target_x86.cc revision 6a58cb16d803c9a7b3a75ccac8be19dd9d4e520d
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "mirror/array.h"
24#include "mirror/string.h"
25#include "x86_lir.h"
26
27namespace art {
28
29// FIXME: restore "static" when usage uncovered
30/*static*/ int core_regs[] = {
31  rAX, rCX, rDX, rBX, rX86_SP, rBP, rSI, rDI
32#ifdef TARGET_REX_SUPPORT
33  r8, r9, r10, r11, r12, r13, r14, 15
34#endif
35};
36/*static*/ int ReservedRegs[] = {rX86_SP};
37/*static*/ int core_temps[] = {rAX, rCX, rDX, rBX};
38/*static*/ int FpRegs[] = {
39  fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
40#ifdef TARGET_REX_SUPPORT
41  fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
42#endif
43};
44/*static*/ int fp_temps[] = {
45  fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
46#ifdef TARGET_REX_SUPPORT
47  fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
48#endif
49};
50
51RegLocation X86Mir2Lir::LocCReturn() {
52  return x86_loc_c_return;
53}
54
55RegLocation X86Mir2Lir::LocCReturnWide() {
56  return x86_loc_c_return_wide;
57}
58
59RegLocation X86Mir2Lir::LocCReturnFloat() {
60  return x86_loc_c_return_float;
61}
62
63RegLocation X86Mir2Lir::LocCReturnDouble() {
64  return x86_loc_c_return_double;
65}
66
67// Return a target-dependent special register.
68RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
69  int res_reg = RegStorage::kInvalidRegVal;
70  switch (reg) {
71    case kSelf: res_reg = rX86_SELF; break;
72    case kSuspend: res_reg =  rX86_SUSPEND; break;
73    case kLr: res_reg =  rX86_LR; break;
74    case kPc: res_reg =  rX86_PC; break;
75    case kSp: res_reg =  rX86_SP; break;
76    case kArg0: res_reg = rX86_ARG0; break;
77    case kArg1: res_reg = rX86_ARG1; break;
78    case kArg2: res_reg = rX86_ARG2; break;
79    case kArg3: res_reg = rX86_ARG3; break;
80    case kFArg0: res_reg = rX86_FARG0; break;
81    case kFArg1: res_reg = rX86_FARG1; break;
82    case kFArg2: res_reg = rX86_FARG2; break;
83    case kFArg3: res_reg = rX86_FARG3; break;
84    case kRet0: res_reg = rX86_RET0; break;
85    case kRet1: res_reg = rX86_RET1; break;
86    case kInvokeTgt: res_reg = rX86_INVOKE_TGT; break;
87    case kHiddenArg: res_reg = rAX; break;
88    case kHiddenFpArg: res_reg = fr0; break;
89    case kCount: res_reg = rX86_COUNT; break;
90  }
91  return RegStorage::Solo32(res_reg);
92}
93
94RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
95  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
96  // TODO: This is not 64-bit compliant and depends on new internal ABI.
97  switch (arg_num) {
98    case 0:
99      return rs_rX86_ARG1;
100    case 1:
101      return rs_rX86_ARG2;
102    case 2:
103      return rs_rX86_ARG3;
104    default:
105      return RegStorage::InvalidReg();
106  }
107}
108
109// Create a double from a pair of singles.
110int X86Mir2Lir::S2d(int low_reg, int high_reg) {
111  return X86_S2D(low_reg, high_reg);
112}
113
114// Return mask to strip off fp reg flags and bias.
115uint32_t X86Mir2Lir::FpRegMask() {
116  return X86_FP_REG_MASK;
117}
118
119// True if both regs single, both core or both double.
120bool X86Mir2Lir::SameRegType(int reg1, int reg2) {
121  return (X86_REGTYPE(reg1) == X86_REGTYPE(reg2));
122}
123
124/*
125 * Decode the register id.
126 */
127uint64_t X86Mir2Lir::GetRegMaskCommon(int reg) {
128  uint64_t seed;
129  int shift;
130  int reg_id;
131
132  reg_id = reg & 0xf;
133  /* Double registers in x86 are just a single FP register */
134  seed = 1;
135  /* FP register starts at bit position 16 */
136  shift = X86_FPREG(reg) ? kX86FPReg0 : 0;
137  /* Expand the double register id into single offset */
138  shift += reg_id;
139  return (seed << shift);
140}
141
142uint64_t X86Mir2Lir::GetPCUseDefEncoding() {
143  /*
144   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
145   * able to clean up some of the x86/Arm_Mips differences
146   */
147  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
148  return 0ULL;
149}
150
151void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
152  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
153  DCHECK(!lir->flags.use_def_invalid);
154
155  // X86-specific resource map setup here.
156  if (flags & REG_USE_SP) {
157    lir->u.m.use_mask |= ENCODE_X86_REG_SP;
158  }
159
160  if (flags & REG_DEF_SP) {
161    lir->u.m.def_mask |= ENCODE_X86_REG_SP;
162  }
163
164  if (flags & REG_DEFA) {
165    SetupRegMask(&lir->u.m.def_mask, rAX);
166  }
167
168  if (flags & REG_DEFD) {
169    SetupRegMask(&lir->u.m.def_mask, rDX);
170  }
171  if (flags & REG_USEA) {
172    SetupRegMask(&lir->u.m.use_mask, rAX);
173  }
174
175  if (flags & REG_USEC) {
176    SetupRegMask(&lir->u.m.use_mask, rCX);
177  }
178
179  if (flags & REG_USED) {
180    SetupRegMask(&lir->u.m.use_mask, rDX);
181  }
182
183  if (flags & REG_USEB) {
184    SetupRegMask(&lir->u.m.use_mask, rBX);
185  }
186
187  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
188  if (lir->opcode == kX86RepneScasw) {
189    SetupRegMask(&lir->u.m.use_mask, rAX);
190    SetupRegMask(&lir->u.m.use_mask, rCX);
191    SetupRegMask(&lir->u.m.use_mask, rDI);
192    SetupRegMask(&lir->u.m.def_mask, rDI);
193  }
194
195  if (flags & USE_FP_STACK) {
196    lir->u.m.use_mask |= ENCODE_X86_FP_STACK;
197    lir->u.m.def_mask |= ENCODE_X86_FP_STACK;
198  }
199}
200
201/* For dumping instructions */
202static const char* x86RegName[] = {
203  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
204  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
205};
206
207static const char* x86CondName[] = {
208  "O",
209  "NO",
210  "B/NAE/C",
211  "NB/AE/NC",
212  "Z/EQ",
213  "NZ/NE",
214  "BE/NA",
215  "NBE/A",
216  "S",
217  "NS",
218  "P/PE",
219  "NP/PO",
220  "L/NGE",
221  "NL/GE",
222  "LE/NG",
223  "NLE/G"
224};
225
226/*
227 * Interpret a format string and build a string no longer than size
228 * See format key in Assemble.cc.
229 */
230std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
231  std::string buf;
232  size_t i = 0;
233  size_t fmt_len = strlen(fmt);
234  while (i < fmt_len) {
235    if (fmt[i] != '!') {
236      buf += fmt[i];
237      i++;
238    } else {
239      i++;
240      DCHECK_LT(i, fmt_len);
241      char operand_number_ch = fmt[i];
242      i++;
243      if (operand_number_ch == '!') {
244        buf += "!";
245      } else {
246        int operand_number = operand_number_ch - '0';
247        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
248        DCHECK_LT(i, fmt_len);
249        int operand = lir->operands[operand_number];
250        switch (fmt[i]) {
251          case 'c':
252            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
253            buf += x86CondName[operand];
254            break;
255          case 'd':
256            buf += StringPrintf("%d", operand);
257            break;
258          case 'p': {
259            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
260            buf += StringPrintf("0x%08x", tab_rec->offset);
261            break;
262          }
263          case 'r':
264            if (X86_FPREG(operand) || X86_DOUBLEREG(operand)) {
265              int fp_reg = operand & X86_FP_REG_MASK;
266              buf += StringPrintf("xmm%d", fp_reg);
267            } else {
268              DCHECK_LT(static_cast<size_t>(operand), sizeof(x86RegName));
269              buf += x86RegName[operand];
270            }
271            break;
272          case 't':
273            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
274                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
275                                lir->target);
276            break;
277          default:
278            buf += StringPrintf("DecodeError '%c'", fmt[i]);
279            break;
280        }
281        i++;
282      }
283    }
284  }
285  return buf;
286}
287
288void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) {
289  char buf[256];
290  buf[0] = 0;
291
292  if (mask == ENCODE_ALL) {
293    strcpy(buf, "all");
294  } else {
295    char num[8];
296    int i;
297
298    for (i = 0; i < kX86RegEnd; i++) {
299      if (mask & (1ULL << i)) {
300        snprintf(num, arraysize(num), "%d ", i);
301        strcat(buf, num);
302      }
303    }
304
305    if (mask & ENCODE_CCODE) {
306      strcat(buf, "cc ");
307    }
308    /* Memory bits */
309    if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
310      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
311               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
312               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
313    }
314    if (mask & ENCODE_LITERAL) {
315      strcat(buf, "lit ");
316    }
317
318    if (mask & ENCODE_HEAP_REF) {
319      strcat(buf, "heap ");
320    }
321    if (mask & ENCODE_MUST_NOT_ALIAS) {
322      strcat(buf, "noalias ");
323    }
324  }
325  if (buf[0]) {
326    LOG(INFO) << prefix << ": " <<  buf;
327  }
328}
329
330void X86Mir2Lir::AdjustSpillMask() {
331  // Adjustment for LR spilling, x86 has no LR so nothing to do here
332  core_spill_mask_ |= (1 << rRET);
333  num_core_spills_++;
334}
335
336/*
337 * Mark a callee-save fp register as promoted.  Note that
338 * vpush/vpop uses contiguous register lists so we must
339 * include any holes in the mask.  Associate holes with
340 * Dalvik register INVALID_VREG (0xFFFFU).
341 */
342void X86Mir2Lir::MarkPreservedSingle(int v_reg, int reg) {
343  UNIMPLEMENTED(WARNING) << "MarkPreservedSingle";
344#if 0
345  LOG(FATAL) << "No support yet for promoted FP regs";
346#endif
347}
348
349void X86Mir2Lir::FlushRegWide(RegStorage reg) {
350  RegisterInfo* info1 = GetRegInfo(reg.GetLowReg());
351  RegisterInfo* info2 = GetRegInfo(reg.GetHighReg());
352  DCHECK(info1 && info2 && info1->pair && info2->pair &&
353         (info1->partner == info2->reg) &&
354         (info2->partner == info1->reg));
355  if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
356    if (!(info1->is_temp && info2->is_temp)) {
357      /* Should not happen.  If it does, there's a problem in eval_loc */
358      LOG(FATAL) << "Long half-temp, half-promoted";
359    }
360
361    info1->dirty = false;
362    info2->dirty = false;
363    if (mir_graph_->SRegToVReg(info2->s_reg) < mir_graph_->SRegToVReg(info1->s_reg))
364      info1 = info2;
365    int v_reg = mir_graph_->SRegToVReg(info1->s_reg);
366    StoreBaseDispWide(rs_rX86_SP, VRegOffset(v_reg),
367                      RegStorage(RegStorage::k64BitPair, info1->reg, info1->partner));
368  }
369}
370
371void X86Mir2Lir::FlushReg(RegStorage reg) {
372  DCHECK(!reg.IsPair());
373  RegisterInfo* info = GetRegInfo(reg.GetReg());
374  if (info->live && info->dirty) {
375    info->dirty = false;
376    int v_reg = mir_graph_->SRegToVReg(info->s_reg);
377    StoreBaseDisp(rs_rX86_SP, VRegOffset(v_reg), reg, kWord);
378  }
379}
380
381/* Give access to the target-dependent FP register encoding to common code */
382bool X86Mir2Lir::IsFpReg(int reg) {
383  return X86_FPREG(reg);
384}
385
386bool X86Mir2Lir::IsFpReg(RegStorage reg) {
387  return IsFpReg(reg.IsPair() ? reg.GetLowReg() : reg.GetReg());
388}
389
390/* Clobber all regs that might be used by an external C call */
391void X86Mir2Lir::ClobberCallerSave() {
392  Clobber(rAX);
393  Clobber(rCX);
394  Clobber(rDX);
395  Clobber(rBX);
396}
397
398RegLocation X86Mir2Lir::GetReturnWideAlt() {
399  RegLocation res = LocCReturnWide();
400  CHECK(res.reg.GetLowReg() == rAX);
401  CHECK(res.reg.GetHighReg() == rDX);
402  Clobber(rAX);
403  Clobber(rDX);
404  MarkInUse(rAX);
405  MarkInUse(rDX);
406  MarkPair(res.reg.GetLowReg(), res.reg.GetHighReg());
407  return res;
408}
409
410RegLocation X86Mir2Lir::GetReturnAlt() {
411  RegLocation res = LocCReturn();
412  res.reg.SetReg(rDX);
413  Clobber(rDX);
414  MarkInUse(rDX);
415  return res;
416}
417
418/* To be used when explicitly managing register use */
419void X86Mir2Lir::LockCallTemps() {
420  LockTemp(rX86_ARG0);
421  LockTemp(rX86_ARG1);
422  LockTemp(rX86_ARG2);
423  LockTemp(rX86_ARG3);
424}
425
426/* To be used when explicitly managing register use */
427void X86Mir2Lir::FreeCallTemps() {
428  FreeTemp(rX86_ARG0);
429  FreeTemp(rX86_ARG1);
430  FreeTemp(rX86_ARG2);
431  FreeTemp(rX86_ARG3);
432}
433
434bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
435    switch (opcode) {
436      case kX86LockCmpxchgMR:
437      case kX86LockCmpxchgAR:
438      case kX86LockCmpxchg8bM:
439      case kX86LockCmpxchg8bA:
440      case kX86XchgMR:
441      case kX86Mfence:
442        // Atomic memory instructions provide full barrier.
443        return true;
444      default:
445        break;
446    }
447
448    // Conservative if cannot prove it provides full barrier.
449    return false;
450}
451
452void X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
453#if ANDROID_SMP != 0
454  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
455  LIR* mem_barrier = last_lir_insn_;
456
457  /*
458   * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
459   * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
460   * to ensure is that there is a scheduling barrier in place.
461   */
462  if (barrier_kind == kStoreLoad) {
463    // If no LIR exists already that can be used a barrier, then generate an mfence.
464    if (mem_barrier == nullptr) {
465      mem_barrier = NewLIR0(kX86Mfence);
466    }
467
468    // If last instruction does not provide full barrier, then insert an mfence.
469    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
470      mem_barrier = NewLIR0(kX86Mfence);
471    }
472  }
473
474  // Now ensure that a scheduling barrier is in place.
475  if (mem_barrier == nullptr) {
476    GenBarrier();
477  } else {
478    // Mark as a scheduling barrier.
479    DCHECK(!mem_barrier->flags.use_def_invalid);
480    mem_barrier->u.m.def_mask = ENCODE_ALL;
481  }
482#endif
483}
484
485// Alloc a pair of core registers, or a double.
486RegStorage X86Mir2Lir::AllocTypedTempWide(bool fp_hint, int reg_class) {
487  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
488    return AllocTempDouble();
489  }
490  RegStorage low_reg = AllocTemp();
491  RegStorage high_reg = AllocTemp();
492  return RegStorage::MakeRegPair(low_reg, high_reg);
493}
494
495RegStorage X86Mir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) {
496  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
497    return AllocTempFloat();
498  }
499  return AllocTemp();
500}
501
502void X86Mir2Lir::CompilerInitializeRegAlloc() {
503  int num_regs = sizeof(core_regs)/sizeof(*core_regs);
504  int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
505  int num_temps = sizeof(core_temps)/sizeof(*core_temps);
506  int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs);
507  int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps);
508  reg_pool_ = static_cast<RegisterPool*>(arena_->Alloc(sizeof(*reg_pool_),
509                                                       kArenaAllocRegAlloc));
510  reg_pool_->num_core_regs = num_regs;
511  reg_pool_->core_regs =
512      static_cast<RegisterInfo*>(arena_->Alloc(num_regs * sizeof(*reg_pool_->core_regs),
513                                               kArenaAllocRegAlloc));
514  reg_pool_->num_fp_regs = num_fp_regs;
515  reg_pool_->FPRegs =
516      static_cast<RegisterInfo *>(arena_->Alloc(num_fp_regs * sizeof(*reg_pool_->FPRegs),
517                                                kArenaAllocRegAlloc));
518  CompilerInitPool(reg_pool_->core_regs, core_regs, reg_pool_->num_core_regs);
519  CompilerInitPool(reg_pool_->FPRegs, FpRegs, reg_pool_->num_fp_regs);
520  // Keep special registers from being allocated
521  for (int i = 0; i < num_reserved; i++) {
522    MarkInUse(ReservedRegs[i]);
523  }
524  // Mark temp regs - all others not in use can be used for promotion
525  for (int i = 0; i < num_temps; i++) {
526    MarkTemp(core_temps[i]);
527  }
528  for (int i = 0; i < num_fp_temps; i++) {
529    MarkTemp(fp_temps[i]);
530  }
531}
532
533void X86Mir2Lir::FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) {
534  DCHECK(rl_keep.wide);
535  DCHECK(rl_free.wide);
536  int free_low = rl_free.reg.GetLowReg();
537  int free_high = rl_free.reg.GetHighReg();
538  int keep_low = rl_keep.reg.GetLowReg();
539  int keep_high = rl_keep.reg.GetHighReg();
540  if ((free_low != keep_low) && (free_low != keep_high) &&
541      (free_high != keep_low) && (free_high != keep_high)) {
542    // No overlap, free both
543    FreeTemp(free_low);
544    FreeTemp(free_high);
545  }
546}
547
548void X86Mir2Lir::SpillCoreRegs() {
549  if (num_core_spills_ == 0) {
550    return;
551  }
552  // Spill mask not including fake return address register
553  uint32_t mask = core_spill_mask_ & ~(1 << rRET);
554  int offset = frame_size_ - (4 * num_core_spills_);
555  for (int reg = 0; mask; mask >>= 1, reg++) {
556    if (mask & 0x1) {
557      StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
558      offset += 4;
559    }
560  }
561}
562
563void X86Mir2Lir::UnSpillCoreRegs() {
564  if (num_core_spills_ == 0) {
565    return;
566  }
567  // Spill mask not including fake return address register
568  uint32_t mask = core_spill_mask_ & ~(1 << rRET);
569  int offset = frame_size_ - (4 * num_core_spills_);
570  for (int reg = 0; mask; mask >>= 1, reg++) {
571    if (mask & 0x1) {
572      LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
573      offset += 4;
574    }
575  }
576}
577
578bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
579  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
580}
581
582X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
583    : Mir2Lir(cu, mir_graph, arena),
584      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
585      method_address_insns_(arena, 100, kGrowableArrayMisc),
586      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
587      call_method_insns_(arena, 100, kGrowableArrayMisc),
588      stack_decrement_(nullptr), stack_increment_(nullptr) {
589  if (kIsDebugBuild) {
590    for (int i = 0; i < kX86Last; i++) {
591      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
592        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
593            << " is wrong: expecting " << i << ", seeing "
594            << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
595      }
596    }
597  }
598}
599
600Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
601                          ArenaAllocator* const arena) {
602  return new X86Mir2Lir(cu, mir_graph, arena);
603}
604
605// Not used in x86
606RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
607  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
608  return RegStorage::InvalidReg();
609}
610
611LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
612  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
613  return nullptr;
614}
615
616uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
617  DCHECK(!IsPseudoLirOp(opcode));
618  return X86Mir2Lir::EncodingMap[opcode].flags;
619}
620
621const char* X86Mir2Lir::GetTargetInstName(int opcode) {
622  DCHECK(!IsPseudoLirOp(opcode));
623  return X86Mir2Lir::EncodingMap[opcode].name;
624}
625
626const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
627  DCHECK(!IsPseudoLirOp(opcode));
628  return X86Mir2Lir::EncodingMap[opcode].fmt;
629}
630
631/*
632 * Return an updated location record with current in-register status.
633 * If the value lives in live temps, reflect that fact.  No code
634 * is generated.  If the live value is part of an older pair,
635 * clobber both low and high.
636 */
637// TODO: Reunify with common code after 'pair mess' has been fixed
638RegLocation X86Mir2Lir::UpdateLocWide(RegLocation loc) {
639  DCHECK(loc.wide);
640  DCHECK(CheckCorePoolSanity());
641  if (loc.location != kLocPhysReg) {
642    DCHECK((loc.location == kLocDalvikFrame) ||
643         (loc.location == kLocCompilerTemp));
644    // Are the dalvik regs already live in physical registers?
645    RegisterInfo* info_lo = AllocLive(loc.s_reg_low, kAnyReg);
646
647    // Handle FP registers specially on x86.
648    if (info_lo && IsFpReg(info_lo->reg)) {
649      bool match = true;
650
651      // We can't match a FP register with a pair of Core registers.
652      match = match && (info_lo->pair == 0);
653
654      if (match) {
655        // We can reuse;update the register usage info.
656        loc.location = kLocPhysReg;
657        loc.vec_len = kVectorLength8;
658        // TODO: use k64BitVector
659        loc.reg = RegStorage(RegStorage::k64BitPair, info_lo->reg, info_lo->reg);
660        DCHECK(IsFpReg(loc.reg.GetLowReg()));
661        return loc;
662      }
663      // We can't easily reuse; clobber and free any overlaps.
664      if (info_lo) {
665        Clobber(info_lo->reg);
666        FreeTemp(info_lo->reg);
667        if (info_lo->pair)
668          Clobber(info_lo->partner);
669      }
670    } else {
671      RegisterInfo* info_hi = AllocLive(GetSRegHi(loc.s_reg_low), kAnyReg);
672      bool match = true;
673      match = match && (info_lo != NULL);
674      match = match && (info_hi != NULL);
675      // Are they both core or both FP?
676      match = match && (IsFpReg(info_lo->reg) == IsFpReg(info_hi->reg));
677      // If a pair of floating point singles, are they properly aligned?
678      if (match && IsFpReg(info_lo->reg)) {
679        match &= ((info_lo->reg & 0x1) == 0);
680        match &= ((info_hi->reg - info_lo->reg) == 1);
681      }
682      // If previously used as a pair, it is the same pair?
683      if (match && (info_lo->pair || info_hi->pair)) {
684        match = (info_lo->pair == info_hi->pair);
685        match &= ((info_lo->reg == info_hi->partner) &&
686              (info_hi->reg == info_lo->partner));
687      }
688      if (match) {
689        // Can reuse - update the register usage info
690        loc.reg = RegStorage(RegStorage::k64BitPair, info_lo->reg, info_hi->reg);
691        loc.location = kLocPhysReg;
692        MarkPair(loc.reg.GetLowReg(), loc.reg.GetHighReg());
693        DCHECK(!IsFpReg(loc.reg.GetLowReg()) || ((loc.reg.GetLowReg() & 0x1) == 0));
694        return loc;
695      }
696      // Can't easily reuse - clobber and free any overlaps
697      if (info_lo) {
698        Clobber(info_lo->reg);
699        FreeTemp(info_lo->reg);
700        if (info_lo->pair)
701          Clobber(info_lo->partner);
702      }
703      if (info_hi) {
704        Clobber(info_hi->reg);
705        FreeTemp(info_hi->reg);
706        if (info_hi->pair)
707          Clobber(info_hi->partner);
708      }
709    }
710  }
711  return loc;
712}
713
714// TODO: Reunify with common code after 'pair mess' has been fixed
715RegLocation X86Mir2Lir::EvalLocWide(RegLocation loc, int reg_class, bool update) {
716  DCHECK(loc.wide);
717
718  loc = UpdateLocWide(loc);
719
720  /* If it is already in a register, we can assume proper form.  Is it the right reg class? */
721  if (loc.location == kLocPhysReg) {
722    DCHECK_EQ(IsFpReg(loc.reg.GetLowReg()), loc.IsVectorScalar());
723    if (!RegClassMatches(reg_class, loc.reg)) {
724      /* It is the wrong register class.  Reallocate and copy. */
725      if (!IsFpReg(loc.reg.GetLowReg())) {
726        // We want this in a FP reg, and it is in core registers.
727        DCHECK(reg_class != kCoreReg);
728        // Allocate this into any FP reg, and mark it with the right size.
729        int32_t low_reg = AllocTypedTemp(true, reg_class).GetReg();
730        OpVectorRegCopyWide(low_reg, loc.reg.GetLowReg(), loc.reg.GetHighReg());
731        CopyRegInfo(low_reg, loc.reg.GetLowReg());
732        Clobber(loc.reg);
733        loc.reg.SetReg(low_reg);
734        loc.reg.SetHighReg(low_reg);  // Play nice with existing code.
735        loc.vec_len = kVectorLength8;
736      } else {
737        // The value is in a FP register, and we want it in a pair of core registers.
738        DCHECK_EQ(reg_class, kCoreReg);
739        DCHECK_EQ(loc.reg.GetLowReg(), loc.reg.GetHighReg());
740        RegStorage new_regs = AllocTypedTempWide(false, kCoreReg);  // Force to core registers.
741        OpRegCopyWide(new_regs, loc.reg);
742        CopyRegInfo(new_regs.GetLowReg(), loc.reg.GetLowReg());
743        CopyRegInfo(new_regs.GetHighReg(), loc.reg.GetHighReg());
744        Clobber(loc.reg);
745        loc.reg = new_regs;
746        MarkPair(loc.reg.GetLowReg(), loc.reg.GetHighReg());
747        DCHECK(!IsFpReg(loc.reg.GetLowReg()) || ((loc.reg.GetLowReg() & 0x1) == 0));
748      }
749    }
750    return loc;
751  }
752
753  DCHECK_NE(loc.s_reg_low, INVALID_SREG);
754  DCHECK_NE(GetSRegHi(loc.s_reg_low), INVALID_SREG);
755
756  loc.reg = AllocTypedTempWide(loc.fp, reg_class);
757
758  // FIXME: take advantage of RegStorage notation.
759  if (loc.reg.GetLowReg() == loc.reg.GetHighReg()) {
760    DCHECK(IsFpReg(loc.reg.GetLowReg()));
761    loc.vec_len = kVectorLength8;
762  } else {
763    MarkPair(loc.reg.GetLowReg(), loc.reg.GetHighReg());
764  }
765  if (update) {
766    loc.location = kLocPhysReg;
767    MarkLive(loc.reg.GetLow(), loc.s_reg_low);
768    if (loc.reg.GetLowReg() != loc.reg.GetHighReg()) {
769      MarkLive(loc.reg.GetHigh(), GetSRegHi(loc.s_reg_low));
770    }
771  }
772  return loc;
773}
774
775// TODO: Reunify with common code after 'pair mess' has been fixed
776RegLocation X86Mir2Lir::EvalLoc(RegLocation loc, int reg_class, bool update) {
777  if (loc.wide)
778    return EvalLocWide(loc, reg_class, update);
779
780  loc = UpdateLoc(loc);
781
782  if (loc.location == kLocPhysReg) {
783    if (!RegClassMatches(reg_class, loc.reg)) {
784      /* Wrong register class.  Realloc, copy and transfer ownership. */
785      RegStorage new_reg = AllocTypedTemp(loc.fp, reg_class);
786      OpRegCopy(new_reg, loc.reg);
787      CopyRegInfo(new_reg, loc.reg);
788      Clobber(loc.reg);
789      loc.reg = new_reg;
790      if (IsFpReg(loc.reg.GetReg()) && reg_class != kCoreReg)
791        loc.vec_len = kVectorLength4;
792    }
793    return loc;
794  }
795
796  DCHECK_NE(loc.s_reg_low, INVALID_SREG);
797
798  loc.reg = AllocTypedTemp(loc.fp, reg_class);
799  if (IsFpReg(loc.reg.GetReg()) && reg_class != kCoreReg)
800    loc.vec_len = kVectorLength4;
801
802  if (update) {
803    loc.location = kLocPhysReg;
804    MarkLive(loc.reg, loc.s_reg_low);
805  }
806  return loc;
807}
808
809RegStorage X86Mir2Lir::AllocTempDouble() {
810  // We really don't need a pair of registers.
811  // FIXME - update to double
812  int reg = AllocTempFloat().GetReg();
813  return RegStorage(RegStorage::k64BitPair, reg, reg);
814}
815
816// TODO: Reunify with common code after 'pair mess' has been fixed
817void X86Mir2Lir::ResetDefLocWide(RegLocation rl) {
818  DCHECK(rl.wide);
819  RegisterInfo* p_low = IsTemp(rl.reg.GetLowReg());
820  if (IsFpReg(rl.reg.GetLowReg())) {
821    // We are using only the low register.
822    if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
823      NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
824    }
825    ResetDef(rl.reg.GetLowReg());
826  } else {
827    RegisterInfo* p_high = IsTemp(rl.reg.GetHighReg());
828    if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
829      DCHECK(p_low->pair);
830      NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
831    }
832    if (p_high && !(cu_->disable_opt & (1 << kSuppressLoads))) {
833      DCHECK(p_high->pair);
834    }
835    ResetDef(rl.reg.GetLowReg());
836    ResetDef(rl.reg.GetHighReg());
837  }
838}
839
840void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
841  // Can we do this directly to memory?
842  rl_dest = UpdateLocWide(rl_dest);
843  if ((rl_dest.location == kLocDalvikFrame) ||
844      (rl_dest.location == kLocCompilerTemp)) {
845    int32_t val_lo = Low32Bits(value);
846    int32_t val_hi = High32Bits(value);
847    int r_base = TargetReg(kSp).GetReg();
848    int displacement = SRegOffset(rl_dest.s_reg_low);
849
850    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
851    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
852                              false /* is_load */, true /* is64bit */);
853    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
854    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
855                              false /* is_load */, true /* is64bit */);
856    return;
857  }
858
859  // Just use the standard code to do the generation.
860  Mir2Lir::GenConstWide(rl_dest, value);
861}
862
863// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
864void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
865  LOG(INFO)  << "location: " << loc.location << ','
866             << (loc.wide ? " w" : "  ")
867             << (loc.defined ? " D" : "  ")
868             << (loc.is_const ? " c" : "  ")
869             << (loc.fp ? " F" : "  ")
870             << (loc.core ? " C" : "  ")
871             << (loc.ref ? " r" : "  ")
872             << (loc.high_word ? " h" : "  ")
873             << (loc.home ? " H" : "  ")
874             << " vec_len: " << loc.vec_len
875             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
876             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
877             << ", s_reg: " << loc.s_reg_low
878             << ", orig: " << loc.orig_sreg;
879}
880
881void X86Mir2Lir::Materialize() {
882  // A good place to put the analysis before starting.
883  AnalyzeMIR();
884
885  // Now continue with regular code generation.
886  Mir2Lir::Materialize();
887}
888
889void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
890                                   SpecialTargetRegister symbolic_reg) {
891  /*
892   * For x86, just generate a 32 bit move immediate instruction, that will be filled
893   * in at 'link time'.  For now, put a unique value based on target to ensure that
894   * code deduplication works.
895   */
896  int target_method_idx = target_method.dex_method_index;
897  const DexFile* target_dex_file = target_method.dex_file;
898  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
899  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
900
901  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
902  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
903                     static_cast<int>(target_method_id_ptr), target_method_idx,
904                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
905  AppendLIR(move);
906  method_address_insns_.Insert(move);
907}
908
909void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
910  /*
911   * For x86, just generate a 32 bit move immediate instruction, that will be filled
912   * in at 'link time'.  For now, put a unique value based on target to ensure that
913   * code deduplication works.
914   */
915  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
916  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
917
918  // Generate the move instruction with the unique pointer and save index and type.
919  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
920                     static_cast<int>(ptr), type_idx);
921  AppendLIR(move);
922  class_type_address_insns_.Insert(move);
923}
924
925LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
926  /*
927   * For x86, just generate a 32 bit call relative instruction, that will be filled
928   * in at 'link time'.  For now, put a unique value based on target to ensure that
929   * code deduplication works.
930   */
931  int target_method_idx = target_method.dex_method_index;
932  const DexFile* target_dex_file = target_method.dex_file;
933  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
934  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
935
936  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
937  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
938                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
939  AppendLIR(call);
940  call_method_insns_.Insert(call);
941  return call;
942}
943
944void X86Mir2Lir::InstallLiteralPools() {
945  // These are handled differently for x86.
946  DCHECK(code_literal_list_ == nullptr);
947  DCHECK(method_literal_list_ == nullptr);
948  DCHECK(class_literal_list_ == nullptr);
949
950  // Handle the fixups for methods.
951  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
952      LIR* p = method_address_insns_.Get(i);
953      DCHECK_EQ(p->opcode, kX86Mov32RI);
954      uint32_t target_method_idx = p->operands[2];
955      const DexFile* target_dex_file =
956          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
957
958      // The offset to patch is the last 4 bytes of the instruction.
959      int patch_offset = p->offset + p->flags.size - 4;
960      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
961                                           cu_->method_idx, cu_->invoke_type,
962                                           target_method_idx, target_dex_file,
963                                           static_cast<InvokeType>(p->operands[4]),
964                                           patch_offset);
965  }
966
967  // Handle the fixups for class types.
968  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
969      LIR* p = class_type_address_insns_.Get(i);
970      DCHECK_EQ(p->opcode, kX86Mov32RI);
971      uint32_t target_method_idx = p->operands[2];
972
973      // The offset to patch is the last 4 bytes of the instruction.
974      int patch_offset = p->offset + p->flags.size - 4;
975      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
976                                          cu_->method_idx, target_method_idx, patch_offset);
977  }
978
979  // And now the PC-relative calls to methods.
980  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
981      LIR* p = call_method_insns_.Get(i);
982      DCHECK_EQ(p->opcode, kX86CallI);
983      uint32_t target_method_idx = p->operands[1];
984      const DexFile* target_dex_file =
985          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
986
987      // The offset to patch is the last 4 bytes of the instruction.
988      int patch_offset = p->offset + p->flags.size - 4;
989      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
990                                                 cu_->method_idx, cu_->invoke_type,
991                                                 target_method_idx, target_dex_file,
992                                                 static_cast<InvokeType>(p->operands[3]),
993                                                 patch_offset, -4 /* offset */);
994  }
995
996  // And do the normal processing.
997  Mir2Lir::InstallLiteralPools();
998}
999
1000/*
1001 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1002 * otherwise bails to standard library code.
1003 */
1004bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1005  ClobberCallerSave();
1006  LockCallTemps();  // Using fixed registers
1007
1008  // EAX: 16 bit character being searched.
1009  // ECX: count: number of words to be searched.
1010  // EDI: String being searched.
1011  // EDX: temporary during execution.
1012  // EBX: temporary during execution.
1013
1014  RegLocation rl_obj = info->args[0];
1015  RegLocation rl_char = info->args[1];
1016  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1017
1018  uint32_t char_value =
1019    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1020
1021  if (char_value > 0xFFFF) {
1022    // We have to punt to the real String.indexOf.
1023    return false;
1024  }
1025
1026  // Okay, we are commited to inlining this.
1027  RegLocation rl_return = GetReturn(false);
1028  RegLocation rl_dest = InlineTarget(info);
1029
1030  // Is the string non-NULL?
1031  LoadValueDirectFixed(rl_obj, rs_rDX);
1032  GenNullCheck(rs_rDX, info->opt_flags);
1033  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1034
1035  // Does the character fit in 16 bits?
1036  LIR* launchpad_branch = nullptr;
1037  if (rl_char.is_const) {
1038    // We need the value in EAX.
1039    LoadConstantNoClobber(rs_rAX, char_value);
1040  } else {
1041    // Character is not a constant; compare at runtime.
1042    LoadValueDirectFixed(rl_char, rs_rAX);
1043    launchpad_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1044  }
1045
1046  // From here down, we know that we are looking for a char that fits in 16 bits.
1047  // Location of reference to data array within the String object.
1048  int value_offset = mirror::String::ValueOffset().Int32Value();
1049  // Location of count within the String object.
1050  int count_offset = mirror::String::CountOffset().Int32Value();
1051  // Starting offset within data array.
1052  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1053  // Start of char data with array_.
1054  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1055
1056  // Character is in EAX.
1057  // Object pointer is in EDX.
1058
1059  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1060  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1061  NewLIR1(kX86Push32R, rDI);
1062
1063  // Compute the number of words to search in to rCX.
1064  LoadWordDisp(rs_rDX, count_offset, rs_rCX);
1065  LIR *length_compare = nullptr;
1066  int start_value = 0;
1067  if (zero_based) {
1068    // We have to handle an empty string.  Use special instruction JECXZ.
1069    length_compare = NewLIR0(kX86Jecxz8);
1070  } else {
1071    rl_start = info->args[2];
1072    // We have to offset by the start index.
1073    if (rl_start.is_const) {
1074      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1075      start_value = std::max(start_value, 0);
1076
1077      // Is the start > count?
1078      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1079
1080      if (start_value != 0) {
1081        OpRegImm(kOpSub, rs_rCX, start_value);
1082      }
1083    } else {
1084      // Runtime start index.
1085      rl_start = UpdateLoc(rl_start);
1086      if (rl_start.location == kLocPhysReg) {
1087        length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1088        OpRegReg(kOpSub, rs_rCX, rl_start.reg);
1089      } else {
1090        // Compare to memory to avoid a register load.  Handle pushed EDI.
1091        int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1092        OpRegMem(kOpCmp, rs_rCX, rs_rX86_SP, displacement);
1093        length_compare = NewLIR2(kX86Jcc8, 0, kX86CondLe);
1094        OpRegMem(kOpSub, rs_rCX, rs_rX86_SP, displacement);
1095      }
1096    }
1097  }
1098  DCHECK(length_compare != nullptr);
1099
1100  // ECX now contains the count in words to be searched.
1101
1102  // Load the address of the string into EBX.
1103  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1104  LoadWordDisp(rs_rDX, value_offset, rs_rDI);
1105  LoadWordDisp(rs_rDX, offset_offset, rs_rBX);
1106  OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
1107
1108  // Now compute into EDI where the search will start.
1109  if (zero_based || rl_start.is_const) {
1110    if (start_value == 0) {
1111      OpRegCopy(rs_rDI, rs_rBX);
1112    } else {
1113      NewLIR3(kX86Lea32RM, rDI, rBX, 2 * start_value);
1114    }
1115  } else {
1116    if (rl_start.location == kLocPhysReg) {
1117      if (rl_start.reg.GetReg() == rDI) {
1118        // We have a slight problem here.  We are already using RDI!
1119        // Grab the value from the stack.
1120        LoadWordDisp(rs_rX86_SP, 0, rs_rDX);
1121        OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
1122      } else {
1123        OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
1124      }
1125    } else {
1126      OpRegCopy(rs_rDI, rs_rBX);
1127      // Load the start index from stack, remembering that we pushed EDI.
1128      int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1129      LoadWordDisp(rs_rX86_SP, displacement, rs_rDX);
1130      OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
1131    }
1132  }
1133
1134  // EDI now contains the start of the string to be searched.
1135  // We are all prepared to do the search for the character.
1136  NewLIR0(kX86RepneScasw);
1137
1138  // Did we find a match?
1139  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1140
1141  // yes, we matched.  Compute the index of the result.
1142  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1143  OpRegReg(kOpSub, rs_rDI, rs_rBX);
1144  OpRegImm(kOpAsr, rs_rDI, 1);
1145  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rDI, -1);
1146  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1147
1148  // Failed to match; return -1.
1149  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1150  length_compare->target = not_found;
1151  failed_branch->target = not_found;
1152  LoadConstantNoClobber(rl_return.reg, -1);
1153
1154  // And join up at the end.
1155  all_done->target = NewLIR0(kPseudoTargetLabel);
1156  // Restore EDI from the stack.
1157  NewLIR1(kX86Pop32R, rDI);
1158
1159  // Out of line code returns here.
1160  if (launchpad_branch != nullptr) {
1161    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1162    AddIntrinsicLaunchpad(info, launchpad_branch, return_point);
1163  }
1164
1165  StoreValue(rl_dest, rl_return);
1166  return true;
1167}
1168
1169/*
1170 * @brief Enter a 32 bit quantity into the FDE buffer
1171 * @param buf FDE buffer.
1172 * @param data Data value.
1173 */
1174static void PushWord(std::vector<uint8_t>&buf, int data) {
1175  buf.push_back(data & 0xff);
1176  buf.push_back((data >> 8) & 0xff);
1177  buf.push_back((data >> 16) & 0xff);
1178  buf.push_back((data >> 24) & 0xff);
1179}
1180
1181/*
1182 * @brief Enter an 'advance LOC' into the FDE buffer
1183 * @param buf FDE buffer.
1184 * @param increment Amount by which to increase the current location.
1185 */
1186static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1187  if (increment < 64) {
1188    // Encoding in opcode.
1189    buf.push_back(0x1 << 6 | increment);
1190  } else if (increment < 256) {
1191    // Single byte delta.
1192    buf.push_back(0x02);
1193    buf.push_back(increment);
1194  } else if (increment < 256 * 256) {
1195    // Two byte delta.
1196    buf.push_back(0x03);
1197    buf.push_back(increment & 0xff);
1198    buf.push_back((increment >> 8) & 0xff);
1199  } else {
1200    // Four byte delta.
1201    buf.push_back(0x04);
1202    PushWord(buf, increment);
1203  }
1204}
1205
1206
1207std::vector<uint8_t>* X86CFIInitialization() {
1208  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1209}
1210
1211std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1212  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1213
1214  // Length of the CIE (except for this field).
1215  PushWord(*cfi_info, 16);
1216
1217  // CIE id.
1218  PushWord(*cfi_info, 0xFFFFFFFFU);
1219
1220  // Version: 3.
1221  cfi_info->push_back(0x03);
1222
1223  // Augmentation: empty string.
1224  cfi_info->push_back(0x0);
1225
1226  // Code alignment: 1.
1227  cfi_info->push_back(0x01);
1228
1229  // Data alignment: -4.
1230  cfi_info->push_back(0x7C);
1231
1232  // Return address register (R8).
1233  cfi_info->push_back(0x08);
1234
1235  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1236  cfi_info->push_back(0x0C);
1237  cfi_info->push_back(0x04);
1238  cfi_info->push_back(0x04);
1239
1240  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1241  cfi_info->push_back(0x2 << 6 | 0x08);
1242  cfi_info->push_back(0x01);
1243
1244  // And 2 Noops to align to 4 byte boundary.
1245  cfi_info->push_back(0x0);
1246  cfi_info->push_back(0x0);
1247
1248  DCHECK_EQ(cfi_info->size() & 3, 0U);
1249  return cfi_info;
1250}
1251
1252static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1253  uint8_t buffer[12];
1254  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1255  for (uint8_t *p = buffer; p < ptr; p++) {
1256    buf.push_back(*p);
1257  }
1258}
1259
1260std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1261  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1262
1263  // Generate the FDE for the method.
1264  DCHECK_NE(data_offset_, 0U);
1265
1266  // Length (will be filled in later in this routine).
1267  PushWord(*cfi_info, 0);
1268
1269  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1270  // one CIE for the whole debug_frame section.
1271  PushWord(*cfi_info, 0);
1272
1273  // 'initial_location' (filled in by linker).
1274  PushWord(*cfi_info, 0);
1275
1276  // 'address_range' (number of bytes in the method).
1277  PushWord(*cfi_info, data_offset_);
1278
1279  // The instructions in the FDE.
1280  if (stack_decrement_ != nullptr) {
1281    // Advance LOC to just past the stack decrement.
1282    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1283    AdvanceLoc(*cfi_info, pc);
1284
1285    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1286    cfi_info->push_back(0x0e);
1287    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1288
1289    // We continue with that stack until the epilogue.
1290    if (stack_increment_ != nullptr) {
1291      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1292      AdvanceLoc(*cfi_info, new_pc - pc);
1293
1294      // We probably have code snippets after the epilogue, so save the
1295      // current state: DW_CFA_remember_state.
1296      cfi_info->push_back(0x0a);
1297
1298      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1299      // PC on the stack now.
1300      cfi_info->push_back(0x0e);
1301      EncodeUnsignedLeb128(*cfi_info, 4);
1302
1303      // Everything after that is the same as before the epilogue.
1304      // Stack bump was followed by RET instruction.
1305      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1306      if (post_ret_insn != nullptr) {
1307        pc = new_pc;
1308        new_pc = post_ret_insn->offset;
1309        AdvanceLoc(*cfi_info, new_pc - pc);
1310        // Restore the state: DW_CFA_restore_state.
1311        cfi_info->push_back(0x0b);
1312      }
1313    }
1314  }
1315
1316  // Padding to a multiple of 4
1317  while ((cfi_info->size() & 3) != 0) {
1318    // DW_CFA_nop is encoded as 0.
1319    cfi_info->push_back(0);
1320  }
1321
1322  // Set the length of the FDE inside the generated bytes.
1323  uint32_t length = cfi_info->size() - 4;
1324  (*cfi_info)[0] = length;
1325  (*cfi_info)[1] = length >> 8;
1326  (*cfi_info)[2] = length >> 16;
1327  (*cfi_info)[3] = length >> 24;
1328  return cfi_info;
1329}
1330
1331}  // namespace art
1332