target_x86.cc revision 76af0d307194045ece429dbaf62e93d3e08c6c20
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "mirror/array.h"
24#include "mirror/string.h"
25#include "x86_lir.h"
26
27namespace art {
28
29static constexpr RegStorage core_regs_arr_32[] = {
30    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
31};
32static constexpr RegStorage core_regs_arr_64[] = {
33    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
34#ifdef TARGET_REX_SUPPORT
35    rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36#endif
37};
38static constexpr RegStorage core_regs_arr_64q[] = {
39    rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
40#ifdef TARGET_REX_SUPPORT
41    rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
42#endif
43};
44static constexpr RegStorage sp_regs_arr_32[] = {
45    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46};
47static constexpr RegStorage sp_regs_arr_64[] = {
48    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
49#ifdef TARGET_REX_SUPPORT
50    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
51#endif
52};
53static constexpr RegStorage dp_regs_arr_32[] = {
54    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
55};
56static constexpr RegStorage dp_regs_arr_64[] = {
57    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
58#ifdef TARGET_REX_SUPPORT
59    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
60#endif
61};
62static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
63static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
64static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
65static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
66static constexpr RegStorage core_temps_arr_64[] = {
67    rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
68#ifdef TARGET_REX_SUPPORT
69    rs_r8, rs_r9, rs_r10, rs_r11
70#endif
71};
72static constexpr RegStorage core_temps_arr_64q[] = {
73    rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
74#ifdef TARGET_REX_SUPPORT
75    rs_r8q, rs_r9q, rs_r10q, rs_r11q
76#endif
77};
78static constexpr RegStorage sp_temps_arr_32[] = {
79    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
80};
81static constexpr RegStorage sp_temps_arr_64[] = {
82    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
83#ifdef TARGET_REX_SUPPORT
84    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
85#endif
86};
87static constexpr RegStorage dp_temps_arr_32[] = {
88    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
89};
90static constexpr RegStorage dp_temps_arr_64[] = {
91    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
92#ifdef TARGET_REX_SUPPORT
93    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
94#endif
95};
96
97static constexpr RegStorage xp_temps_arr_32[] = {
98    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
99};
100static constexpr RegStorage xp_temps_arr_64[] = {
101    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
102#ifdef TARGET_REX_SUPPORT
103    rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
104#endif
105};
106
107static constexpr ArrayRef<const RegStorage> empty_pool;
108static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
109static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
110static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
111static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
112static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
113static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
114static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
115static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
116static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
117static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
118static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
119static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
120static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
121static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
122static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
123static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
124static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
125
126static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
127static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
128
129RegStorage rs_rX86_SP;
130
131X86NativeRegisterPool rX86_ARG0;
132X86NativeRegisterPool rX86_ARG1;
133X86NativeRegisterPool rX86_ARG2;
134X86NativeRegisterPool rX86_ARG3;
135X86NativeRegisterPool rX86_FARG0;
136X86NativeRegisterPool rX86_FARG1;
137X86NativeRegisterPool rX86_FARG2;
138X86NativeRegisterPool rX86_FARG3;
139X86NativeRegisterPool rX86_RET0;
140X86NativeRegisterPool rX86_RET1;
141X86NativeRegisterPool rX86_INVOKE_TGT;
142X86NativeRegisterPool rX86_COUNT;
143
144RegStorage rs_rX86_ARG0;
145RegStorage rs_rX86_ARG1;
146RegStorage rs_rX86_ARG2;
147RegStorage rs_rX86_ARG3;
148RegStorage rs_rX86_FARG0;
149RegStorage rs_rX86_FARG1;
150RegStorage rs_rX86_FARG2;
151RegStorage rs_rX86_FARG3;
152RegStorage rs_rX86_RET0;
153RegStorage rs_rX86_RET1;
154RegStorage rs_rX86_INVOKE_TGT;
155RegStorage rs_rX86_COUNT;
156
157RegLocation X86Mir2Lir::LocCReturn() {
158  return x86_loc_c_return;
159}
160
161RegLocation X86Mir2Lir::LocCReturnRef() {
162  // FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
163  return x86_loc_c_return;
164}
165
166RegLocation X86Mir2Lir::LocCReturnWide() {
167  return x86_loc_c_return_wide;
168}
169
170RegLocation X86Mir2Lir::LocCReturnFloat() {
171  return x86_loc_c_return_float;
172}
173
174RegLocation X86Mir2Lir::LocCReturnDouble() {
175  return x86_loc_c_return_double;
176}
177
178// Return a target-dependent special register.
179RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
180  RegStorage res_reg = RegStorage::InvalidReg();
181  switch (reg) {
182    case kSelf: res_reg = RegStorage::InvalidReg(); break;
183    case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
184    case kLr: res_reg =  RegStorage::InvalidReg(); break;
185    case kPc: res_reg =  RegStorage::InvalidReg(); break;
186    case kSp: res_reg =  rs_rX86_SP; break;
187    case kArg0: res_reg = rs_rX86_ARG0; break;
188    case kArg1: res_reg = rs_rX86_ARG1; break;
189    case kArg2: res_reg = rs_rX86_ARG2; break;
190    case kArg3: res_reg = rs_rX86_ARG3; break;
191    case kFArg0: res_reg = rs_rX86_FARG0; break;
192    case kFArg1: res_reg = rs_rX86_FARG1; break;
193    case kFArg2: res_reg = rs_rX86_FARG2; break;
194    case kFArg3: res_reg = rs_rX86_FARG3; break;
195    case kRet0: res_reg = rs_rX86_RET0; break;
196    case kRet1: res_reg = rs_rX86_RET1; break;
197    case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
198    case kHiddenArg: res_reg = rs_rAX; break;
199    case kHiddenFpArg: res_reg = rs_fr0; break;
200    case kCount: res_reg = rs_rX86_COUNT; break;
201  }
202  return res_reg;
203}
204
205RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
206  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
207  // TODO: This is not 64-bit compliant and depends on new internal ABI.
208  switch (arg_num) {
209    case 0:
210      return rs_rX86_ARG1;
211    case 1:
212      return rs_rX86_ARG2;
213    case 2:
214      return rs_rX86_ARG3;
215    default:
216      return RegStorage::InvalidReg();
217  }
218}
219
220/*
221 * Decode the register id.
222 */
223uint64_t X86Mir2Lir::GetRegMaskCommon(RegStorage reg) {
224  uint64_t seed;
225  int shift;
226  int reg_id;
227
228  reg_id = reg.GetRegNum();
229  /* Double registers in x86 are just a single FP register */
230  seed = 1;
231  /* FP register starts at bit position 16 */
232  shift = (reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0;
233  /* Expand the double register id into single offset */
234  shift += reg_id;
235  return (seed << shift);
236}
237
238uint64_t X86Mir2Lir::GetPCUseDefEncoding() {
239  /*
240   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
241   * able to clean up some of the x86/Arm_Mips differences
242   */
243  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
244  return 0ULL;
245}
246
247void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
248  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
249  DCHECK(!lir->flags.use_def_invalid);
250
251  // X86-specific resource map setup here.
252  if (flags & REG_USE_SP) {
253    lir->u.m.use_mask |= ENCODE_X86_REG_SP;
254  }
255
256  if (flags & REG_DEF_SP) {
257    lir->u.m.def_mask |= ENCODE_X86_REG_SP;
258  }
259
260  if (flags & REG_DEFA) {
261    SetupRegMask(&lir->u.m.def_mask, rs_rAX.GetReg());
262  }
263
264  if (flags & REG_DEFD) {
265    SetupRegMask(&lir->u.m.def_mask, rs_rDX.GetReg());
266  }
267  if (flags & REG_USEA) {
268    SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg());
269  }
270
271  if (flags & REG_USEC) {
272    SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg());
273  }
274
275  if (flags & REG_USED) {
276    SetupRegMask(&lir->u.m.use_mask, rs_rDX.GetReg());
277  }
278
279  if (flags & REG_USEB) {
280    SetupRegMask(&lir->u.m.use_mask, rs_rBX.GetReg());
281  }
282
283  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
284  if (lir->opcode == kX86RepneScasw) {
285    SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg());
286    SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg());
287    SetupRegMask(&lir->u.m.use_mask, rs_rDI.GetReg());
288    SetupRegMask(&lir->u.m.def_mask, rs_rDI.GetReg());
289  }
290
291  if (flags & USE_FP_STACK) {
292    lir->u.m.use_mask |= ENCODE_X86_FP_STACK;
293    lir->u.m.def_mask |= ENCODE_X86_FP_STACK;
294  }
295}
296
297/* For dumping instructions */
298static const char* x86RegName[] = {
299  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
300  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
301};
302
303static const char* x86CondName[] = {
304  "O",
305  "NO",
306  "B/NAE/C",
307  "NB/AE/NC",
308  "Z/EQ",
309  "NZ/NE",
310  "BE/NA",
311  "NBE/A",
312  "S",
313  "NS",
314  "P/PE",
315  "NP/PO",
316  "L/NGE",
317  "NL/GE",
318  "LE/NG",
319  "NLE/G"
320};
321
322/*
323 * Interpret a format string and build a string no longer than size
324 * See format key in Assemble.cc.
325 */
326std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
327  std::string buf;
328  size_t i = 0;
329  size_t fmt_len = strlen(fmt);
330  while (i < fmt_len) {
331    if (fmt[i] != '!') {
332      buf += fmt[i];
333      i++;
334    } else {
335      i++;
336      DCHECK_LT(i, fmt_len);
337      char operand_number_ch = fmt[i];
338      i++;
339      if (operand_number_ch == '!') {
340        buf += "!";
341      } else {
342        int operand_number = operand_number_ch - '0';
343        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
344        DCHECK_LT(i, fmt_len);
345        int operand = lir->operands[operand_number];
346        switch (fmt[i]) {
347          case 'c':
348            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
349            buf += x86CondName[operand];
350            break;
351          case 'd':
352            buf += StringPrintf("%d", operand);
353            break;
354          case 'p': {
355            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
356            buf += StringPrintf("0x%08x", tab_rec->offset);
357            break;
358          }
359          case 'r':
360            if (RegStorage::IsFloat(operand)) {
361              int fp_reg = RegStorage::RegNum(operand);
362              buf += StringPrintf("xmm%d", fp_reg);
363            } else {
364              int reg_num = RegStorage::RegNum(operand);
365              DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
366              buf += x86RegName[reg_num];
367            }
368            break;
369          case 't':
370            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
371                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
372                                lir->target);
373            break;
374          default:
375            buf += StringPrintf("DecodeError '%c'", fmt[i]);
376            break;
377        }
378        i++;
379      }
380    }
381  }
382  return buf;
383}
384
385void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) {
386  char buf[256];
387  buf[0] = 0;
388
389  if (mask == ENCODE_ALL) {
390    strcpy(buf, "all");
391  } else {
392    char num[8];
393    int i;
394
395    for (i = 0; i < kX86RegEnd; i++) {
396      if (mask & (1ULL << i)) {
397        snprintf(num, arraysize(num), "%d ", i);
398        strcat(buf, num);
399      }
400    }
401
402    if (mask & ENCODE_CCODE) {
403      strcat(buf, "cc ");
404    }
405    /* Memory bits */
406    if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
407      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
408               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
409               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
410    }
411    if (mask & ENCODE_LITERAL) {
412      strcat(buf, "lit ");
413    }
414
415    if (mask & ENCODE_HEAP_REF) {
416      strcat(buf, "heap ");
417    }
418    if (mask & ENCODE_MUST_NOT_ALIAS) {
419      strcat(buf, "noalias ");
420    }
421  }
422  if (buf[0]) {
423    LOG(INFO) << prefix << ": " <<  buf;
424  }
425}
426
427void X86Mir2Lir::AdjustSpillMask() {
428  // Adjustment for LR spilling, x86 has no LR so nothing to do here
429  core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
430  num_core_spills_++;
431}
432
433/*
434 * Mark a callee-save fp register as promoted.  Note that
435 * vpush/vpop uses contiguous register lists so we must
436 * include any holes in the mask.  Associate holes with
437 * Dalvik register INVALID_VREG (0xFFFFU).
438 */
439void X86Mir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
440  UNIMPLEMENTED(FATAL) << "MarkPreservedSingle";
441}
442
443void X86Mir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
444  UNIMPLEMENTED(FATAL) << "MarkPreservedDouble";
445}
446
447RegStorage X86Mir2Lir::AllocateByteRegister() {
448  return AllocTypedTemp(false, kCoreReg);
449}
450
451/* Clobber all regs that might be used by an external C call */
452void X86Mir2Lir::ClobberCallerSave() {
453  Clobber(rs_rAX);
454  Clobber(rs_rCX);
455  Clobber(rs_rDX);
456  Clobber(rs_rBX);
457}
458
459RegLocation X86Mir2Lir::GetReturnWideAlt() {
460  RegLocation res = LocCReturnWide();
461  DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
462  DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
463  Clobber(rs_rAX);
464  Clobber(rs_rDX);
465  MarkInUse(rs_rAX);
466  MarkInUse(rs_rDX);
467  MarkWide(res.reg);
468  return res;
469}
470
471RegLocation X86Mir2Lir::GetReturnAlt() {
472  RegLocation res = LocCReturn();
473  res.reg.SetReg(rs_rDX.GetReg());
474  Clobber(rs_rDX);
475  MarkInUse(rs_rDX);
476  return res;
477}
478
479/* To be used when explicitly managing register use */
480void X86Mir2Lir::LockCallTemps() {
481  LockTemp(rs_rX86_ARG0);
482  LockTemp(rs_rX86_ARG1);
483  LockTemp(rs_rX86_ARG2);
484  LockTemp(rs_rX86_ARG3);
485}
486
487/* To be used when explicitly managing register use */
488void X86Mir2Lir::FreeCallTemps() {
489  FreeTemp(rs_rX86_ARG0);
490  FreeTemp(rs_rX86_ARG1);
491  FreeTemp(rs_rX86_ARG2);
492  FreeTemp(rs_rX86_ARG3);
493}
494
495bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
496    switch (opcode) {
497      case kX86LockCmpxchgMR:
498      case kX86LockCmpxchgAR:
499      case kX86LockCmpxchg8bM:
500      case kX86LockCmpxchg8bA:
501      case kX86XchgMR:
502      case kX86Mfence:
503        // Atomic memory instructions provide full barrier.
504        return true;
505      default:
506        break;
507    }
508
509    // Conservative if cannot prove it provides full barrier.
510    return false;
511}
512
513bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
514#if ANDROID_SMP != 0
515  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
516  LIR* mem_barrier = last_lir_insn_;
517
518  bool ret = false;
519  /*
520   * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
521   * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
522   * to ensure is that there is a scheduling barrier in place.
523   */
524  if (barrier_kind == kStoreLoad) {
525    // If no LIR exists already that can be used a barrier, then generate an mfence.
526    if (mem_barrier == nullptr) {
527      mem_barrier = NewLIR0(kX86Mfence);
528      ret = true;
529    }
530
531    // If last instruction does not provide full barrier, then insert an mfence.
532    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
533      mem_barrier = NewLIR0(kX86Mfence);
534      ret = true;
535    }
536  }
537
538  // Now ensure that a scheduling barrier is in place.
539  if (mem_barrier == nullptr) {
540    GenBarrier();
541  } else {
542    // Mark as a scheduling barrier.
543    DCHECK(!mem_barrier->flags.use_def_invalid);
544    mem_barrier->u.m.def_mask = ENCODE_ALL;
545  }
546  return ret;
547#else
548  return false;
549#endif
550}
551
552void X86Mir2Lir::CompilerInitializeRegAlloc() {
553  if (Gen64Bit()) {
554    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
555                                          dp_regs_64, reserved_regs_64, reserved_regs_64q,
556                                          core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
557  } else {
558    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
559                                          dp_regs_32, reserved_regs_32, empty_pool,
560                                          core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
561  }
562
563  // Target-specific adjustments.
564
565  // Add in XMM registers.
566  const ArrayRef<const RegStorage> *xp_temps = Gen64Bit() ? &xp_temps_64 : &xp_temps_32;
567  for (RegStorage reg : *xp_temps) {
568    RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
569    reginfo_map_.Put(reg.GetReg(), info);
570    info->SetIsTemp(true);
571  }
572
573  // Alias single precision xmm to double xmms.
574  // TODO: as needed, add larger vector sizes - alias all to the largest.
575  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
576  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
577    int sp_reg_num = info->GetReg().GetRegNum();
578    RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
579    RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
580    // 128-bit xmm vector register's master storage should refer to itself.
581    DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
582
583    // Redirect 32-bit vector's master storage to 128-bit vector.
584    info->SetMaster(xp_reg_info);
585
586    RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
587    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
588    // Redirect 64-bit vector's master storage to 128-bit vector.
589    dp_reg_info->SetMaster(xp_reg_info);
590    // Singles should show a single 32-bit mask bit, at first referring to the low half.
591    DCHECK_EQ(info->StorageMask(), 0x1U);
592  }
593
594  if (Gen64Bit()) {
595    // Alias 32bit W registers to corresponding 64bit X registers.
596    GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
597    for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
598      int x_reg_num = info->GetReg().GetRegNum();
599      RegStorage x_reg = RegStorage::Solo64(x_reg_num);
600      RegisterInfo* x_reg_info = GetRegInfo(x_reg);
601      // 64bit X register's master storage should refer to itself.
602      DCHECK_EQ(x_reg_info, x_reg_info->Master());
603      // Redirect 32bit W master storage to 64bit X.
604      info->SetMaster(x_reg_info);
605      // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
606      DCHECK_EQ(info->StorageMask(), 0x1U);
607    }
608  }
609
610  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
611  // TODO: adjust for x86/hard float calling convention.
612  reg_pool_->next_core_reg_ = 2;
613  reg_pool_->next_sp_reg_ = 2;
614  reg_pool_->next_dp_reg_ = 1;
615}
616
617void X86Mir2Lir::SpillCoreRegs() {
618  if (num_core_spills_ == 0) {
619    return;
620  }
621  // Spill mask not including fake return address register
622  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
623  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
624  for (int reg = 0; mask; mask >>= 1, reg++) {
625    if (mask & 0x1) {
626      StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
627      offset += GetInstructionSetPointerSize(cu_->instruction_set);
628    }
629  }
630}
631
632void X86Mir2Lir::UnSpillCoreRegs() {
633  if (num_core_spills_ == 0) {
634    return;
635  }
636  // Spill mask not including fake return address register
637  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
638  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
639  for (int reg = 0; mask; mask >>= 1, reg++) {
640    if (mask & 0x1) {
641      LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
642      offset += GetInstructionSetPointerSize(cu_->instruction_set);
643    }
644  }
645}
646
647bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
648  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
649}
650
651bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
652  return true;
653}
654
655RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
656  if (UNLIKELY(is_volatile)) {
657    // On x86, atomic 64-bit load/store requires an fp register.
658    // Smaller aligned load/store is atomic for both core and fp registers.
659    if (size == k64 || size == kDouble) {
660      return kFPReg;
661    }
662  }
663  return RegClassBySize(size);
664}
665
666X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit)
667    : Mir2Lir(cu, mir_graph, arena),
668      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
669      method_address_insns_(arena, 100, kGrowableArrayMisc),
670      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
671      call_method_insns_(arena, 100, kGrowableArrayMisc),
672      stack_decrement_(nullptr), stack_increment_(nullptr), gen64bit_(gen64bit),
673      const_vectors_(nullptr) {
674  store_method_addr_used_ = false;
675  if (kIsDebugBuild) {
676    for (int i = 0; i < kX86Last; i++) {
677      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
678        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
679                   << " is wrong: expecting " << i << ", seeing "
680                   << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
681      }
682    }
683  }
684  if (Gen64Bit()) {
685    rs_rX86_SP = rs_rX86_SP_64;
686
687    rs_rX86_ARG0 = rs_rDI;
688    rs_rX86_ARG1 = rs_rSI;
689    rs_rX86_ARG2 = rs_rDX;
690    rs_rX86_ARG3 = rs_rCX;
691    rX86_ARG0 = rDI;
692    rX86_ARG1 = rSI;
693    rX86_ARG2 = rDX;
694    rX86_ARG3 = rCX;
695    // TODO: ARG4(r8), ARG5(r9), floating point args.
696  } else {
697    rs_rX86_SP = rs_rX86_SP_32;
698
699    rs_rX86_ARG0 = rs_rAX;
700    rs_rX86_ARG1 = rs_rCX;
701    rs_rX86_ARG2 = rs_rDX;
702    rs_rX86_ARG3 = rs_rBX;
703    rX86_ARG0 = rAX;
704    rX86_ARG1 = rCX;
705    rX86_ARG2 = rDX;
706    rX86_ARG3 = rBX;
707  }
708  rs_rX86_FARG0 = rs_rAX;
709  rs_rX86_FARG1 = rs_rCX;
710  rs_rX86_FARG2 = rs_rDX;
711  rs_rX86_FARG3 = rs_rBX;
712  rs_rX86_RET0 = rs_rAX;
713  rs_rX86_RET1 = rs_rDX;
714  rs_rX86_INVOKE_TGT = rs_rAX;
715  rs_rX86_COUNT = rs_rCX;
716  rX86_FARG0 = rAX;
717  rX86_FARG1 = rCX;
718  rX86_FARG2 = rDX;
719  rX86_FARG3 = rBX;
720  rX86_RET0 = rAX;
721  rX86_RET1 = rDX;
722  rX86_INVOKE_TGT = rAX;
723  rX86_COUNT = rCX;
724}
725
726Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
727                          ArenaAllocator* const arena) {
728  return new X86Mir2Lir(cu, mir_graph, arena, false);
729}
730
731Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
732                          ArenaAllocator* const arena) {
733  return new X86Mir2Lir(cu, mir_graph, arena, true);
734}
735
736// Not used in x86
737RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
738  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
739  return RegStorage::InvalidReg();
740}
741
742// Not used in x86
743RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
744  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
745  return RegStorage::InvalidReg();
746}
747
748LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
749  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
750  return nullptr;
751}
752
753uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
754  DCHECK(!IsPseudoLirOp(opcode));
755  return X86Mir2Lir::EncodingMap[opcode].flags;
756}
757
758const char* X86Mir2Lir::GetTargetInstName(int opcode) {
759  DCHECK(!IsPseudoLirOp(opcode));
760  return X86Mir2Lir::EncodingMap[opcode].name;
761}
762
763const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
764  DCHECK(!IsPseudoLirOp(opcode));
765  return X86Mir2Lir::EncodingMap[opcode].fmt;
766}
767
768void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
769  // Can we do this directly to memory?
770  rl_dest = UpdateLocWide(rl_dest);
771  if ((rl_dest.location == kLocDalvikFrame) ||
772      (rl_dest.location == kLocCompilerTemp)) {
773    int32_t val_lo = Low32Bits(value);
774    int32_t val_hi = High32Bits(value);
775    int r_base = TargetReg(kSp).GetReg();
776    int displacement = SRegOffset(rl_dest.s_reg_low);
777
778    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
779    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
780                              false /* is_load */, true /* is64bit */);
781    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
782    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
783                              false /* is_load */, true /* is64bit */);
784    return;
785  }
786
787  // Just use the standard code to do the generation.
788  Mir2Lir::GenConstWide(rl_dest, value);
789}
790
791// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
792void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
793  LOG(INFO)  << "location: " << loc.location << ','
794             << (loc.wide ? " w" : "  ")
795             << (loc.defined ? " D" : "  ")
796             << (loc.is_const ? " c" : "  ")
797             << (loc.fp ? " F" : "  ")
798             << (loc.core ? " C" : "  ")
799             << (loc.ref ? " r" : "  ")
800             << (loc.high_word ? " h" : "  ")
801             << (loc.home ? " H" : "  ")
802             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
803             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
804             << ", s_reg: " << loc.s_reg_low
805             << ", orig: " << loc.orig_sreg;
806}
807
808void X86Mir2Lir::Materialize() {
809  // A good place to put the analysis before starting.
810  AnalyzeMIR();
811
812  // Now continue with regular code generation.
813  Mir2Lir::Materialize();
814}
815
816void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
817                                   SpecialTargetRegister symbolic_reg) {
818  /*
819   * For x86, just generate a 32 bit move immediate instruction, that will be filled
820   * in at 'link time'.  For now, put a unique value based on target to ensure that
821   * code deduplication works.
822   */
823  int target_method_idx = target_method.dex_method_index;
824  const DexFile* target_dex_file = target_method.dex_file;
825  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
826  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
827
828  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
829  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
830                     static_cast<int>(target_method_id_ptr), target_method_idx,
831                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
832  AppendLIR(move);
833  method_address_insns_.Insert(move);
834}
835
836void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
837  /*
838   * For x86, just generate a 32 bit move immediate instruction, that will be filled
839   * in at 'link time'.  For now, put a unique value based on target to ensure that
840   * code deduplication works.
841   */
842  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
843  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
844
845  // Generate the move instruction with the unique pointer and save index and type.
846  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
847                     static_cast<int>(ptr), type_idx);
848  AppendLIR(move);
849  class_type_address_insns_.Insert(move);
850}
851
852LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
853  /*
854   * For x86, just generate a 32 bit call relative instruction, that will be filled
855   * in at 'link time'.  For now, put a unique value based on target to ensure that
856   * code deduplication works.
857   */
858  int target_method_idx = target_method.dex_method_index;
859  const DexFile* target_dex_file = target_method.dex_file;
860  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
861  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
862
863  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
864  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
865                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
866  AppendLIR(call);
867  call_method_insns_.Insert(call);
868  return call;
869}
870
871/*
872 * @brief Enter a 32 bit quantity into a buffer
873 * @param buf buffer.
874 * @param data Data value.
875 */
876
877static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
878  buf.push_back(data & 0xff);
879  buf.push_back((data >> 8) & 0xff);
880  buf.push_back((data >> 16) & 0xff);
881  buf.push_back((data >> 24) & 0xff);
882}
883
884void X86Mir2Lir::InstallLiteralPools() {
885  // These are handled differently for x86.
886  DCHECK(code_literal_list_ == nullptr);
887  DCHECK(method_literal_list_ == nullptr);
888  DCHECK(class_literal_list_ == nullptr);
889
890  // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
891  // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
892  // will fail at runtime)?
893  if (const_vectors_ != nullptr) {
894    int align_size = (16-4) - (code_buffer_.size() & 0xF);
895    if (align_size < 0) {
896      align_size += 16;
897    }
898
899    while (align_size > 0) {
900      code_buffer_.push_back(0);
901      align_size--;
902    }
903    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
904      PushWord(code_buffer_, p->operands[0]);
905      PushWord(code_buffer_, p->operands[1]);
906      PushWord(code_buffer_, p->operands[2]);
907      PushWord(code_buffer_, p->operands[3]);
908    }
909  }
910
911  // Handle the fixups for methods.
912  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
913      LIR* p = method_address_insns_.Get(i);
914      DCHECK_EQ(p->opcode, kX86Mov32RI);
915      uint32_t target_method_idx = p->operands[2];
916      const DexFile* target_dex_file =
917          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
918
919      // The offset to patch is the last 4 bytes of the instruction.
920      int patch_offset = p->offset + p->flags.size - 4;
921      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
922                                           cu_->method_idx, cu_->invoke_type,
923                                           target_method_idx, target_dex_file,
924                                           static_cast<InvokeType>(p->operands[4]),
925                                           patch_offset);
926  }
927
928  // Handle the fixups for class types.
929  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
930      LIR* p = class_type_address_insns_.Get(i);
931      DCHECK_EQ(p->opcode, kX86Mov32RI);
932      uint32_t target_method_idx = p->operands[2];
933
934      // The offset to patch is the last 4 bytes of the instruction.
935      int patch_offset = p->offset + p->flags.size - 4;
936      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
937                                          cu_->method_idx, target_method_idx, patch_offset);
938  }
939
940  // And now the PC-relative calls to methods.
941  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
942      LIR* p = call_method_insns_.Get(i);
943      DCHECK_EQ(p->opcode, kX86CallI);
944      uint32_t target_method_idx = p->operands[1];
945      const DexFile* target_dex_file =
946          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
947
948      // The offset to patch is the last 4 bytes of the instruction.
949      int patch_offset = p->offset + p->flags.size - 4;
950      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
951                                                 cu_->method_idx, cu_->invoke_type,
952                                                 target_method_idx, target_dex_file,
953                                                 static_cast<InvokeType>(p->operands[3]),
954                                                 patch_offset, -4 /* offset */);
955  }
956
957  // And do the normal processing.
958  Mir2Lir::InstallLiteralPools();
959}
960
961/*
962 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
963 * otherwise bails to standard library code.
964 */
965bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
966  ClobberCallerSave();
967  LockCallTemps();  // Using fixed registers
968
969  // EAX: 16 bit character being searched.
970  // ECX: count: number of words to be searched.
971  // EDI: String being searched.
972  // EDX: temporary during execution.
973  // EBX: temporary during execution.
974
975  RegLocation rl_obj = info->args[0];
976  RegLocation rl_char = info->args[1];
977  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
978
979  uint32_t char_value =
980    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
981
982  if (char_value > 0xFFFF) {
983    // We have to punt to the real String.indexOf.
984    return false;
985  }
986
987  // Okay, we are commited to inlining this.
988  RegLocation rl_return = GetReturn(kCoreReg);
989  RegLocation rl_dest = InlineTarget(info);
990
991  // Is the string non-NULL?
992  LoadValueDirectFixed(rl_obj, rs_rDX);
993  GenNullCheck(rs_rDX, info->opt_flags);
994  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
995
996  // Does the character fit in 16 bits?
997  LIR* slowpath_branch = nullptr;
998  if (rl_char.is_const) {
999    // We need the value in EAX.
1000    LoadConstantNoClobber(rs_rAX, char_value);
1001  } else {
1002    // Character is not a constant; compare at runtime.
1003    LoadValueDirectFixed(rl_char, rs_rAX);
1004    slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1005  }
1006
1007  // From here down, we know that we are looking for a char that fits in 16 bits.
1008  // Location of reference to data array within the String object.
1009  int value_offset = mirror::String::ValueOffset().Int32Value();
1010  // Location of count within the String object.
1011  int count_offset = mirror::String::CountOffset().Int32Value();
1012  // Starting offset within data array.
1013  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1014  // Start of char data with array_.
1015  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1016
1017  // Character is in EAX.
1018  // Object pointer is in EDX.
1019
1020  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1021  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1022  NewLIR1(kX86Push32R, rs_rDI.GetReg());
1023
1024  // Compute the number of words to search in to rCX.
1025  Load32Disp(rs_rDX, count_offset, rs_rCX);
1026  LIR *length_compare = nullptr;
1027  int start_value = 0;
1028  bool is_index_on_stack = false;
1029  if (zero_based) {
1030    // We have to handle an empty string.  Use special instruction JECXZ.
1031    length_compare = NewLIR0(kX86Jecxz8);
1032  } else {
1033    rl_start = info->args[2];
1034    // We have to offset by the start index.
1035    if (rl_start.is_const) {
1036      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1037      start_value = std::max(start_value, 0);
1038
1039      // Is the start > count?
1040      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1041
1042      if (start_value != 0) {
1043        OpRegImm(kOpSub, rs_rCX, start_value);
1044      }
1045    } else {
1046      // Runtime start index.
1047      rl_start = UpdateLocTyped(rl_start, kCoreReg);
1048      if (rl_start.location == kLocPhysReg) {
1049        // Handle "start index < 0" case.
1050        OpRegReg(kOpXor, rs_rBX, rs_rBX);
1051        OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1052        OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1053
1054        // The length of the string should be greater than the start index.
1055        length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1056        OpRegReg(kOpSub, rs_rCX, rl_start.reg);
1057        if (rl_start.reg == rs_rDI) {
1058          // The special case. We will use EDI further, so lets put start index to stack.
1059          NewLIR1(kX86Push32R, rs_rDI.GetReg());
1060          is_index_on_stack = true;
1061        }
1062      } else {
1063        // Load the start index from stack, remembering that we pushed EDI.
1064        int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1065        Load32Disp(rs_rX86_SP, displacement, rs_rBX);
1066        OpRegReg(kOpXor, rs_rDI, rs_rDI);
1067        OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1068        OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1069
1070        length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1071        OpRegReg(kOpSub, rs_rCX, rs_rBX);
1072        // Put the start index to stack.
1073        NewLIR1(kX86Push32R, rs_rBX.GetReg());
1074        is_index_on_stack = true;
1075      }
1076    }
1077  }
1078  DCHECK(length_compare != nullptr);
1079
1080  // ECX now contains the count in words to be searched.
1081
1082  // Load the address of the string into EBX.
1083  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1084  Load32Disp(rs_rDX, value_offset, rs_rDI);
1085  Load32Disp(rs_rDX, offset_offset, rs_rBX);
1086  OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
1087
1088  // Now compute into EDI where the search will start.
1089  if (zero_based || rl_start.is_const) {
1090    if (start_value == 0) {
1091      OpRegCopy(rs_rDI, rs_rBX);
1092    } else {
1093      NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
1094    }
1095  } else {
1096    if (is_index_on_stack == true) {
1097      // Load the start index from stack.
1098      NewLIR1(kX86Pop32R, rs_rDX.GetReg());
1099      OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
1100    } else {
1101      OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
1102    }
1103  }
1104
1105  // EDI now contains the start of the string to be searched.
1106  // We are all prepared to do the search for the character.
1107  NewLIR0(kX86RepneScasw);
1108
1109  // Did we find a match?
1110  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1111
1112  // yes, we matched.  Compute the index of the result.
1113  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1114  OpRegReg(kOpSub, rs_rDI, rs_rBX);
1115  OpRegImm(kOpAsr, rs_rDI, 1);
1116  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
1117  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1118
1119  // Failed to match; return -1.
1120  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1121  length_compare->target = not_found;
1122  failed_branch->target = not_found;
1123  LoadConstantNoClobber(rl_return.reg, -1);
1124
1125  // And join up at the end.
1126  all_done->target = NewLIR0(kPseudoTargetLabel);
1127  // Restore EDI from the stack.
1128  NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1129
1130  // Out of line code returns here.
1131  if (slowpath_branch != nullptr) {
1132    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1133    AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1134  }
1135
1136  StoreValue(rl_dest, rl_return);
1137  return true;
1138}
1139
1140/*
1141 * @brief Enter an 'advance LOC' into the FDE buffer
1142 * @param buf FDE buffer.
1143 * @param increment Amount by which to increase the current location.
1144 */
1145static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1146  if (increment < 64) {
1147    // Encoding in opcode.
1148    buf.push_back(0x1 << 6 | increment);
1149  } else if (increment < 256) {
1150    // Single byte delta.
1151    buf.push_back(0x02);
1152    buf.push_back(increment);
1153  } else if (increment < 256 * 256) {
1154    // Two byte delta.
1155    buf.push_back(0x03);
1156    buf.push_back(increment & 0xff);
1157    buf.push_back((increment >> 8) & 0xff);
1158  } else {
1159    // Four byte delta.
1160    buf.push_back(0x04);
1161    PushWord(buf, increment);
1162  }
1163}
1164
1165
1166std::vector<uint8_t>* X86CFIInitialization() {
1167  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1168}
1169
1170std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1171  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1172
1173  // Length of the CIE (except for this field).
1174  PushWord(*cfi_info, 16);
1175
1176  // CIE id.
1177  PushWord(*cfi_info, 0xFFFFFFFFU);
1178
1179  // Version: 3.
1180  cfi_info->push_back(0x03);
1181
1182  // Augmentation: empty string.
1183  cfi_info->push_back(0x0);
1184
1185  // Code alignment: 1.
1186  cfi_info->push_back(0x01);
1187
1188  // Data alignment: -4.
1189  cfi_info->push_back(0x7C);
1190
1191  // Return address register (R8).
1192  cfi_info->push_back(0x08);
1193
1194  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1195  cfi_info->push_back(0x0C);
1196  cfi_info->push_back(0x04);
1197  cfi_info->push_back(0x04);
1198
1199  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1200  cfi_info->push_back(0x2 << 6 | 0x08);
1201  cfi_info->push_back(0x01);
1202
1203  // And 2 Noops to align to 4 byte boundary.
1204  cfi_info->push_back(0x0);
1205  cfi_info->push_back(0x0);
1206
1207  DCHECK_EQ(cfi_info->size() & 3, 0U);
1208  return cfi_info;
1209}
1210
1211static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1212  uint8_t buffer[12];
1213  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1214  for (uint8_t *p = buffer; p < ptr; p++) {
1215    buf.push_back(*p);
1216  }
1217}
1218
1219std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1220  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1221
1222  // Generate the FDE for the method.
1223  DCHECK_NE(data_offset_, 0U);
1224
1225  // Length (will be filled in later in this routine).
1226  PushWord(*cfi_info, 0);
1227
1228  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1229  // one CIE for the whole debug_frame section.
1230  PushWord(*cfi_info, 0);
1231
1232  // 'initial_location' (filled in by linker).
1233  PushWord(*cfi_info, 0);
1234
1235  // 'address_range' (number of bytes in the method).
1236  PushWord(*cfi_info, data_offset_);
1237
1238  // The instructions in the FDE.
1239  if (stack_decrement_ != nullptr) {
1240    // Advance LOC to just past the stack decrement.
1241    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1242    AdvanceLoc(*cfi_info, pc);
1243
1244    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1245    cfi_info->push_back(0x0e);
1246    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1247
1248    // We continue with that stack until the epilogue.
1249    if (stack_increment_ != nullptr) {
1250      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1251      AdvanceLoc(*cfi_info, new_pc - pc);
1252
1253      // We probably have code snippets after the epilogue, so save the
1254      // current state: DW_CFA_remember_state.
1255      cfi_info->push_back(0x0a);
1256
1257      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1258      // PC on the stack now.
1259      cfi_info->push_back(0x0e);
1260      EncodeUnsignedLeb128(*cfi_info, 4);
1261
1262      // Everything after that is the same as before the epilogue.
1263      // Stack bump was followed by RET instruction.
1264      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1265      if (post_ret_insn != nullptr) {
1266        pc = new_pc;
1267        new_pc = post_ret_insn->offset;
1268        AdvanceLoc(*cfi_info, new_pc - pc);
1269        // Restore the state: DW_CFA_restore_state.
1270        cfi_info->push_back(0x0b);
1271      }
1272    }
1273  }
1274
1275  // Padding to a multiple of 4
1276  while ((cfi_info->size() & 3) != 0) {
1277    // DW_CFA_nop is encoded as 0.
1278    cfi_info->push_back(0);
1279  }
1280
1281  // Set the length of the FDE inside the generated bytes.
1282  uint32_t length = cfi_info->size() - 4;
1283  (*cfi_info)[0] = length;
1284  (*cfi_info)[1] = length >> 8;
1285  (*cfi_info)[2] = length >> 16;
1286  (*cfi_info)[3] = length >> 24;
1287  return cfi_info;
1288}
1289
1290void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1291  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1292    case kMirOpConstVector:
1293      GenConst128(bb, mir);
1294      break;
1295    case kMirOpMoveVector:
1296      GenMoveVector(bb, mir);
1297      break;
1298    case kMirOpPackedMultiply:
1299      GenMultiplyVector(bb, mir);
1300      break;
1301    case kMirOpPackedAddition:
1302      GenAddVector(bb, mir);
1303      break;
1304    case kMirOpPackedSubtract:
1305      GenSubtractVector(bb, mir);
1306      break;
1307    case kMirOpPackedShiftLeft:
1308      GenShiftLeftVector(bb, mir);
1309      break;
1310    case kMirOpPackedSignedShiftRight:
1311      GenSignedShiftRightVector(bb, mir);
1312      break;
1313    case kMirOpPackedUnsignedShiftRight:
1314      GenUnsignedShiftRightVector(bb, mir);
1315      break;
1316    case kMirOpPackedAnd:
1317      GenAndVector(bb, mir);
1318      break;
1319    case kMirOpPackedOr:
1320      GenOrVector(bb, mir);
1321      break;
1322    case kMirOpPackedXor:
1323      GenXorVector(bb, mir);
1324      break;
1325    case kMirOpPackedAddReduce:
1326      GenAddReduceVector(bb, mir);
1327      break;
1328    case kMirOpPackedReduce:
1329      GenReduceVector(bb, mir);
1330      break;
1331    case kMirOpPackedSet:
1332      GenSetVector(bb, mir);
1333      break;
1334    default:
1335      break;
1336  }
1337}
1338
1339void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1340  int type_size = mir->dalvikInsn.vA;
1341  // We support 128 bit vectors.
1342  DCHECK_EQ(type_size & 0xFFFF, 128);
1343  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1344  uint32_t *args = mir->dalvikInsn.arg;
1345  int reg = rs_dest.GetReg();
1346  // Check for all 0 case.
1347  if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1348    NewLIR2(kX86XorpsRR, reg, reg);
1349    return;
1350  }
1351  // Okay, load it from the constant vector area.
1352  LIR *data_target = ScanVectorLiteral(mir);
1353  if (data_target == nullptr) {
1354    data_target = AddVectorLiteral(mir);
1355  }
1356
1357  // Address the start of the method.
1358  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1359  rl_method = LoadValue(rl_method, kCoreReg);
1360
1361  // Load the proper value from the literal area.
1362  // We don't know the proper offset for the value, so pick one that will force
1363  // 4 byte offset.  We will fix this up in the assembler later to have the right
1364  // value.
1365  LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(),  256 /* bogus */);
1366  load->flags.fixup = kFixupLoad;
1367  load->target = data_target;
1368  SetMemRefType(load, true, kLiteral);
1369}
1370
1371void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1372  // We only support 128 bit registers.
1373  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1374  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1375  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1376  NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1377}
1378
1379void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1380  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1381  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1382  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1383  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1384  int opcode = 0;
1385  switch (opsize) {
1386    case k32:
1387      opcode = kX86PmulldRR;
1388      break;
1389    case kSignedHalf:
1390      opcode = kX86PmullwRR;
1391      break;
1392    case kSingle:
1393      opcode = kX86MulpsRR;
1394      break;
1395    case kDouble:
1396      opcode = kX86MulpdRR;
1397      break;
1398    default:
1399      LOG(FATAL) << "Unsupported vector multiply " << opsize;
1400      break;
1401  }
1402  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1403}
1404
1405void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1406  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1407  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1408  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1409  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1410  int opcode = 0;
1411  switch (opsize) {
1412    case k32:
1413      opcode = kX86PadddRR;
1414      break;
1415    case kSignedHalf:
1416    case kUnsignedHalf:
1417      opcode = kX86PaddwRR;
1418      break;
1419    case kUnsignedByte:
1420    case kSignedByte:
1421      opcode = kX86PaddbRR;
1422      break;
1423    case kSingle:
1424      opcode = kX86AddpsRR;
1425      break;
1426    case kDouble:
1427      opcode = kX86AddpdRR;
1428      break;
1429    default:
1430      LOG(FATAL) << "Unsupported vector addition " << opsize;
1431      break;
1432  }
1433  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1434}
1435
1436void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1437  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1438  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1439  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1440  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1441  int opcode = 0;
1442  switch (opsize) {
1443    case k32:
1444      opcode = kX86PsubdRR;
1445      break;
1446    case kSignedHalf:
1447    case kUnsignedHalf:
1448      opcode = kX86PsubwRR;
1449      break;
1450    case kUnsignedByte:
1451    case kSignedByte:
1452      opcode = kX86PsubbRR;
1453      break;
1454    case kSingle:
1455      opcode = kX86SubpsRR;
1456      break;
1457    case kDouble:
1458      opcode = kX86SubpdRR;
1459      break;
1460    default:
1461      LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1462      break;
1463  }
1464  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1465}
1466
1467void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1468  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1469  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1470  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1471  int imm = mir->dalvikInsn.vC;
1472  int opcode = 0;
1473  switch (opsize) {
1474    case k32:
1475      opcode = kX86PslldRI;
1476      break;
1477    case k64:
1478      opcode = kX86PsllqRI;
1479      break;
1480    case kSignedHalf:
1481    case kUnsignedHalf:
1482      opcode = kX86PsllwRI;
1483      break;
1484    default:
1485      LOG(FATAL) << "Unsupported vector shift left " << opsize;
1486      break;
1487  }
1488  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1489}
1490
1491void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1492  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1493  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1494  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1495  int imm = mir->dalvikInsn.vC;
1496  int opcode = 0;
1497  switch (opsize) {
1498    case k32:
1499      opcode = kX86PsradRI;
1500      break;
1501    case kSignedHalf:
1502    case kUnsignedHalf:
1503      opcode = kX86PsrawRI;
1504      break;
1505    default:
1506      LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1507      break;
1508  }
1509  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1510}
1511
1512void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1513  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1514  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1515  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1516  int imm = mir->dalvikInsn.vC;
1517  int opcode = 0;
1518  switch (opsize) {
1519    case k32:
1520      opcode = kX86PsrldRI;
1521      break;
1522    case k64:
1523      opcode = kX86PsrlqRI;
1524      break;
1525    case kSignedHalf:
1526    case kUnsignedHalf:
1527      opcode = kX86PsrlwRI;
1528      break;
1529    default:
1530      LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1531      break;
1532  }
1533  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1534}
1535
1536void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1537  // We only support 128 bit registers.
1538  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1539  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1540  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1541  NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1542}
1543
1544void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1545  // We only support 128 bit registers.
1546  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1547  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1548  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1549  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1550}
1551
1552void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1553  // We only support 128 bit registers.
1554  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1555  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1556  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1557  NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1558}
1559
1560void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1561  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1562  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1563  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1564  int imm = mir->dalvikInsn.vC;
1565  int opcode = 0;
1566  switch (opsize) {
1567    case k32:
1568      opcode = kX86PhadddRR;
1569      break;
1570    case kSignedHalf:
1571    case kUnsignedHalf:
1572      opcode = kX86PhaddwRR;
1573      break;
1574    default:
1575      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1576      break;
1577  }
1578  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1579}
1580
1581void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1582  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1583  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1584  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1585  int index = mir->dalvikInsn.arg[0];
1586  int opcode = 0;
1587  switch (opsize) {
1588    case k32:
1589      opcode = kX86PextrdRRI;
1590      break;
1591    case kSignedHalf:
1592    case kUnsignedHalf:
1593      opcode = kX86PextrwRRI;
1594      break;
1595    case kUnsignedByte:
1596    case kSignedByte:
1597      opcode = kX86PextrbRRI;
1598      break;
1599    default:
1600      LOG(FATAL) << "Unsupported vector reduce " << opsize;
1601      break;
1602  }
1603  // We need to extract to a GPR.
1604  RegStorage temp = AllocTemp();
1605  NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1606
1607  // Assume that the destination VR is in the def for the mir.
1608  RegLocation rl_dest = mir_graph_->GetDest(mir);
1609  RegLocation rl_temp =
1610    {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1611  StoreValue(rl_dest, rl_temp);
1612}
1613
1614void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1615  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1616  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1617  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1618  int op_low = 0, op_high = 0;
1619  switch (opsize) {
1620    case k32:
1621      op_low = kX86PshufdRRI;
1622      break;
1623    case kSignedHalf:
1624    case kUnsignedHalf:
1625      // Handles low quadword.
1626      op_low = kX86PshuflwRRI;
1627      // Handles upper quadword.
1628      op_high = kX86PshufdRRI;
1629      break;
1630    default:
1631      LOG(FATAL) << "Unsupported vector set " << opsize;
1632      break;
1633  }
1634
1635  // Load the value from the VR into a GPR.
1636  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1637  rl_src = LoadValue(rl_src, kCoreReg);
1638
1639  // Load the value into the XMM register.
1640  NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1641
1642  // Now shuffle the value across the destination.
1643  NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1644
1645  // And then repeat as needed.
1646  if (op_high != 0) {
1647    NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1648  }
1649}
1650
1651
1652LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1653  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1654  for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1655    if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1656        args[2] == p->operands[2] && args[3] == p->operands[3]) {
1657      return p;
1658    }
1659  }
1660  return nullptr;
1661}
1662
1663LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1664  LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1665  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1666  new_value->operands[0] = args[0];
1667  new_value->operands[1] = args[1];
1668  new_value->operands[2] = args[2];
1669  new_value->operands[3] = args[3];
1670  new_value->next = const_vectors_;
1671  if (const_vectors_ == nullptr) {
1672    estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
1673  }
1674  estimated_native_code_size_ += 16;  // Space for one vector.
1675  const_vectors_ = new_value;
1676  return new_value;
1677}
1678
1679}  // namespace art
1680