target_x86.cc revision 5192cbb12856b12620dc346758605baaa1469ced
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "mirror/array.h"
24#include "mirror/string.h"
25#include "x86_lir.h"
26
27namespace art {
28
29static constexpr RegStorage core_regs_arr_32[] = {
30    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
31};
32static constexpr RegStorage core_regs_arr_64[] = {
33    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
34    rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
35};
36static constexpr RegStorage core_regs_arr_64q[] = {
37    rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
38    rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
39};
40static constexpr RegStorage sp_regs_arr_32[] = {
41    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
42};
43static constexpr RegStorage sp_regs_arr_64[] = {
44    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
45    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
46};
47static constexpr RegStorage dp_regs_arr_32[] = {
48    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
49};
50static constexpr RegStorage dp_regs_arr_64[] = {
51    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
52    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
53};
54static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
55static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
56static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
57static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
58static constexpr RegStorage core_temps_arr_64[] = {
59    rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
60    rs_r8, rs_r9, rs_r10, rs_r11
61};
62static constexpr RegStorage core_temps_arr_64q[] = {
63    rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
64    rs_r8q, rs_r9q, rs_r10q, rs_r11q
65};
66static constexpr RegStorage sp_temps_arr_32[] = {
67    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
68};
69static constexpr RegStorage sp_temps_arr_64[] = {
70    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
71    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
72};
73static constexpr RegStorage dp_temps_arr_32[] = {
74    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
75};
76static constexpr RegStorage dp_temps_arr_64[] = {
77    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
78    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
79};
80
81static constexpr RegStorage xp_temps_arr_32[] = {
82    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
83};
84static constexpr RegStorage xp_temps_arr_64[] = {
85    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
86    rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
87};
88
89static constexpr ArrayRef<const RegStorage> empty_pool;
90static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
91static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
92static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
93static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
94static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
95static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
96static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
97static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
98static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
99static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
100static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
101static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
102static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
103static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
104static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
105static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
106static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
107
108static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
109static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
110
111RegStorage rs_rX86_SP;
112
113X86NativeRegisterPool rX86_ARG0;
114X86NativeRegisterPool rX86_ARG1;
115X86NativeRegisterPool rX86_ARG2;
116X86NativeRegisterPool rX86_ARG3;
117X86NativeRegisterPool rX86_ARG4;
118X86NativeRegisterPool rX86_ARG5;
119X86NativeRegisterPool rX86_FARG0;
120X86NativeRegisterPool rX86_FARG1;
121X86NativeRegisterPool rX86_FARG2;
122X86NativeRegisterPool rX86_FARG3;
123X86NativeRegisterPool rX86_FARG4;
124X86NativeRegisterPool rX86_FARG5;
125X86NativeRegisterPool rX86_FARG6;
126X86NativeRegisterPool rX86_FARG7;
127X86NativeRegisterPool rX86_RET0;
128X86NativeRegisterPool rX86_RET1;
129X86NativeRegisterPool rX86_INVOKE_TGT;
130X86NativeRegisterPool rX86_COUNT;
131
132RegStorage rs_rX86_ARG0;
133RegStorage rs_rX86_ARG1;
134RegStorage rs_rX86_ARG2;
135RegStorage rs_rX86_ARG3;
136RegStorage rs_rX86_ARG4;
137RegStorage rs_rX86_ARG5;
138RegStorage rs_rX86_FARG0;
139RegStorage rs_rX86_FARG1;
140RegStorage rs_rX86_FARG2;
141RegStorage rs_rX86_FARG3;
142RegStorage rs_rX86_FARG4;
143RegStorage rs_rX86_FARG5;
144RegStorage rs_rX86_FARG6;
145RegStorage rs_rX86_FARG7;
146RegStorage rs_rX86_RET0;
147RegStorage rs_rX86_RET1;
148RegStorage rs_rX86_INVOKE_TGT;
149RegStorage rs_rX86_COUNT;
150
151RegLocation X86Mir2Lir::LocCReturn() {
152  return x86_loc_c_return;
153}
154
155RegLocation X86Mir2Lir::LocCReturnRef() {
156  // FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
157  return x86_loc_c_return;
158}
159
160RegLocation X86Mir2Lir::LocCReturnWide() {
161  return Gen64Bit() ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
162}
163
164RegLocation X86Mir2Lir::LocCReturnFloat() {
165  return x86_loc_c_return_float;
166}
167
168RegLocation X86Mir2Lir::LocCReturnDouble() {
169  return x86_loc_c_return_double;
170}
171
172// Return a target-dependent special register.
173RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
174  RegStorage res_reg = RegStorage::InvalidReg();
175  switch (reg) {
176    case kSelf: res_reg = RegStorage::InvalidReg(); break;
177    case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
178    case kLr: res_reg =  RegStorage::InvalidReg(); break;
179    case kPc: res_reg =  RegStorage::InvalidReg(); break;
180    case kSp: res_reg =  rs_rX86_SP; break;
181    case kArg0: res_reg = rs_rX86_ARG0; break;
182    case kArg1: res_reg = rs_rX86_ARG1; break;
183    case kArg2: res_reg = rs_rX86_ARG2; break;
184    case kArg3: res_reg = rs_rX86_ARG3; break;
185    case kArg4: res_reg = rs_rX86_ARG4; break;
186    case kArg5: res_reg = rs_rX86_ARG5; break;
187    case kFArg0: res_reg = rs_rX86_FARG0; break;
188    case kFArg1: res_reg = rs_rX86_FARG1; break;
189    case kFArg2: res_reg = rs_rX86_FARG2; break;
190    case kFArg3: res_reg = rs_rX86_FARG3; break;
191    case kFArg4: res_reg = rs_rX86_FARG4; break;
192    case kFArg5: res_reg = rs_rX86_FARG5; break;
193    case kFArg6: res_reg = rs_rX86_FARG6; break;
194    case kFArg7: res_reg = rs_rX86_FARG7; break;
195    case kRet0: res_reg = rs_rX86_RET0; break;
196    case kRet1: res_reg = rs_rX86_RET1; break;
197    case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
198    case kHiddenArg: res_reg = rs_rAX; break;
199    case kHiddenFpArg: DCHECK(!Gen64Bit()); res_reg = rs_fr0; break;
200    case kCount: res_reg = rs_rX86_COUNT; break;
201    default: res_reg = RegStorage::InvalidReg();
202  }
203  return res_reg;
204}
205
206/*
207 * Decode the register id.
208 */
209ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
210  /* Double registers in x86 are just a single FP register. This is always just a single bit. */
211  return ResourceMask::Bit(
212      /* FP register starts at bit position 16 */
213      ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
214}
215
216ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
217  /*
218   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
219   * able to clean up some of the x86/Arm_Mips differences
220   */
221  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
222  return kEncodeNone;
223}
224
225void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
226                                          ResourceMask* use_mask, ResourceMask* def_mask) {
227  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
228  DCHECK(!lir->flags.use_def_invalid);
229
230  // X86-specific resource map setup here.
231  if (flags & REG_USE_SP) {
232    use_mask->SetBit(kX86RegSP);
233  }
234
235  if (flags & REG_DEF_SP) {
236    def_mask->SetBit(kX86RegSP);
237  }
238
239  if (flags & REG_DEFA) {
240    SetupRegMask(def_mask, rs_rAX.GetReg());
241  }
242
243  if (flags & REG_DEFD) {
244    SetupRegMask(def_mask, rs_rDX.GetReg());
245  }
246  if (flags & REG_USEA) {
247    SetupRegMask(use_mask, rs_rAX.GetReg());
248  }
249
250  if (flags & REG_USEC) {
251    SetupRegMask(use_mask, rs_rCX.GetReg());
252  }
253
254  if (flags & REG_USED) {
255    SetupRegMask(use_mask, rs_rDX.GetReg());
256  }
257
258  if (flags & REG_USEB) {
259    SetupRegMask(use_mask, rs_rBX.GetReg());
260  }
261
262  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
263  if (lir->opcode == kX86RepneScasw) {
264    SetupRegMask(use_mask, rs_rAX.GetReg());
265    SetupRegMask(use_mask, rs_rCX.GetReg());
266    SetupRegMask(use_mask, rs_rDI.GetReg());
267    SetupRegMask(def_mask, rs_rDI.GetReg());
268  }
269
270  if (flags & USE_FP_STACK) {
271    use_mask->SetBit(kX86FPStack);
272    def_mask->SetBit(kX86FPStack);
273  }
274}
275
276/* For dumping instructions */
277static const char* x86RegName[] = {
278  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
279  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
280};
281
282static const char* x86CondName[] = {
283  "O",
284  "NO",
285  "B/NAE/C",
286  "NB/AE/NC",
287  "Z/EQ",
288  "NZ/NE",
289  "BE/NA",
290  "NBE/A",
291  "S",
292  "NS",
293  "P/PE",
294  "NP/PO",
295  "L/NGE",
296  "NL/GE",
297  "LE/NG",
298  "NLE/G"
299};
300
301/*
302 * Interpret a format string and build a string no longer than size
303 * See format key in Assemble.cc.
304 */
305std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
306  std::string buf;
307  size_t i = 0;
308  size_t fmt_len = strlen(fmt);
309  while (i < fmt_len) {
310    if (fmt[i] != '!') {
311      buf += fmt[i];
312      i++;
313    } else {
314      i++;
315      DCHECK_LT(i, fmt_len);
316      char operand_number_ch = fmt[i];
317      i++;
318      if (operand_number_ch == '!') {
319        buf += "!";
320      } else {
321        int operand_number = operand_number_ch - '0';
322        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
323        DCHECK_LT(i, fmt_len);
324        int operand = lir->operands[operand_number];
325        switch (fmt[i]) {
326          case 'c':
327            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
328            buf += x86CondName[operand];
329            break;
330          case 'd':
331            buf += StringPrintf("%d", operand);
332            break;
333          case 'q': {
334             int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
335                             static_cast<uint32_t>(lir->operands[operand_number+1]));
336             buf +=StringPrintf("%" PRId64, value);
337          }
338          case 'p': {
339            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
340            buf += StringPrintf("0x%08x", tab_rec->offset);
341            break;
342          }
343          case 'r':
344            if (RegStorage::IsFloat(operand)) {
345              int fp_reg = RegStorage::RegNum(operand);
346              buf += StringPrintf("xmm%d", fp_reg);
347            } else {
348              int reg_num = RegStorage::RegNum(operand);
349              DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
350              buf += x86RegName[reg_num];
351            }
352            break;
353          case 't':
354            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
355                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
356                                lir->target);
357            break;
358          default:
359            buf += StringPrintf("DecodeError '%c'", fmt[i]);
360            break;
361        }
362        i++;
363      }
364    }
365  }
366  return buf;
367}
368
369void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
370  char buf[256];
371  buf[0] = 0;
372
373  if (mask.Equals(kEncodeAll)) {
374    strcpy(buf, "all");
375  } else {
376    char num[8];
377    int i;
378
379    for (i = 0; i < kX86RegEnd; i++) {
380      if (mask.HasBit(i)) {
381        snprintf(num, arraysize(num), "%d ", i);
382        strcat(buf, num);
383      }
384    }
385
386    if (mask.HasBit(ResourceMask::kCCode)) {
387      strcat(buf, "cc ");
388    }
389    /* Memory bits */
390    if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
391      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
392               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
393               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
394    }
395    if (mask.HasBit(ResourceMask::kLiteral)) {
396      strcat(buf, "lit ");
397    }
398
399    if (mask.HasBit(ResourceMask::kHeapRef)) {
400      strcat(buf, "heap ");
401    }
402    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
403      strcat(buf, "noalias ");
404    }
405  }
406  if (buf[0]) {
407    LOG(INFO) << prefix << ": " <<  buf;
408  }
409}
410
411void X86Mir2Lir::AdjustSpillMask() {
412  // Adjustment for LR spilling, x86 has no LR so nothing to do here
413  core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
414  num_core_spills_++;
415}
416
417/*
418 * Mark a callee-save fp register as promoted.  Note that
419 * vpush/vpop uses contiguous register lists so we must
420 * include any holes in the mask.  Associate holes with
421 * Dalvik register INVALID_VREG (0xFFFFU).
422 */
423void X86Mir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
424  UNIMPLEMENTED(FATAL) << "MarkPreservedSingle";
425}
426
427void X86Mir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
428  UNIMPLEMENTED(FATAL) << "MarkPreservedDouble";
429}
430
431RegStorage X86Mir2Lir::AllocateByteRegister() {
432  RegStorage reg = AllocTypedTemp(false, kCoreReg);
433  if (!Gen64Bit()) {
434    DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
435  }
436  return reg;
437}
438
439bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
440  return Gen64Bit() || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
441}
442
443/* Clobber all regs that might be used by an external C call */
444void X86Mir2Lir::ClobberCallerSave() {
445  Clobber(rs_rAX);
446  Clobber(rs_rCX);
447  Clobber(rs_rDX);
448  Clobber(rs_rBX);
449
450  Clobber(rs_fr0);
451  Clobber(rs_fr1);
452  Clobber(rs_fr2);
453  Clobber(rs_fr3);
454  Clobber(rs_fr4);
455  Clobber(rs_fr5);
456  Clobber(rs_fr6);
457  Clobber(rs_fr7);
458
459  if (Gen64Bit()) {
460    Clobber(rs_r8);
461    Clobber(rs_r9);
462    Clobber(rs_r10);
463    Clobber(rs_r11);
464
465    Clobber(rs_fr8);
466    Clobber(rs_fr9);
467    Clobber(rs_fr10);
468    Clobber(rs_fr11);
469    Clobber(rs_fr12);
470    Clobber(rs_fr13);
471    Clobber(rs_fr14);
472    Clobber(rs_fr15);
473  }
474}
475
476RegLocation X86Mir2Lir::GetReturnWideAlt() {
477  RegLocation res = LocCReturnWide();
478  DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
479  DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
480  Clobber(rs_rAX);
481  Clobber(rs_rDX);
482  MarkInUse(rs_rAX);
483  MarkInUse(rs_rDX);
484  MarkWide(res.reg);
485  return res;
486}
487
488RegLocation X86Mir2Lir::GetReturnAlt() {
489  RegLocation res = LocCReturn();
490  res.reg.SetReg(rs_rDX.GetReg());
491  Clobber(rs_rDX);
492  MarkInUse(rs_rDX);
493  return res;
494}
495
496/* To be used when explicitly managing register use */
497void X86Mir2Lir::LockCallTemps() {
498  LockTemp(rs_rX86_ARG0);
499  LockTemp(rs_rX86_ARG1);
500  LockTemp(rs_rX86_ARG2);
501  LockTemp(rs_rX86_ARG3);
502  if (Gen64Bit()) {
503    LockTemp(rs_rX86_ARG4);
504    LockTemp(rs_rX86_ARG5);
505    LockTemp(rs_rX86_FARG0);
506    LockTemp(rs_rX86_FARG1);
507    LockTemp(rs_rX86_FARG2);
508    LockTemp(rs_rX86_FARG3);
509    LockTemp(rs_rX86_FARG4);
510    LockTemp(rs_rX86_FARG5);
511    LockTemp(rs_rX86_FARG6);
512    LockTemp(rs_rX86_FARG7);
513  }
514}
515
516/* To be used when explicitly managing register use */
517void X86Mir2Lir::FreeCallTemps() {
518  FreeTemp(rs_rX86_ARG0);
519  FreeTemp(rs_rX86_ARG1);
520  FreeTemp(rs_rX86_ARG2);
521  FreeTemp(rs_rX86_ARG3);
522  if (Gen64Bit()) {
523    FreeTemp(rs_rX86_ARG4);
524    FreeTemp(rs_rX86_ARG5);
525    FreeTemp(rs_rX86_FARG0);
526    FreeTemp(rs_rX86_FARG1);
527    FreeTemp(rs_rX86_FARG2);
528    FreeTemp(rs_rX86_FARG3);
529    FreeTemp(rs_rX86_FARG4);
530    FreeTemp(rs_rX86_FARG5);
531    FreeTemp(rs_rX86_FARG6);
532    FreeTemp(rs_rX86_FARG7);
533  }
534}
535
536bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
537    switch (opcode) {
538      case kX86LockCmpxchgMR:
539      case kX86LockCmpxchgAR:
540      case kX86LockCmpxchg64M:
541      case kX86LockCmpxchg64A:
542      case kX86XchgMR:
543      case kX86Mfence:
544        // Atomic memory instructions provide full barrier.
545        return true;
546      default:
547        break;
548    }
549
550    // Conservative if cannot prove it provides full barrier.
551    return false;
552}
553
554bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
555#if ANDROID_SMP != 0
556  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
557  LIR* mem_barrier = last_lir_insn_;
558
559  bool ret = false;
560  /*
561   * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
562   * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
563   * to ensure is that there is a scheduling barrier in place.
564   */
565  if (barrier_kind == kStoreLoad) {
566    // If no LIR exists already that can be used a barrier, then generate an mfence.
567    if (mem_barrier == nullptr) {
568      mem_barrier = NewLIR0(kX86Mfence);
569      ret = true;
570    }
571
572    // If last instruction does not provide full barrier, then insert an mfence.
573    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
574      mem_barrier = NewLIR0(kX86Mfence);
575      ret = true;
576    }
577  }
578
579  // Now ensure that a scheduling barrier is in place.
580  if (mem_barrier == nullptr) {
581    GenBarrier();
582  } else {
583    // Mark as a scheduling barrier.
584    DCHECK(!mem_barrier->flags.use_def_invalid);
585    mem_barrier->u.m.def_mask = &kEncodeAll;
586  }
587  return ret;
588#else
589  return false;
590#endif
591}
592
593void X86Mir2Lir::CompilerInitializeRegAlloc() {
594  if (Gen64Bit()) {
595    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
596                                          dp_regs_64, reserved_regs_64, reserved_regs_64q,
597                                          core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
598  } else {
599    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
600                                          dp_regs_32, reserved_regs_32, empty_pool,
601                                          core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
602  }
603
604  // Target-specific adjustments.
605
606  // Add in XMM registers.
607  const ArrayRef<const RegStorage> *xp_temps = Gen64Bit() ? &xp_temps_64 : &xp_temps_32;
608  for (RegStorage reg : *xp_temps) {
609    RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
610    reginfo_map_.Put(reg.GetReg(), info);
611    info->SetIsTemp(true);
612  }
613
614  // Alias single precision xmm to double xmms.
615  // TODO: as needed, add larger vector sizes - alias all to the largest.
616  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
617  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
618    int sp_reg_num = info->GetReg().GetRegNum();
619    RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
620    RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
621    // 128-bit xmm vector register's master storage should refer to itself.
622    DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
623
624    // Redirect 32-bit vector's master storage to 128-bit vector.
625    info->SetMaster(xp_reg_info);
626
627    RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
628    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
629    // Redirect 64-bit vector's master storage to 128-bit vector.
630    dp_reg_info->SetMaster(xp_reg_info);
631    // Singles should show a single 32-bit mask bit, at first referring to the low half.
632    DCHECK_EQ(info->StorageMask(), 0x1U);
633  }
634
635  if (Gen64Bit()) {
636    // Alias 32bit W registers to corresponding 64bit X registers.
637    GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
638    for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
639      int x_reg_num = info->GetReg().GetRegNum();
640      RegStorage x_reg = RegStorage::Solo64(x_reg_num);
641      RegisterInfo* x_reg_info = GetRegInfo(x_reg);
642      // 64bit X register's master storage should refer to itself.
643      DCHECK_EQ(x_reg_info, x_reg_info->Master());
644      // Redirect 32bit W master storage to 64bit X.
645      info->SetMaster(x_reg_info);
646      // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
647      DCHECK_EQ(info->StorageMask(), 0x1U);
648    }
649  }
650
651  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
652  // TODO: adjust for x86/hard float calling convention.
653  reg_pool_->next_core_reg_ = 2;
654  reg_pool_->next_sp_reg_ = 2;
655  reg_pool_->next_dp_reg_ = 1;
656}
657
658void X86Mir2Lir::SpillCoreRegs() {
659  if (num_core_spills_ == 0) {
660    return;
661  }
662  // Spill mask not including fake return address register
663  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
664  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
665  for (int reg = 0; mask; mask >>= 1, reg++) {
666    if (mask & 0x1) {
667      StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
668      offset += GetInstructionSetPointerSize(cu_->instruction_set);
669    }
670  }
671}
672
673void X86Mir2Lir::UnSpillCoreRegs() {
674  if (num_core_spills_ == 0) {
675    return;
676  }
677  // Spill mask not including fake return address register
678  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
679  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
680  for (int reg = 0; mask; mask >>= 1, reg++) {
681    if (mask & 0x1) {
682      LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
683      offset += GetInstructionSetPointerSize(cu_->instruction_set);
684    }
685  }
686}
687
688bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
689  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
690}
691
692bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
693  return true;
694}
695
696RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
697  // X86_64 can handle any size.
698  if (Gen64Bit()) {
699    if (size == kReference) {
700      return kRefReg;
701    }
702    return kCoreReg;
703  }
704
705  if (UNLIKELY(is_volatile)) {
706    // On x86, atomic 64-bit load/store requires an fp register.
707    // Smaller aligned load/store is atomic for both core and fp registers.
708    if (size == k64 || size == kDouble) {
709      return kFPReg;
710    }
711  }
712  return RegClassBySize(size);
713}
714
715X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit)
716    : Mir2Lir(cu, mir_graph, arena),
717      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
718      method_address_insns_(arena, 100, kGrowableArrayMisc),
719      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
720      call_method_insns_(arena, 100, kGrowableArrayMisc),
721      stack_decrement_(nullptr), stack_increment_(nullptr), gen64bit_(gen64bit),
722      const_vectors_(nullptr) {
723  store_method_addr_used_ = false;
724  if (kIsDebugBuild) {
725    for (int i = 0; i < kX86Last; i++) {
726      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
727        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
728                   << " is wrong: expecting " << i << ", seeing "
729                   << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
730      }
731    }
732  }
733  if (Gen64Bit()) {
734    rs_rX86_SP = rs_rX86_SP_64;
735
736    rs_rX86_ARG0 = rs_rDI;
737    rs_rX86_ARG1 = rs_rSI;
738    rs_rX86_ARG2 = rs_rDX;
739    rs_rX86_ARG3 = rs_rCX;
740    rs_rX86_ARG4 = rs_r8;
741    rs_rX86_ARG5 = rs_r9;
742    rs_rX86_FARG0 = rs_fr0;
743    rs_rX86_FARG1 = rs_fr1;
744    rs_rX86_FARG2 = rs_fr2;
745    rs_rX86_FARG3 = rs_fr3;
746    rs_rX86_FARG4 = rs_fr4;
747    rs_rX86_FARG5 = rs_fr5;
748    rs_rX86_FARG6 = rs_fr6;
749    rs_rX86_FARG7 = rs_fr7;
750    rX86_ARG0 = rDI;
751    rX86_ARG1 = rSI;
752    rX86_ARG2 = rDX;
753    rX86_ARG3 = rCX;
754    rX86_ARG4 = r8;
755    rX86_ARG5 = r9;
756    rX86_FARG0 = fr0;
757    rX86_FARG1 = fr1;
758    rX86_FARG2 = fr2;
759    rX86_FARG3 = fr3;
760    rX86_FARG4 = fr4;
761    rX86_FARG5 = fr5;
762    rX86_FARG6 = fr6;
763    rX86_FARG7 = fr7;
764    rs_rX86_INVOKE_TGT = rs_rDI;
765  } else {
766    rs_rX86_SP = rs_rX86_SP_32;
767
768    rs_rX86_ARG0 = rs_rAX;
769    rs_rX86_ARG1 = rs_rCX;
770    rs_rX86_ARG2 = rs_rDX;
771    rs_rX86_ARG3 = rs_rBX;
772    rs_rX86_ARG4 = RegStorage::InvalidReg();
773    rs_rX86_ARG5 = RegStorage::InvalidReg();
774    rs_rX86_FARG0 = rs_rAX;
775    rs_rX86_FARG1 = rs_rCX;
776    rs_rX86_FARG2 = rs_rDX;
777    rs_rX86_FARG3 = rs_rBX;
778    rs_rX86_FARG4 = RegStorage::InvalidReg();
779    rs_rX86_FARG5 = RegStorage::InvalidReg();
780    rs_rX86_FARG6 = RegStorage::InvalidReg();
781    rs_rX86_FARG7 = RegStorage::InvalidReg();
782    rX86_ARG0 = rAX;
783    rX86_ARG1 = rCX;
784    rX86_ARG2 = rDX;
785    rX86_ARG3 = rBX;
786    rX86_FARG0 = rAX;
787    rX86_FARG1 = rCX;
788    rX86_FARG2 = rDX;
789    rX86_FARG3 = rBX;
790    rs_rX86_INVOKE_TGT = rs_rAX;
791    // TODO(64): Initialize with invalid reg
792//    rX86_ARG4 = RegStorage::InvalidReg();
793//    rX86_ARG5 = RegStorage::InvalidReg();
794  }
795  rs_rX86_RET0 = rs_rAX;
796  rs_rX86_RET1 = rs_rDX;
797  rs_rX86_COUNT = rs_rCX;
798  rX86_RET0 = rAX;
799  rX86_RET1 = rDX;
800  rX86_INVOKE_TGT = rAX;
801  rX86_COUNT = rCX;
802}
803
804Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
805                          ArenaAllocator* const arena) {
806  return new X86Mir2Lir(cu, mir_graph, arena, false);
807}
808
809Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
810                          ArenaAllocator* const arena) {
811  return new X86Mir2Lir(cu, mir_graph, arena, true);
812}
813
814// Not used in x86
815RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
816  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
817  return RegStorage::InvalidReg();
818}
819
820// Not used in x86
821RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
822  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
823  return RegStorage::InvalidReg();
824}
825
826LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
827  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
828  return nullptr;
829}
830
831uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
832  DCHECK(!IsPseudoLirOp(opcode));
833  return X86Mir2Lir::EncodingMap[opcode].flags;
834}
835
836const char* X86Mir2Lir::GetTargetInstName(int opcode) {
837  DCHECK(!IsPseudoLirOp(opcode));
838  return X86Mir2Lir::EncodingMap[opcode].name;
839}
840
841const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
842  DCHECK(!IsPseudoLirOp(opcode));
843  return X86Mir2Lir::EncodingMap[opcode].fmt;
844}
845
846void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
847  // Can we do this directly to memory?
848  rl_dest = UpdateLocWide(rl_dest);
849  if ((rl_dest.location == kLocDalvikFrame) ||
850      (rl_dest.location == kLocCompilerTemp)) {
851    int32_t val_lo = Low32Bits(value);
852    int32_t val_hi = High32Bits(value);
853    int r_base = TargetReg(kSp).GetReg();
854    int displacement = SRegOffset(rl_dest.s_reg_low);
855
856    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
857    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
858    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
859                              false /* is_load */, true /* is64bit */);
860    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
861    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
862                              false /* is_load */, true /* is64bit */);
863    return;
864  }
865
866  // Just use the standard code to do the generation.
867  Mir2Lir::GenConstWide(rl_dest, value);
868}
869
870// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
871void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
872  LOG(INFO)  << "location: " << loc.location << ','
873             << (loc.wide ? " w" : "  ")
874             << (loc.defined ? " D" : "  ")
875             << (loc.is_const ? " c" : "  ")
876             << (loc.fp ? " F" : "  ")
877             << (loc.core ? " C" : "  ")
878             << (loc.ref ? " r" : "  ")
879             << (loc.high_word ? " h" : "  ")
880             << (loc.home ? " H" : "  ")
881             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
882             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
883             << ", s_reg: " << loc.s_reg_low
884             << ", orig: " << loc.orig_sreg;
885}
886
887void X86Mir2Lir::Materialize() {
888  // A good place to put the analysis before starting.
889  AnalyzeMIR();
890
891  // Now continue with regular code generation.
892  Mir2Lir::Materialize();
893}
894
895void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
896                                   SpecialTargetRegister symbolic_reg) {
897  /*
898   * For x86, just generate a 32 bit move immediate instruction, that will be filled
899   * in at 'link time'.  For now, put a unique value based on target to ensure that
900   * code deduplication works.
901   */
902  int target_method_idx = target_method.dex_method_index;
903  const DexFile* target_dex_file = target_method.dex_file;
904  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
905  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
906
907  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
908  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
909                     static_cast<int>(target_method_id_ptr), target_method_idx,
910                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
911  AppendLIR(move);
912  method_address_insns_.Insert(move);
913}
914
915void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
916  /*
917   * For x86, just generate a 32 bit move immediate instruction, that will be filled
918   * in at 'link time'.  For now, put a unique value based on target to ensure that
919   * code deduplication works.
920   */
921  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
922  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
923
924  // Generate the move instruction with the unique pointer and save index and type.
925  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
926                     static_cast<int>(ptr), type_idx);
927  AppendLIR(move);
928  class_type_address_insns_.Insert(move);
929}
930
931LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
932  /*
933   * For x86, just generate a 32 bit call relative instruction, that will be filled
934   * in at 'link time'.  For now, put a unique value based on target to ensure that
935   * code deduplication works.
936   */
937  int target_method_idx = target_method.dex_method_index;
938  const DexFile* target_dex_file = target_method.dex_file;
939  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
940  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
941
942  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
943  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
944                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
945  AppendLIR(call);
946  call_method_insns_.Insert(call);
947  return call;
948}
949
950/*
951 * @brief Enter a 32 bit quantity into a buffer
952 * @param buf buffer.
953 * @param data Data value.
954 */
955
956static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
957  buf.push_back(data & 0xff);
958  buf.push_back((data >> 8) & 0xff);
959  buf.push_back((data >> 16) & 0xff);
960  buf.push_back((data >> 24) & 0xff);
961}
962
963void X86Mir2Lir::InstallLiteralPools() {
964  // These are handled differently for x86.
965  DCHECK(code_literal_list_ == nullptr);
966  DCHECK(method_literal_list_ == nullptr);
967  DCHECK(class_literal_list_ == nullptr);
968
969  // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
970  // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
971  // will fail at runtime)?
972  if (const_vectors_ != nullptr) {
973    int align_size = (16-4) - (code_buffer_.size() & 0xF);
974    if (align_size < 0) {
975      align_size += 16;
976    }
977
978    while (align_size > 0) {
979      code_buffer_.push_back(0);
980      align_size--;
981    }
982    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
983      PushWord(code_buffer_, p->operands[0]);
984      PushWord(code_buffer_, p->operands[1]);
985      PushWord(code_buffer_, p->operands[2]);
986      PushWord(code_buffer_, p->operands[3]);
987    }
988  }
989
990  // Handle the fixups for methods.
991  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
992      LIR* p = method_address_insns_.Get(i);
993      DCHECK_EQ(p->opcode, kX86Mov32RI);
994      uint32_t target_method_idx = p->operands[2];
995      const DexFile* target_dex_file =
996          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
997
998      // The offset to patch is the last 4 bytes of the instruction.
999      int patch_offset = p->offset + p->flags.size - 4;
1000      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
1001                                           cu_->method_idx, cu_->invoke_type,
1002                                           target_method_idx, target_dex_file,
1003                                           static_cast<InvokeType>(p->operands[4]),
1004                                           patch_offset);
1005  }
1006
1007  // Handle the fixups for class types.
1008  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
1009      LIR* p = class_type_address_insns_.Get(i);
1010      DCHECK_EQ(p->opcode, kX86Mov32RI);
1011      uint32_t target_method_idx = p->operands[2];
1012
1013      // The offset to patch is the last 4 bytes of the instruction.
1014      int patch_offset = p->offset + p->flags.size - 4;
1015      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
1016                                          cu_->method_idx, target_method_idx, patch_offset);
1017  }
1018
1019  // And now the PC-relative calls to methods.
1020  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1021      LIR* p = call_method_insns_.Get(i);
1022      DCHECK_EQ(p->opcode, kX86CallI);
1023      uint32_t target_method_idx = p->operands[1];
1024      const DexFile* target_dex_file =
1025          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1026
1027      // The offset to patch is the last 4 bytes of the instruction.
1028      int patch_offset = p->offset + p->flags.size - 4;
1029      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1030                                                 cu_->method_idx, cu_->invoke_type,
1031                                                 target_method_idx, target_dex_file,
1032                                                 static_cast<InvokeType>(p->operands[3]),
1033                                                 patch_offset, -4 /* offset */);
1034  }
1035
1036  // And do the normal processing.
1037  Mir2Lir::InstallLiteralPools();
1038}
1039
1040/*
1041 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1042 * otherwise bails to standard library code.
1043 */
1044bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1045  ClobberCallerSave();
1046  LockCallTemps();  // Using fixed registers
1047
1048  // EAX: 16 bit character being searched.
1049  // ECX: count: number of words to be searched.
1050  // EDI: String being searched.
1051  // EDX: temporary during execution.
1052  // EBX: temporary during execution.
1053
1054  RegLocation rl_obj = info->args[0];
1055  RegLocation rl_char = info->args[1];
1056  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1057
1058  uint32_t char_value =
1059    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1060
1061  if (char_value > 0xFFFF) {
1062    // We have to punt to the real String.indexOf.
1063    return false;
1064  }
1065
1066  // Okay, we are commited to inlining this.
1067  RegLocation rl_return = GetReturn(kCoreReg);
1068  RegLocation rl_dest = InlineTarget(info);
1069
1070  // Is the string non-NULL?
1071  LoadValueDirectFixed(rl_obj, rs_rDX);
1072  GenNullCheck(rs_rDX, info->opt_flags);
1073  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1074
1075  // Does the character fit in 16 bits?
1076  LIR* slowpath_branch = nullptr;
1077  if (rl_char.is_const) {
1078    // We need the value in EAX.
1079    LoadConstantNoClobber(rs_rAX, char_value);
1080  } else {
1081    // Character is not a constant; compare at runtime.
1082    LoadValueDirectFixed(rl_char, rs_rAX);
1083    slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1084  }
1085
1086  // From here down, we know that we are looking for a char that fits in 16 bits.
1087  // Location of reference to data array within the String object.
1088  int value_offset = mirror::String::ValueOffset().Int32Value();
1089  // Location of count within the String object.
1090  int count_offset = mirror::String::CountOffset().Int32Value();
1091  // Starting offset within data array.
1092  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1093  // Start of char data with array_.
1094  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1095
1096  // Character is in EAX.
1097  // Object pointer is in EDX.
1098
1099  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1100  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1101  NewLIR1(kX86Push32R, rs_rDI.GetReg());
1102
1103  // Compute the number of words to search in to rCX.
1104  Load32Disp(rs_rDX, count_offset, rs_rCX);
1105  LIR *length_compare = nullptr;
1106  int start_value = 0;
1107  bool is_index_on_stack = false;
1108  if (zero_based) {
1109    // We have to handle an empty string.  Use special instruction JECXZ.
1110    length_compare = NewLIR0(kX86Jecxz8);
1111  } else {
1112    rl_start = info->args[2];
1113    // We have to offset by the start index.
1114    if (rl_start.is_const) {
1115      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1116      start_value = std::max(start_value, 0);
1117
1118      // Is the start > count?
1119      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1120
1121      if (start_value != 0) {
1122        OpRegImm(kOpSub, rs_rCX, start_value);
1123      }
1124    } else {
1125      // Runtime start index.
1126      rl_start = UpdateLocTyped(rl_start, kCoreReg);
1127      if (rl_start.location == kLocPhysReg) {
1128        // Handle "start index < 0" case.
1129        OpRegReg(kOpXor, rs_rBX, rs_rBX);
1130        OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1131        OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1132
1133        // The length of the string should be greater than the start index.
1134        length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1135        OpRegReg(kOpSub, rs_rCX, rl_start.reg);
1136        if (rl_start.reg == rs_rDI) {
1137          // The special case. We will use EDI further, so lets put start index to stack.
1138          NewLIR1(kX86Push32R, rs_rDI.GetReg());
1139          is_index_on_stack = true;
1140        }
1141      } else {
1142        // Load the start index from stack, remembering that we pushed EDI.
1143        int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1144        {
1145          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1146          Load32Disp(rs_rX86_SP, displacement, rs_rBX);
1147        }
1148        OpRegReg(kOpXor, rs_rDI, rs_rDI);
1149        OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1150        OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1151
1152        length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1153        OpRegReg(kOpSub, rs_rCX, rs_rBX);
1154        // Put the start index to stack.
1155        NewLIR1(kX86Push32R, rs_rBX.GetReg());
1156        is_index_on_stack = true;
1157      }
1158    }
1159  }
1160  DCHECK(length_compare != nullptr);
1161
1162  // ECX now contains the count in words to be searched.
1163
1164  // Load the address of the string into EBX.
1165  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1166  Load32Disp(rs_rDX, value_offset, rs_rDI);
1167  Load32Disp(rs_rDX, offset_offset, rs_rBX);
1168  OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
1169
1170  // Now compute into EDI where the search will start.
1171  if (zero_based || rl_start.is_const) {
1172    if (start_value == 0) {
1173      OpRegCopy(rs_rDI, rs_rBX);
1174    } else {
1175      NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
1176    }
1177  } else {
1178    if (is_index_on_stack == true) {
1179      // Load the start index from stack.
1180      NewLIR1(kX86Pop32R, rs_rDX.GetReg());
1181      OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
1182    } else {
1183      OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
1184    }
1185  }
1186
1187  // EDI now contains the start of the string to be searched.
1188  // We are all prepared to do the search for the character.
1189  NewLIR0(kX86RepneScasw);
1190
1191  // Did we find a match?
1192  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1193
1194  // yes, we matched.  Compute the index of the result.
1195  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1196  OpRegReg(kOpSub, rs_rDI, rs_rBX);
1197  OpRegImm(kOpAsr, rs_rDI, 1);
1198  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
1199  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1200
1201  // Failed to match; return -1.
1202  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1203  length_compare->target = not_found;
1204  failed_branch->target = not_found;
1205  LoadConstantNoClobber(rl_return.reg, -1);
1206
1207  // And join up at the end.
1208  all_done->target = NewLIR0(kPseudoTargetLabel);
1209  // Restore EDI from the stack.
1210  NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1211
1212  // Out of line code returns here.
1213  if (slowpath_branch != nullptr) {
1214    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1215    AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1216  }
1217
1218  StoreValue(rl_dest, rl_return);
1219  return true;
1220}
1221
1222/*
1223 * @brief Enter an 'advance LOC' into the FDE buffer
1224 * @param buf FDE buffer.
1225 * @param increment Amount by which to increase the current location.
1226 */
1227static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1228  if (increment < 64) {
1229    // Encoding in opcode.
1230    buf.push_back(0x1 << 6 | increment);
1231  } else if (increment < 256) {
1232    // Single byte delta.
1233    buf.push_back(0x02);
1234    buf.push_back(increment);
1235  } else if (increment < 256 * 256) {
1236    // Two byte delta.
1237    buf.push_back(0x03);
1238    buf.push_back(increment & 0xff);
1239    buf.push_back((increment >> 8) & 0xff);
1240  } else {
1241    // Four byte delta.
1242    buf.push_back(0x04);
1243    PushWord(buf, increment);
1244  }
1245}
1246
1247
1248std::vector<uint8_t>* X86CFIInitialization() {
1249  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1250}
1251
1252std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1253  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1254
1255  // Length of the CIE (except for this field).
1256  PushWord(*cfi_info, 16);
1257
1258  // CIE id.
1259  PushWord(*cfi_info, 0xFFFFFFFFU);
1260
1261  // Version: 3.
1262  cfi_info->push_back(0x03);
1263
1264  // Augmentation: empty string.
1265  cfi_info->push_back(0x0);
1266
1267  // Code alignment: 1.
1268  cfi_info->push_back(0x01);
1269
1270  // Data alignment: -4.
1271  cfi_info->push_back(0x7C);
1272
1273  // Return address register (R8).
1274  cfi_info->push_back(0x08);
1275
1276  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1277  cfi_info->push_back(0x0C);
1278  cfi_info->push_back(0x04);
1279  cfi_info->push_back(0x04);
1280
1281  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1282  cfi_info->push_back(0x2 << 6 | 0x08);
1283  cfi_info->push_back(0x01);
1284
1285  // And 2 Noops to align to 4 byte boundary.
1286  cfi_info->push_back(0x0);
1287  cfi_info->push_back(0x0);
1288
1289  DCHECK_EQ(cfi_info->size() & 3, 0U);
1290  return cfi_info;
1291}
1292
1293static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1294  uint8_t buffer[12];
1295  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1296  for (uint8_t *p = buffer; p < ptr; p++) {
1297    buf.push_back(*p);
1298  }
1299}
1300
1301std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1302  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1303
1304  // Generate the FDE for the method.
1305  DCHECK_NE(data_offset_, 0U);
1306
1307  // Length (will be filled in later in this routine).
1308  PushWord(*cfi_info, 0);
1309
1310  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1311  // one CIE for the whole debug_frame section.
1312  PushWord(*cfi_info, 0);
1313
1314  // 'initial_location' (filled in by linker).
1315  PushWord(*cfi_info, 0);
1316
1317  // 'address_range' (number of bytes in the method).
1318  PushWord(*cfi_info, data_offset_);
1319
1320  // The instructions in the FDE.
1321  if (stack_decrement_ != nullptr) {
1322    // Advance LOC to just past the stack decrement.
1323    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1324    AdvanceLoc(*cfi_info, pc);
1325
1326    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1327    cfi_info->push_back(0x0e);
1328    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1329
1330    // We continue with that stack until the epilogue.
1331    if (stack_increment_ != nullptr) {
1332      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1333      AdvanceLoc(*cfi_info, new_pc - pc);
1334
1335      // We probably have code snippets after the epilogue, so save the
1336      // current state: DW_CFA_remember_state.
1337      cfi_info->push_back(0x0a);
1338
1339      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1340      // PC on the stack now.
1341      cfi_info->push_back(0x0e);
1342      EncodeUnsignedLeb128(*cfi_info, 4);
1343
1344      // Everything after that is the same as before the epilogue.
1345      // Stack bump was followed by RET instruction.
1346      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1347      if (post_ret_insn != nullptr) {
1348        pc = new_pc;
1349        new_pc = post_ret_insn->offset;
1350        AdvanceLoc(*cfi_info, new_pc - pc);
1351        // Restore the state: DW_CFA_restore_state.
1352        cfi_info->push_back(0x0b);
1353      }
1354    }
1355  }
1356
1357  // Padding to a multiple of 4
1358  while ((cfi_info->size() & 3) != 0) {
1359    // DW_CFA_nop is encoded as 0.
1360    cfi_info->push_back(0);
1361  }
1362
1363  // Set the length of the FDE inside the generated bytes.
1364  uint32_t length = cfi_info->size() - 4;
1365  (*cfi_info)[0] = length;
1366  (*cfi_info)[1] = length >> 8;
1367  (*cfi_info)[2] = length >> 16;
1368  (*cfi_info)[3] = length >> 24;
1369  return cfi_info;
1370}
1371
1372void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1373  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1374    case kMirOpConstVector:
1375      GenConst128(bb, mir);
1376      break;
1377    case kMirOpMoveVector:
1378      GenMoveVector(bb, mir);
1379      break;
1380    case kMirOpPackedMultiply:
1381      GenMultiplyVector(bb, mir);
1382      break;
1383    case kMirOpPackedAddition:
1384      GenAddVector(bb, mir);
1385      break;
1386    case kMirOpPackedSubtract:
1387      GenSubtractVector(bb, mir);
1388      break;
1389    case kMirOpPackedShiftLeft:
1390      GenShiftLeftVector(bb, mir);
1391      break;
1392    case kMirOpPackedSignedShiftRight:
1393      GenSignedShiftRightVector(bb, mir);
1394      break;
1395    case kMirOpPackedUnsignedShiftRight:
1396      GenUnsignedShiftRightVector(bb, mir);
1397      break;
1398    case kMirOpPackedAnd:
1399      GenAndVector(bb, mir);
1400      break;
1401    case kMirOpPackedOr:
1402      GenOrVector(bb, mir);
1403      break;
1404    case kMirOpPackedXor:
1405      GenXorVector(bb, mir);
1406      break;
1407    case kMirOpPackedAddReduce:
1408      GenAddReduceVector(bb, mir);
1409      break;
1410    case kMirOpPackedReduce:
1411      GenReduceVector(bb, mir);
1412      break;
1413    case kMirOpPackedSet:
1414      GenSetVector(bb, mir);
1415      break;
1416    default:
1417      break;
1418  }
1419}
1420
1421void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1422  int type_size = mir->dalvikInsn.vA;
1423  // We support 128 bit vectors.
1424  DCHECK_EQ(type_size & 0xFFFF, 128);
1425  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1426  uint32_t *args = mir->dalvikInsn.arg;
1427  int reg = rs_dest.GetReg();
1428  // Check for all 0 case.
1429  if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1430    NewLIR2(kX86XorpsRR, reg, reg);
1431    return;
1432  }
1433  // Okay, load it from the constant vector area.
1434  LIR *data_target = ScanVectorLiteral(mir);
1435  if (data_target == nullptr) {
1436    data_target = AddVectorLiteral(mir);
1437  }
1438
1439  // Address the start of the method.
1440  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1441  if (rl_method.wide) {
1442    rl_method = LoadValueWide(rl_method, kCoreReg);
1443  } else {
1444    rl_method = LoadValue(rl_method, kCoreReg);
1445  }
1446
1447  // Load the proper value from the literal area.
1448  // We don't know the proper offset for the value, so pick one that will force
1449  // 4 byte offset.  We will fix this up in the assembler later to have the right
1450  // value.
1451  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1452  LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(),  256 /* bogus */);
1453  load->flags.fixup = kFixupLoad;
1454  load->target = data_target;
1455}
1456
1457void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1458  // We only support 128 bit registers.
1459  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1460  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1461  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1462  NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1463}
1464
1465void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1466  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1467  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1468  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1469  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1470  int opcode = 0;
1471  switch (opsize) {
1472    case k32:
1473      opcode = kX86PmulldRR;
1474      break;
1475    case kSignedHalf:
1476      opcode = kX86PmullwRR;
1477      break;
1478    case kSingle:
1479      opcode = kX86MulpsRR;
1480      break;
1481    case kDouble:
1482      opcode = kX86MulpdRR;
1483      break;
1484    default:
1485      LOG(FATAL) << "Unsupported vector multiply " << opsize;
1486      break;
1487  }
1488  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1489}
1490
1491void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1492  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1493  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1494  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1495  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1496  int opcode = 0;
1497  switch (opsize) {
1498    case k32:
1499      opcode = kX86PadddRR;
1500      break;
1501    case kSignedHalf:
1502    case kUnsignedHalf:
1503      opcode = kX86PaddwRR;
1504      break;
1505    case kUnsignedByte:
1506    case kSignedByte:
1507      opcode = kX86PaddbRR;
1508      break;
1509    case kSingle:
1510      opcode = kX86AddpsRR;
1511      break;
1512    case kDouble:
1513      opcode = kX86AddpdRR;
1514      break;
1515    default:
1516      LOG(FATAL) << "Unsupported vector addition " << opsize;
1517      break;
1518  }
1519  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1520}
1521
1522void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1523  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1524  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1525  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1526  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1527  int opcode = 0;
1528  switch (opsize) {
1529    case k32:
1530      opcode = kX86PsubdRR;
1531      break;
1532    case kSignedHalf:
1533    case kUnsignedHalf:
1534      opcode = kX86PsubwRR;
1535      break;
1536    case kUnsignedByte:
1537    case kSignedByte:
1538      opcode = kX86PsubbRR;
1539      break;
1540    case kSingle:
1541      opcode = kX86SubpsRR;
1542      break;
1543    case kDouble:
1544      opcode = kX86SubpdRR;
1545      break;
1546    default:
1547      LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1548      break;
1549  }
1550  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1551}
1552
1553void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1554  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1555  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1556  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1557  int imm = mir->dalvikInsn.vC;
1558  int opcode = 0;
1559  switch (opsize) {
1560    case k32:
1561      opcode = kX86PslldRI;
1562      break;
1563    case k64:
1564      opcode = kX86PsllqRI;
1565      break;
1566    case kSignedHalf:
1567    case kUnsignedHalf:
1568      opcode = kX86PsllwRI;
1569      break;
1570    default:
1571      LOG(FATAL) << "Unsupported vector shift left " << opsize;
1572      break;
1573  }
1574  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1575}
1576
1577void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1578  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1579  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1580  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1581  int imm = mir->dalvikInsn.vC;
1582  int opcode = 0;
1583  switch (opsize) {
1584    case k32:
1585      opcode = kX86PsradRI;
1586      break;
1587    case kSignedHalf:
1588    case kUnsignedHalf:
1589      opcode = kX86PsrawRI;
1590      break;
1591    default:
1592      LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1593      break;
1594  }
1595  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1596}
1597
1598void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1599  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1600  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1601  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1602  int imm = mir->dalvikInsn.vC;
1603  int opcode = 0;
1604  switch (opsize) {
1605    case k32:
1606      opcode = kX86PsrldRI;
1607      break;
1608    case k64:
1609      opcode = kX86PsrlqRI;
1610      break;
1611    case kSignedHalf:
1612    case kUnsignedHalf:
1613      opcode = kX86PsrlwRI;
1614      break;
1615    default:
1616      LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1617      break;
1618  }
1619  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1620}
1621
1622void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1623  // We only support 128 bit registers.
1624  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1625  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1626  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1627  NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1628}
1629
1630void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1631  // We only support 128 bit registers.
1632  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1633  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1634  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1635  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1636}
1637
1638void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1639  // We only support 128 bit registers.
1640  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1641  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1642  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1643  NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1644}
1645
1646void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1647  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1648  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1649  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1650  int imm = mir->dalvikInsn.vC;
1651  int opcode = 0;
1652  switch (opsize) {
1653    case k32:
1654      opcode = kX86PhadddRR;
1655      break;
1656    case kSignedHalf:
1657    case kUnsignedHalf:
1658      opcode = kX86PhaddwRR;
1659      break;
1660    default:
1661      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1662      break;
1663  }
1664  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1665}
1666
1667void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1668  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1669  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1670  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1671  int index = mir->dalvikInsn.arg[0];
1672  int opcode = 0;
1673  switch (opsize) {
1674    case k32:
1675      opcode = kX86PextrdRRI;
1676      break;
1677    case kSignedHalf:
1678    case kUnsignedHalf:
1679      opcode = kX86PextrwRRI;
1680      break;
1681    case kUnsignedByte:
1682    case kSignedByte:
1683      opcode = kX86PextrbRRI;
1684      break;
1685    default:
1686      LOG(FATAL) << "Unsupported vector reduce " << opsize;
1687      break;
1688  }
1689  // We need to extract to a GPR.
1690  RegStorage temp = AllocTemp();
1691  NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1692
1693  // Assume that the destination VR is in the def for the mir.
1694  RegLocation rl_dest = mir_graph_->GetDest(mir);
1695  RegLocation rl_temp =
1696    {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1697  StoreValue(rl_dest, rl_temp);
1698}
1699
1700void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1701  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1702  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1703  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1704  int op_low = 0, op_high = 0;
1705  switch (opsize) {
1706    case k32:
1707      op_low = kX86PshufdRRI;
1708      break;
1709    case kSignedHalf:
1710    case kUnsignedHalf:
1711      // Handles low quadword.
1712      op_low = kX86PshuflwRRI;
1713      // Handles upper quadword.
1714      op_high = kX86PshufdRRI;
1715      break;
1716    default:
1717      LOG(FATAL) << "Unsupported vector set " << opsize;
1718      break;
1719  }
1720
1721  // Load the value from the VR into a GPR.
1722  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1723  rl_src = LoadValue(rl_src, kCoreReg);
1724
1725  // Load the value into the XMM register.
1726  NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1727
1728  // Now shuffle the value across the destination.
1729  NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1730
1731  // And then repeat as needed.
1732  if (op_high != 0) {
1733    NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1734  }
1735}
1736
1737
1738LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1739  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1740  for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1741    if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1742        args[2] == p->operands[2] && args[3] == p->operands[3]) {
1743      return p;
1744    }
1745  }
1746  return nullptr;
1747}
1748
1749LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1750  LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1751  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1752  new_value->operands[0] = args[0];
1753  new_value->operands[1] = args[1];
1754  new_value->operands[2] = args[2];
1755  new_value->operands[3] = args[3];
1756  new_value->next = const_vectors_;
1757  if (const_vectors_ == nullptr) {
1758    estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
1759  }
1760  estimated_native_code_size_ += 16;  // Space for one vector.
1761  const_vectors_ = new_value;
1762  return new_value;
1763}
1764
1765// ------------ ABI support: mapping of args to physical registers -------------
1766RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
1767  const RegStorage coreArgMappingToPhysicalReg[] = {rs_rX86_ARG1, rs_rX86_ARG2, rs_rX86_ARG3, rs_rX86_ARG4, rs_rX86_ARG5};
1768  const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
1769  const RegStorage fpArgMappingToPhysicalReg[] = {rs_rX86_FARG0, rs_rX86_FARG1, rs_rX86_FARG2, rs_rX86_FARG3,
1770                                                  rs_rX86_FARG4, rs_rX86_FARG5, rs_rX86_FARG6, rs_rX86_FARG7};
1771  const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
1772
1773  RegStorage result = RegStorage::InvalidReg();
1774  if (is_double_or_float) {
1775    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
1776      result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
1777      if (result.Valid()) {
1778        result = is_wide ? RegStorage::FloatSolo64(result.GetReg()) : RegStorage::FloatSolo32(result.GetReg());
1779      }
1780    }
1781  } else {
1782    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
1783      result = coreArgMappingToPhysicalReg[cur_core_reg_++];
1784      if (result.Valid()) {
1785        result = is_wide ? RegStorage::Solo64(result.GetReg()) : RegStorage::Solo32(result.GetReg());
1786      }
1787    }
1788  }
1789  return result;
1790}
1791
1792RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
1793  DCHECK(IsInitialized());
1794  auto res = mapping_.find(in_position);
1795  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
1796}
1797
1798void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
1799  DCHECK(mapper != nullptr);
1800  max_mapped_in_ = -1;
1801  is_there_stack_mapped_ = false;
1802  for (int in_position = 0; in_position < count; in_position++) {
1803     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
1804     if (reg.Valid()) {
1805       mapping_[in_position] = reg;
1806       max_mapped_in_ = std::max(max_mapped_in_, in_position);
1807       if (reg.Is64BitSolo()) {
1808         // We covered 2 args, so skip the next one
1809         in_position++;
1810       }
1811     } else {
1812       is_there_stack_mapped_ = true;
1813     }
1814  }
1815  initialized_ = true;
1816}
1817
1818RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
1819  if (!Gen64Bit()) {
1820    return GetCoreArgMappingToPhysicalReg(arg_num);
1821  }
1822
1823  if (!in_to_reg_storage_mapping_.IsInitialized()) {
1824    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1825    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
1826
1827    InToRegStorageX86_64Mapper mapper;
1828    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
1829  }
1830  return in_to_reg_storage_mapping_.Get(arg_num);
1831}
1832
1833RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
1834  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
1835  // Not used for 64-bit, TODO: Move X86_32 to the same framework
1836  switch (core_arg_num) {
1837    case 0:
1838      return rs_rX86_ARG1;
1839    case 1:
1840      return rs_rX86_ARG2;
1841    case 2:
1842      return rs_rX86_ARG3;
1843    default:
1844      return RegStorage::InvalidReg();
1845  }
1846}
1847
1848// ---------End of ABI support: mapping of args to physical registers -------------
1849
1850/*
1851 * If there are any ins passed in registers that have not been promoted
1852 * to a callee-save register, flush them to the frame.  Perform initial
1853 * assignment of promoted arguments.
1854 *
1855 * ArgLocs is an array of location records describing the incoming arguments
1856 * with one location record per word of argument.
1857 */
1858void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
1859  if (!Gen64Bit()) return Mir2Lir::FlushIns(ArgLocs, rl_method);
1860  /*
1861   * Dummy up a RegLocation for the incoming Method*
1862   * It will attempt to keep kArg0 live (or copy it to home location
1863   * if promoted).
1864   */
1865
1866  RegLocation rl_src = rl_method;
1867  rl_src.location = kLocPhysReg;
1868  rl_src.reg = TargetReg(kArg0);
1869  rl_src.home = false;
1870  MarkLive(rl_src);
1871  StoreValue(rl_method, rl_src);
1872  // If Method* has been promoted, explicitly flush
1873  if (rl_method.location == kLocPhysReg) {
1874    StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0), kNotVolatile);
1875  }
1876
1877  if (cu_->num_ins == 0) {
1878    return;
1879  }
1880
1881  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1882  /*
1883   * Copy incoming arguments to their proper home locations.
1884   * NOTE: an older version of dx had an issue in which
1885   * it would reuse static method argument registers.
1886   * This could result in the same Dalvik virtual register
1887   * being promoted to both core and fp regs. To account for this,
1888   * we only copy to the corresponding promoted physical register
1889   * if it matches the type of the SSA name for the incoming
1890   * argument.  It is also possible that long and double arguments
1891   * end up half-promoted.  In those cases, we must flush the promoted
1892   * half to memory as well.
1893   */
1894  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1895  for (int i = 0; i < cu_->num_ins; i++) {
1896    // get reg corresponding to input
1897    RegStorage reg = GetArgMappingToPhysicalReg(i);
1898
1899    RegLocation* t_loc = &ArgLocs[i];
1900    if (reg.Valid()) {
1901      // If arriving in register.
1902
1903      // We have already updated the arg location with promoted info
1904      // so we can be based on it.
1905      if (t_loc->location == kLocPhysReg) {
1906        // Just copy it.
1907        OpRegCopy(t_loc->reg, reg);
1908      } else {
1909        // Needs flush.
1910        if (t_loc->ref) {
1911          StoreRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kNotVolatile);
1912        } else {
1913          StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
1914                        kNotVolatile);
1915        }
1916      }
1917    } else {
1918      // If arriving in frame & promoted.
1919      if (t_loc->location == kLocPhysReg) {
1920        if (t_loc->ref) {
1921          LoadRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
1922        } else {
1923          LoadBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg,
1924                       t_loc->wide ? k64 : k32, kNotVolatile);
1925        }
1926      }
1927    }
1928    if (t_loc->wide) {
1929      // Increment i to skip the next one.
1930      i++;
1931    }
1932  }
1933}
1934
1935/*
1936 * Load up to 5 arguments, the first three of which will be in
1937 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
1938 * and as part of the load sequence, it must be replaced with
1939 * the target method pointer.  Note, this may also be called
1940 * for "range" variants if the number of arguments is 5 or fewer.
1941 */
1942int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1943                                  int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1944                                  const MethodReference& target_method,
1945                                  uint32_t vtable_idx, uintptr_t direct_code,
1946                                  uintptr_t direct_method, InvokeType type, bool skip_this) {
1947  if (!Gen64Bit()) {
1948    return Mir2Lir::GenDalvikArgsNoRange(info,
1949                                  call_state, pcrLabel, next_call_insn,
1950                                  target_method,
1951                                  vtable_idx, direct_code,
1952                                  direct_method, type, skip_this);
1953  }
1954  return GenDalvikArgsRange(info,
1955                       call_state, pcrLabel, next_call_insn,
1956                       target_method,
1957                       vtable_idx, direct_code,
1958                       direct_method, type, skip_this);
1959}
1960
1961/*
1962 * May have 0+ arguments (also used for jumbo).  Note that
1963 * source virtual registers may be in physical registers, so may
1964 * need to be flushed to home location before copying.  This
1965 * applies to arg3 and above (see below).
1966 *
1967 * Two general strategies:
1968 *    If < 20 arguments
1969 *       Pass args 3-18 using vldm/vstm block copy
1970 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1971 *    If 20+ arguments
1972 *       Pass args arg19+ using memcpy block copy
1973 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1974 *
1975 */
1976int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1977                                LIR** pcrLabel, NextCallInsn next_call_insn,
1978                                const MethodReference& target_method,
1979                                uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
1980                                InvokeType type, bool skip_this) {
1981  if (!Gen64Bit()) {
1982    return Mir2Lir::GenDalvikArgsRange(info, call_state,
1983                                pcrLabel, next_call_insn,
1984                                target_method,
1985                                vtable_idx, direct_code, direct_method,
1986                                type, skip_this);
1987  }
1988
1989  /* If no arguments, just return */
1990  if (info->num_arg_words == 0)
1991    return call_state;
1992
1993  const int start_index = skip_this ? 1 : 0;
1994
1995  InToRegStorageX86_64Mapper mapper;
1996  InToRegStorageMapping in_to_reg_storage_mapping;
1997  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1998  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1999  const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2000          in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
2001  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2002
2003  // Fisrt of all, check whether it make sense to use bulk copying
2004  // Optimization is aplicable only for range case
2005  // TODO: make a constant instead of 2
2006  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2007    // Scan the rest of the args - if in phys_reg flush to memory
2008    for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2009      RegLocation loc = info->args[next_arg];
2010      if (loc.wide) {
2011        loc = UpdateLocWide(loc);
2012        if (loc.location == kLocPhysReg) {
2013          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2014          StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
2015        }
2016        next_arg += 2;
2017      } else {
2018        loc = UpdateLoc(loc);
2019        if (loc.location == kLocPhysReg) {
2020          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2021          StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
2022        }
2023        next_arg++;
2024      }
2025    }
2026
2027    // Logic below assumes that Method pointer is at offset zero from SP.
2028    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2029
2030    // The rest can be copied together
2031    int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2032    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2033
2034    int current_src_offset = start_offset;
2035    int current_dest_offset = outs_offset;
2036
2037    // Only davik regs are accessed in this loop; no next_call_insn() calls.
2038    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2039    while (regs_left_to_pass_via_stack > 0) {
2040      // This is based on the knowledge that the stack itself is 16-byte aligned.
2041      bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2042      bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2043      size_t bytes_to_move;
2044
2045      /*
2046       * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2047       * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2048       * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2049       * We do this because we could potentially do a smaller move to align.
2050       */
2051      if (regs_left_to_pass_via_stack == 4 ||
2052          (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2053        // Moving 128-bits via xmm register.
2054        bytes_to_move = sizeof(uint32_t) * 4;
2055
2056        // Allocate a free xmm temp. Since we are working through the calling sequence,
2057        // we expect to have an xmm temporary available.  AllocTempDouble will abort if
2058        // there are no free registers.
2059        RegStorage temp = AllocTempDouble();
2060
2061        LIR* ld1 = nullptr;
2062        LIR* ld2 = nullptr;
2063        LIR* st1 = nullptr;
2064        LIR* st2 = nullptr;
2065
2066        /*
2067         * The logic is similar for both loads and stores. If we have 16-byte alignment,
2068         * do an aligned move. If we have 8-byte alignment, then do the move in two
2069         * parts. This approach prevents possible cache line splits. Finally, fall back
2070         * to doing an unaligned move. In most cases we likely won't split the cache
2071         * line but we cannot prove it and thus take a conservative approach.
2072         */
2073        bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2074        bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2075
2076        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2077        if (src_is_16b_aligned) {
2078          ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
2079        } else if (src_is_8b_aligned) {
2080          ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
2081          ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1),
2082                            kMovHi128FP);
2083        } else {
2084          ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
2085        }
2086
2087        if (dest_is_16b_aligned) {
2088          st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
2089        } else if (dest_is_8b_aligned) {
2090          st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
2091          st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1),
2092                            temp, kMovHi128FP);
2093        } else {
2094          st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
2095        }
2096
2097        // TODO If we could keep track of aliasing information for memory accesses that are wider
2098        // than 64-bit, we wouldn't need to set up a barrier.
2099        if (ld1 != nullptr) {
2100          if (ld2 != nullptr) {
2101            // For 64-bit load we can actually set up the aliasing information.
2102            AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2103            AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2104          } else {
2105            // Set barrier for 128-bit load.
2106            ld1->u.m.def_mask = &kEncodeAll;
2107          }
2108        }
2109        if (st1 != nullptr) {
2110          if (st2 != nullptr) {
2111            // For 64-bit store we can actually set up the aliasing information.
2112            AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2113            AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2114          } else {
2115            // Set barrier for 128-bit store.
2116            st1->u.m.def_mask = &kEncodeAll;
2117          }
2118        }
2119
2120        // Free the temporary used for the data movement.
2121        FreeTemp(temp);
2122      } else {
2123        // Moving 32-bits via general purpose register.
2124        bytes_to_move = sizeof(uint32_t);
2125
2126        // Instead of allocating a new temp, simply reuse one of the registers being used
2127        // for argument passing.
2128        RegStorage temp = TargetReg(kArg3);
2129
2130        // Now load the argument VR and store to the outs.
2131        Load32Disp(TargetReg(kSp), current_src_offset, temp);
2132        Store32Disp(TargetReg(kSp), current_dest_offset, temp);
2133      }
2134
2135      current_src_offset += bytes_to_move;
2136      current_dest_offset += bytes_to_move;
2137      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2138    }
2139    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2140  }
2141
2142  // Now handle rest not registers if they are
2143  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2144    RegStorage regSingle = TargetReg(kArg2);
2145    RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
2146    for (int i = start_index;
2147         i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2148      RegLocation rl_arg = info->args[i];
2149      rl_arg = UpdateRawLoc(rl_arg);
2150      RegStorage reg = in_to_reg_storage_mapping.Get(i);
2151      if (!reg.Valid()) {
2152        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2153
2154        {
2155          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2156          if (rl_arg.wide) {
2157            if (rl_arg.location == kLocPhysReg) {
2158              StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
2159            } else {
2160              LoadValueDirectWideFixed(rl_arg, regWide);
2161              StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64, kNotVolatile);
2162            }
2163          } else {
2164            if (rl_arg.location == kLocPhysReg) {
2165              StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
2166            } else {
2167              LoadValueDirectFixed(rl_arg, regSingle);
2168              StoreBaseDisp(TargetReg(kSp), out_offset, regSingle, k32, kNotVolatile);
2169            }
2170          }
2171        }
2172        call_state = next_call_insn(cu_, info, call_state, target_method,
2173                                    vtable_idx, direct_code, direct_method, type);
2174      }
2175      if (rl_arg.wide) {
2176        i++;
2177      }
2178    }
2179  }
2180
2181  // Finish with mapped registers
2182  for (int i = start_index; i <= last_mapped_in; i++) {
2183    RegLocation rl_arg = info->args[i];
2184    rl_arg = UpdateRawLoc(rl_arg);
2185    RegStorage reg = in_to_reg_storage_mapping.Get(i);
2186    if (reg.Valid()) {
2187      if (rl_arg.wide) {
2188        LoadValueDirectWideFixed(rl_arg, reg);
2189      } else {
2190        LoadValueDirectFixed(rl_arg, reg);
2191      }
2192      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2193                               direct_code, direct_method, type);
2194    }
2195    if (rl_arg.wide) {
2196      i++;
2197    }
2198  }
2199
2200  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2201                           direct_code, direct_method, type);
2202  if (pcrLabel) {
2203    if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
2204      *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
2205    } else {
2206      *pcrLabel = nullptr;
2207      // In lieu of generating a check for kArg1 being null, we need to
2208      // perform a load when doing implicit checks.
2209      RegStorage tmp = AllocTemp();
2210      Load32Disp(TargetReg(kArg1), 0, tmp);
2211      MarkPossibleNullPointerException(info->opt_flags);
2212      FreeTemp(tmp);
2213    }
2214  }
2215  return call_state;
2216}
2217
2218}  // namespace art
2219
2220