target_x86.cc revision 34fa0d935bed7a0e17bc6df4bd079e3428a179e7
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "mirror/array.h"
24#include "mirror/string.h"
25#include "x86_lir.h"
26
27namespace art {
28
29// FIXME: restore "static" when usage uncovered
30/*static*/ int core_regs[] = {
31  rAX, rCX, rDX, rBX, rX86_SP, rBP, rSI, rDI
32#ifdef TARGET_REX_SUPPORT
33  r8, r9, r10, r11, r12, r13, r14, 15
34#endif
35};
36/*static*/ int ReservedRegs[] = {rX86_SP};
37/*static*/ int core_temps[] = {rAX, rCX, rDX, rBX};
38/*static*/ int FpRegs[] = {
39  fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
40#ifdef TARGET_REX_SUPPORT
41  fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
42#endif
43};
44/*static*/ int fp_temps[] = {
45  fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
46#ifdef TARGET_REX_SUPPORT
47  fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
48#endif
49};
50
51RegLocation X86Mir2Lir::LocCReturn() {
52  return x86_loc_c_return;
53}
54
55RegLocation X86Mir2Lir::LocCReturnWide() {
56  return x86_loc_c_return_wide;
57}
58
59RegLocation X86Mir2Lir::LocCReturnFloat() {
60  return x86_loc_c_return_float;
61}
62
63RegLocation X86Mir2Lir::LocCReturnDouble() {
64  return x86_loc_c_return_double;
65}
66
67// Return a target-dependent special register.
68int X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
69  int res = INVALID_REG;
70  switch (reg) {
71    case kSelf: res = rX86_SELF; break;
72    case kSuspend: res =  rX86_SUSPEND; break;
73    case kLr: res =  rX86_LR; break;
74    case kPc: res =  rX86_PC; break;
75    case kSp: res =  rX86_SP; break;
76    case kArg0: res = rX86_ARG0; break;
77    case kArg1: res = rX86_ARG1; break;
78    case kArg2: res = rX86_ARG2; break;
79    case kArg3: res = rX86_ARG3; break;
80    case kFArg0: res = rX86_FARG0; break;
81    case kFArg1: res = rX86_FARG1; break;
82    case kFArg2: res = rX86_FARG2; break;
83    case kFArg3: res = rX86_FARG3; break;
84    case kRet0: res = rX86_RET0; break;
85    case kRet1: res = rX86_RET1; break;
86    case kInvokeTgt: res = rX86_INVOKE_TGT; break;
87    case kHiddenArg: res = rAX; break;
88    case kHiddenFpArg: res = fr0; break;
89    case kCount: res = rX86_COUNT; break;
90  }
91  return res;
92}
93
94int X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
95  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
96  // TODO: This is not 64-bit compliant and depends on new internal ABI.
97  switch (arg_num) {
98    case 0:
99      return rX86_ARG1;
100    case 1:
101      return rX86_ARG2;
102    case 2:
103      return rX86_ARG3;
104    default:
105      return INVALID_REG;
106  }
107}
108
109// Create a double from a pair of singles.
110int X86Mir2Lir::S2d(int low_reg, int high_reg) {
111  return X86_S2D(low_reg, high_reg);
112}
113
114// Return mask to strip off fp reg flags and bias.
115uint32_t X86Mir2Lir::FpRegMask() {
116  return X86_FP_REG_MASK;
117}
118
119// True if both regs single, both core or both double.
120bool X86Mir2Lir::SameRegType(int reg1, int reg2) {
121  return (X86_REGTYPE(reg1) == X86_REGTYPE(reg2));
122}
123
124/*
125 * Decode the register id.
126 */
127uint64_t X86Mir2Lir::GetRegMaskCommon(int reg) {
128  uint64_t seed;
129  int shift;
130  int reg_id;
131
132  reg_id = reg & 0xf;
133  /* Double registers in x86 are just a single FP register */
134  seed = 1;
135  /* FP register starts at bit position 16 */
136  shift = X86_FPREG(reg) ? kX86FPReg0 : 0;
137  /* Expand the double register id into single offset */
138  shift += reg_id;
139  return (seed << shift);
140}
141
142uint64_t X86Mir2Lir::GetPCUseDefEncoding() {
143  /*
144   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
145   * able to clean up some of the x86/Arm_Mips differences
146   */
147  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
148  return 0ULL;
149}
150
151void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
152  DCHECK_EQ(cu_->instruction_set, kX86);
153  DCHECK(!lir->flags.use_def_invalid);
154
155  // X86-specific resource map setup here.
156  if (flags & REG_USE_SP) {
157    lir->u.m.use_mask |= ENCODE_X86_REG_SP;
158  }
159
160  if (flags & REG_DEF_SP) {
161    lir->u.m.def_mask |= ENCODE_X86_REG_SP;
162  }
163
164  if (flags & REG_DEFA) {
165    SetupRegMask(&lir->u.m.def_mask, rAX);
166  }
167
168  if (flags & REG_DEFD) {
169    SetupRegMask(&lir->u.m.def_mask, rDX);
170  }
171  if (flags & REG_USEA) {
172    SetupRegMask(&lir->u.m.use_mask, rAX);
173  }
174
175  if (flags & REG_USEC) {
176    SetupRegMask(&lir->u.m.use_mask, rCX);
177  }
178
179  if (flags & REG_USED) {
180    SetupRegMask(&lir->u.m.use_mask, rDX);
181  }
182
183  if (flags & REG_USEB) {
184    SetupRegMask(&lir->u.m.use_mask, rBX);
185  }
186
187  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
188  if (lir->opcode == kX86RepneScasw) {
189    SetupRegMask(&lir->u.m.use_mask, rAX);
190    SetupRegMask(&lir->u.m.use_mask, rCX);
191    SetupRegMask(&lir->u.m.use_mask, rDI);
192    SetupRegMask(&lir->u.m.def_mask, rDI);
193  }
194}
195
196/* For dumping instructions */
197static const char* x86RegName[] = {
198  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
199  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
200};
201
202static const char* x86CondName[] = {
203  "O",
204  "NO",
205  "B/NAE/C",
206  "NB/AE/NC",
207  "Z/EQ",
208  "NZ/NE",
209  "BE/NA",
210  "NBE/A",
211  "S",
212  "NS",
213  "P/PE",
214  "NP/PO",
215  "L/NGE",
216  "NL/GE",
217  "LE/NG",
218  "NLE/G"
219};
220
221/*
222 * Interpret a format string and build a string no longer than size
223 * See format key in Assemble.cc.
224 */
225std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
226  std::string buf;
227  size_t i = 0;
228  size_t fmt_len = strlen(fmt);
229  while (i < fmt_len) {
230    if (fmt[i] != '!') {
231      buf += fmt[i];
232      i++;
233    } else {
234      i++;
235      DCHECK_LT(i, fmt_len);
236      char operand_number_ch = fmt[i];
237      i++;
238      if (operand_number_ch == '!') {
239        buf += "!";
240      } else {
241        int operand_number = operand_number_ch - '0';
242        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
243        DCHECK_LT(i, fmt_len);
244        int operand = lir->operands[operand_number];
245        switch (fmt[i]) {
246          case 'c':
247            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
248            buf += x86CondName[operand];
249            break;
250          case 'd':
251            buf += StringPrintf("%d", operand);
252            break;
253          case 'p': {
254            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
255            buf += StringPrintf("0x%08x", tab_rec->offset);
256            break;
257          }
258          case 'r':
259            if (X86_FPREG(operand) || X86_DOUBLEREG(operand)) {
260              int fp_reg = operand & X86_FP_REG_MASK;
261              buf += StringPrintf("xmm%d", fp_reg);
262            } else {
263              DCHECK_LT(static_cast<size_t>(operand), sizeof(x86RegName));
264              buf += x86RegName[operand];
265            }
266            break;
267          case 't':
268            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
269                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
270                                lir->target);
271            break;
272          default:
273            buf += StringPrintf("DecodeError '%c'", fmt[i]);
274            break;
275        }
276        i++;
277      }
278    }
279  }
280  return buf;
281}
282
283void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) {
284  char buf[256];
285  buf[0] = 0;
286
287  if (mask == ENCODE_ALL) {
288    strcpy(buf, "all");
289  } else {
290    char num[8];
291    int i;
292
293    for (i = 0; i < kX86RegEnd; i++) {
294      if (mask & (1ULL << i)) {
295        snprintf(num, arraysize(num), "%d ", i);
296        strcat(buf, num);
297      }
298    }
299
300    if (mask & ENCODE_CCODE) {
301      strcat(buf, "cc ");
302    }
303    /* Memory bits */
304    if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
305      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
306               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
307               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
308    }
309    if (mask & ENCODE_LITERAL) {
310      strcat(buf, "lit ");
311    }
312
313    if (mask & ENCODE_HEAP_REF) {
314      strcat(buf, "heap ");
315    }
316    if (mask & ENCODE_MUST_NOT_ALIAS) {
317      strcat(buf, "noalias ");
318    }
319  }
320  if (buf[0]) {
321    LOG(INFO) << prefix << ": " <<  buf;
322  }
323}
324
325void X86Mir2Lir::AdjustSpillMask() {
326  // Adjustment for LR spilling, x86 has no LR so nothing to do here
327  core_spill_mask_ |= (1 << rRET);
328  num_core_spills_++;
329}
330
331/*
332 * Mark a callee-save fp register as promoted.  Note that
333 * vpush/vpop uses contiguous register lists so we must
334 * include any holes in the mask.  Associate holes with
335 * Dalvik register INVALID_VREG (0xFFFFU).
336 */
337void X86Mir2Lir::MarkPreservedSingle(int v_reg, int reg) {
338  UNIMPLEMENTED(WARNING) << "MarkPreservedSingle";
339#if 0
340  LOG(FATAL) << "No support yet for promoted FP regs";
341#endif
342}
343
344void X86Mir2Lir::FlushRegWide(int reg1, int reg2) {
345  RegisterInfo* info1 = GetRegInfo(reg1);
346  RegisterInfo* info2 = GetRegInfo(reg2);
347  DCHECK(info1 && info2 && info1->pair && info2->pair &&
348         (info1->partner == info2->reg) &&
349         (info2->partner == info1->reg));
350  if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
351    if (!(info1->is_temp && info2->is_temp)) {
352      /* Should not happen.  If it does, there's a problem in eval_loc */
353      LOG(FATAL) << "Long half-temp, half-promoted";
354    }
355
356    info1->dirty = false;
357    info2->dirty = false;
358    if (mir_graph_->SRegToVReg(info2->s_reg) < mir_graph_->SRegToVReg(info1->s_reg))
359      info1 = info2;
360    int v_reg = mir_graph_->SRegToVReg(info1->s_reg);
361    StoreBaseDispWide(rX86_SP, VRegOffset(v_reg), info1->reg, info1->partner);
362  }
363}
364
365void X86Mir2Lir::FlushReg(int reg) {
366  RegisterInfo* info = GetRegInfo(reg);
367  if (info->live && info->dirty) {
368    info->dirty = false;
369    int v_reg = mir_graph_->SRegToVReg(info->s_reg);
370    StoreBaseDisp(rX86_SP, VRegOffset(v_reg), reg, kWord);
371  }
372}
373
374/* Give access to the target-dependent FP register encoding to common code */
375bool X86Mir2Lir::IsFpReg(int reg) {
376  return X86_FPREG(reg);
377}
378
379/* Clobber all regs that might be used by an external C call */
380void X86Mir2Lir::ClobberCallerSave() {
381  Clobber(rAX);
382  Clobber(rCX);
383  Clobber(rDX);
384  Clobber(rBX);
385}
386
387RegLocation X86Mir2Lir::GetReturnWideAlt() {
388  RegLocation res = LocCReturnWide();
389  CHECK(res.reg.GetReg() == rAX);
390  CHECK(res.reg.GetHighReg() == rDX);
391  Clobber(rAX);
392  Clobber(rDX);
393  MarkInUse(rAX);
394  MarkInUse(rDX);
395  MarkPair(res.reg.GetReg(), res.reg.GetHighReg());
396  return res;
397}
398
399RegLocation X86Mir2Lir::GetReturnAlt() {
400  RegLocation res = LocCReturn();
401  res.reg.SetReg(rDX);
402  Clobber(rDX);
403  MarkInUse(rDX);
404  return res;
405}
406
407/* To be used when explicitly managing register use */
408void X86Mir2Lir::LockCallTemps() {
409  LockTemp(rX86_ARG0);
410  LockTemp(rX86_ARG1);
411  LockTemp(rX86_ARG2);
412  LockTemp(rX86_ARG3);
413}
414
415/* To be used when explicitly managing register use */
416void X86Mir2Lir::FreeCallTemps() {
417  FreeTemp(rX86_ARG0);
418  FreeTemp(rX86_ARG1);
419  FreeTemp(rX86_ARG2);
420  FreeTemp(rX86_ARG3);
421}
422
423void X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
424#if ANDROID_SMP != 0
425  // TODO: optimize fences
426  NewLIR0(kX86Mfence);
427#endif
428}
429
430// Alloc a pair of core registers, or a double.
431RegStorage X86Mir2Lir::AllocTypedTempWide(bool fp_hint, int reg_class) {
432  int high_reg;
433  int low_reg;
434
435  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
436    low_reg = AllocTempDouble();
437    high_reg = low_reg;  // only one allocated!
438    // TODO: take advantage of 64-bit notation.
439    return RegStorage(RegStorage::k64BitPair, low_reg, high_reg);
440  }
441  low_reg = AllocTemp();
442  high_reg = AllocTemp();
443  return RegStorage(RegStorage::k64BitPair, low_reg, high_reg);
444}
445
446int X86Mir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) {
447  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
448    return AllocTempFloat();
449  }
450  return AllocTemp();
451}
452
453void X86Mir2Lir::CompilerInitializeRegAlloc() {
454  int num_regs = sizeof(core_regs)/sizeof(*core_regs);
455  int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
456  int num_temps = sizeof(core_temps)/sizeof(*core_temps);
457  int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs);
458  int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps);
459  reg_pool_ = static_cast<RegisterPool*>(arena_->Alloc(sizeof(*reg_pool_),
460                                                       kArenaAllocRegAlloc));
461  reg_pool_->num_core_regs = num_regs;
462  reg_pool_->core_regs =
463      static_cast<RegisterInfo*>(arena_->Alloc(num_regs * sizeof(*reg_pool_->core_regs),
464                                               kArenaAllocRegAlloc));
465  reg_pool_->num_fp_regs = num_fp_regs;
466  reg_pool_->FPRegs =
467      static_cast<RegisterInfo *>(arena_->Alloc(num_fp_regs * sizeof(*reg_pool_->FPRegs),
468                                                kArenaAllocRegAlloc));
469  CompilerInitPool(reg_pool_->core_regs, core_regs, reg_pool_->num_core_regs);
470  CompilerInitPool(reg_pool_->FPRegs, FpRegs, reg_pool_->num_fp_regs);
471  // Keep special registers from being allocated
472  for (int i = 0; i < num_reserved; i++) {
473    MarkInUse(ReservedRegs[i]);
474  }
475  // Mark temp regs - all others not in use can be used for promotion
476  for (int i = 0; i < num_temps; i++) {
477    MarkTemp(core_temps[i]);
478  }
479  for (int i = 0; i < num_fp_temps; i++) {
480    MarkTemp(fp_temps[i]);
481  }
482}
483
484void X86Mir2Lir::FreeRegLocTemps(RegLocation rl_keep,
485                     RegLocation rl_free) {
486  if ((rl_free.reg.GetReg() != rl_keep.reg.GetReg()) && (rl_free.reg.GetReg() != rl_keep.reg.GetHighReg()) &&
487      (rl_free.reg.GetHighReg() != rl_keep.reg.GetReg()) && (rl_free.reg.GetHighReg() != rl_keep.reg.GetHighReg())) {
488    // No overlap, free both
489    FreeTemp(rl_free.reg.GetReg());
490    FreeTemp(rl_free.reg.GetHighReg());
491  }
492}
493
494void X86Mir2Lir::SpillCoreRegs() {
495  if (num_core_spills_ == 0) {
496    return;
497  }
498  // Spill mask not including fake return address register
499  uint32_t mask = core_spill_mask_ & ~(1 << rRET);
500  int offset = frame_size_ - (4 * num_core_spills_);
501  for (int reg = 0; mask; mask >>= 1, reg++) {
502    if (mask & 0x1) {
503      StoreWordDisp(rX86_SP, offset, reg);
504      offset += 4;
505    }
506  }
507}
508
509void X86Mir2Lir::UnSpillCoreRegs() {
510  if (num_core_spills_ == 0) {
511    return;
512  }
513  // Spill mask not including fake return address register
514  uint32_t mask = core_spill_mask_ & ~(1 << rRET);
515  int offset = frame_size_ - (4 * num_core_spills_);
516  for (int reg = 0; mask; mask >>= 1, reg++) {
517    if (mask & 0x1) {
518      LoadWordDisp(rX86_SP, offset, reg);
519      offset += 4;
520    }
521  }
522}
523
524bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
525  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
526}
527
528X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
529    : Mir2Lir(cu, mir_graph, arena),
530      method_address_insns_(arena, 100, kGrowableArrayMisc),
531      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
532      call_method_insns_(arena, 100, kGrowableArrayMisc),
533      stack_decrement_(nullptr), stack_increment_(nullptr) {
534  store_method_addr_used_ = false;
535  for (int i = 0; i < kX86Last; i++) {
536    if (X86Mir2Lir::EncodingMap[i].opcode != i) {
537      LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
538                 << " is wrong: expecting " << i << ", seeing "
539                 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
540    }
541  }
542}
543
544Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
545                          ArenaAllocator* const arena) {
546  return new X86Mir2Lir(cu, mir_graph, arena);
547}
548
549// Not used in x86
550int X86Mir2Lir::LoadHelper(ThreadOffset offset) {
551  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
552  return INVALID_REG;
553}
554
555uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
556  DCHECK(!IsPseudoLirOp(opcode));
557  return X86Mir2Lir::EncodingMap[opcode].flags;
558}
559
560const char* X86Mir2Lir::GetTargetInstName(int opcode) {
561  DCHECK(!IsPseudoLirOp(opcode));
562  return X86Mir2Lir::EncodingMap[opcode].name;
563}
564
565const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
566  DCHECK(!IsPseudoLirOp(opcode));
567  return X86Mir2Lir::EncodingMap[opcode].fmt;
568}
569
570/*
571 * Return an updated location record with current in-register status.
572 * If the value lives in live temps, reflect that fact.  No code
573 * is generated.  If the live value is part of an older pair,
574 * clobber both low and high.
575 */
576// TODO: Reunify with common code after 'pair mess' has been fixed
577RegLocation X86Mir2Lir::UpdateLocWide(RegLocation loc) {
578  DCHECK(loc.wide);
579  DCHECK(CheckCorePoolSanity());
580  if (loc.location != kLocPhysReg) {
581    DCHECK((loc.location == kLocDalvikFrame) ||
582         (loc.location == kLocCompilerTemp));
583    // Are the dalvik regs already live in physical registers?
584    RegisterInfo* info_lo = AllocLive(loc.s_reg_low, kAnyReg);
585
586    // Handle FP registers specially on x86.
587    if (info_lo && IsFpReg(info_lo->reg)) {
588      bool match = true;
589
590      // We can't match a FP register with a pair of Core registers.
591      match = match && (info_lo->pair == 0);
592
593      if (match) {
594        // We can reuse;update the register usage info.
595        loc.location = kLocPhysReg;
596        loc.vec_len = kVectorLength8;
597        // TODO: use k64BitVector
598        loc.reg = RegStorage(RegStorage::k64BitPair, info_lo->reg, info_lo->reg);
599        DCHECK(IsFpReg(loc.reg.GetReg()));
600        return loc;
601      }
602      // We can't easily reuse; clobber and free any overlaps.
603      if (info_lo) {
604        Clobber(info_lo->reg);
605        FreeTemp(info_lo->reg);
606        if (info_lo->pair)
607          Clobber(info_lo->partner);
608      }
609    } else {
610      RegisterInfo* info_hi = AllocLive(GetSRegHi(loc.s_reg_low), kAnyReg);
611      bool match = true;
612      match = match && (info_lo != NULL);
613      match = match && (info_hi != NULL);
614      // Are they both core or both FP?
615      match = match && (IsFpReg(info_lo->reg) == IsFpReg(info_hi->reg));
616      // If a pair of floating point singles, are they properly aligned?
617      if (match && IsFpReg(info_lo->reg)) {
618        match &= ((info_lo->reg & 0x1) == 0);
619        match &= ((info_hi->reg - info_lo->reg) == 1);
620      }
621      // If previously used as a pair, it is the same pair?
622      if (match && (info_lo->pair || info_hi->pair)) {
623        match = (info_lo->pair == info_hi->pair);
624        match &= ((info_lo->reg == info_hi->partner) &&
625              (info_hi->reg == info_lo->partner));
626      }
627      if (match) {
628        // Can reuse - update the register usage info
629        loc.reg = RegStorage(RegStorage::k64BitPair, info_lo->reg, info_hi->reg);
630        loc.location = kLocPhysReg;
631        MarkPair(loc.reg.GetReg(), loc.reg.GetHighReg());
632        DCHECK(!IsFpReg(loc.reg.GetReg()) || ((loc.reg.GetReg() & 0x1) == 0));
633        return loc;
634      }
635      // Can't easily reuse - clobber and free any overlaps
636      if (info_lo) {
637        Clobber(info_lo->reg);
638        FreeTemp(info_lo->reg);
639        if (info_lo->pair)
640          Clobber(info_lo->partner);
641      }
642      if (info_hi) {
643        Clobber(info_hi->reg);
644        FreeTemp(info_hi->reg);
645        if (info_hi->pair)
646          Clobber(info_hi->partner);
647      }
648    }
649  }
650  return loc;
651}
652
653// TODO: Reunify with common code after 'pair mess' has been fixed
654RegLocation X86Mir2Lir::EvalLocWide(RegLocation loc, int reg_class, bool update) {
655  DCHECK(loc.wide);
656  int32_t low_reg;
657  int32_t high_reg;
658
659  loc = UpdateLocWide(loc);
660
661  /* If it is already in a register, we can assume proper form.  Is it the right reg class? */
662  if (loc.location == kLocPhysReg) {
663    DCHECK_EQ(IsFpReg(loc.reg.GetReg()), loc.IsVectorScalar());
664    if (!RegClassMatches(reg_class, loc.reg.GetReg())) {
665      /* It is the wrong register class.  Reallocate and copy. */
666      if (!IsFpReg(loc.reg.GetReg())) {
667        // We want this in a FP reg, and it is in core registers.
668        DCHECK(reg_class != kCoreReg);
669        // Allocate this into any FP reg, and mark it with the right size.
670        low_reg = AllocTypedTemp(true, reg_class);
671        OpVectorRegCopyWide(low_reg, loc.reg.GetReg(), loc.reg.GetHighReg());
672        CopyRegInfo(low_reg, loc.reg.GetReg());
673        Clobber(loc.reg.GetReg());
674        Clobber(loc.reg.GetHighReg());
675        loc.reg.SetReg(low_reg);
676        loc.reg.SetHighReg(low_reg);  // Play nice with existing code.
677        loc.vec_len = kVectorLength8;
678      } else {
679        // The value is in a FP register, and we want it in a pair of core registers.
680        DCHECK_EQ(reg_class, kCoreReg);
681        DCHECK_EQ(loc.reg.GetReg(), loc.reg.GetHighReg());
682        RegStorage new_regs = AllocTypedTempWide(false, kCoreReg);  // Force to core registers.
683        low_reg = new_regs.GetReg();
684        high_reg = new_regs.GetHighReg();
685        DCHECK_NE(low_reg, high_reg);
686        OpRegCopyWide(low_reg, high_reg, loc.reg.GetReg(), loc.reg.GetHighReg());
687        CopyRegInfo(low_reg, loc.reg.GetReg());
688        CopyRegInfo(high_reg, loc.reg.GetHighReg());
689        Clobber(loc.reg.GetReg());
690        Clobber(loc.reg.GetHighReg());
691        loc.reg = new_regs;
692        MarkPair(loc.reg.GetReg(), loc.reg.GetHighReg());
693        DCHECK(!IsFpReg(loc.reg.GetReg()) || ((loc.reg.GetReg() & 0x1) == 0));
694      }
695    }
696    return loc;
697  }
698
699  DCHECK_NE(loc.s_reg_low, INVALID_SREG);
700  DCHECK_NE(GetSRegHi(loc.s_reg_low), INVALID_SREG);
701
702  loc.reg = AllocTypedTempWide(loc.fp, reg_class);
703
704  // FIXME: take advantage of RegStorage notation.
705  if (loc.reg.GetReg() == loc.reg.GetHighReg()) {
706    DCHECK(IsFpReg(loc.reg.GetReg()));
707    loc.vec_len = kVectorLength8;
708  } else {
709    MarkPair(loc.reg.GetReg(), loc.reg.GetHighReg());
710  }
711  if (update) {
712    loc.location = kLocPhysReg;
713    MarkLive(loc.reg.GetReg(), loc.s_reg_low);
714    if (loc.reg.GetReg() != loc.reg.GetHighReg()) {
715      MarkLive(loc.reg.GetHighReg(), GetSRegHi(loc.s_reg_low));
716    }
717  }
718  return loc;
719}
720
721// TODO: Reunify with common code after 'pair mess' has been fixed
722RegLocation X86Mir2Lir::EvalLoc(RegLocation loc, int reg_class, bool update) {
723  int new_reg;
724
725  if (loc.wide)
726    return EvalLocWide(loc, reg_class, update);
727
728  loc = UpdateLoc(loc);
729
730  if (loc.location == kLocPhysReg) {
731    if (!RegClassMatches(reg_class, loc.reg.GetReg())) {
732      /* Wrong register class.  Realloc, copy and transfer ownership. */
733      new_reg = AllocTypedTemp(loc.fp, reg_class);
734      OpRegCopy(new_reg, loc.reg.GetReg());
735      CopyRegInfo(new_reg, loc.reg.GetReg());
736      Clobber(loc.reg.GetReg());
737      loc.reg.SetReg(new_reg);
738      if (IsFpReg(loc.reg.GetReg()) && reg_class != kCoreReg)
739        loc.vec_len = kVectorLength4;
740    }
741    return loc;
742  }
743
744  DCHECK_NE(loc.s_reg_low, INVALID_SREG);
745
746  loc.reg = RegStorage(RegStorage::k32BitSolo, AllocTypedTemp(loc.fp, reg_class));
747  if (IsFpReg(loc.reg.GetReg()) && reg_class != kCoreReg)
748    loc.vec_len = kVectorLength4;
749
750  if (update) {
751    loc.location = kLocPhysReg;
752    MarkLive(loc.reg.GetReg(), loc.s_reg_low);
753  }
754  return loc;
755}
756
757int X86Mir2Lir::AllocTempDouble() {
758  // We really don't need a pair of registers.
759  return AllocTempFloat();
760}
761
762// TODO: Reunify with common code after 'pair mess' has been fixed
763void X86Mir2Lir::ResetDefLocWide(RegLocation rl) {
764  DCHECK(rl.wide);
765  RegisterInfo* p_low = IsTemp(rl.reg.GetReg());
766  if (IsFpReg(rl.reg.GetReg())) {
767    // We are using only the low register.
768    if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
769      NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
770    }
771    ResetDef(rl.reg.GetReg());
772  } else {
773    RegisterInfo* p_high = IsTemp(rl.reg.GetHighReg());
774    if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
775      DCHECK(p_low->pair);
776      NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
777    }
778    if (p_high && !(cu_->disable_opt & (1 << kSuppressLoads))) {
779      DCHECK(p_high->pair);
780    }
781    ResetDef(rl.reg.GetReg());
782    ResetDef(rl.reg.GetHighReg());
783  }
784}
785
786void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
787  // Can we do this directly to memory?
788  rl_dest = UpdateLocWide(rl_dest);
789  if ((rl_dest.location == kLocDalvikFrame) ||
790      (rl_dest.location == kLocCompilerTemp)) {
791    int32_t val_lo = Low32Bits(value);
792    int32_t val_hi = High32Bits(value);
793    int rBase = TargetReg(kSp);
794    int displacement = SRegOffset(rl_dest.s_reg_low);
795
796    LIR * store = NewLIR3(kX86Mov32MI, rBase, displacement + LOWORD_OFFSET, val_lo);
797    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
798                              false /* is_load */, true /* is64bit */);
799    store = NewLIR3(kX86Mov32MI, rBase, displacement + HIWORD_OFFSET, val_hi);
800    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
801                              false /* is_load */, true /* is64bit */);
802    return;
803  }
804
805  // Just use the standard code to do the generation.
806  Mir2Lir::GenConstWide(rl_dest, value);
807}
808
809// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
810void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
811  LOG(INFO)  << "location: " << loc.location << ','
812             << (loc.wide ? " w" : "  ")
813             << (loc.defined ? " D" : "  ")
814             << (loc.is_const ? " c" : "  ")
815             << (loc.fp ? " F" : "  ")
816             << (loc.core ? " C" : "  ")
817             << (loc.ref ? " r" : "  ")
818             << (loc.high_word ? " h" : "  ")
819             << (loc.home ? " H" : "  ")
820             << " vec_len: " << loc.vec_len
821             << ", low: " << static_cast<int>(loc.reg.GetReg())
822             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
823             << ", s_reg: " << loc.s_reg_low
824             << ", orig: " << loc.orig_sreg;
825}
826
827void X86Mir2Lir::Materialize() {
828  // A good place to put the analysis before starting.
829  AnalyzeMIR();
830
831  // Now continue with regular code generation.
832  Mir2Lir::Materialize();
833}
834
835void X86Mir2Lir::LoadMethodAddress(int dex_method_index, InvokeType type,
836                                   SpecialTargetRegister symbolic_reg) {
837  /*
838   * For x86, just generate a 32 bit move immediate instruction, that will be filled
839   * in at 'link time'.  For now, put a unique value based on target to ensure that
840   * code deduplication works.
841   */
842  const DexFile::MethodId& id = cu_->dex_file->GetMethodId(dex_method_index);
843  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
844
845  // Generate the move instruction with the unique pointer and save index and type.
846  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg),
847                     static_cast<int>(ptr), dex_method_index, type);
848  AppendLIR(move);
849  method_address_insns_.Insert(move);
850}
851
852void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
853  /*
854   * For x86, just generate a 32 bit move immediate instruction, that will be filled
855   * in at 'link time'.  For now, put a unique value based on target to ensure that
856   * code deduplication works.
857   */
858  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
859  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
860
861  // Generate the move instruction with the unique pointer and save index and type.
862  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg),
863                     static_cast<int>(ptr), type_idx);
864  AppendLIR(move);
865  class_type_address_insns_.Insert(move);
866}
867
868LIR *X86Mir2Lir::CallWithLinkerFixup(int dex_method_index, InvokeType type) {
869  /*
870   * For x86, just generate a 32 bit call relative instruction, that will be filled
871   * in at 'link time'.  For now, put a unique value based on target to ensure that
872   * code deduplication works.
873   */
874  const DexFile::MethodId& id = cu_->dex_file->GetMethodId(dex_method_index);
875  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
876
877  // Generate the call instruction with the unique pointer and save index and type.
878  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(ptr), dex_method_index,
879                     type);
880  AppendLIR(call);
881  call_method_insns_.Insert(call);
882  return call;
883}
884
885void X86Mir2Lir::InstallLiteralPools() {
886  // These are handled differently for x86.
887  DCHECK(code_literal_list_ == nullptr);
888  DCHECK(method_literal_list_ == nullptr);
889  DCHECK(class_literal_list_ == nullptr);
890
891  // Handle the fixups for methods.
892  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
893      LIR* p = method_address_insns_.Get(i);
894      DCHECK_EQ(p->opcode, kX86Mov32RI);
895      uint32_t target = p->operands[2];
896
897      // The offset to patch is the last 4 bytes of the instruction.
898      int patch_offset = p->offset + p->flags.size - 4;
899      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
900                                           cu_->method_idx, cu_->invoke_type,
901                                           target, static_cast<InvokeType>(p->operands[3]),
902                                           patch_offset);
903  }
904
905  // Handle the fixups for class types.
906  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
907      LIR* p = class_type_address_insns_.Get(i);
908      DCHECK_EQ(p->opcode, kX86Mov32RI);
909      uint32_t target = p->operands[2];
910
911      // The offset to patch is the last 4 bytes of the instruction.
912      int patch_offset = p->offset + p->flags.size - 4;
913      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
914                                          cu_->method_idx, target, patch_offset);
915  }
916
917  // And now the PC-relative calls to methods.
918  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
919      LIR* p = call_method_insns_.Get(i);
920      DCHECK_EQ(p->opcode, kX86CallI);
921      uint32_t target = p->operands[1];
922
923      // The offset to patch is the last 4 bytes of the instruction.
924      int patch_offset = p->offset + p->flags.size - 4;
925      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
926                                                 cu_->method_idx, cu_->invoke_type, target,
927                                                 static_cast<InvokeType>(p->operands[2]),
928                                                 patch_offset, -4 /* offset */);
929  }
930
931  // And do the normal processing.
932  Mir2Lir::InstallLiteralPools();
933}
934
935/*
936 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
937 * otherwise bails to standard library code.
938 */
939bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
940  ClobberCallerSave();
941  LockCallTemps();  // Using fixed registers
942
943  // EAX: 16 bit character being searched.
944  // ECX: count: number of words to be searched.
945  // EDI: String being searched.
946  // EDX: temporary during execution.
947  // EBX: temporary during execution.
948
949  RegLocation rl_obj = info->args[0];
950  RegLocation rl_char = info->args[1];
951  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
952
953  uint32_t char_value =
954    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
955
956  if (char_value > 0xFFFF) {
957    // We have to punt to the real String.indexOf.
958    return false;
959  }
960
961  // Okay, we are commited to inlining this.
962  RegLocation rl_return = GetReturn(false);
963  RegLocation rl_dest = InlineTarget(info);
964
965  // Is the string non-NULL?
966  LoadValueDirectFixed(rl_obj, rDX);
967  GenNullCheck(rl_obj.s_reg_low, rDX, info->opt_flags);
968
969  // Record that we have inlined & null checked the object.
970  info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
971
972  // Does the character fit in 16 bits?
973  LIR* launch_pad = nullptr;
974  if (rl_char.is_const) {
975    // We need the value in EAX.
976    LoadConstantNoClobber(rAX, char_value);
977  } else {
978    // Character is not a constant; compare at runtime.
979    LoadValueDirectFixed(rl_char, rAX);
980    launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
981    intrinsic_launchpads_.Insert(launch_pad);
982    OpCmpImmBranch(kCondGt, rAX, 0xFFFF, launch_pad);
983  }
984
985  // From here down, we know that we are looking for a char that fits in 16 bits.
986  // Location of reference to data array within the String object.
987  int value_offset = mirror::String::ValueOffset().Int32Value();
988  // Location of count within the String object.
989  int count_offset = mirror::String::CountOffset().Int32Value();
990  // Starting offset within data array.
991  int offset_offset = mirror::String::OffsetOffset().Int32Value();
992  // Start of char data with array_.
993  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
994
995  // Character is in EAX.
996  // Object pointer is in EDX.
997
998  // We need to preserve EDI, but have no spare registers, so push it on the stack.
999  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1000  NewLIR1(kX86Push32R, rDI);
1001
1002  // Compute the number of words to search in to rCX.
1003  LoadWordDisp(rDX, count_offset, rCX);
1004  LIR *length_compare = nullptr;
1005  int start_value = 0;
1006  if (zero_based) {
1007    // We have to handle an empty string.  Use special instruction JECXZ.
1008    length_compare = NewLIR0(kX86Jecxz8);
1009  } else {
1010    rl_start = info->args[2];
1011    // We have to offset by the start index.
1012    if (rl_start.is_const) {
1013      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1014      start_value = std::max(start_value, 0);
1015
1016      // Is the start > count?
1017      length_compare = OpCmpImmBranch(kCondLe, rCX, start_value, nullptr);
1018
1019      if (start_value != 0) {
1020        OpRegImm(kOpSub, rCX, start_value);
1021      }
1022    } else {
1023      // Runtime start index.
1024      rl_start = UpdateLoc(rl_start);
1025      if (rl_start.location == kLocPhysReg) {
1026        length_compare = OpCmpBranch(kCondLe, rCX, rl_start.reg.GetReg(), nullptr);
1027        OpRegReg(kOpSub, rCX, rl_start.reg.GetReg());
1028      } else {
1029        // Compare to memory to avoid a register load.  Handle pushed EDI.
1030        int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1031        OpRegMem(kOpCmp, rCX, rX86_SP, displacement);
1032        length_compare = NewLIR2(kX86Jcc8, 0, kX86CondLe);
1033        OpRegMem(kOpSub, rCX, rX86_SP, displacement);
1034      }
1035    }
1036  }
1037  DCHECK(length_compare != nullptr);
1038
1039  // ECX now contains the count in words to be searched.
1040
1041  // Load the address of the string into EBX.
1042  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1043  LoadWordDisp(rDX, value_offset, rDI);
1044  LoadWordDisp(rDX, offset_offset, rBX);
1045  OpLea(rBX, rDI, rBX, 1, data_offset);
1046
1047  // Now compute into EDI where the search will start.
1048  if (zero_based || rl_start.is_const) {
1049    if (start_value == 0) {
1050      OpRegCopy(rDI, rBX);
1051    } else {
1052      NewLIR3(kX86Lea32RM, rDI, rBX, 2 * start_value);
1053    }
1054  } else {
1055    if (rl_start.location == kLocPhysReg) {
1056      if (rl_start.reg.GetReg() == rDI) {
1057        // We have a slight problem here.  We are already using RDI!
1058        // Grab the value from the stack.
1059        LoadWordDisp(rX86_SP, 0, rDX);
1060        OpLea(rDI, rBX, rDX, 1, 0);
1061      } else {
1062        OpLea(rDI, rBX, rl_start.reg.GetReg(), 1, 0);
1063      }
1064    } else {
1065      OpRegCopy(rDI, rBX);
1066      // Load the start index from stack, remembering that we pushed EDI.
1067      int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1068      LoadWordDisp(rX86_SP, displacement, rDX);
1069      OpLea(rDI, rBX, rDX, 1, 0);
1070    }
1071  }
1072
1073  // EDI now contains the start of the string to be searched.
1074  // We are all prepared to do the search for the character.
1075  NewLIR0(kX86RepneScasw);
1076
1077  // Did we find a match?
1078  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1079
1080  // yes, we matched.  Compute the index of the result.
1081  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1082  OpRegReg(kOpSub, rDI, rBX);
1083  OpRegImm(kOpAsr, rDI, 1);
1084  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rDI, -1);
1085  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1086
1087  // Failed to match; return -1.
1088  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1089  length_compare->target = not_found;
1090  failed_branch->target = not_found;
1091  LoadConstantNoClobber(rl_return.reg.GetReg(), -1);
1092
1093  // And join up at the end.
1094  all_done->target = NewLIR0(kPseudoTargetLabel);
1095  // Restore EDI from the stack.
1096  NewLIR1(kX86Pop32R, rDI);
1097
1098  // Out of line code returns here.
1099  if (launch_pad != nullptr) {
1100    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1101    launch_pad->operands[2] = WrapPointer(return_point);
1102  }
1103
1104  StoreValue(rl_dest, rl_return);
1105  return true;
1106}
1107
1108/*
1109 * @brief Enter a 32 bit quantity into the FDE buffer
1110 * @param buf FDE buffer.
1111 * @param data Data value.
1112 */
1113static void PushWord(std::vector<uint8_t>&buf, int data) {
1114  buf.push_back(data & 0xff);
1115  buf.push_back((data >> 8) & 0xff);
1116  buf.push_back((data >> 16) & 0xff);
1117  buf.push_back((data >> 24) & 0xff);
1118}
1119
1120/*
1121 * @brief Enter an 'advance LOC' into the FDE buffer
1122 * @param buf FDE buffer.
1123 * @param increment Amount by which to increase the current location.
1124 */
1125static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1126  if (increment < 64) {
1127    // Encoding in opcode.
1128    buf.push_back(0x1 << 6 | increment);
1129  } else if (increment < 256) {
1130    // Single byte delta.
1131    buf.push_back(0x02);
1132    buf.push_back(increment);
1133  } else if (increment < 256 * 256) {
1134    // Two byte delta.
1135    buf.push_back(0x03);
1136    buf.push_back(increment & 0xff);
1137    buf.push_back((increment >> 8) & 0xff);
1138  } else {
1139    // Four byte delta.
1140    buf.push_back(0x04);
1141    PushWord(buf, increment);
1142  }
1143}
1144
1145
1146std::vector<uint8_t>* X86CFIInitialization() {
1147  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1148}
1149
1150std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1151  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1152
1153  // Length of the CIE (except for this field).
1154  PushWord(*cfi_info, 16);
1155
1156  // CIE id.
1157  PushWord(*cfi_info, 0xFFFFFFFFU);
1158
1159  // Version: 3.
1160  cfi_info->push_back(0x03);
1161
1162  // Augmentation: empty string.
1163  cfi_info->push_back(0x0);
1164
1165  // Code alignment: 1.
1166  cfi_info->push_back(0x01);
1167
1168  // Data alignment: -4.
1169  cfi_info->push_back(0x7C);
1170
1171  // Return address register (R8).
1172  cfi_info->push_back(0x08);
1173
1174  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1175  cfi_info->push_back(0x0C);
1176  cfi_info->push_back(0x04);
1177  cfi_info->push_back(0x04);
1178
1179  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1180  cfi_info->push_back(0x2 << 6 | 0x08);
1181  cfi_info->push_back(0x01);
1182
1183  // And 2 Noops to align to 4 byte boundary.
1184  cfi_info->push_back(0x0);
1185  cfi_info->push_back(0x0);
1186
1187  DCHECK_EQ(cfi_info->size() & 3, 0U);
1188  return cfi_info;
1189}
1190
1191static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1192  uint8_t buffer[12];
1193  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1194  for (uint8_t *p = buffer; p < ptr; p++) {
1195    buf.push_back(*p);
1196  }
1197}
1198
1199std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1200  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1201
1202  // Generate the FDE for the method.
1203  DCHECK_NE(data_offset_, 0U);
1204
1205  // Length (will be filled in later in this routine).
1206  PushWord(*cfi_info, 0);
1207
1208  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1209  // one CIE for the whole debug_frame section.
1210  PushWord(*cfi_info, 0);
1211
1212  // 'initial_location' (filled in by linker).
1213  PushWord(*cfi_info, 0);
1214
1215  // 'address_range' (number of bytes in the method).
1216  PushWord(*cfi_info, data_offset_);
1217
1218  // The instructions in the FDE.
1219  if (stack_decrement_ != nullptr) {
1220    // Advance LOC to just past the stack decrement.
1221    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1222    AdvanceLoc(*cfi_info, pc);
1223
1224    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1225    cfi_info->push_back(0x0e);
1226    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1227
1228    // We continue with that stack until the epilogue.
1229    if (stack_increment_ != nullptr) {
1230      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1231      AdvanceLoc(*cfi_info, new_pc - pc);
1232
1233      // We probably have code snippets after the epilogue, so save the
1234      // current state: DW_CFA_remember_state.
1235      cfi_info->push_back(0x0a);
1236
1237      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1238      // PC on the stack now.
1239      cfi_info->push_back(0x0e);
1240      EncodeUnsignedLeb128(*cfi_info, 4);
1241
1242      // Everything after that is the same as before the epilogue.
1243      // Stack bump was followed by RET instruction.
1244      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1245      if (post_ret_insn != nullptr) {
1246        pc = new_pc;
1247        new_pc = post_ret_insn->offset;
1248        AdvanceLoc(*cfi_info, new_pc - pc);
1249        // Restore the state: DW_CFA_restore_state.
1250        cfi_info->push_back(0x0b);
1251      }
1252    }
1253  }
1254
1255  // Padding to a multiple of 4
1256  while ((cfi_info->size() & 3) != 0) {
1257    // DW_CFA_nop is encoded as 0.
1258    cfi_info->push_back(0);
1259  }
1260
1261  // Set the length of the FDE inside the generated bytes.
1262  uint32_t length = cfi_info->size() - 4;
1263  (*cfi_info)[0] = length;
1264  (*cfi_info)[1] = length >> 8;
1265  (*cfi_info)[2] = length >> 16;
1266  (*cfi_info)[3] = length >> 24;
1267  return cfi_info;
1268}
1269
1270}  // namespace art
1271