target_x86.cc revision 089142cf1d0c028b5a7c703baf0b97f4a4ada3f7
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "mirror/array.h"
24#include "mirror/string.h"
25#include "x86_lir.h"
26
27namespace art {
28
29static constexpr RegStorage core_regs_arr_32[] = {
30    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
31};
32static constexpr RegStorage core_regs_arr_64[] = {
33    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_64, rs_rBP, rs_rSI, rs_rDI,
34#ifdef TARGET_REX_SUPPORT
35    rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36#endif
37};
38static constexpr RegStorage core_regs_arr_64q[] = {
39    rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
40#ifdef TARGET_REX_SUPPORT
41    rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
42#endif
43};
44static constexpr RegStorage sp_regs_arr_32[] = {
45    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46};
47static constexpr RegStorage sp_regs_arr_64[] = {
48    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
49#ifdef TARGET_REX_SUPPORT
50    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
51#endif
52};
53static constexpr RegStorage dp_regs_arr_32[] = {
54    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
55};
56static constexpr RegStorage dp_regs_arr_64[] = {
57    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
58#ifdef TARGET_REX_SUPPORT
59    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
60#endif
61};
62static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
63static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_64};
64static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
65static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
66static constexpr RegStorage core_temps_arr_64[] = {
67    rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
68#ifdef TARGET_REX_SUPPORT
69    rs_r8, rs_r9, rs_r10, rs_r11
70#endif
71};
72static constexpr RegStorage core_temps_arr_64q[] = {
73    rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
74#ifdef TARGET_REX_SUPPORT
75    rs_r8q, rs_r9q, rs_r10q, rs_r11q
76#endif
77};
78static constexpr RegStorage sp_temps_arr_32[] = {
79    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
80};
81static constexpr RegStorage sp_temps_arr_64[] = {
82    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
83#ifdef TARGET_REX_SUPPORT
84    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
85#endif
86};
87static constexpr RegStorage dp_temps_arr_32[] = {
88    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
89};
90static constexpr RegStorage dp_temps_arr_64[] = {
91    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
92#ifdef TARGET_REX_SUPPORT
93    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
94#endif
95};
96
97static constexpr RegStorage xp_temps_arr_32[] = {
98    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
99};
100static constexpr RegStorage xp_temps_arr_64[] = {
101    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
102#ifdef TARGET_REX_SUPPORT
103    rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
104#endif
105};
106
107static constexpr ArrayRef<const RegStorage> empty_pool;
108static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
109static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
110static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
111static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
112static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
113static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
114static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
115static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
116static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
117static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
118static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
119static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
120static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
121static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
122static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
123static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
124static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
125
126static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
127static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
128
129RegStorage rs_rX86_SP;
130
131X86NativeRegisterPool rX86_ARG0;
132X86NativeRegisterPool rX86_ARG1;
133X86NativeRegisterPool rX86_ARG2;
134X86NativeRegisterPool rX86_ARG3;
135X86NativeRegisterPool rX86_FARG0;
136X86NativeRegisterPool rX86_FARG1;
137X86NativeRegisterPool rX86_FARG2;
138X86NativeRegisterPool rX86_FARG3;
139X86NativeRegisterPool rX86_RET0;
140X86NativeRegisterPool rX86_RET1;
141X86NativeRegisterPool rX86_INVOKE_TGT;
142X86NativeRegisterPool rX86_COUNT;
143
144RegStorage rs_rX86_ARG0;
145RegStorage rs_rX86_ARG1;
146RegStorage rs_rX86_ARG2;
147RegStorage rs_rX86_ARG3;
148RegStorage rs_rX86_FARG0;
149RegStorage rs_rX86_FARG1;
150RegStorage rs_rX86_FARG2;
151RegStorage rs_rX86_FARG3;
152RegStorage rs_rX86_RET0;
153RegStorage rs_rX86_RET1;
154RegStorage rs_rX86_INVOKE_TGT;
155RegStorage rs_rX86_COUNT;
156
157RegLocation X86Mir2Lir::LocCReturn() {
158  return x86_loc_c_return;
159}
160
161RegLocation X86Mir2Lir::LocCReturnRef() {
162  // FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
163  return x86_loc_c_return;
164}
165
166RegLocation X86Mir2Lir::LocCReturnWide() {
167  return x86_loc_c_return_wide;
168}
169
170RegLocation X86Mir2Lir::LocCReturnFloat() {
171  return x86_loc_c_return_float;
172}
173
174RegLocation X86Mir2Lir::LocCReturnDouble() {
175  return x86_loc_c_return_double;
176}
177
178// Return a target-dependent special register.
179RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
180  RegStorage res_reg = RegStorage::InvalidReg();
181  switch (reg) {
182    case kSelf: res_reg = RegStorage::InvalidReg(); break;
183    case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
184    case kLr: res_reg =  RegStorage::InvalidReg(); break;
185    case kPc: res_reg =  RegStorage::InvalidReg(); break;
186    case kSp: res_reg =  rs_rX86_SP; break;
187    case kArg0: res_reg = rs_rX86_ARG0; break;
188    case kArg1: res_reg = rs_rX86_ARG1; break;
189    case kArg2: res_reg = rs_rX86_ARG2; break;
190    case kArg3: res_reg = rs_rX86_ARG3; break;
191    case kFArg0: res_reg = rs_rX86_FARG0; break;
192    case kFArg1: res_reg = rs_rX86_FARG1; break;
193    case kFArg2: res_reg = rs_rX86_FARG2; break;
194    case kFArg3: res_reg = rs_rX86_FARG3; break;
195    case kRet0: res_reg = rs_rX86_RET0; break;
196    case kRet1: res_reg = rs_rX86_RET1; break;
197    case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
198    case kHiddenArg: res_reg = rs_rAX; break;
199    case kHiddenFpArg: res_reg = rs_fr0; break;
200    case kCount: res_reg = rs_rX86_COUNT; break;
201  }
202  return res_reg;
203}
204
205RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
206  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
207  // TODO: This is not 64-bit compliant and depends on new internal ABI.
208  switch (arg_num) {
209    case 0:
210      return rs_rX86_ARG1;
211    case 1:
212      return rs_rX86_ARG2;
213    case 2:
214      return rs_rX86_ARG3;
215    default:
216      return RegStorage::InvalidReg();
217  }
218}
219
220/*
221 * Decode the register id.
222 */
223uint64_t X86Mir2Lir::GetRegMaskCommon(RegStorage reg) {
224  uint64_t seed;
225  int shift;
226  int reg_id;
227
228  reg_id = reg.GetRegNum();
229  /* Double registers in x86 are just a single FP register */
230  seed = 1;
231  /* FP register starts at bit position 16 */
232  shift = (reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0;
233  /* Expand the double register id into single offset */
234  shift += reg_id;
235  return (seed << shift);
236}
237
238uint64_t X86Mir2Lir::GetPCUseDefEncoding() {
239  /*
240   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
241   * able to clean up some of the x86/Arm_Mips differences
242   */
243  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
244  return 0ULL;
245}
246
247void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
248  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
249  DCHECK(!lir->flags.use_def_invalid);
250
251  // X86-specific resource map setup here.
252  if (flags & REG_USE_SP) {
253    lir->u.m.use_mask |= ENCODE_X86_REG_SP;
254  }
255
256  if (flags & REG_DEF_SP) {
257    lir->u.m.def_mask |= ENCODE_X86_REG_SP;
258  }
259
260  if (flags & REG_DEFA) {
261    SetupRegMask(&lir->u.m.def_mask, rs_rAX.GetReg());
262  }
263
264  if (flags & REG_DEFD) {
265    SetupRegMask(&lir->u.m.def_mask, rs_rDX.GetReg());
266  }
267  if (flags & REG_USEA) {
268    SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg());
269  }
270
271  if (flags & REG_USEC) {
272    SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg());
273  }
274
275  if (flags & REG_USED) {
276    SetupRegMask(&lir->u.m.use_mask, rs_rDX.GetReg());
277  }
278
279  if (flags & REG_USEB) {
280    SetupRegMask(&lir->u.m.use_mask, rs_rBX.GetReg());
281  }
282
283  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
284  if (lir->opcode == kX86RepneScasw) {
285    SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg());
286    SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg());
287    SetupRegMask(&lir->u.m.use_mask, rs_rDI.GetReg());
288    SetupRegMask(&lir->u.m.def_mask, rs_rDI.GetReg());
289  }
290
291  if (flags & USE_FP_STACK) {
292    lir->u.m.use_mask |= ENCODE_X86_FP_STACK;
293    lir->u.m.def_mask |= ENCODE_X86_FP_STACK;
294  }
295}
296
297/* For dumping instructions */
298static const char* x86RegName[] = {
299  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
300  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
301};
302
303static const char* x86CondName[] = {
304  "O",
305  "NO",
306  "B/NAE/C",
307  "NB/AE/NC",
308  "Z/EQ",
309  "NZ/NE",
310  "BE/NA",
311  "NBE/A",
312  "S",
313  "NS",
314  "P/PE",
315  "NP/PO",
316  "L/NGE",
317  "NL/GE",
318  "LE/NG",
319  "NLE/G"
320};
321
322/*
323 * Interpret a format string and build a string no longer than size
324 * See format key in Assemble.cc.
325 */
326std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
327  std::string buf;
328  size_t i = 0;
329  size_t fmt_len = strlen(fmt);
330  while (i < fmt_len) {
331    if (fmt[i] != '!') {
332      buf += fmt[i];
333      i++;
334    } else {
335      i++;
336      DCHECK_LT(i, fmt_len);
337      char operand_number_ch = fmt[i];
338      i++;
339      if (operand_number_ch == '!') {
340        buf += "!";
341      } else {
342        int operand_number = operand_number_ch - '0';
343        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
344        DCHECK_LT(i, fmt_len);
345        int operand = lir->operands[operand_number];
346        switch (fmt[i]) {
347          case 'c':
348            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
349            buf += x86CondName[operand];
350            break;
351          case 'd':
352            buf += StringPrintf("%d", operand);
353            break;
354          case 'p': {
355            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
356            buf += StringPrintf("0x%08x", tab_rec->offset);
357            break;
358          }
359          case 'r':
360            if (RegStorage::IsFloat(operand)) {
361              int fp_reg = RegStorage::RegNum(operand);
362              buf += StringPrintf("xmm%d", fp_reg);
363            } else {
364              int reg_num = RegStorage::RegNum(operand);
365              DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
366              buf += x86RegName[reg_num];
367            }
368            break;
369          case 't':
370            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
371                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
372                                lir->target);
373            break;
374          default:
375            buf += StringPrintf("DecodeError '%c'", fmt[i]);
376            break;
377        }
378        i++;
379      }
380    }
381  }
382  return buf;
383}
384
385void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) {
386  char buf[256];
387  buf[0] = 0;
388
389  if (mask == ENCODE_ALL) {
390    strcpy(buf, "all");
391  } else {
392    char num[8];
393    int i;
394
395    for (i = 0; i < kX86RegEnd; i++) {
396      if (mask & (1ULL << i)) {
397        snprintf(num, arraysize(num), "%d ", i);
398        strcat(buf, num);
399      }
400    }
401
402    if (mask & ENCODE_CCODE) {
403      strcat(buf, "cc ");
404    }
405    /* Memory bits */
406    if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
407      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
408               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
409               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
410    }
411    if (mask & ENCODE_LITERAL) {
412      strcat(buf, "lit ");
413    }
414
415    if (mask & ENCODE_HEAP_REF) {
416      strcat(buf, "heap ");
417    }
418    if (mask & ENCODE_MUST_NOT_ALIAS) {
419      strcat(buf, "noalias ");
420    }
421  }
422  if (buf[0]) {
423    LOG(INFO) << prefix << ": " <<  buf;
424  }
425}
426
427void X86Mir2Lir::AdjustSpillMask() {
428  // Adjustment for LR spilling, x86 has no LR so nothing to do here
429  core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
430  num_core_spills_++;
431}
432
433/*
434 * Mark a callee-save fp register as promoted.  Note that
435 * vpush/vpop uses contiguous register lists so we must
436 * include any holes in the mask.  Associate holes with
437 * Dalvik register INVALID_VREG (0xFFFFU).
438 */
439void X86Mir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
440  UNIMPLEMENTED(FATAL) << "MarkPreservedSingle";
441}
442
443void X86Mir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
444  UNIMPLEMENTED(FATAL) << "MarkPreservedDouble";
445}
446
447RegStorage X86Mir2Lir::AllocateByteRegister() {
448  return AllocTypedTemp(false, kCoreReg);
449}
450
451/* Clobber all regs that might be used by an external C call */
452void X86Mir2Lir::ClobberCallerSave() {
453  Clobber(rs_rAX);
454  Clobber(rs_rCX);
455  Clobber(rs_rDX);
456  Clobber(rs_rBX);
457}
458
459RegLocation X86Mir2Lir::GetReturnWideAlt() {
460  RegLocation res = LocCReturnWide();
461  DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
462  DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
463  Clobber(rs_rAX);
464  Clobber(rs_rDX);
465  MarkInUse(rs_rAX);
466  MarkInUse(rs_rDX);
467  MarkWide(res.reg);
468  return res;
469}
470
471RegLocation X86Mir2Lir::GetReturnAlt() {
472  RegLocation res = LocCReturn();
473  res.reg.SetReg(rs_rDX.GetReg());
474  Clobber(rs_rDX);
475  MarkInUse(rs_rDX);
476  return res;
477}
478
479/* To be used when explicitly managing register use */
480void X86Mir2Lir::LockCallTemps() {
481  LockTemp(rs_rX86_ARG0);
482  LockTemp(rs_rX86_ARG1);
483  LockTemp(rs_rX86_ARG2);
484  LockTemp(rs_rX86_ARG3);
485}
486
487/* To be used when explicitly managing register use */
488void X86Mir2Lir::FreeCallTemps() {
489  FreeTemp(rs_rX86_ARG0);
490  FreeTemp(rs_rX86_ARG1);
491  FreeTemp(rs_rX86_ARG2);
492  FreeTemp(rs_rX86_ARG3);
493}
494
495bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
496    switch (opcode) {
497      case kX86LockCmpxchgMR:
498      case kX86LockCmpxchgAR:
499      case kX86LockCmpxchg8bM:
500      case kX86LockCmpxchg8bA:
501      case kX86XchgMR:
502      case kX86Mfence:
503        // Atomic memory instructions provide full barrier.
504        return true;
505      default:
506        break;
507    }
508
509    // Conservative if cannot prove it provides full barrier.
510    return false;
511}
512
513bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
514#if ANDROID_SMP != 0
515  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
516  LIR* mem_barrier = last_lir_insn_;
517
518  bool ret = false;
519  /*
520   * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
521   * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
522   * to ensure is that there is a scheduling barrier in place.
523   */
524  if (barrier_kind == kStoreLoad) {
525    // If no LIR exists already that can be used a barrier, then generate an mfence.
526    if (mem_barrier == nullptr) {
527      mem_barrier = NewLIR0(kX86Mfence);
528      ret = true;
529    }
530
531    // If last instruction does not provide full barrier, then insert an mfence.
532    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
533      mem_barrier = NewLIR0(kX86Mfence);
534      ret = true;
535    }
536  }
537
538  // Now ensure that a scheduling barrier is in place.
539  if (mem_barrier == nullptr) {
540    GenBarrier();
541  } else {
542    // Mark as a scheduling barrier.
543    DCHECK(!mem_barrier->flags.use_def_invalid);
544    mem_barrier->u.m.def_mask = ENCODE_ALL;
545  }
546  return ret;
547#else
548  return false;
549#endif
550}
551
552void X86Mir2Lir::CompilerInitializeRegAlloc() {
553  if (Gen64Bit()) {
554    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, empty_pool/*core_regs_64q*/, sp_regs_64,
555                                          dp_regs_64, reserved_regs_64, empty_pool/*reserved_regs_64q*/,
556                                          core_temps_64, empty_pool/*core_temps_64q*/, sp_temps_64, dp_temps_64);
557  } else {
558    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
559                                          dp_regs_32, reserved_regs_32, empty_pool,
560                                          core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
561  }
562
563  // Target-specific adjustments.
564
565  // Add in XMM registers.
566  const ArrayRef<const RegStorage> *xp_temps = Gen64Bit() ? &xp_temps_64 : &xp_temps_32;
567  for (RegStorage reg : *xp_temps) {
568    RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
569    reginfo_map_.Put(reg.GetReg(), info);
570    info->SetIsTemp(true);
571  }
572
573  // Alias single precision xmm to double xmms.
574  // TODO: as needed, add larger vector sizes - alias all to the largest.
575  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
576  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
577    int sp_reg_num = info->GetReg().GetRegNum();
578    RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
579    RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
580    // 128-bit xmm vector register's master storage should refer to itself.
581    DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
582
583    // Redirect 32-bit vector's master storage to 128-bit vector.
584    info->SetMaster(xp_reg_info);
585
586    RegStorage dp_reg = RegStorage::Solo64(RegStorage::kFloatingPoint | sp_reg_num);
587    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
588    // Redirect 64-bit vector's master storage to 128-bit vector.
589    dp_reg_info->SetMaster(xp_reg_info);
590  }
591
592  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
593  // TODO: adjust for x86/hard float calling convention.
594  reg_pool_->next_core_reg_ = 2;
595  reg_pool_->next_sp_reg_ = 2;
596  reg_pool_->next_dp_reg_ = 1;
597}
598
599void X86Mir2Lir::SpillCoreRegs() {
600  if (num_core_spills_ == 0) {
601    return;
602  }
603  // Spill mask not including fake return address register
604  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
605  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
606  for (int reg = 0; mask; mask >>= 1, reg++) {
607    if (mask & 0x1) {
608      StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
609      offset += GetInstructionSetPointerSize(cu_->instruction_set);
610    }
611  }
612}
613
614void X86Mir2Lir::UnSpillCoreRegs() {
615  if (num_core_spills_ == 0) {
616    return;
617  }
618  // Spill mask not including fake return address register
619  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
620  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
621  for (int reg = 0; mask; mask >>= 1, reg++) {
622    if (mask & 0x1) {
623      LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
624      offset += GetInstructionSetPointerSize(cu_->instruction_set);
625    }
626  }
627}
628
629bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
630  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
631}
632
633bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
634  return true;
635}
636
637RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
638  if (UNLIKELY(is_volatile)) {
639    // On x86, atomic 64-bit load/store requires an fp register.
640    // Smaller aligned load/store is atomic for both core and fp registers.
641    if (size == k64 || size == kDouble) {
642      return kFPReg;
643    }
644  }
645  return RegClassBySize(size);
646}
647
648X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit)
649    : Mir2Lir(cu, mir_graph, arena),
650      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
651      method_address_insns_(arena, 100, kGrowableArrayMisc),
652      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
653      call_method_insns_(arena, 100, kGrowableArrayMisc),
654      stack_decrement_(nullptr), stack_increment_(nullptr), gen64bit_(gen64bit),
655      const_vectors_(nullptr) {
656  store_method_addr_used_ = false;
657  if (kIsDebugBuild) {
658    for (int i = 0; i < kX86Last; i++) {
659      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
660        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
661                   << " is wrong: expecting " << i << ", seeing "
662                   << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
663      }
664    }
665  }
666  if (Gen64Bit()) {
667    rs_rX86_SP = rs_rX86_SP_64;
668
669    rs_rX86_ARG0 = rs_rDI;
670    rs_rX86_ARG1 = rs_rSI;
671    rs_rX86_ARG2 = rs_rDX;
672    rs_rX86_ARG3 = rs_rCX;
673    rX86_ARG0 = rDI;
674    rX86_ARG1 = rSI;
675    rX86_ARG2 = rDX;
676    rX86_ARG3 = rCX;
677    // TODO: ARG4(r8), ARG5(r9), floating point args.
678  } else {
679    rs_rX86_SP = rs_rX86_SP_32;
680
681    rs_rX86_ARG0 = rs_rAX;
682    rs_rX86_ARG1 = rs_rCX;
683    rs_rX86_ARG2 = rs_rDX;
684    rs_rX86_ARG3 = rs_rBX;
685    rX86_ARG0 = rAX;
686    rX86_ARG1 = rCX;
687    rX86_ARG2 = rDX;
688    rX86_ARG3 = rBX;
689  }
690  rs_rX86_FARG0 = rs_rAX;
691  rs_rX86_FARG1 = rs_rCX;
692  rs_rX86_FARG2 = rs_rDX;
693  rs_rX86_FARG3 = rs_rBX;
694  rs_rX86_RET0 = rs_rAX;
695  rs_rX86_RET1 = rs_rDX;
696  rs_rX86_INVOKE_TGT = rs_rAX;
697  rs_rX86_COUNT = rs_rCX;
698  rX86_FARG0 = rAX;
699  rX86_FARG1 = rCX;
700  rX86_FARG2 = rDX;
701  rX86_FARG3 = rBX;
702  rX86_RET0 = rAX;
703  rX86_RET1 = rDX;
704  rX86_INVOKE_TGT = rAX;
705  rX86_COUNT = rCX;
706}
707
708Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
709                          ArenaAllocator* const arena) {
710  return new X86Mir2Lir(cu, mir_graph, arena, false);
711}
712
713Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
714                          ArenaAllocator* const arena) {
715  return new X86Mir2Lir(cu, mir_graph, arena, true);
716}
717
718// Not used in x86
719RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
720  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
721  return RegStorage::InvalidReg();
722}
723
724// Not used in x86
725RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
726  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
727  return RegStorage::InvalidReg();
728}
729
730LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
731  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
732  return nullptr;
733}
734
735uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
736  DCHECK(!IsPseudoLirOp(opcode));
737  return X86Mir2Lir::EncodingMap[opcode].flags;
738}
739
740const char* X86Mir2Lir::GetTargetInstName(int opcode) {
741  DCHECK(!IsPseudoLirOp(opcode));
742  return X86Mir2Lir::EncodingMap[opcode].name;
743}
744
745const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
746  DCHECK(!IsPseudoLirOp(opcode));
747  return X86Mir2Lir::EncodingMap[opcode].fmt;
748}
749
750void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
751  // Can we do this directly to memory?
752  rl_dest = UpdateLocWide(rl_dest);
753  if ((rl_dest.location == kLocDalvikFrame) ||
754      (rl_dest.location == kLocCompilerTemp)) {
755    int32_t val_lo = Low32Bits(value);
756    int32_t val_hi = High32Bits(value);
757    int r_base = TargetReg(kSp).GetReg();
758    int displacement = SRegOffset(rl_dest.s_reg_low);
759
760    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
761    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
762                              false /* is_load */, true /* is64bit */);
763    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
764    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
765                              false /* is_load */, true /* is64bit */);
766    return;
767  }
768
769  // Just use the standard code to do the generation.
770  Mir2Lir::GenConstWide(rl_dest, value);
771}
772
773// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
774void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
775  LOG(INFO)  << "location: " << loc.location << ','
776             << (loc.wide ? " w" : "  ")
777             << (loc.defined ? " D" : "  ")
778             << (loc.is_const ? " c" : "  ")
779             << (loc.fp ? " F" : "  ")
780             << (loc.core ? " C" : "  ")
781             << (loc.ref ? " r" : "  ")
782             << (loc.high_word ? " h" : "  ")
783             << (loc.home ? " H" : "  ")
784             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
785             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
786             << ", s_reg: " << loc.s_reg_low
787             << ", orig: " << loc.orig_sreg;
788}
789
790void X86Mir2Lir::Materialize() {
791  // A good place to put the analysis before starting.
792  AnalyzeMIR();
793
794  // Now continue with regular code generation.
795  Mir2Lir::Materialize();
796}
797
798void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
799                                   SpecialTargetRegister symbolic_reg) {
800  /*
801   * For x86, just generate a 32 bit move immediate instruction, that will be filled
802   * in at 'link time'.  For now, put a unique value based on target to ensure that
803   * code deduplication works.
804   */
805  int target_method_idx = target_method.dex_method_index;
806  const DexFile* target_dex_file = target_method.dex_file;
807  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
808  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
809
810  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
811  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
812                     static_cast<int>(target_method_id_ptr), target_method_idx,
813                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
814  AppendLIR(move);
815  method_address_insns_.Insert(move);
816}
817
818void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
819  /*
820   * For x86, just generate a 32 bit move immediate instruction, that will be filled
821   * in at 'link time'.  For now, put a unique value based on target to ensure that
822   * code deduplication works.
823   */
824  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
825  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
826
827  // Generate the move instruction with the unique pointer and save index and type.
828  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
829                     static_cast<int>(ptr), type_idx);
830  AppendLIR(move);
831  class_type_address_insns_.Insert(move);
832}
833
834LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
835  /*
836   * For x86, just generate a 32 bit call relative instruction, that will be filled
837   * in at 'link time'.  For now, put a unique value based on target to ensure that
838   * code deduplication works.
839   */
840  int target_method_idx = target_method.dex_method_index;
841  const DexFile* target_dex_file = target_method.dex_file;
842  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
843  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
844
845  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
846  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
847                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
848  AppendLIR(call);
849  call_method_insns_.Insert(call);
850  return call;
851}
852
853/*
854 * @brief Enter a 32 bit quantity into a buffer
855 * @param buf buffer.
856 * @param data Data value.
857 */
858
859static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
860  buf.push_back(data & 0xff);
861  buf.push_back((data >> 8) & 0xff);
862  buf.push_back((data >> 16) & 0xff);
863  buf.push_back((data >> 24) & 0xff);
864}
865
866void X86Mir2Lir::InstallLiteralPools() {
867  // These are handled differently for x86.
868  DCHECK(code_literal_list_ == nullptr);
869  DCHECK(method_literal_list_ == nullptr);
870  DCHECK(class_literal_list_ == nullptr);
871
872  // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
873  // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
874  // will fail at runtime)?
875  if (const_vectors_ != nullptr) {
876    int align_size = (16-4) - (code_buffer_.size() & 0xF);
877    if (align_size < 0) {
878      align_size += 16;
879    }
880
881    while (align_size > 0) {
882      code_buffer_.push_back(0);
883      align_size--;
884    }
885    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
886      PushWord(code_buffer_, p->operands[0]);
887      PushWord(code_buffer_, p->operands[1]);
888      PushWord(code_buffer_, p->operands[2]);
889      PushWord(code_buffer_, p->operands[3]);
890    }
891  }
892
893  // Handle the fixups for methods.
894  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
895      LIR* p = method_address_insns_.Get(i);
896      DCHECK_EQ(p->opcode, kX86Mov32RI);
897      uint32_t target_method_idx = p->operands[2];
898      const DexFile* target_dex_file =
899          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
900
901      // The offset to patch is the last 4 bytes of the instruction.
902      int patch_offset = p->offset + p->flags.size - 4;
903      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
904                                           cu_->method_idx, cu_->invoke_type,
905                                           target_method_idx, target_dex_file,
906                                           static_cast<InvokeType>(p->operands[4]),
907                                           patch_offset);
908  }
909
910  // Handle the fixups for class types.
911  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
912      LIR* p = class_type_address_insns_.Get(i);
913      DCHECK_EQ(p->opcode, kX86Mov32RI);
914      uint32_t target_method_idx = p->operands[2];
915
916      // The offset to patch is the last 4 bytes of the instruction.
917      int patch_offset = p->offset + p->flags.size - 4;
918      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
919                                          cu_->method_idx, target_method_idx, patch_offset);
920  }
921
922  // And now the PC-relative calls to methods.
923  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
924      LIR* p = call_method_insns_.Get(i);
925      DCHECK_EQ(p->opcode, kX86CallI);
926      uint32_t target_method_idx = p->operands[1];
927      const DexFile* target_dex_file =
928          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
929
930      // The offset to patch is the last 4 bytes of the instruction.
931      int patch_offset = p->offset + p->flags.size - 4;
932      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
933                                                 cu_->method_idx, cu_->invoke_type,
934                                                 target_method_idx, target_dex_file,
935                                                 static_cast<InvokeType>(p->operands[3]),
936                                                 patch_offset, -4 /* offset */);
937  }
938
939  // And do the normal processing.
940  Mir2Lir::InstallLiteralPools();
941}
942
943/*
944 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
945 * otherwise bails to standard library code.
946 */
947bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
948  ClobberCallerSave();
949  LockCallTemps();  // Using fixed registers
950
951  // EAX: 16 bit character being searched.
952  // ECX: count: number of words to be searched.
953  // EDI: String being searched.
954  // EDX: temporary during execution.
955  // EBX: temporary during execution.
956
957  RegLocation rl_obj = info->args[0];
958  RegLocation rl_char = info->args[1];
959  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
960
961  uint32_t char_value =
962    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
963
964  if (char_value > 0xFFFF) {
965    // We have to punt to the real String.indexOf.
966    return false;
967  }
968
969  // Okay, we are commited to inlining this.
970  RegLocation rl_return = GetReturn(kCoreReg);
971  RegLocation rl_dest = InlineTarget(info);
972
973  // Is the string non-NULL?
974  LoadValueDirectFixed(rl_obj, rs_rDX);
975  GenNullCheck(rs_rDX, info->opt_flags);
976  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
977
978  // Does the character fit in 16 bits?
979  LIR* slowpath_branch = nullptr;
980  if (rl_char.is_const) {
981    // We need the value in EAX.
982    LoadConstantNoClobber(rs_rAX, char_value);
983  } else {
984    // Character is not a constant; compare at runtime.
985    LoadValueDirectFixed(rl_char, rs_rAX);
986    slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
987  }
988
989  // From here down, we know that we are looking for a char that fits in 16 bits.
990  // Location of reference to data array within the String object.
991  int value_offset = mirror::String::ValueOffset().Int32Value();
992  // Location of count within the String object.
993  int count_offset = mirror::String::CountOffset().Int32Value();
994  // Starting offset within data array.
995  int offset_offset = mirror::String::OffsetOffset().Int32Value();
996  // Start of char data with array_.
997  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
998
999  // Character is in EAX.
1000  // Object pointer is in EDX.
1001
1002  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1003  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1004  NewLIR1(kX86Push32R, rs_rDI.GetReg());
1005
1006  // Compute the number of words to search in to rCX.
1007  Load32Disp(rs_rDX, count_offset, rs_rCX);
1008  LIR *length_compare = nullptr;
1009  int start_value = 0;
1010  bool is_index_on_stack = false;
1011  if (zero_based) {
1012    // We have to handle an empty string.  Use special instruction JECXZ.
1013    length_compare = NewLIR0(kX86Jecxz8);
1014  } else {
1015    rl_start = info->args[2];
1016    // We have to offset by the start index.
1017    if (rl_start.is_const) {
1018      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1019      start_value = std::max(start_value, 0);
1020
1021      // Is the start > count?
1022      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1023
1024      if (start_value != 0) {
1025        OpRegImm(kOpSub, rs_rCX, start_value);
1026      }
1027    } else {
1028      // Runtime start index.
1029      rl_start = UpdateLocTyped(rl_start, kCoreReg);
1030      if (rl_start.location == kLocPhysReg) {
1031        // Handle "start index < 0" case.
1032        OpRegReg(kOpXor, rs_rBX, rs_rBX);
1033        OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1034        OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1035
1036        // The length of the string should be greater than the start index.
1037        length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1038        OpRegReg(kOpSub, rs_rCX, rl_start.reg);
1039        if (rl_start.reg == rs_rDI) {
1040          // The special case. We will use EDI further, so lets put start index to stack.
1041          NewLIR1(kX86Push32R, rs_rDI.GetReg());
1042          is_index_on_stack = true;
1043        }
1044      } else {
1045        // Load the start index from stack, remembering that we pushed EDI.
1046        int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1047        Load32Disp(rs_rX86_SP, displacement, rs_rBX);
1048        OpRegReg(kOpXor, rs_rDI, rs_rDI);
1049        OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1050        OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1051
1052        length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1053        OpRegReg(kOpSub, rs_rCX, rs_rBX);
1054        // Put the start index to stack.
1055        NewLIR1(kX86Push32R, rs_rBX.GetReg());
1056        is_index_on_stack = true;
1057      }
1058    }
1059  }
1060  DCHECK(length_compare != nullptr);
1061
1062  // ECX now contains the count in words to be searched.
1063
1064  // Load the address of the string into EBX.
1065  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1066  Load32Disp(rs_rDX, value_offset, rs_rDI);
1067  Load32Disp(rs_rDX, offset_offset, rs_rBX);
1068  OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
1069
1070  // Now compute into EDI where the search will start.
1071  if (zero_based || rl_start.is_const) {
1072    if (start_value == 0) {
1073      OpRegCopy(rs_rDI, rs_rBX);
1074    } else {
1075      NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
1076    }
1077  } else {
1078    if (is_index_on_stack == true) {
1079      // Load the start index from stack.
1080      NewLIR1(kX86Pop32R, rs_rDX.GetReg());
1081      OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
1082    } else {
1083      OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
1084    }
1085  }
1086
1087  // EDI now contains the start of the string to be searched.
1088  // We are all prepared to do the search for the character.
1089  NewLIR0(kX86RepneScasw);
1090
1091  // Did we find a match?
1092  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1093
1094  // yes, we matched.  Compute the index of the result.
1095  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1096  OpRegReg(kOpSub, rs_rDI, rs_rBX);
1097  OpRegImm(kOpAsr, rs_rDI, 1);
1098  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
1099  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1100
1101  // Failed to match; return -1.
1102  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1103  length_compare->target = not_found;
1104  failed_branch->target = not_found;
1105  LoadConstantNoClobber(rl_return.reg, -1);
1106
1107  // And join up at the end.
1108  all_done->target = NewLIR0(kPseudoTargetLabel);
1109  // Restore EDI from the stack.
1110  NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1111
1112  // Out of line code returns here.
1113  if (slowpath_branch != nullptr) {
1114    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1115    AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1116  }
1117
1118  StoreValue(rl_dest, rl_return);
1119  return true;
1120}
1121
1122/*
1123 * @brief Enter an 'advance LOC' into the FDE buffer
1124 * @param buf FDE buffer.
1125 * @param increment Amount by which to increase the current location.
1126 */
1127static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1128  if (increment < 64) {
1129    // Encoding in opcode.
1130    buf.push_back(0x1 << 6 | increment);
1131  } else if (increment < 256) {
1132    // Single byte delta.
1133    buf.push_back(0x02);
1134    buf.push_back(increment);
1135  } else if (increment < 256 * 256) {
1136    // Two byte delta.
1137    buf.push_back(0x03);
1138    buf.push_back(increment & 0xff);
1139    buf.push_back((increment >> 8) & 0xff);
1140  } else {
1141    // Four byte delta.
1142    buf.push_back(0x04);
1143    PushWord(buf, increment);
1144  }
1145}
1146
1147
1148std::vector<uint8_t>* X86CFIInitialization() {
1149  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1150}
1151
1152std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1153  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1154
1155  // Length of the CIE (except for this field).
1156  PushWord(*cfi_info, 16);
1157
1158  // CIE id.
1159  PushWord(*cfi_info, 0xFFFFFFFFU);
1160
1161  // Version: 3.
1162  cfi_info->push_back(0x03);
1163
1164  // Augmentation: empty string.
1165  cfi_info->push_back(0x0);
1166
1167  // Code alignment: 1.
1168  cfi_info->push_back(0x01);
1169
1170  // Data alignment: -4.
1171  cfi_info->push_back(0x7C);
1172
1173  // Return address register (R8).
1174  cfi_info->push_back(0x08);
1175
1176  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1177  cfi_info->push_back(0x0C);
1178  cfi_info->push_back(0x04);
1179  cfi_info->push_back(0x04);
1180
1181  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1182  cfi_info->push_back(0x2 << 6 | 0x08);
1183  cfi_info->push_back(0x01);
1184
1185  // And 2 Noops to align to 4 byte boundary.
1186  cfi_info->push_back(0x0);
1187  cfi_info->push_back(0x0);
1188
1189  DCHECK_EQ(cfi_info->size() & 3, 0U);
1190  return cfi_info;
1191}
1192
1193static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1194  uint8_t buffer[12];
1195  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1196  for (uint8_t *p = buffer; p < ptr; p++) {
1197    buf.push_back(*p);
1198  }
1199}
1200
1201std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1202  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1203
1204  // Generate the FDE for the method.
1205  DCHECK_NE(data_offset_, 0U);
1206
1207  // Length (will be filled in later in this routine).
1208  PushWord(*cfi_info, 0);
1209
1210  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1211  // one CIE for the whole debug_frame section.
1212  PushWord(*cfi_info, 0);
1213
1214  // 'initial_location' (filled in by linker).
1215  PushWord(*cfi_info, 0);
1216
1217  // 'address_range' (number of bytes in the method).
1218  PushWord(*cfi_info, data_offset_);
1219
1220  // The instructions in the FDE.
1221  if (stack_decrement_ != nullptr) {
1222    // Advance LOC to just past the stack decrement.
1223    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1224    AdvanceLoc(*cfi_info, pc);
1225
1226    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1227    cfi_info->push_back(0x0e);
1228    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1229
1230    // We continue with that stack until the epilogue.
1231    if (stack_increment_ != nullptr) {
1232      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1233      AdvanceLoc(*cfi_info, new_pc - pc);
1234
1235      // We probably have code snippets after the epilogue, so save the
1236      // current state: DW_CFA_remember_state.
1237      cfi_info->push_back(0x0a);
1238
1239      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1240      // PC on the stack now.
1241      cfi_info->push_back(0x0e);
1242      EncodeUnsignedLeb128(*cfi_info, 4);
1243
1244      // Everything after that is the same as before the epilogue.
1245      // Stack bump was followed by RET instruction.
1246      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1247      if (post_ret_insn != nullptr) {
1248        pc = new_pc;
1249        new_pc = post_ret_insn->offset;
1250        AdvanceLoc(*cfi_info, new_pc - pc);
1251        // Restore the state: DW_CFA_restore_state.
1252        cfi_info->push_back(0x0b);
1253      }
1254    }
1255  }
1256
1257  // Padding to a multiple of 4
1258  while ((cfi_info->size() & 3) != 0) {
1259    // DW_CFA_nop is encoded as 0.
1260    cfi_info->push_back(0);
1261  }
1262
1263  // Set the length of the FDE inside the generated bytes.
1264  uint32_t length = cfi_info->size() - 4;
1265  (*cfi_info)[0] = length;
1266  (*cfi_info)[1] = length >> 8;
1267  (*cfi_info)[2] = length >> 16;
1268  (*cfi_info)[3] = length >> 24;
1269  return cfi_info;
1270}
1271
1272void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1273  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1274    case kMirOpConstVector:
1275      GenConst128(bb, mir);
1276      break;
1277    case kMirOpMoveVector:
1278      GenMoveVector(bb, mir);
1279      break;
1280    case kMirOpPackedMultiply:
1281      GenMultiplyVector(bb, mir);
1282      break;
1283    case kMirOpPackedAddition:
1284      GenAddVector(bb, mir);
1285      break;
1286    case kMirOpPackedSubtract:
1287      GenSubtractVector(bb, mir);
1288      break;
1289    case kMirOpPackedShiftLeft:
1290      GenShiftLeftVector(bb, mir);
1291      break;
1292    case kMirOpPackedSignedShiftRight:
1293      GenSignedShiftRightVector(bb, mir);
1294      break;
1295    case kMirOpPackedUnsignedShiftRight:
1296      GenUnsignedShiftRightVector(bb, mir);
1297      break;
1298    case kMirOpPackedAnd:
1299      GenAndVector(bb, mir);
1300      break;
1301    case kMirOpPackedOr:
1302      GenOrVector(bb, mir);
1303      break;
1304    case kMirOpPackedXor:
1305      GenXorVector(bb, mir);
1306      break;
1307    case kMirOpPackedAddReduce:
1308      GenAddReduceVector(bb, mir);
1309      break;
1310    case kMirOpPackedReduce:
1311      GenReduceVector(bb, mir);
1312      break;
1313    case kMirOpPackedSet:
1314      GenSetVector(bb, mir);
1315      break;
1316    default:
1317      break;
1318  }
1319}
1320
1321void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1322  int type_size = mir->dalvikInsn.vA;
1323  // We support 128 bit vectors.
1324  DCHECK_EQ(type_size & 0xFFFF, 128);
1325  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1326  uint32_t *args = mir->dalvikInsn.arg;
1327  int reg = rs_dest.GetReg();
1328  // Check for all 0 case.
1329  if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1330    NewLIR2(kX86XorpsRR, reg, reg);
1331    return;
1332  }
1333  // Okay, load it from the constant vector area.
1334  LIR *data_target = ScanVectorLiteral(mir);
1335  if (data_target == nullptr) {
1336    data_target = AddVectorLiteral(mir);
1337  }
1338
1339  // Address the start of the method.
1340  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1341  rl_method = LoadValue(rl_method, kCoreReg);
1342
1343  // Load the proper value from the literal area.
1344  // We don't know the proper offset for the value, so pick one that will force
1345  // 4 byte offset.  We will fix this up in the assembler later to have the right
1346  // value.
1347  LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(),  256 /* bogus */);
1348  load->flags.fixup = kFixupLoad;
1349  load->target = data_target;
1350  SetMemRefType(load, true, kLiteral);
1351}
1352
1353void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1354  // We only support 128 bit registers.
1355  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1356  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1357  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1358  NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1359}
1360
1361void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1362  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1363  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1364  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1365  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1366  int opcode = 0;
1367  switch (opsize) {
1368    case k32:
1369      opcode = kX86PmulldRR;
1370      break;
1371    case kSignedHalf:
1372      opcode = kX86PmullwRR;
1373      break;
1374    case kSingle:
1375      opcode = kX86MulpsRR;
1376      break;
1377    case kDouble:
1378      opcode = kX86MulpdRR;
1379      break;
1380    default:
1381      LOG(FATAL) << "Unsupported vector multiply " << opsize;
1382      break;
1383  }
1384  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1385}
1386
1387void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1388  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1389  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1390  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1391  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1392  int opcode = 0;
1393  switch (opsize) {
1394    case k32:
1395      opcode = kX86PadddRR;
1396      break;
1397    case kSignedHalf:
1398    case kUnsignedHalf:
1399      opcode = kX86PaddwRR;
1400      break;
1401    case kUnsignedByte:
1402    case kSignedByte:
1403      opcode = kX86PaddbRR;
1404      break;
1405    case kSingle:
1406      opcode = kX86AddpsRR;
1407      break;
1408    case kDouble:
1409      opcode = kX86AddpdRR;
1410      break;
1411    default:
1412      LOG(FATAL) << "Unsupported vector addition " << opsize;
1413      break;
1414  }
1415  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1416}
1417
1418void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1419  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1420  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1421  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1422  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1423  int opcode = 0;
1424  switch (opsize) {
1425    case k32:
1426      opcode = kX86PsubdRR;
1427      break;
1428    case kSignedHalf:
1429    case kUnsignedHalf:
1430      opcode = kX86PsubwRR;
1431      break;
1432    case kUnsignedByte:
1433    case kSignedByte:
1434      opcode = kX86PsubbRR;
1435      break;
1436    case kSingle:
1437      opcode = kX86SubpsRR;
1438      break;
1439    case kDouble:
1440      opcode = kX86SubpdRR;
1441      break;
1442    default:
1443      LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1444      break;
1445  }
1446  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1447}
1448
1449void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1450  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1451  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1452  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1453  int imm = mir->dalvikInsn.vC;
1454  int opcode = 0;
1455  switch (opsize) {
1456    case k32:
1457      opcode = kX86PslldRI;
1458      break;
1459    case k64:
1460      opcode = kX86PsllqRI;
1461      break;
1462    case kSignedHalf:
1463    case kUnsignedHalf:
1464      opcode = kX86PsllwRI;
1465      break;
1466    default:
1467      LOG(FATAL) << "Unsupported vector shift left " << opsize;
1468      break;
1469  }
1470  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1471}
1472
1473void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1474  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1475  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1476  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1477  int imm = mir->dalvikInsn.vC;
1478  int opcode = 0;
1479  switch (opsize) {
1480    case k32:
1481      opcode = kX86PsradRI;
1482      break;
1483    case kSignedHalf:
1484    case kUnsignedHalf:
1485      opcode = kX86PsrawRI;
1486      break;
1487    default:
1488      LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1489      break;
1490  }
1491  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1492}
1493
1494void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1495  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1496  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1497  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1498  int imm = mir->dalvikInsn.vC;
1499  int opcode = 0;
1500  switch (opsize) {
1501    case k32:
1502      opcode = kX86PsrldRI;
1503      break;
1504    case k64:
1505      opcode = kX86PsrlqRI;
1506      break;
1507    case kSignedHalf:
1508    case kUnsignedHalf:
1509      opcode = kX86PsrlwRI;
1510      break;
1511    default:
1512      LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1513      break;
1514  }
1515  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1516}
1517
1518void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1519  // We only support 128 bit registers.
1520  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1521  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1522  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1523  NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1524}
1525
1526void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1527  // We only support 128 bit registers.
1528  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1529  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1530  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1531  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1532}
1533
1534void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1535  // We only support 128 bit registers.
1536  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1537  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1538  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1539  NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1540}
1541
1542void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1543  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1544  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1545  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1546  int imm = mir->dalvikInsn.vC;
1547  int opcode = 0;
1548  switch (opsize) {
1549    case k32:
1550      opcode = kX86PhadddRR;
1551      break;
1552    case kSignedHalf:
1553    case kUnsignedHalf:
1554      opcode = kX86PhaddwRR;
1555      break;
1556    default:
1557      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1558      break;
1559  }
1560  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1561}
1562
1563void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1564  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1565  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1566  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1567  int index = mir->dalvikInsn.arg[0];
1568  int opcode = 0;
1569  switch (opsize) {
1570    case k32:
1571      opcode = kX86PextrdRRI;
1572      break;
1573    case kSignedHalf:
1574    case kUnsignedHalf:
1575      opcode = kX86PextrwRRI;
1576      break;
1577    case kUnsignedByte:
1578    case kSignedByte:
1579      opcode = kX86PextrbRRI;
1580      break;
1581    default:
1582      LOG(FATAL) << "Unsupported vector reduce " << opsize;
1583      break;
1584  }
1585  // We need to extract to a GPR.
1586  RegStorage temp = AllocTemp();
1587  NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1588
1589  // Assume that the destination VR is in the def for the mir.
1590  RegLocation rl_dest = mir_graph_->GetDest(mir);
1591  RegLocation rl_temp =
1592    {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1593  StoreValue(rl_dest, rl_temp);
1594}
1595
1596void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1597  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1598  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1599  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1600  int op_low = 0, op_high = 0;
1601  switch (opsize) {
1602    case k32:
1603      op_low = kX86PshufdRRI;
1604      break;
1605    case kSignedHalf:
1606    case kUnsignedHalf:
1607      // Handles low quadword.
1608      op_low = kX86PshuflwRRI;
1609      // Handles upper quadword.
1610      op_high = kX86PshufdRRI;
1611      break;
1612    default:
1613      LOG(FATAL) << "Unsupported vector set " << opsize;
1614      break;
1615  }
1616
1617  // Load the value from the VR into a GPR.
1618  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1619  rl_src = LoadValue(rl_src, kCoreReg);
1620
1621  // Load the value into the XMM register.
1622  NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1623
1624  // Now shuffle the value across the destination.
1625  NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1626
1627  // And then repeat as needed.
1628  if (op_high != 0) {
1629    NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1630  }
1631}
1632
1633
1634LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1635  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1636  for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1637    if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1638        args[2] == p->operands[2] && args[3] == p->operands[3]) {
1639      return p;
1640    }
1641  }
1642  return nullptr;
1643}
1644
1645LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1646  LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1647  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1648  new_value->operands[0] = args[0];
1649  new_value->operands[1] = args[1];
1650  new_value->operands[2] = args[2];
1651  new_value->operands[3] = args[3];
1652  new_value->next = const_vectors_;
1653  if (const_vectors_ == nullptr) {
1654    estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
1655  }
1656  estimated_native_code_size_ += 16;  // Space for one vector.
1657  const_vectors_ = new_value;
1658  return new_value;
1659}
1660
1661}  // namespace art
1662