX86CondO;
83    case kCondVc: return kX86CondNo;
84    case kCondHi: return kX86CondA;
85    case kCondLs: return kX86CondBe;
86    case kCondGe: return kX86CondGe;
87    case kCondLt: return kX86CondL;
88    case kCondGt: return kX86CondG;
89    case kCondLe: return kX86CondLe;
90    case kCondAl:
91    case kCondNv: LOG(FATAL) << "Should not reach here";
92  }
93  return kX86CondO;
94}
95
96LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
97  NewLIR2(src1.Is64Bit() ? kX86Cmp64RR : kX86Cmp32RR, src1.GetReg(), src2.GetReg());
98  X86ConditionCode cc = X86ConditionEncoding(cond);
99  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
100                        cc);
101  branch->target = target;
102  return branch;
103}
104
105LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg,
106                                int check_value, LIR* target) {
107  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
108    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
109    NewLIR2(reg.Is64Bit() ? kX86Test64RR: kX86Test32RR, reg.GetReg(), reg.GetReg());
110  } else {
111    if (reg.Is64Bit()) {
112      NewLIR2(IS_SIMM8(check_value) ? kX86Cmp64RI8 : kX86Cmp64RI, reg.GetReg(), check_value);
113    } else {
114      NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg.GetReg(), check_value);
115    }
116  }
117  X86ConditionCode cc = X86ConditionEncoding(cond);
118  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
119  branch->target = target;
120  return branch;
121}
122
123LIR* X86Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
124  // If src or dest is a pair, we'll be using low reg.
125  if (r_dest.IsPair()) {
126    r_dest = r_dest.GetLow();
127  }
128  if (r_src.IsPair()) {
129    r_src = r_src.GetLow();
130  }
131  if (r_dest.IsFloat() || r_src.IsFloat())
132    return OpFpRegCopy(r_dest, r_src);
133  LIR* res = RawLIR(current_dalvik_offset_, r_dest.Is64Bit() ? kX86Mov64RR : kX86Mov32RR,
134                    r_dest.GetReg(), r_src.GetReg());
135  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
136    res->flags.is_nop = true;
137  }
138  return res;
139}
140
141void X86Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
142  if (r_dest != r_src) {
143    LIR *res = OpRegCopyNoInsert(r_dest, r_src);
144    AppendLIR(res);
145  }
146}
147
148void X86Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
149  if (r_dest != r_src) {
150    bool dest_fp = r_dest.IsFloat();
151    bool src_fp = r_src.IsFloat();
152    if (dest_fp) {
153      if (src_fp) {
154        OpRegCopy(r_dest, r_src);
155      } else {
156        // TODO: Prevent this from happening in the code. The result is often
157        // unused or could have been loaded more easily from memory.
158        if (!r_src.IsPair()) {
159          DCHECK(!r_dest.IsPair());
160          NewLIR2(kX86MovqxrRR, r_dest.GetReg(), r_src.GetReg());
161        } else {
162          NewLIR2(kX86MovdxrRR, r_dest.GetReg(), r_src.GetLowReg());
163          RegStorage r_tmp = AllocTempDouble();
164          NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), r_src.GetHighReg());
165          NewLIR2(kX86PunpckldqRR, r_dest.GetReg(), r_tmp.GetReg());
166          FreeTemp(r_tmp);
167        }
168      }
169    } else {
170      if (src_fp) {
171        if (!r_dest.IsPair()) {
172          DCHECK(!r_src.IsPair());
173          NewLIR2(kX86MovqrxRR, r_dest.GetReg(), r_src.GetReg());
174        } else {
175          NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetReg());
176          RegStorage temp_reg = AllocTempDouble();
177          NewLIR2(kX86MovsdRR, temp_reg.GetReg(), r_src.GetReg());
178          NewLIR2(kX86PsrlqRI, temp_reg.GetReg(), 32);
179          NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), temp_reg.GetReg());
180        }
181      } else {
182        DCHECK_EQ(r_dest.IsPair(), r_src.IsPair());
183        if (!r_src.IsPair()) {
184          // Just copy the register directly.
185          OpRegCopy(r_dest, r_src);
186        } else {
187          // Handle overlap
188          if (r_src.GetHighReg() == r_dest.GetLowReg() &&
189              r_src.GetLowReg() == r_dest.GetHighReg()) {
190            // Deal with cycles.
191            RegStorage temp_reg = AllocTemp();
192            OpRegCopy(temp_reg, r_dest.GetHigh());
193            OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
194            OpRegCopy(r_dest.GetLow(), temp_reg);
195            FreeTemp(temp_reg);
196          } else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
197            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
198            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
199          } else {
200            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
201            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
202          }
203        }
204      }
205    }
206  }
207}
208
209void X86Mir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
210                                  int32_t true_val, int32_t false_val, RegStorage rs_dest,
211                                  int dest_reg_class) {
212  DCHECK(!left_op.IsPair() && !right_op.IsPair() && !rs_dest.IsPair());
213  DCHECK(!left_op.IsFloat() && !right_op.IsFloat() && !rs_dest.IsFloat());
214
215  // We really need this check for correctness, otherwise we will need to do more checks in
216  // non zero/one case
217  if (true_val == false_val) {
218    LoadConstantNoClobber(rs_dest, true_val);
219    return;
220  }
221
222  const bool dest_intersect = IsSameReg(rs_dest, left_op) || IsSameReg(rs_dest, right_op);
223
224  const bool zero_one_case = (true_val == 0 && false_val == 1) || (true_val == 1 && false_val == 0);
225  if (zero_one_case && IsByteRegister(rs_dest)) {
226    if (!dest_intersect) {
227      LoadConstantNoClobber(rs_dest, 0);
228    }
229    OpRegReg(kOpCmp, left_op, right_op);
230    // Set the low byte of the result to 0 or 1 from the compare condition code.
231    NewLIR2(kX86Set8R, rs_dest.GetReg(),
232            X86ConditionEncoding(true_val == 1 ? code : FlipComparisonOrder(code)));
233    if (dest_intersect) {
234      NewLIR2(rs_dest.Is64Bit() ? kX86Movzx8qRR : kX86Movzx8RR, rs_dest.GetReg(), rs_dest.GetReg());
235    }
236  } else {
237    // Be careful rs_dest can be changed only after cmp because it can be the same as one of ops
238    // and it cannot use xor because it makes cc flags to be dirty
239    RegStorage temp_reg = AllocTypedTemp(false, dest_reg_class, false);
240    if (temp_reg.Valid()) {
241      if (false_val == 0 && dest_intersect) {
242        code = FlipComparisonOrder(code);
243        std::swap(true_val, false_val);
244      }
245      if (!dest_intersect) {
246        LoadConstantNoClobber(rs_dest, false_val);
247      }
248      LoadConstantNoClobber(temp_reg, true_val);
249      OpRegReg(kOpCmp, left_op, right_op);
250      if (dest_intersect) {
251        LoadConstantNoClobber(rs_dest, false_val);
252        DCHECK(!last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
253      }
254      OpCondRegReg(kOpCmov, code, rs_dest, temp_reg);
255      FreeTemp(temp_reg);
256    } else {
257      // slow path
258      LIR* cmp_branch = OpCmpBranch(code, left_op, right_op, nullptr);
259      LoadConstantNoClobber(rs_dest, false_val);
260      LIR* that_is_it = NewLIR1(kX86Jmp8, 0);
261      LIR* true_case = NewLIR0(kPseudoTargetLabel);
262      cmp_branch->target = true_case;
263      LoadConstantNoClobber(rs_dest, true_val);
264      LIR* end = NewLIR0(kPseudoTargetLabel);
265      that_is_it->target = end;
266    }
267  }
268}
269
270void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
271  RegLocation rl_result;
272  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
273  RegLocation rl_dest = mir_graph_->GetDest(mir);
274  // Avoid using float regs here.
275  RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
276  RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
277  rl_src = LoadValue(rl_src, src_reg_class);
278  ConditionCode ccode = mir->meta.ccode;
279
280  // The kMirOpSelect has two variants, one for constants and one for moves.
281  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
282
283  if (is_constant_case) {
284    int true_val = mir->dalvikInsn.vB;
285    int false_val = mir->dalvikInsn.vC;
286    rl_result = EvalLoc(rl_dest, result_reg_class, true);
287
288    /*
289     * For ccode == kCondEq:
290     *
291     * 1) When the true case is zero and result_reg is not same as src_reg:
292     *     xor result_reg, result_reg
293     *     cmp $0, src_reg
294     *     mov t1, $false_case
295     *     cmovnz result_reg, t1
296     * 2) When the false case is zero and result_reg is not same as src_reg:
297     *     xor result_reg, result_reg
298     *     cmp $0, src_reg
299     *     mov t1, $true_case
300     *     cmovz result_reg, t1
301     * 3) All other cases (we do compare first to set eflags):
302     *     cmp $0, src_reg
303     *     mov result_reg, $false_case
304     *     mov t1, $true_case
305     *     cmovz result_reg, t1
306     */
307    // FIXME: depending on how you use registers you could get a false != mismatch when dealing
308    // with different views of the same underlying physical resource (i.e. solo32 vs. solo64).
309    const bool result_reg_same_as_src =
310        (rl_src.location == kLocPhysReg && rl_src.reg.GetRegNum() == rl_result.reg.GetRegNum());
311    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
312    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
313    const bool catch_all_case = !(true_zero_case || false_zero_case);
314
315    if (true_zero_case || false_zero_case) {
316      OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
317    }
318
319    if (true_zero_case || false_zero_case || catch_all_case) {
320      OpRegImm(kOpCmp, rl_src.reg, 0);
321    }
322
323    if (catch_all_case) {
324      OpRegImm(kOpMov, rl_result.reg, false_val);
325    }
326
327    if (true_zero_case || false_zero_case || catch_all_case) {
328      ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
329      int immediateForTemp = true_zero_case ? false_val : true_val;
330      RegStorage temp1_reg = AllocTypedTemp(false, result_reg_class);
331      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
332
333      OpCondRegReg(kOpCmov, cc, rl_result.reg, temp1_reg);
334
335      FreeTemp(temp1_reg);
336    }
337  } else {
338    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
339    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
340    rl_true = LoadValue(rl_true, result_reg_class);
341    rl_false = LoadValue(rl_false, result_reg_class);
342    rl_result = EvalLoc(rl_dest, result_reg_class, true);
343
344    /*
345     * For ccode == kCondEq:
346     *
347     * 1) When true case is already in place:
348     *     cmp $0, src_reg
349     *     cmovnz result_reg, false_reg
350     * 2) When false case is already in place:
351     *     cmp $0, src_reg
352     *     cmovz result_reg, true_reg
353     * 3) When neither cases are in place:
354     *     cmp $0, src_reg
355     *     mov result_reg, false_reg
356     *     cmovz result_reg, true_reg
357     */
358
359    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
360    OpRegImm(kOpCmp, rl_src.reg, 0);
361
362    if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
363      OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg, rl_false.reg);
364    } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
365      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
366    } else {
367      OpRegCopy(rl_result.reg, rl_false.reg);
368      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
369    }
370  }
371
372  StoreValue(rl_dest, rl_result);
373}
374
375void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
376  LIR* taken = &block_label_list_[bb->taken];
377  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
378  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
379  ConditionCode ccode = mir->meta.ccode;
380
381  if (rl_src1.is_const) {
382    std::swap(rl_src1, rl_src2);
383    ccode = FlipComparisonOrder(ccode);
384  }
385  if (rl_src2.is_const) {
386    // Do special compare/branch against simple const operand
387    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
388    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
389    return;
390  }
391
392  if (cu_->target64) {
393    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
394    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
395
396    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
397    OpCondBranch(ccode, taken);
398    return;
399  }
400
401  FlushAllRegs();
402  LockCallTemps();  // Prepare for explicit register usage
403  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
404  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
405  LoadValueDirectWideFixed(rl_src1, r_tmp1);
406  LoadValueDirectWideFixed(rl_src2, r_tmp2);
407
408  // Swap operands and condition code to prevent use of zero flag.
409  if (ccode == kCondLe || ccode == kCondGt) {
410    // Compute (r3:r2) = (r3:r2) - (r1:r0)
411    OpRegReg(kOpSub, rs_r2, rs_r0);  // r2 = r2 - r0
412    OpRegReg(kOpSbc, rs_r3, rs_r1);  // r3 = r3 - r1 - CF
413  } else {
414    // Compute (r1:r0) = (r1:r0) - (r3:r2)
415    OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
416    OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
417  }
418  switch (ccode) {
419    case kCondEq:
420    case kCondNe:
421      OpRegReg(kOpOr, rs_r0, rs_r1);  // r0 = r0 | r1
422      break;
423    case kCondLe:
424      ccode = kCondGe;
425      break;
426    case kCondGt:
427      ccode = kCondLt;
428      break;
429    case kCondLt:
430    case kCondGe:
431      break;
432    default:
433      LOG(FATAL) << "Unexpected ccode: " << ccode;
434  }
435  OpCondBranch(ccode, taken);
436}
437
438void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
439                                          int64_t val, ConditionCode ccode) {
440  int32_t val_lo = Low32Bits(val);
441  int32_t val_hi = High32Bits(val);
442  LIR* taken = &block_label_list_[bb->taken];
443  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
444  bool is_equality_test = ccode == kCondEq || ccode == kCondNe;
445
446  if (cu_->target64) {
447    if (is_equality_test && val == 0) {
448      // We can simplify of comparing for ==, != to 0.
449      NewLIR2(kX86Test64RR, rl_src1.reg.GetReg(), rl_src1.reg.GetReg());
450    } else if (is_equality_test && val_hi == 0 && val_lo > 0) {
451      OpRegImm(kOpCmp, rl_src1.reg, val_lo);
452    } else {
453      RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
454      LoadConstantWide(tmp, val);
455      OpRegReg(kOpCmp, rl_src1.reg, tmp);
456      FreeTemp(tmp);
457    }
458    OpCondBranch(ccode, taken);
459    return;
460  }
461
462  if (is_equality_test && val != 0) {
463    rl_src1 = ForceTempWide(rl_src1);
464  }
465  RegStorage low_reg = rl_src1.reg.GetLow();
466  RegStorage high_reg = rl_src1.reg.GetHigh();
467
468  if (is_equality_test) {
469    // We can simplify of comparing for ==, != to 0.
470    if (val == 0) {
471      if (IsTemp(low_reg)) {
472        OpRegReg(kOpOr, low_reg, high_reg);
473        // We have now changed it; ignore the old values.
474        Clobber(rl_src1.reg);
475      } else {
476        RegStorage t_reg = AllocTemp();
477        OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
478        FreeTemp(t_reg);
479      }
480      OpCondBranch(ccode, taken);
481      return;
482    }
483
484    // Need to compute the actual value for ==, !=.
485    OpRegImm(kOpSub, low_reg, val_lo);
486    NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
487    OpRegReg(kOpOr, high_reg, low_reg);
488    Clobber(rl_src1.reg);
489  } else if (ccode == kCondLe || ccode == kCondGt) {
490    // Swap operands and condition code to prevent use of zero flag.
491    RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
492    LoadConstantWide(tmp, val);
493    OpRegReg(kOpSub, tmp.GetLow(), low_reg);
494    OpRegReg(kOpSbc, tmp.GetHigh(), high_reg);
495    ccode = (ccode == kCondLe) ? kCondGe : kCondLt;
496    FreeTemp(tmp);
497  } else {
498    // We can use a compare for the low word to set CF.
499    OpRegImm(kOpCmp, low_reg, val_lo);
500    if (IsTemp(high_reg)) {
501      NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
502      // We have now changed it; ignore the old values.
503      Clobber(rl_src1.reg);
504    } else {
505      // mov temp_reg, high_reg; sbb temp_reg, high_constant
506      RegStorage t_reg = AllocTemp();
507      OpRegCopy(t_reg, high_reg);
508      NewLIR2(kX86Sbb32RI, t_reg.GetReg(), val_hi);
509      FreeTemp(t_reg);
510    }
511  }
512
513  OpCondBranch(ccode, taken);
514}
515
516void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
517  // It does not make sense to calculate magic and shift for zero divisor.
518  DCHECK_NE(divisor, 0);
519
520  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
521   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
522   * The magic number M and shift S can be calculated in the following way:
523   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
524   * where divisor(d) >=2.
525   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
526   * where divisor(d) <= -2.
527   * Thus nc can be calculated like:
528   * nc = 2^31 + 2^31 % d - 1, where d >= 2
529   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
530   *
531   * So the shift p is the smallest p satisfying
532   * 2^p > nc * (d - 2^p % d), where d >= 2
533   * 2^p > nc * (d + 2^p % d), where d <= -2.
534   *
535   * the magic number M is calcuated by
536   * M = (2^p + d - 2^p % d) / d, where d >= 2
537   * M = (2^p - d - 2^p % d) / d, where d <= -2.
538   *
539   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
540   * the shift number S.
541   */
542
543  int32_t p = 31;
544  const uint32_t two31 = 0x80000000U;
545
546  // Initialize the computations.
547  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
548  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
549  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
550  uint32_t quotient1 = two31 / abs_nc;
551  uint32_t remainder1 = two31 % abs_nc;
552  uint32_t quotient2 = two31 / abs_d;
553  uint32_t remainder2 = two31 % abs_d;
554
555  /*
556   * To avoid handling both positive and negative divisor, Hacker's Delight
557   * introduces a method to handle these 2 cases together to avoid duplication.
558   */
559  uint32_t delta;
560  do {
561    p++;
562    quotient1 = 2 * quotient1;
563    remainder1 = 2 * remainder1;
564    if (remainder1 >= abs_nc) {
565      quotient1++;
566      remainder1 = remainder1 - abs_nc;
567    }
568    quotient2 = 2 * quotient2;
569    remainder2 = 2 * remainder2;
570    if (remainder2 >= abs_d) {
571      quotient2++;
572      remainder2 = remainder2 - abs_d;
573    }
574    delta = abs_d - remainder2;
575  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
576
577  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
578  shift = p - 32;
579}
580
581RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) {
582  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
583  return rl_dest;
584}
585
586RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
587                                     int imm, bool is_div) {
588  // Use a multiply (and fixup) to perform an int div/rem by a constant.
589
590  // We have to use fixed registers, so flush all the temps.
591  FlushAllRegs();
592  LockCallTemps();  // Prepare for explicit register usage.
593
594  // Assume that the result will be in EDX.
595  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r2, INVALID_SREG, INVALID_SREG};
596
597  // handle div/rem by 1 special case.
598  if (imm == 1) {
599    if (is_div) {
600      // x / 1 == x.
601      StoreValue(rl_result, rl_src);
602    } else {
603      // x % 1 == 0.
604      LoadConstantNoClobber(rs_r0, 0);
605      // For this case, return the result in EAX.
606      rl_result.reg.SetReg(r0);
607    }
608  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
609    if (is_div) {
610      LIR *minint_branch = 0;
611      LoadValueDirectFixed(rl_src, rs_r0);
612      OpRegImm(kOpCmp, rs_r0, 0x80000000);
613      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
614
615      // for x != MIN_INT, x / -1 == -x.
616      NewLIR1(kX86Neg32R, r0);
617
618      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
619      // The target for cmp/jmp above.
620      minint_branch->target = NewLIR0(kPseudoTargetLabel);
621      // EAX already contains the right value (0x80000000),
622      branch_around->target = NewLIR0(kPseudoTargetLabel);
623    } else {
624      // x % -1 == 0.
625      LoadConstantNoClobber(rs_r0, 0);
626    }
627    // For this case, return the result in EAX.
628    rl_result.reg.SetReg(r0);
629  } else {
630    CHECK(imm <= -2 || imm >= 2);
631    // Use H.S.Warren's Hacker's Delight Chapter 10 and
632    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
633    int magic, shift;
634    CalculateMagicAndShift(imm, magic, shift);
635
636    /*
637     * For imm >= 2,
638     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
639     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
640     * For imm <= -2,
641     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
642     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
643     * We implement this algorithm in the following way:
644     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
645     * 2. if imm > 0 and magic < 0, add numerator to EDX
646     *    if imm < 0 and magic > 0, sub numerator from EDX
647     * 3. if S !=0, SAR S bits for EDX
648     * 4. add 1 to EDX if EDX < 0
649     * 5. Thus, EDX is the quotient
650     */
651
652    // Numerator into EAX.
653    RegStorage numerator_reg;
654    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
655      // We will need the value later.
656      if (rl_src.location == kLocPhysReg) {
657        // We can use it directly.
658        DCHECK(rl_src.reg.GetReg() != rs_r0.GetReg() && rl_src.reg.GetReg() != rs_r2.GetReg());
659        numerator_reg = rl_src.reg;
660      } else {
661        numerator_reg = rs_r1;
662        LoadValueDirectFixed(rl_src, numerator_reg);
663      }
664      OpRegCopy(rs_r0, numerator_reg);
665    } else {
666      // Only need this once.  Just put it into EAX.
667      LoadValueDirectFixed(rl_src, rs_r0);
668    }
669
670    // EDX = magic.
671    LoadConstantNoClobber(rs_r2, magic);
672
673    // EDX:EAX = magic & dividend.
674    NewLIR1(kX86Imul32DaR, rs_r2.GetReg());
675
676    if (imm > 0 && magic < 0) {
677      // Add numerator to EDX.
678      DCHECK(numerator_reg.Valid());
679      NewLIR2(kX86Add32RR, rs_r2.GetReg(), numerator_reg.GetReg());
680    } else if (imm < 0 && magic > 0) {
681      DCHECK(numerator_reg.Valid());
682      NewLIR2(kX86Sub32RR, rs_r2.GetReg(), numerator_reg.GetReg());
683    }
684
685    // Do we need the shift?
686    if (shift != 0) {
687      // Shift EDX by 'shift' bits.
688      NewLIR2(kX86Sar32RI, rs_r2.GetReg(), shift);
689    }
690
691    // Add 1 to EDX if EDX < 0.
692
693    // Move EDX to EAX.
694    OpRegCopy(rs_r0, rs_r2);
695
696    // Move sign bit to bit 0, zeroing the rest.
697    NewLIR2(kX86Shr32RI, rs_r2.GetReg(), 31);
698
699    // EDX = EDX + EAX.
700    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r0.GetReg());
701
702    // Quotient is in EDX.
703    if (!is_div) {
704      // We need to compute the remainder.
705      // Remainder is divisor - (quotient * imm).
706      DCHECK(numerator_reg.Valid());
707      OpRegCopy(rs_r0, numerator_reg);
708
709      // EAX = numerator * imm.
710      OpRegRegImm(kOpMul, rs_r2, rs_r2, imm);
711
712      // EDX -= EAX.
713      NewLIR2(kX86Sub32RR, rs_r0.GetReg(), rs_r2.GetReg());
714
715      // For this case, return the result in EAX.
716      rl_result.reg.SetReg(r0);
717    }
718  }
719
720  return rl_result;
721}
722
723RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
724                                  bool is_div) {
725  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
726  return rl_dest;
727}
728
729RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
730                                  RegLocation rl_src2, bool is_div, bool check_zero) {
731  // We have to use fixed registers, so flush all the temps.
732  FlushAllRegs();
733  LockCallTemps();  // Prepare for explicit register usage.
734
735  // Load LHS into EAX.
736  LoadValueDirectFixed(rl_src1, rs_r0);
737
738  // Load RHS into EBX.
739  LoadValueDirectFixed(rl_src2, rs_r1);
740
741  // Copy LHS sign bit into EDX.
742  NewLIR0(kx86Cdq32Da);
743
744  if (check_zero) {
745    // Handle division by zero case.
746    GenDivZeroCheck(rs_r1);
747  }
748
749  // Have to catch 0x80000000/-1 case, or we will get an exception!
750  OpRegImm(kOpCmp, rs_r1, -1);
751  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
752
753  // RHS is -1.
754  OpRegImm(kOpCmp, rs_r0, 0x80000000);
755  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
756
757  // In 0x80000000/-1 case.
758  if (!is_div) {
759    // For DIV, EAX is already right. For REM, we need EDX 0.
760    LoadConstantNoClobber(rs_r2, 0);
761  }
762  LIR* done = NewLIR1(kX86Jmp8, 0);
763
764  // Expected case.
765  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
766  minint_branch->target = minus_one_branch->target;
767  NewLIR1(kX86Idivmod32DaR, rs_r1.GetReg());
768  done->target = NewLIR0(kPseudoTargetLabel);
769
770  // Result is in EAX for div and EDX for rem.
771  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r0, INVALID_SREG, INVALID_SREG};
772  if (!is_div) {
773    rl_result.reg.SetReg(r2);
774  }
775  return rl_result;
776}
777
778bool X86Mir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) {
779  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
780
781  if (is_long && cu_->instruction_set == kX86) {
782    return false;
783  }
784
785  // Get the two arguments to the invoke and place them in GP registers.
786  RegLocation rl_src1 = info->args[0];
787  RegLocation rl_src2 = (is_long) ? info->args[2] : info->args[1];
788  rl_src1 = (is_long) ? LoadValueWide(rl_src1, kCoreReg) : LoadValue(rl_src1, kCoreReg);
789  rl_src2 = (is_long) ? LoadValueWide(rl_src2, kCoreReg) : LoadValue(rl_src2, kCoreReg);
790
791  RegLocation rl_dest = (is_long) ? InlineTargetWide(info) : InlineTarget(info);
792  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
793
794  /*
795   * If the result register is the same as the second element, then we need to be careful.
796   * The reason is that the first copy will inadvertently clobber the second element with
797   * the first one thus yielding the wrong result. Thus we do a swap in that case.
798   */
799  if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
800    std::swap(rl_src1, rl_src2);
801  }
802
803  // Pick the first integer as min/max.
804  OpRegCopy(rl_result.reg, rl_src1.reg);
805
806  // If the integers are both in the same register, then there is nothing else to do
807  // because they are equal and we have already moved one into the result.
808  if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
809    // It is possible we didn't pick correctly so do the actual comparison now.
810    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
811
812    // Conditionally move the other integer into the destination register.
813    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
814    OpCondRegReg(kOpCmov, condition_code, rl_result.reg, rl_src2.reg);
815  }
816
817  if (is_long) {
818    StoreValueWide(rl_dest, rl_result);
819  } else {
820    StoreValue(rl_dest, rl_result);
821  }
822  return true;
823}
824
825bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
826  RegLocation rl_src_address = info->args[0];  // long address
827  RegLocation rl_address;
828  if (!cu_->target64) {
829    rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[0]
830    rl_address = LoadValue(rl_src_address, kCoreReg);
831  } else {
832    rl_address = LoadValueWide(rl_src_address, kCoreReg);
833  }
834  RegLocation rl_dest = size == k64 ? InlineTargetWide(info) : InlineTarget(info);
835  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
836  // Unaligned access is allowed on x86.
837  LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile);
838  if (size == k64) {
839    StoreValueWide(rl_dest, rl_result);
840  } else {
841    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
842    StoreValue(rl_dest, rl_result);
843  }
844  return true;
845}
846
847bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
848  RegLocation rl_src_address = info->args[0];  // long address
849  RegLocation rl_address;
850  if (!cu_->target64) {
851    rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[0]
852    rl_address = LoadValue(rl_src_address, kCoreReg);
853  } else {
854    rl_address = LoadValueWide(rl_src_address, kCoreReg);
855  }
856  RegLocation rl_src_value = info->args[2];  // [size] value
857  RegLocation rl_value;
858  if (size == k64) {
859    // Unaligned access is allowed on x86.
860    rl_value = LoadValueWide(rl_src_value, kCoreReg);
861  } else {
862    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
863    // In 32-bit mode the only EAX..EDX registers can be used with Mov8MR.
864    if (!cu_->target64 && size == kSignedByte) {
865      rl_src_value = UpdateLocTyped(rl_src_value, kCoreReg);
866      if (rl_src_value.location == kLocPhysReg && !IsByteRegister(rl_src_value.reg)) {
867        RegStorage temp = AllocateByteRegister();
868        OpRegCopy(temp, rl_src_value.reg);
869        rl_value.reg = temp;
870      } else {
871        rl_value = LoadValue(rl_src_value, kCoreReg);
872      }
873    } else {
874      rl_value = LoadValue(rl_src_value, kCoreReg);
875    }
876  }
877  StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
878  return true;
879}
880
881void X86Mir2Lir::OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset) {
882  NewLIR5(kX86Lea32RA, r_base.GetReg(), reg1.GetReg(), reg2.GetReg(), scale, offset);
883}
884
885void X86Mir2Lir::OpTlsCmp(ThreadOffset<4> offset, int val) {
886  DCHECK_EQ(kX86, cu_->instruction_set);
887  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
888}
889
890void X86Mir2Lir::OpTlsCmp(ThreadOffset<8> offset, int val) {
891  DCHECK_EQ(kX86_64, cu_->instruction_set);
892  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
893}
894
895static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, RegStorage reg) {
896  return rl.reg.Valid() && rl.reg.GetReg() == reg.GetReg() && (pMir2Lir->IsLive(reg) || rl.home);
897}
898
899bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
900  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
901  // Unused - RegLocation rl_src_unsafe = info->args[0];
902  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
903  RegLocation rl_src_offset = info->args[2];  // long low
904  if (!cu_->target64) {
905    rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
906  }
907  RegLocation rl_src_expected = info->args[4];  // int, long or Object
908  // If is_long, high half is in info->args[5]
909  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
910  // If is_long, high half is in info->args[7]
911
912  if (is_long && cu_->target64) {
913    // RAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in RAX.
914    FlushReg(rs_r0q);
915    Clobber(rs_r0q);
916    LockTemp(rs_r0q);
917
918    RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
919    RegLocation rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg);
920    RegLocation rl_offset = LoadValueWide(rl_src_offset, kCoreReg);
921    LoadValueDirectWide(rl_src_expected, rs_r0q);
922    NewLIR5(kX86LockCmpxchg64AR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0,
923            rl_new_value.reg.GetReg());
924
925    // After a store we need to insert barrier in case of potential load. Since the
926    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
927    GenMemBarrier(kAnyAny);
928
929    FreeTemp(rs_r0q);
930  } else if (is_long) {
931    // TODO: avoid unnecessary loads of SI and DI when the values are in registers.
932    // TODO: CFI support.
933    FlushAllRegs();
934    LockCallTemps();
935    RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_rAX, rs_rDX);
936    RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_rBX, rs_rCX);
937    LoadValueDirectWideFixed(rl_src_expected, r_tmp1);
938    LoadValueDirectWideFixed(rl_src_new_value, r_tmp2);
939    // FIXME: needs 64-bit update.
940    const bool obj_in_di = IsInReg(this, rl_src_obj, rs_rDI);
941    const bool obj_in_si = IsInReg(this, rl_src_obj, rs_rSI);
942    DCHECK(!obj_in_si || !obj_in_di);
943    const bool off_in_di = IsInReg(this, rl_src_offset, rs_rDI);
944    const bool off_in_si = IsInReg(this, rl_src_offset, rs_rSI);
945    DCHECK(!off_in_si || !off_in_di);
946    // If obj/offset is in a reg, use that reg. Otherwise, use the empty reg.
947    RegStorage rs_obj = obj_in_di ? rs_rDI : obj_in_si ? rs_rSI : !off_in_di ? rs_rDI : rs_rSI;
948    RegStorage rs_off = off_in_si ? rs_rSI : off_in_di ? rs_rDI : !obj_in_si ? rs_rSI : rs_rDI;
949    bool push_di = (!obj_in_di && !off_in_di) && (rs_obj == rs_rDI || rs_off == rs_rDI);
950    bool push_si = (!obj_in_si && !off_in_si) && (rs_obj == rs_rSI || rs_off == rs_rSI);
951    if (push_di) {
952      NewLIR1(kX86Push32R, rs_rDI.GetReg());
953      MarkTemp(rs_rDI);
954      LockTemp(rs_rDI);
955    }
956    if (push_si) {
957      NewLIR1(kX86Push32R, rs_rSI.GetReg());
958      MarkTemp(rs_rSI);
959      LockTemp(rs_rSI);
960    }
961    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
962    const size_t push_offset = (push_si ? 4u : 0u) + (push_di ? 4u : 0u);
963    if (!obj_in_si && !obj_in_di) {
964      LoadWordDisp(rs_rX86_SP, SRegOffset(rl_src_obj.s_reg_low) + push_offset, rs_obj);
965      // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
966      DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
967      int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - push_offset / 4u;
968      AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
969    }
970    if (!off_in_si && !off_in_di) {
971      LoadWordDisp(rs_rX86_SP, SRegOffset(rl_src_offset.s_reg_low) + push_offset, rs_off);
972      // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
973      DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
974      int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - push_offset / 4u;
975      AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
976    }
977    NewLIR4(kX86LockCmpxchg64A, rs_obj.GetReg(), rs_off.GetReg(), 0, 0);
978
979    // After a store we need to insert barrier to prevent reordering with either
980    // earlier or later memory accesses.  Since
981    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated,
982    // and it will be associated with the cmpxchg instruction, preventing both.
983    GenMemBarrier(kAnyAny);
984
985    if (push_si) {
986      FreeTemp(rs_rSI);
987      UnmarkTemp(rs_rSI);
988      NewLIR1(kX86Pop32R, rs_rSI.GetReg());
989    }
990    if (push_di) {
991      FreeTemp(rs_rDI);
992      UnmarkTemp(rs_rDI);
993      NewLIR1(kX86Pop32R, rs_rDI.GetReg());
994    }
995    FreeCallTemps();
996  } else {
997    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
998    FlushReg(rs_r0);
999    Clobber(rs_r0);
1000    LockTemp(rs_r0);
1001
1002    RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
1003    RegLocation rl_new_value = LoadValue(rl_src_new_value);
1004
1005    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
1006      // Mark card for object assuming new value is stored.
1007      FreeTemp(rs_r0);  // Temporarily release EAX for MarkGCCard().
1008      MarkGCCard(rl_new_value.reg, rl_object.reg);
1009      LockTemp(rs_r0);
1010    }
1011
1012    RegLocation rl_offset;
1013    if (cu_->target64) {
1014      rl_offset = LoadValueWide(rl_src_offset, kCoreReg);
1015    } else {
1016      rl_offset = LoadValue(rl_src_offset, kCoreReg);
1017    }
1018    LoadValueDirect(rl_src_expected, rs_r0);
1019    NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0,
1020            rl_new_value.reg.GetReg());
1021
1022    // After a store we need to insert barrier to prevent reordering with either
1023    // earlier or later memory accesses.  Since
1024    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated,
1025    // and it will be associated with the cmpxchg instruction, preventing both.
1026    GenMemBarrier(kAnyAny);
1027
1028    FreeTemp(rs_r0);
1029  }
1030
1031  // Convert ZF to boolean
1032  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
1033  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1034  RegStorage result_reg = rl_result.reg;
1035
1036  // For 32-bit, SETcc only works with EAX..EDX.
1037  if (!IsByteRegister(result_reg)) {
1038    result_reg = AllocateByteRegister();
1039  }
1040  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondZ);
1041  NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), result_reg.GetReg());
1042  if (IsTemp(result_reg)) {
1043    FreeTemp(result_reg);
1044  }
1045  StoreValue(rl_dest, rl_result);
1046  return true;
1047}
1048
1049LIR* X86Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
1050  CHECK(base_of_code_ != nullptr);
1051
1052  // Address the start of the method
1053  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1054  if (rl_method.wide) {
1055    LoadValueDirectWideFixed(rl_method, reg);
1056  } else {
1057    LoadValueDirectFixed(rl_method, reg);
1058  }
1059  store_method_addr_used_ = true;
1060
1061  // Load the proper value from the literal area.
1062  // We don't know the proper offset for the value, so pick one that will force
1063  // 4 byte offset.  We will fix this up in the assembler later to have the right
1064  // value.
1065  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1066  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg.GetReg(), reg.GetReg(), 256,
1067                    0, 0, target);
1068  res->target = target;
1069  res->flags.fixup = kFixupLoad;
1070  store_method_addr_used_ = true;
1071  return res;
1072}
1073
1074LIR* X86Mir2Lir::OpVldm(RegStorage r_base, int count) {
1075  LOG(FATAL) << "Unexpected use of OpVldm for x86";
1076  return NULL;
1077}
1078
1079LIR* X86Mir2Lir::OpVstm(RegStorage r_base, int count) {
1080  LOG(FATAL) << "Unexpected use of OpVstm for x86";
1081  return NULL;
1082}
1083
1084void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
1085                                               RegLocation rl_result, int lit,
1086                                               int first_bit, int second_bit) {
1087  RegStorage t_reg = AllocTemp();
1088  OpRegRegImm(kOpLsl, t_reg, rl_src.reg, second_bit - first_bit);
1089  OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, t_reg);
1090  FreeTemp(t_reg);
1091  if (first_bit != 0) {
1092    OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
1093  }
1094}
1095
1096void X86Mir2Lir::GenDivZeroCheckWide(RegStorage reg) {
1097  if (cu_->target64) {
1098    DCHECK(reg.Is64Bit());
1099
1100    NewLIR2(kX86Cmp64RI8, reg.GetReg(), 0);
1101  } else {
1102    DCHECK(reg.IsPair());
1103
1104    // We are not supposed to clobber the incoming storage, so allocate a temporary.
1105    RegStorage t_reg = AllocTemp();
1106    // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
1107    OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
1108    // The temp is no longer needed so free it at this time.
1109    FreeTemp(t_reg);
1110  }
1111
1112  // In case of zero, throw ArithmeticException.
1113  GenDivZeroCheck(kCondEq);
1114}
1115
1116void X86Mir2Lir::GenArrayBoundsCheck(RegStorage index,
1117                                     RegStorage array_base,
1118                                     int len_offset) {
1119  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
1120   public:
1121    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
1122                             RegStorage index, RegStorage array_base, int32_t len_offset)
1123        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
1124          index_(index), array_base_(array_base), len_offset_(len_offset) {
1125    }
1126
1127    void Compile() OVERRIDE {
1128      m2l_->ResetRegPool();
1129      m2l_->ResetDefTracking();
1130      GenerateTargetLabel(kPseudoThrowTarget);
1131
1132      RegStorage new_index = index_;
1133      // Move index out of kArg1, either directly to kArg0, or to kArg2.
1134      // TODO: clean-up to check not a number but with type
1135      if (index_ == m2l_->TargetReg(kArg1, kNotWide)) {
1136        if (array_base_ == m2l_->TargetReg(kArg0, kRef)) {
1137          m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kNotWide), index_);
1138          new_index = m2l_->TargetReg(kArg2, kNotWide);
1139        } else {
1140          m2l_->OpRegCopy(m2l_->TargetReg(kArg0, kNotWide), index_);
1141          new_index = m2l_->TargetReg(kArg0, kNotWide);
1142        }
1143      }
1144      // Load array length to kArg1.
1145      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1, kNotWide), array_base_, len_offset_);
1146      if (cu_->target64) {
1147        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
1148                                      new_index, m2l_->TargetReg(kArg1, kNotWide), true);
1149      } else {
1150        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
1151                                      new_index, m2l_->TargetReg(kArg1, kNotWide), true);
1152      }
1153    }
1154
1155   private:
1156    const RegStorage index_;
1157    const RegStorage array_base_;
1158    const int32_t len_offset_;
1159  };
1160
1161  OpRegMem(kOpCmp, index, array_base, len_offset);
1162  MarkPossibleNullPointerException(0);
1163  LIR* branch = OpCondBranch(kCondUge, nullptr);
1164  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
1165                                                    index, array_base, len_offset));
1166}
1167
1168void X86Mir2Lir::GenArrayBoundsCheck(int32_t index,
1169                                     RegStorage array_base,
1170                                     int32_t len_offset) {
1171  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
1172   public:
1173    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
1174                             int32_t index, RegStorage array_base, int32_t len_offset)
1175        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
1176          index_(index), array_base_(array_base), len_offset_(len_offset) {
1177    }
1178
1179    void Compile() OVERRIDE {
1180      m2l_->ResetRegPool();
1181      m2l_->ResetDefTracking();
1182      GenerateTargetLabel(kPseudoThrowTarget);
1183
1184      // Load array length to kArg1.
1185      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1, kNotWide), array_base_, len_offset_);
1186      m2l_->LoadConstant(m2l_->TargetReg(kArg0, kNotWide), index_);
1187      if (cu_->target64) {
1188        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
1189                                      m2l_->TargetReg(kArg0, kNotWide),
1190                                      m2l_->TargetReg(kArg1, kNotWide), true);
1191      } else {
1192        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
1193                                      m2l_->TargetReg(kArg0, kNotWide),
1194                                      m2l_->TargetReg(kArg1, kNotWide), true);
1195      }
1196    }
1197
1198   private:
1199    const int32_t index_;
1200    const RegStorage array_base_;
1201    const int32_t len_offset_;
1202  };
1203
1204  NewLIR3(IS_SIMM8(index) ? kX86Cmp32MI8 : kX86Cmp32MI, array_base.GetReg(), len_offset, index);
1205  MarkPossibleNullPointerException(0);
1206  LIR* branch = OpCondBranch(kCondLs, nullptr);
1207  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
1208                                                    index, array_base, len_offset));
1209}
1210
1211// Test suspend flag, return target of taken suspend branch
1212LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
1213  if (cu_->target64) {
1214    OpTlsCmp(Thread::ThreadFlagsOffset<8>(), 0);
1215  } else {
1216    OpTlsCmp(Thread::ThreadFlagsOffset<4>(), 0);
1217  }
1218  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
1219}
1220
1221// Decrement register and branch on condition
1222LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
1223  OpRegImm(kOpSub, reg, 1);
1224  return OpCondBranch(c_code, target);
1225}
1226
1227bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1228                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
1229  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
1230  return false;
1231}
1232
1233bool X86Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1234  LOG(FATAL) << "Unexpected use of easyMultiply in x86";
1235  return false;
1236}
1237
1238LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
1239  LOG(FATAL) << "Unexpected use of OpIT in x86";
1240  return NULL;
1241}
1242
1243void X86Mir2Lir::OpEndIT(LIR* it) {
1244  LOG(FATAL) << "Unexpected use of OpEndIT in x86";
1245}
1246
1247void X86Mir2Lir::GenImulRegImm(RegStorage dest, RegStorage src, int val) {
1248  switch (val) {
1249    case 0:
1250      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1251      break;
1252    case 1:
1253      OpRegCopy(dest, src);
1254      break;
1255    default:
1256      OpRegRegImm(kOpMul, dest, src, val);
1257      break;
1258  }
1259}
1260
1261void X86Mir2Lir::GenImulMemImm(RegStorage dest, int sreg, int displacement, int val) {
1262  // All memory accesses below reference dalvik regs.
1263  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1264
1265  LIR *m;
1266  switch (val) {
1267    case 0:
1268      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1269      break;
1270    case 1:
1271      LoadBaseDisp(rs_rX86_SP, displacement, dest, k32, kNotVolatile);
1272      break;
1273    default:
1274      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest.GetReg(),
1275                  rs_rX86_SP.GetReg(), displacement, val);
1276      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
1277      break;
1278  }
1279}
1280
1281void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1282                            RegLocation rl_src2) {
1283  // All memory accesses below reference dalvik regs.
1284  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1285
1286  if (cu_->target64) {
1287    if (rl_src1.is_const) {
1288      std::swap(rl_src1, rl_src2);
1289    }
1290    // Are we multiplying by a constant?
1291    if (rl_src2.is_const) {
1292      int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1293      if (val == 0) {
1294        RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1295        OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
1296        StoreValueWide(rl_dest, rl_result);
1297        return;
1298      } else if (val == 1) {
1299        StoreValueWide(rl_dest, rl_src1);
1300        return;
1301      } else if (val == 2) {
1302        GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1303        return;
1304      } else if (IsPowerOfTwo(val)) {
1305        int shift_amount = LowestSetBit(val);
1306        if (!BadOverlap(rl_src1, rl_dest)) {
1307          rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1308          RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1309                                                    rl_src1, shift_amount);
1310          StoreValueWide(rl_dest, rl_result);
1311          return;
1312        }
1313      }
1314    }
1315    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1316    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1317    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1318    if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
1319        rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
1320      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
1321    } else if (rl_result.reg.GetReg() != rl_src1.reg.GetReg() &&
1322               rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
1323      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src1.reg.GetReg());
1324    } else if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
1325               rl_result.reg.GetReg() != rl_src2.reg.GetReg()) {
1326      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1327    } else {
1328      OpRegCopy(rl_result.reg, rl_src1.reg);
1329      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1330    }
1331    StoreValueWide(rl_dest, rl_result);
1332    return;
1333  }
1334
1335  if (rl_src1.is_const) {
1336    std::swap(rl_src1, rl_src2);
1337  }
1338  // Are we multiplying by a constant?
1339  if (rl_src2.is_const) {
1340    // Do special compare/branch against simple const operand
1341    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1342    if (val == 0) {
1343      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1344      OpRegReg(kOpXor, rl_result.reg.GetLow(), rl_result.reg.GetLow());
1345      OpRegReg(kOpXor, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());
1346      StoreValueWide(rl_dest, rl_result);
1347      return;
1348    } else if (val == 1) {
1349      StoreValueWide(rl_dest, rl_src1);
1350      return;
1351    } else if (val == 2) {
1352      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1353      return;
1354    } else if (IsPowerOfTwo(val)) {
1355      int shift_amount = LowestSetBit(val);
1356      if (!BadOverlap(rl_src1, rl_dest)) {
1357        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1358        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1359                                                  rl_src1, shift_amount);
1360        StoreValueWide(rl_dest, rl_result);
1361        return;
1362      }
1363    }
1364
1365    // Okay, just bite the bullet and do it.
1366    int32_t val_lo = Low32Bits(val);
1367    int32_t val_hi = High32Bits(val);
1368    FlushAllRegs();
1369    LockCallTemps();  // Prepare for explicit register usage.
1370    rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1371    bool src1_in_reg = rl_src1.location == kLocPhysReg;
1372    int displacement = SRegOffset(rl_src1.s_reg_low);
1373
1374    // ECX <- 1H * 2L
1375    // EAX <- 1L * 2H
1376    if (src1_in_reg) {
1377      GenImulRegImm(rs_r1, rl_src1.reg.GetHigh(), val_lo);
1378      GenImulRegImm(rs_r0, rl_src1.reg.GetLow(), val_hi);
1379    } else {
1380      GenImulMemImm(rs_r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
1381      GenImulMemImm(rs_r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
1382    }
1383
1384    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1385    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1386
1387    // EAX <- 2L
1388    LoadConstantNoClobber(rs_r0, val_lo);
1389
1390    // EDX:EAX <- 2L * 1L (double precision)
1391    if (src1_in_reg) {
1392      NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1393    } else {
1394      LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1395      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1396                              true /* is_load */, true /* is_64bit */);
1397    }
1398
1399    // EDX <- EDX + ECX (add high words)
1400    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1401
1402    // Result is EDX:EAX
1403    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1404                             RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1405    StoreValueWide(rl_dest, rl_result);
1406    return;
1407  }
1408
1409  // Nope.  Do it the hard way
1410  // Check for V*V.  We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
1411  bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
1412                   mir_graph_->SRegToVReg(rl_src2.s_reg_low);
1413
1414  FlushAllRegs();
1415  LockCallTemps();  // Prepare for explicit register usage.
1416  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1417  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1418
1419  // At this point, the VRs are in their home locations.
1420  bool src1_in_reg = rl_src1.location == kLocPhysReg;
1421  bool src2_in_reg = rl_src2.location == kLocPhysReg;
1422
1423  // ECX <- 1H
1424  if (src1_in_reg) {
1425    NewLIR2(kX86Mov32RR, rs_r1.GetReg(), rl_src1.reg.GetHighReg());
1426  } else {
1427    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, rs_r1, k32,
1428                 kNotVolatile);
1429  }
1430
1431  if (is_square) {
1432    // Take advantage of the fact that the values are the same.
1433    // ECX <- ECX * 2L  (1H * 2L)
1434    if (src2_in_reg) {
1435      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1436    } else {
1437      int displacement = SRegOffset(rl_src2.s_reg_low);
1438      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1439                       displacement + LOWORD_OFFSET);
1440      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1441                              true /* is_load */, true /* is_64bit */);
1442    }
1443
1444    // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1445    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r1.GetReg());
1446  } else {
1447    // EAX <- 2H
1448    if (src2_in_reg) {
1449      NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetHighReg());
1450    } else {
1451      LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, rs_r0, k32,
1452                   kNotVolatile);
1453    }
1454
1455    // EAX <- EAX * 1L  (2H * 1L)
1456    if (src1_in_reg) {
1457      NewLIR2(kX86Imul32RR, rs_r0.GetReg(), rl_src1.reg.GetLowReg());
1458    } else {
1459      int displacement = SRegOffset(rl_src1.s_reg_low);
1460      LIR *m = NewLIR3(kX86Imul32RM, rs_r0.GetReg(), rs_rX86_SP.GetReg(),
1461                       displacement + LOWORD_OFFSET);
1462      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1463                              true /* is_load */, true /* is_64bit */);
1464    }
1465
1466    // ECX <- ECX * 2L  (1H * 2L)
1467    if (src2_in_reg) {
1468      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1469    } else {
1470      int displacement = SRegOffset(rl_src2.s_reg_low);
1471      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1472                       displacement + LOWORD_OFFSET);
1473      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1474                              true /* is_load */, true /* is_64bit */);
1475    }
1476
1477    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1478    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1479  }
1480
1481  // EAX <- 2L
1482  if (src2_in_reg) {
1483    NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetLowReg());
1484  } else {
1485    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, rs_r0, k32,
1486                 kNotVolatile);
1487  }
1488
1489  // EDX:EAX <- 2L * 1L (double precision)
1490  if (src1_in_reg) {
1491    NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1492  } else {
1493    int displacement = SRegOffset(rl_src1.s_reg_low);
1494    LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1495    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1496                            true /* is_load */, true /* is_64bit */);
1497  }
1498
1499  // EDX <- EDX + ECX (add high words)
1500  NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1501
1502  // Result is EDX:EAX
1503  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1504                           RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1505  StoreValueWide(rl_dest, rl_result);
1506}
1507
1508void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1509                                   Instruction::Code op) {
1510  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1511  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1512  if (rl_src.location == kLocPhysReg) {
1513    // Both operands are in registers.
1514    // But we must ensure that rl_src is in pair
1515    if (cu_->target64) {
1516      NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
1517    } else {
1518      rl_src = LoadValueWide(rl_src, kCoreReg);
1519      if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
1520        // The registers are the same, so we would clobber it before the use.
1521        RegStorage temp_reg = AllocTemp();
1522        OpRegCopy(temp_reg, rl_dest.reg);
1523        rl_src.reg.SetHighReg(temp_reg.GetReg());
1524      }
1525      NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
1526
1527      x86op = GetOpcode(op, rl_dest, rl_src, true);
1528      NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1529      FreeTemp(rl_src.reg);  // ???
1530    }
1531    return;
1532  }
1533
1534  // RHS is in memory.
1535  DCHECK((rl_src.location == kLocDalvikFrame) ||
1536         (rl_src.location == kLocCompilerTemp));
1537  int r_base = rs_rX86_SP.GetReg();
1538  int displacement = SRegOffset(rl_src.s_reg_low);
1539
1540  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1541  LIR *lir = NewLIR3(x86op, cu_->target64 ? rl_dest.reg.GetReg() : rl_dest.reg.GetLowReg(),
1542                     r_base, displacement + LOWORD_OFFSET);
1543  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1544                          true /* is_load */, true /* is64bit */);
1545  if (!cu_->target64) {
1546    x86op = GetOpcode(op, rl_dest, rl_src, true);
1547    lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
1548    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1549                            true /* is_load */, true /* is64bit */);
1550  }
1551}
1552
1553void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1554  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
1555  if (rl_dest.location == kLocPhysReg) {
1556    // Ensure we are in a register pair
1557    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1558
1559    rl_src = UpdateLocWideTyped(rl_src, kCoreReg);
1560    GenLongRegOrMemOp(rl_result, rl_src, op);
1561    StoreFinalValueWide(rl_dest, rl_result);
1562    return;
1563  }
1564
1565  // It wasn't in registers, so it better be in memory.
1566  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1567         (rl_dest.location == kLocCompilerTemp));
1568  rl_src = LoadValueWide(rl_src, kCoreReg);
1569
1570  // Operate directly into memory.
1571  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1572  int r_base = rs_rX86_SP.GetReg();
1573  int displacement = SRegOffset(rl_dest.s_reg_low);
1574
1575  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1576  LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET,
1577                     cu_->target64 ? rl_src.reg.GetReg() : rl_src.reg.GetLowReg());
1578  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1579                          true /* is_load */, true /* is64bit */);
1580  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1581                          false /* is_load */, true /* is64bit */);
1582  if (!cu_->target64) {
1583    x86op = GetOpcode(op, rl_dest, rl_src, true);
1584    lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
1585    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1586                            true /* is_load */, true /* is64bit */);
1587    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1588                            false /* is_load */, true /* is64bit */);
1589  }
1590  FreeTemp(rl_src.reg);
1591}
1592
1593void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1594                              RegLocation rl_src2, Instruction::Code op,
1595                              bool is_commutative) {
1596  // Is this really a 2 operand operation?
1597  switch (op) {
1598    case Instruction::ADD_LONG_2ADDR:
1599    case Instruction::SUB_LONG_2ADDR:
1600    case Instruction::AND_LONG_2ADDR:
1601    case Instruction::OR_LONG_2ADDR:
1602    case Instruction::XOR_LONG_2ADDR:
1603      if (GenerateTwoOperandInstructions()) {
1604        GenLongArith(rl_dest, rl_src2, op);
1605        return;
1606      }
1607      break;
1608
1609    default:
1610      break;
1611  }
1612
1613  if (rl_dest.location == kLocPhysReg) {
1614    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1615
1616    // We are about to clobber the LHS, so it needs to be a temp.
1617    rl_result = ForceTempWide(rl_result);
1618
1619    // Perform the operation using the RHS.
1620    rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1621    GenLongRegOrMemOp(rl_result, rl_src2, op);
1622
1623    // And now record that the result is in the temp.
1624    StoreFinalValueWide(rl_dest, rl_result);
1625    return;
1626  }
1627
1628  // It wasn't in registers, so it better be in memory.
1629  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1630         (rl_dest.location == kLocCompilerTemp));
1631  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1632  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1633
1634  // Get one of the source operands into temporary register.
1635  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1636  if (cu_->target64) {
1637    if (IsTemp(rl_src1.reg)) {
1638      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1639    } else if (is_commutative) {
1640      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1641      // We need at least one of them to be a temporary.
1642      if (!IsTemp(rl_src2.reg)) {
1643        rl_src1 = ForceTempWide(rl_src1);
1644        GenLongRegOrMemOp(rl_src1, rl_src2, op);
1645      } else {
1646        GenLongRegOrMemOp(rl_src2, rl_src1, op);
1647        StoreFinalValueWide(rl_dest, rl_src2);
1648        return;
1649      }
1650    } else {
1651      // Need LHS to be the temp.
1652      rl_src1 = ForceTempWide(rl_src1);
1653      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1654    }
1655  } else {
1656    if (IsTemp(rl_src1.reg.GetLow()) && IsTemp(rl_src1.reg.GetHigh())) {
1657      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1658    } else if (is_commutative) {
1659      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1660      // We need at least one of them to be a temporary.
1661      if (!(IsTemp(rl_src2.reg.GetLow()) && IsTemp(rl_src2.reg.GetHigh()))) {
1662        rl_src1 = ForceTempWide(rl_src1);
1663        GenLongRegOrMemOp(rl_src1, rl_src2, op);
1664      } else {
1665        GenLongRegOrMemOp(rl_src2, rl_src1, op);
1666        StoreFinalValueWide(rl_dest, rl_src2);
1667        return;
1668      }
1669    } else {
1670      // Need LHS to be the temp.
1671      rl_src1 = ForceTempWide(rl_src1);
1672      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1673    }
1674  }
1675
1676  StoreFinalValueWide(rl_dest, rl_src1);
1677}
1678
1679void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1680                            RegLocation rl_src1, RegLocation rl_src2) {
1681  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1682}
1683
1684void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1685                            RegLocation rl_src1, RegLocation rl_src2) {
1686  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1687}
1688
1689void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1690                            RegLocation rl_src1, RegLocation rl_src2) {
1691  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1692}
1693
1694void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1695                           RegLocation rl_src1, RegLocation rl_src2) {
1696  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1697}
1698
1699void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1700                            RegLocation rl_src1, RegLocation rl_src2) {
1701  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1702}
1703
1704void X86Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
1705  if (cu_->target64) {
1706    rl_src = LoadValueWide(rl_src, kCoreReg);
1707    RegLocation rl_result;
1708    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1709    OpRegCopy(rl_result.reg, rl_src.reg);
1710    OpReg(kOpNot, rl_result.reg);
1711    StoreValueWide(rl_dest, rl_result);
1712  } else {
1713    LOG(FATAL) << "Unexpected use GenNotLong()";
1714  }
1715}
1716
1717void X86Mir2Lir::GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1718                           RegLocation rl_src2, bool is_div) {
1719  if (!cu_->target64) {
1720    LOG(FATAL) << "Unexpected use GenDivRemLong()";
1721    return;
1722  }
1723
1724  // We have to use fixed registers, so flush all the temps.
1725  FlushAllRegs();
1726  LockCallTemps();  // Prepare for explicit register usage.
1727
1728  // Load LHS into RAX.
1729  LoadValueDirectWideFixed(rl_src1, rs_r0q);
1730
1731  // Load RHS into RCX.
1732  LoadValueDirectWideFixed(rl_src2, rs_r1q);
1733
1734  // Copy LHS sign bit into RDX.
1735  NewLIR0(kx86Cqo64Da);
1736
1737  // Handle division by zero case.
1738  GenDivZeroCheckWide(rs_r1q);
1739
1740  // Have to catch 0x8000000000000000/-1 case, or we will get an exception!
1741  NewLIR2(kX86Cmp64RI8, rs_r1q.GetReg(), -1);
1742  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
1743
1744  // RHS is -1.
1745  LoadConstantWide(rs_r6q, 0x8000000000000000);
1746  NewLIR2(kX86Cmp64RR, rs_r0q.GetReg(), rs_r6q.GetReg());
1747  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
1748
1749  // In 0x8000000000000000/-1 case.
1750  if (!is_div) {
1751    // For DIV, RAX is already right. For REM, we need RDX 0.
1752    NewLIR2(kX86Xor64RR, rs_r2q.GetReg(), rs_r2q.GetReg());
1753  }
1754  LIR* done = NewLIR1(kX86Jmp8, 0);
1755
1756  // Expected case.
1757  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
1758  minint_branch->target = minus_one_branch->target;
1759  NewLIR1(kX86Idivmod64DaR, rs_r1q.GetReg());
1760  done->target = NewLIR0(kPseudoTargetLabel);
1761
1762  // Result is in RAX for div and RDX for rem.
1763  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, rs_r0q, INVALID_SREG, INVALID_SREG};
1764  if (!is_div) {
1765    rl_result.reg.SetReg(r2q);
1766  }
1767
1768  StoreValueWide(rl_dest, rl_result);
1769}
1770
1771void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1772  rl_src = LoadValueWide(rl_src, kCoreReg);
1773  RegLocation rl_result;
1774  if (cu_->target64) {
1775    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1776    OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1777  } else {
1778    rl_result = ForceTempWide(rl_src);
1779    if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1780        ((rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()))) {
1781      // The registers are the same, so we would clobber it before the use.
1782      RegStorage temp_reg = AllocTemp();
1783      OpRegCopy(temp_reg, rl_result.reg);
1784      rl_result.reg.SetHighReg(temp_reg.GetReg());
1785    }
1786    OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow());    // rLow = -rLow
1787    OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0);                   // rHigh = rHigh + CF
1788    OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());  // rHigh = -rHigh
1789  }
1790  StoreValueWide(rl_dest, rl_result);
1791}
1792
1793void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset) {
1794  DCHECK_EQ(kX86, cu_->instruction_set);
1795  X86OpCode opcode = kX86Bkpt;
1796  switch (op) {
1797  case kOpCmp: opcode = kX86Cmp32RT;  break;
1798  case kOpMov: opcode = kX86Mov32RT;  break;
1799  default:
1800    LOG(FATAL) << "Bad opcode: " << op;
1801    break;
1802  }
1803  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1804}
1805
1806void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset) {
1807  DCHECK_EQ(kX86_64, cu_->instruction_set);
1808  X86OpCode opcode = kX86Bkpt;
1809  if (cu_->target64 && r_dest.Is64BitSolo()) {
1810    switch (op) {
1811    case kOpCmp: opcode = kX86Cmp64RT;  break;
1812    case kOpMov: opcode = kX86Mov64RT;  break;
1813    default:
1814      LOG(FATAL) << "Bad opcode(OpRegThreadMem 64): " << op;
1815      break;
1816    }
1817  } else {
1818    switch (op) {
1819    case kOpCmp: opcode = kX86Cmp32RT;  break;
1820    case kOpMov: opcode = kX86Mov32RT;  break;
1821    default:
1822      LOG(FATAL) << "Bad opcode: " << op;
1823      break;
1824    }
1825  }
1826  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1827}
1828
1829/*
1830 * Generate array load
1831 */
1832void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1833                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1834  RegisterClass reg_class = RegClassBySize(size);
1835  int len_offset = mirror::Array::LengthOffset().Int32Value();
1836  RegLocation rl_result;
1837  rl_array = LoadValue(rl_array, kRefReg);
1838
1839  int data_offset;
1840  if (size == k64 || size == kDouble) {
1841    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1842  } else {
1843    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1844  }
1845
1846  bool constant_index = rl_index.is_const;
1847  int32_t constant_index_value = 0;
1848  if (!constant_index) {
1849    rl_index = LoadValue(rl_index, kCoreReg);
1850  } else {
1851    constant_index_value = mir_graph_->ConstantValue(rl_index);
1852    // If index is constant, just fold it into the data offset
1853    data_offset += constant_index_value << scale;
1854    // treat as non array below
1855    rl_index.reg = RegStorage::InvalidReg();
1856  }
1857
1858  /* null object? */
1859  GenNullCheck(rl_array.reg, opt_flags);
1860
1861  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1862    if (constant_index) {
1863      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1864    } else {
1865      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1866    }
1867  }
1868  rl_result = EvalLoc(rl_dest, reg_class, true);
1869  LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg, size);
1870  if ((size == k64) || (size == kDouble)) {
1871    StoreValueWide(rl_dest, rl_result);
1872  } else {
1873    StoreValue(rl_dest, rl_result);
1874  }
1875}
1876
1877/*
1878 * Generate array store
1879 *
1880 */
1881void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1882                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1883  RegisterClass reg_class = RegClassBySize(size);
1884  int len_offset = mirror::Array::LengthOffset().Int32Value();
1885  int data_offset;
1886
1887  if (size == k64 || size == kDouble) {
1888    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1889  } else {
1890    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1891  }
1892
1893  rl_array = LoadValue(rl_array, kRefReg);
1894  bool constant_index = rl_index.is_const;
1895  int32_t constant_index_value = 0;
1896  if (!constant_index) {
1897    rl_index = LoadValue(rl_index, kCoreReg);
1898  } else {
1899    // If index is constant, just fold it into the data offset
1900    constant_index_value = mir_graph_->ConstantValue(rl_index);
1901    data_offset += constant_index_value << scale;
1902    // treat as non array below
1903    rl_index.reg = RegStorage::InvalidReg();
1904  }
1905
1906  /* null object? */
1907  GenNullCheck(rl_array.reg, opt_flags);
1908
1909  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1910    if (constant_index) {
1911      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1912    } else {
1913      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1914    }
1915  }
1916  if ((size == k64) || (size == kDouble)) {
1917    rl_src = LoadValueWide(rl_src, reg_class);
1918  } else {
1919    rl_src = LoadValue(rl_src, reg_class);
1920  }
1921  // If the src reg can't be byte accessed, move it to a temp first.
1922  if ((size == kSignedByte || size == kUnsignedByte) && !IsByteRegister(rl_src.reg)) {
1923    RegStorage temp = AllocTemp();
1924    OpRegCopy(temp, rl_src.reg);
1925    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, temp, size);
1926  } else {
1927    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_src.reg, size);
1928  }
1929  if (card_mark) {
1930    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1931    if (!constant_index) {
1932      FreeTemp(rl_index.reg);
1933    }
1934    MarkGCCard(rl_src.reg, rl_array.reg);
1935  }
1936}
1937
1938RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1939                                          RegLocation rl_src, int shift_amount) {
1940  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1941  if (cu_->target64) {
1942    OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1943    switch (opcode) {
1944      case Instruction::SHL_LONG:
1945      case Instruction::SHL_LONG_2ADDR:
1946        op = kOpLsl;
1947        break;
1948      case Instruction::SHR_LONG:
1949      case Instruction::SHR_LONG_2ADDR:
1950        op = kOpAsr;
1951        break;
1952      case Instruction::USHR_LONG:
1953      case Instruction::USHR_LONG_2ADDR:
1954        op = kOpLsr;
1955        break;
1956      default:
1957        LOG(FATAL) << "Unexpected case";
1958    }
1959    OpRegRegImm(op, rl_result.reg, rl_src.reg, shift_amount);
1960  } else {
1961    switch (opcode) {
1962      case Instruction::SHL_LONG:
1963      case Instruction::SHL_LONG_2ADDR:
1964        DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1965        if (shift_amount == 32) {
1966          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1967          LoadConstant(rl_result.reg.GetLow(), 0);
1968        } else if (shift_amount > 31) {
1969          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1970          NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1971          LoadConstant(rl_result.reg.GetLow(), 0);
1972        } else {
1973          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1974          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1975          NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(),
1976                  shift_amount);
1977          NewLIR2(kX86Sal32RI, rl_result.reg.GetLowReg(), shift_amount);
1978        }
1979        break;
1980      case Instruction::SHR_LONG:
1981      case Instruction::SHR_LONG_2ADDR:
1982        if (shift_amount == 32) {
1983          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1984          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1985          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1986        } else if (shift_amount > 31) {
1987          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1988          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1989          NewLIR2(kX86Sar32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1990          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1991        } else {
1992          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1993          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1994          NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
1995                  shift_amount);
1996          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
1997        }
1998        break;
1999      case Instruction::USHR_LONG:
2000      case Instruction::USHR_LONG_2ADDR:
2001        if (shift_amount == 32) {
2002          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
2003          LoadConstant(rl_result.reg.GetHigh(), 0);
2004        } else if (shift_amount > 31) {
2005          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
2006          NewLIR2(kX86Shr32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
2007          LoadConstant(rl_result.reg.GetHigh(), 0);
2008        } else {
2009          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
2010          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
2011          NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
2012                  shift_amount);
2013          NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
2014        }
2015        break;
2016      default:
2017        LOG(FATAL) << "Unexpected case";
2018    }
2019  }
2020  return rl_result;
2021}
2022
2023void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
2024                                   RegLocation rl_src, RegLocation rl_shift) {
2025  // Per spec, we only care about low 6 bits of shift amount.
2026  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
2027  if (shift_amount == 0) {
2028    rl_src = LoadValueWide(rl_src, kCoreReg);
2029    StoreValueWide(rl_dest, rl_src);
2030    return;
2031  } else if (shift_amount == 1 &&
2032            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
2033    // Need to handle this here to avoid calling StoreValueWide twice.
2034    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
2035    return;
2036  }
2037  if (BadOverlap(rl_src, rl_dest)) {
2038    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
2039    return;
2040  }
2041  rl_src = LoadValueWide(rl_src, kCoreReg);
2042  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
2043  StoreValueWide(rl_dest, rl_result);
2044}
2045
2046void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
2047                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
2048  bool isConstSuccess = false;
2049  switch (opcode) {
2050    case Instruction::ADD_LONG:
2051    case Instruction::AND_LONG:
2052    case Instruction::OR_LONG:
2053    case Instruction::XOR_LONG:
2054      if (rl_src2.is_const) {
2055        isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
2056      } else {
2057        DCHECK(rl_src1.is_const);
2058        isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
2059      }
2060      break;
2061    case Instruction::SUB_LONG:
2062    case Instruction::SUB_LONG_2ADDR:
2063      if (rl_src2.is_const) {
2064        isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
2065      } else {
2066        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
2067        isConstSuccess = true;
2068      }
2069      break;
2070    case Instruction::ADD_LONG_2ADDR:
2071    case Instruction::OR_LONG_2ADDR:
2072    case Instruction::XOR_LONG_2ADDR:
2073    case Instruction::AND_LONG_2ADDR:
2074      if (rl_src2.is_const) {
2075        if (GenerateTwoOperandInstructions()) {
2076          isConstSuccess = GenLongImm(rl_dest, rl_src2, opcode);
2077        } else {
2078          isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
2079        }
2080      } else {
2081        DCHECK(rl_src1.is_const);
2082        isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
2083      }
2084      break;
2085    default:
2086      isConstSuccess = false;
2087      break;
2088  }
2089
2090  if (!isConstSuccess) {
2091    // Default - bail to non-const handler.
2092    GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
2093  }
2094}
2095
2096bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
2097  switch (op) {
2098    case Instruction::AND_LONG_2ADDR:
2099    case Instruction::AND_LONG:
2100      return value == -1;
2101    case Instruction::OR_LONG:
2102    case Instruction::OR_LONG_2ADDR:
2103    case Instruction::XOR_LONG:
2104    case Instruction::XOR_LONG_2ADDR:
2105      return value == 0;
2106    default:
2107      return false;
2108  }
2109}
2110
2111X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
2112                                bool is_high_op) {
2113  bool rhs_in_mem = rhs.location != kLocPhysReg;
2114  bool dest_in_mem = dest.location != kLocPhysReg;
2115  bool is64Bit = cu_->target64;
2116  DCHECK(!rhs_in_mem || !dest_in_mem);
2117  switch (op) {
2118    case Instruction::ADD_LONG:
2119    case Instruction::ADD_LONG_2ADDR:
2120      if (dest_in_mem) {
2121        return is64Bit ? kX86Add64MR : is_high_op ? kX86Adc32MR : kX86Add32MR;
2122      } else if (rhs_in_mem) {
2123        return is64Bit ? kX86Add64RM : is_high_op ? kX86Adc32RM : kX86Add32RM;
2124      }
2125      return is64Bit ? kX86Add64RR : is_high_op ? kX86Adc32RR : kX86Add32RR;
2126    case Instruction::SUB_LONG:
2127    case Instruction::SUB_LONG_2ADDR:
2128      if (dest_in_mem) {
2129        return is64Bit ? kX86Sub64MR : is_high_op ? kX86Sbb32MR : kX86Sub32MR;
2130      } else if (rhs_in_mem) {
2131        return is64Bit ? kX86Sub64RM : is_high_op ? kX86Sbb32RM : kX86Sub32RM;
2132      }
2133      return is64Bit ? kX86Sub64RR : is_high_op ? kX86Sbb32RR : kX86Sub32RR;
2134    case Instruction::AND_LONG_2ADDR:
2135    case Instruction::AND_LONG:
2136      if (dest_in_mem) {
2137        return is64Bit ? kX86And64MR : kX86And32MR;
2138      }
2139      if (is64Bit) {
2140        return rhs_in_mem ? kX86And64RM : kX86And64RR;
2141      }
2142      return rhs_in_mem ? kX86And32RM : kX86And32RR;
2143    case Instruction::OR_LONG:
2144    case Instruction::OR_LONG_2ADDR:
2145      if (dest_in_mem) {
2146        return is64Bit ? kX86Or64MR : kX86Or32MR;
2147      }
2148      if (is64Bit) {
2149        return rhs_in_mem ? kX86Or64RM : kX86Or64RR;
2150      }
2151      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
2152    case Instruction::XOR_LONG:
2153    case Instruction::XOR_LONG_2ADDR:
2154      if (dest_in_mem) {
2155        return is64Bit ? kX86Xor64MR : kX86Xor32MR;
2156      }
2157      if (is64Bit) {
2158        return rhs_in_mem ? kX86Xor64RM : kX86Xor64RR;
2159      }
2160      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
2161    default:
2162      LOG(FATAL) << "Unexpected opcode: " << op;
2163      return kX86Add32RR;
2164  }
2165}
2166
2167X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
2168                                int32_t value) {
2169  bool in_mem = loc.location != kLocPhysReg;
2170  bool is64Bit = cu_->target64;
2171  bool byte_imm = IS_SIMM8(value);
2172  DCHECK(in_mem || !loc.reg.IsFloat());
2173  switch (op) {
2174    case Instruction::ADD_LONG:
2175    case Instruction::ADD_LONG_2ADDR:
2176      if (byte_imm) {
2177        if (in_mem) {
2178          return is64Bit ? kX86Add64MI8 : is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
2179        }
2180        return is64Bit ? kX86Add64RI8 : is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
2181      }
2182      if (in_mem) {
2183        return is64Bit ? kX86Add64MI : is_high_op ? kX86Adc32MI : kX86Add32MI;
2184      }
2185      return is64Bit ? kX86Add64RI : is_high_op ? kX86Adc32RI : kX86Add32RI;
2186    case Instruction::SUB_LONG:
2187    case Instruction::SUB_LONG_2ADDR:
2188      if (byte_imm) {
2189        if (in_mem) {
2190          return is64Bit ? kX86Sub64MI8 : is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
2191        }
2192        return is64Bit ? kX86Sub64RI8 : is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
2193      }
2194      if (in_mem) {
2195        return is64Bit ? kX86Sub64MI : is_high_op ? kX86Sbb32MI : kX86Sub32MI;
2196      }
2197      return is64Bit ? kX86Sub64RI : is_high_op ? kX86Sbb32RI : kX86Sub32RI;
2198    case Instruction::AND_LONG_2ADDR:
2199    case Instruction::AND_LONG:
2200      if (byte_imm) {
2201        if (is64Bit) {
2202          return in_mem ? kX86And64MI8 : kX86And64RI8;
2203        }
2204        return in_mem ? kX86And32MI8 : kX86And32RI8;
2205      }
2206      if (is64Bit) {
2207        return in_mem ? kX86And64MI : kX86And64RI;
2208      }
2209      return in_mem ? kX86And32MI : kX86And32RI;
2210    case Instruction::OR_LONG:
2211    case Instruction::OR_LONG_2ADDR:
2212      if (byte_imm) {
2213        if (is64Bit) {
2214          return in_mem ? kX86Or64MI8 : kX86Or64RI8;
2215        }
2216        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
2217      }
2218      if (is64Bit) {
2219        return in_mem ? kX86Or64MI : kX86Or64RI;
2220      }
2221      return in_mem ? kX86Or32MI : kX86Or32RI;
2222    case Instruction::XOR_LONG:
2223    case Instruction::XOR_LONG_2ADDR:
2224      if (byte_imm) {
2225        if (is64Bit) {
2226          return in_mem ? kX86Xor64MI8 : kX86Xor64RI8;
2227        }
2228        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
2229      }
2230      if (is64Bit) {
2231        return in_mem ? kX86Xor64MI : kX86Xor64RI;
2232      }
2233      return in_mem ? kX86Xor32MI : kX86Xor32RI;
2234    default:
2235      LOG(FATAL) << "Unexpected opcode: " << op;
2236      return kX86Add32MI;
2237  }
2238}
2239
2240bool X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
2241  DCHECK(rl_src.is_const);
2242  int64_t val = mir_graph_->ConstantValueWide(rl_src);
2243
2244  if (cu_->target64) {
2245    // We can do with imm only if it fits 32 bit
2246    if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
2247      return false;
2248    }
2249
2250    rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2251
2252    if ((rl_dest.location == kLocDalvikFrame) ||
2253        (rl_dest.location == kLocCompilerTemp)) {
2254      int r_base = rs_rX86_SP.GetReg();
2255      int displacement = SRegOffset(rl_dest.s_reg_low);
2256
2257      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2258      X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
2259      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val);
2260      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2261                              true /* is_load */, true /* is64bit */);
2262      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2263                              false /* is_load */, true /* is64bit */);
2264      return true;
2265    }
2266
2267    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2268    DCHECK_EQ(rl_result.location, kLocPhysReg);
2269    DCHECK(!rl_result.reg.IsFloat());
2270
2271    X86OpCode x86op = GetOpcode(op, rl_result, false, val);
2272    NewLIR2(x86op, rl_result.reg.GetReg(), val);
2273
2274    StoreValueWide(rl_dest, rl_result);
2275    return true;
2276  }
2277
2278  int32_t val_lo = Low32Bits(val);
2279  int32_t val_hi = High32Bits(val);
2280  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2281
2282  // Can we just do this into memory?
2283  if ((rl_dest.location == kLocDalvikFrame) ||
2284      (rl_dest.location == kLocCompilerTemp)) {
2285    int r_base = rs_rX86_SP.GetReg();
2286    int displacement = SRegOffset(rl_dest.s_reg_low);
2287
2288    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2289    if (!IsNoOp(op, val_lo)) {
2290      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
2291      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val_lo);
2292      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2293                              true /* is_load */, true /* is64bit */);
2294      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2295                              false /* is_load */, true /* is64bit */);
2296    }
2297    if (!IsNoOp(op, val_hi)) {
2298      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
2299      LIR *lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, val_hi);
2300      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
2301                                true /* is_load */, true /* is64bit */);
2302      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
2303                                false /* is_load */, true /* is64bit */);
2304    }
2305    return true;
2306  }
2307
2308  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2309  DCHECK_EQ(rl_result.location, kLocPhysReg);
2310  DCHECK(!rl_result.reg.IsFloat());
2311
2312  if (!IsNoOp(op, val_lo)) {
2313    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
2314    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
2315  }
2316  if (!IsNoOp(op, val_hi)) {
2317    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
2318    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
2319  }
2320  StoreValueWide(rl_dest, rl_result);
2321  return true;
2322}
2323
2324bool X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
2325                                RegLocation rl_src2, Instruction::Code op) {
2326  DCHECK(rl_src2.is_const);
2327  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
2328
2329  if (cu_->target64) {
2330    // We can do with imm only if it fits 32 bit
2331    if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
2332      return false;
2333    }
2334    if (rl_dest.location == kLocPhysReg &&
2335        rl_src1.location == kLocPhysReg && !rl_dest.reg.IsFloat()) {
2336      X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
2337      OpRegCopy(rl_dest.reg, rl_src1.reg);
2338      NewLIR2(x86op, rl_dest.reg.GetReg(), val);
2339      StoreFinalValueWide(rl_dest, rl_dest);
2340      return true;
2341    }
2342
2343    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2344    // We need the values to be in a temporary
2345    RegLocation rl_result = ForceTempWide(rl_src1);
2346
2347    X86OpCode x86op = GetOpcode(op, rl_result, false, val);
2348    NewLIR2(x86op, rl_result.reg.GetReg(), val);
2349
2350    StoreFinalValueWide(rl_dest, rl_result);
2351    return true;
2352  }
2353
2354  int32_t val_lo = Low32Bits(val);
2355  int32_t val_hi = High32Bits(val);
2356  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2357  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
2358
2359  // Can we do this directly into the destination registers?
2360  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
2361      rl_dest.reg.GetLowReg() == rl_src1.reg.GetLowReg() &&
2362      rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() && !rl_dest.reg.IsFloat()) {
2363    if (!IsNoOp(op, val_lo)) {
2364      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
2365      NewLIR2(x86op, rl_dest.reg.GetLowReg(), val_lo);
2366    }
2367    if (!IsNoOp(op, val_hi)) {
2368      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
2369      NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
2370    }
2371
2372    StoreFinalValueWide(rl_dest, rl_dest);
2373    return true;
2374  }
2375
2376  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2377  DCHECK_EQ(rl_src1.location, kLocPhysReg);
2378
2379  // We need the values to be in a temporary
2380  RegLocation rl_result = ForceTempWide(rl_src1);
2381  if (!IsNoOp(op, val_lo)) {
2382    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
2383    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
2384  }
2385  if (!IsNoOp(op, val_hi)) {
2386    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
2387    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
2388  }
2389
2390  StoreFinalValueWide(rl_dest, rl_result);
2391  return true;
2392}
2393
2394// For final classes there are no sub-classes to check and so we can answer the instance-of
2395// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
2396void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
2397                                    RegLocation rl_dest, RegLocation rl_src) {
2398  RegLocation object = LoadValue(rl_src, kRefReg);
2399  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2400  RegStorage result_reg = rl_result.reg;
2401
2402  // For 32-bit, SETcc only works with EAX..EDX.
2403  RegStorage object_32reg = object.reg.Is64Bit() ? As32BitReg(object.reg) : object.reg;
2404  if (result_reg.GetRegNum() == object_32reg.GetRegNum() || !IsByteRegister(result_reg)) {
2405    result_reg = AllocateByteRegister();
2406  }
2407
2408  // Assume that there is no match.
2409  LoadConstant(result_reg, 0);
2410  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
2411
2412  // We will use this register to compare to memory below.
2413  // References are 32 bit in memory, and 64 bit in registers (in 64 bit mode).
2414  // For this reason, force allocation of a 32 bit register to use, so that the
2415  // compare to memory will be done using a 32 bit comparision.
2416  // The LoadRefDisp(s) below will work normally, even in 64 bit mode.
2417  RegStorage check_class = AllocTemp();
2418
2419  // If Method* is already in a register, we can save a copy.
2420  RegLocation rl_method = mir_graph_->GetMethodLoc();
2421  int32_t offset_of_type = mirror::Array::DataOffset(
2422      sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
2423      (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
2424
2425  if (rl_method.location == kLocPhysReg) {
2426    if (use_declaring_class) {
2427      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2428                  check_class, kNotVolatile);
2429    } else {
2430      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2431                  check_class, kNotVolatile);
2432      LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
2433    }
2434  } else {
2435    LoadCurrMethodDirect(check_class);
2436    if (use_declaring_class) {
2437      LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2438                  check_class, kNotVolatile);
2439    } else {
2440      LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2441                  check_class, kNotVolatile);
2442      LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
2443    }
2444  }
2445
2446  // Compare the computed class to the class in the object.
2447  DCHECK_EQ(object.location, kLocPhysReg);
2448  OpRegMem(kOpCmp, check_class, object.reg, mirror::Object::ClassOffset().Int32Value());
2449
2450  // Set the low byte of the result to 0 or 1 from the compare condition code.
2451  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondEq);
2452
2453  LIR* target = NewLIR0(kPseudoTargetLabel);
2454  null_branchover->target = target;
2455  FreeTemp(check_class);
2456  if (IsTemp(result_reg)) {
2457    OpRegCopy(rl_result.reg, result_reg);
2458    FreeTemp(result_reg);
2459  }
2460  StoreValue(rl_dest, rl_result);
2461}
2462
2463void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
2464                            RegLocation rl_lhs, RegLocation rl_rhs) {
2465  OpKind op = kOpBkpt;
2466  bool is_div_rem = false;
2467  bool unary = false;
2468  bool shift_op = false;
2469  bool is_two_addr = false;
2470  RegLocation rl_result;
2471  switch (opcode) {
2472    case Instruction::NEG_INT:
2473      op = kOpNeg;
2474      unary = true;
2475      break;
2476    case Instruction::NOT_INT:
2477      op = kOpMvn;
2478      unary = true;
2479      break;
2480    case Instruction::ADD_INT_2ADDR:
2481      is_two_addr = true;
2482      // Fallthrough
2483    case Instruction::ADD_INT:
2484      op = kOpAdd;
2485      break;
2486    case Instruction::SUB_INT_2ADDR:
2487      is_two_addr = true;
2488      // Fallthrough
2489    case Instruction::SUB_INT:
2490      op = kOpSub;
2491      break;
2492    case Instruction::MUL_INT_2ADDR:
2493      is_two_addr = true;
2494      // Fallthrough
2495    case Instruction::MUL_INT:
2496      op = kOpMul;
2497      break;
2498    case Instruction::DIV_INT_2ADDR:
2499      is_two_addr = true;
2500      // Fallthrough
2501    case Instruction::DIV_INT:
2502      op = kOpDiv;
2503      is_div_rem = true;
2504      break;
2505    /* NOTE: returns in kArg1 */
2506    case Instruction::REM_INT_2ADDR:
2507      is_two_addr = true;
2508      // Fallthrough
2509    case Instruction::REM_INT:
2510      op = kOpRem;
2511      is_div_rem = true;
2512      break;
2513    case Instruction::AND_INT_2ADDR:
2514      is_two_addr = true;
2515      // Fallthrough
2516    case Instruction::AND_INT:
2517      op = kOpAnd;
2518      break;
2519    case Instruction::OR_INT_2ADDR:
2520      is_two_addr = true;
2521      // Fallthrough
2522    case Instruction::OR_INT:
2523      op = kOpOr;
2524      break;
2525    case Instruction::XOR_INT_2ADDR:
2526      is_two_addr = true;
2527      // Fallthrough
2528    case Instruction::XOR_INT:
2529      op = kOpXor;
2530      break;
2531    case Instruction::SHL_INT_2ADDR:
2532      is_two_addr = true;
2533      // Fallthrough
2534    case Instruction::SHL_INT:
2535      shift_op = true;
2536      op = kOpLsl;
2537      break;
2538    case Instruction::SHR_INT_2ADDR:
2539      is_two_addr = true;
2540      // Fallthrough
2541    case Instruction::SHR_INT:
2542      shift_op = true;
2543      op = kOpAsr;
2544      break;
2545    case Instruction::USHR_INT_2ADDR:
2546      is_two_addr = true;
2547      // Fallthrough
2548    case Instruction::USHR_INT:
2549      shift_op = true;
2550      op = kOpLsr;
2551      break;
2552    default:
2553      LOG(FATAL) << "Invalid word arith op: " << opcode;
2554  }
2555
2556  // Can we convert to a two address instruction?
2557  if (!is_two_addr &&
2558        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2559         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
2560    is_two_addr = true;
2561  }
2562
2563  if (!GenerateTwoOperandInstructions()) {
2564    is_two_addr = false;
2565  }
2566
2567  // Get the div/rem stuff out of the way.
2568  if (is_div_rem) {
2569    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
2570    StoreValue(rl_dest, rl_result);
2571    return;
2572  }
2573
2574  // If we generate any memory access below, it will reference a dalvik reg.
2575  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2576
2577  if (unary) {
2578    rl_lhs = LoadValue(rl_lhs, kCoreReg);
2579    rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2580    rl_result = EvalLoc(rl_dest, kCoreReg, true);
2581    OpRegReg(op, rl_result.reg, rl_lhs.reg);
2582  } else {
2583    if (shift_op) {
2584      // X86 doesn't require masking and must use ECX.
2585      RegStorage t_reg = TargetReg(kCount, kNotWide);  // rCX
2586      LoadValueDirectFixed(rl_rhs, t_reg);
2587      if (is_two_addr) {
2588        // Can we do this directly into memory?
2589        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2590        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2591        if (rl_result.location != kLocPhysReg) {
2592          // Okay, we can do this into memory
2593          OpMemReg(op, rl_result, t_reg.GetReg());
2594          FreeTemp(t_reg);
2595          return;
2596        } else if (!rl_result.reg.IsFloat()) {
2597          // Can do this directly into the result register
2598          OpRegReg(op, rl_result.reg, t_reg);
2599          FreeTemp(t_reg);
2600          StoreFinalValue(rl_dest, rl_result);
2601          return;
2602        }
2603      }
2604      // Three address form, or we can't do directly.
2605      rl_lhs = LoadValue(rl_lhs, kCoreReg);
2606      rl_result = EvalLoc(rl_dest, kCoreReg, true);
2607      OpRegRegReg(op, rl_result.reg, rl_lhs.reg, t_reg);
2608      FreeTemp(t_reg);
2609    } else {
2610      // Multiply is 3 operand only (sort of).
2611      if (is_two_addr && op != kOpMul) {
2612        // Can we do this directly into memory?
2613        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2614        if (rl_result.location == kLocPhysReg) {
2615          // Ensure res is in a core reg
2616          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2617          // Can we do this from memory directly?
2618          rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2619          if (rl_rhs.location != kLocPhysReg) {
2620            OpRegMem(op, rl_result.reg, rl_rhs);
2621            StoreFinalValue(rl_dest, rl_result);
2622            return;
2623          } else if (!rl_rhs.reg.IsFloat()) {
2624            OpRegReg(op, rl_result.reg, rl_rhs.reg);
2625            StoreFinalValue(rl_dest, rl_result);
2626            return;
2627          }
2628        }
2629        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2630        // It might happen rl_rhs and rl_dest are the same VR
2631        // in this case rl_dest is in reg after LoadValue while
2632        // rl_result is not updated yet, so do this
2633        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2634        if (rl_result.location != kLocPhysReg) {
2635          // Okay, we can do this into memory.
2636          OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
2637          return;
2638        } else if (!rl_result.reg.IsFloat()) {
2639          // Can do this directly into the result register.
2640          OpRegReg(op, rl_result.reg, rl_rhs.reg);
2641          StoreFinalValue(rl_dest, rl_result);
2642          return;
2643        } else {
2644          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2645          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2646          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2647        }
2648      } else {
2649        // Try to use reg/memory instructions.
2650        rl_lhs = UpdateLocTyped(rl_lhs, kCoreReg);
2651        rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2652        // We can't optimize with FP registers.
2653        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2654          // Something is difficult, so fall back to the standard case.
2655          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2656          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2657          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2658          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2659        } else {
2660          // We can optimize by moving to result and using memory operands.
2661          if (rl_rhs.location != kLocPhysReg) {
2662            // Force LHS into result.
2663            // We should be careful with order here
2664            // If rl_dest and rl_lhs points to the same VR we should load first
2665            // If the are different we should find a register first for dest
2666            if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2667                mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2668              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2669              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2670              // No-op if these are the same.
2671              OpRegCopy(rl_result.reg, rl_lhs.reg);
2672            } else {
2673              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2674              LoadValueDirect(rl_lhs, rl_result.reg);
2675            }
2676            OpRegMem(op, rl_result.reg, rl_rhs);
2677          } else if (rl_lhs.location != kLocPhysReg) {
2678            // RHS is in a register; LHS is in memory.
2679            if (op != kOpSub) {
2680              // Force RHS into result and operate on memory.
2681              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2682              OpRegCopy(rl_result.reg, rl_rhs.reg);
2683              OpRegMem(op, rl_result.reg, rl_lhs);
2684            } else {
2685              // Subtraction isn't commutative.
2686              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2687              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2688              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2689              OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2690            }
2691          } else {
2692            // Both are in registers.
2693            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2694            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2695            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2696            OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2697          }
2698        }
2699      }
2700    }
2701  }
2702  StoreValue(rl_dest, rl_result);
2703}
2704
2705bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2706  // If we have non-core registers, then we can't do good things.
2707  if (rl_lhs.location == kLocPhysReg && rl_lhs.reg.IsFloat()) {
2708    return false;
2709  }
2710  if (rl_rhs.location == kLocPhysReg && rl_rhs.reg.IsFloat()) {
2711    return false;
2712  }
2713
2714  // Everything will be fine :-).
2715  return true;
2716}
2717
2718void X86Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
2719  if (!cu_->target64) {
2720    Mir2Lir::GenIntToLong(rl_dest, rl_src);
2721    return;
2722  }
2723  rl_src = UpdateLocTyped(rl_src, kCoreReg);
2724  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2725  if (rl_src.location == kLocPhysReg) {
2726    NewLIR2(kX86MovsxdRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
2727  } else {
2728    int displacement = SRegOffset(rl_src.s_reg_low);
2729    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2730    LIR *m = NewLIR3(kX86MovsxdRM, rl_result.reg.GetReg(), rs_rX86_SP.GetReg(),
2731                     displacement + LOWORD_OFFSET);
2732    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
2733                            true /* is_load */, true /* is_64bit */);
2734  }
2735  StoreValueWide(rl_dest, rl_result);
2736}
2737
2738void X86Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
2739                        RegLocation rl_src1, RegLocation rl_shift) {
2740  if (!cu_->target64) {
2741    Mir2Lir::GenShiftOpLong(opcode, rl_dest, rl_src1, rl_shift);
2742    return;
2743  }
2744
2745  bool is_two_addr = false;
2746  OpKind op = kOpBkpt;
2747  RegLocation rl_result;
2748
2749  switch (opcode) {
2750    case Instruction::SHL_LONG_2ADDR:
2751      is_two_addr = true;
2752      // Fallthrough
2753    case Instruction::SHL_LONG:
2754      op = kOpLsl;
2755      break;
2756    case Instruction::SHR_LONG_2ADDR:
2757      is_two_addr = true;
2758      // Fallthrough
2759    case Instruction::SHR_LONG:
2760      op = kOpAsr;
2761      break;
2762    case Instruction::USHR_LONG_2ADDR:
2763      is_two_addr = true;
2764      // Fallthrough
2765    case Instruction::USHR_LONG:
2766      op = kOpLsr;
2767      break;
2768    default:
2769      op = kOpBkpt;
2770  }
2771
2772  // X86 doesn't require masking and must use ECX.
2773  RegStorage t_reg = TargetReg(kCount, kNotWide);  // rCX
2774  LoadValueDirectFixed(rl_shift, t_reg);
2775  if (is_two_addr) {
2776    // Can we do this directly into memory?
2777    rl_result = UpdateLocWideTyped(rl_dest, kCoreReg);
2778    if (rl_result.location != kLocPhysReg) {
2779      // Okay, we can do this into memory
2780      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2781      OpMemReg(op, rl_result, t_reg.GetReg());
2782    } else if (!rl_result.reg.IsFloat()) {
2783      // Can do this directly into the result register
2784      OpRegReg(op, rl_result.reg, t_reg);
2785      StoreFinalValueWide(rl_dest, rl_result);
2786    }
2787  } else {
2788    // Three address form, or we can't do directly.
2789    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2790    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2791    OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
2792    StoreFinalValueWide(rl_dest, rl_result);
2793  }
2794
2795  FreeTemp(t_reg);
2796}
2797
2798}  // namespace art
2799