target_x86.cc revision a77ee5103532abb197f492c14a9e6fb437054e2a
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "dex/reg_storage_eq.h"
24#include "mirror/array.h"
25#include "mirror/string.h"
26#include "x86_lir.h"
27
28namespace art {
29
30static constexpr RegStorage core_regs_arr_32[] = {
31    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32};
33static constexpr RegStorage core_regs_arr_64[] = {
34    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
35    rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36};
37static constexpr RegStorage core_regs_arr_64q[] = {
38    rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
39    rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
40};
41static constexpr RegStorage sp_regs_arr_32[] = {
42    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43};
44static constexpr RegStorage sp_regs_arr_64[] = {
45    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
47};
48static constexpr RegStorage dp_regs_arr_32[] = {
49    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50};
51static constexpr RegStorage dp_regs_arr_64[] = {
52    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
53    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
54};
55static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
56static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
57static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
58static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
59static constexpr RegStorage core_temps_arr_64[] = {
60    rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
61    rs_r8, rs_r9, rs_r10, rs_r11
62};
63static constexpr RegStorage core_temps_arr_64q[] = {
64    rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
65    rs_r8q, rs_r9q, rs_r10q, rs_r11q
66};
67static constexpr RegStorage sp_temps_arr_32[] = {
68    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
69};
70static constexpr RegStorage sp_temps_arr_64[] = {
71    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
72    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
73};
74static constexpr RegStorage dp_temps_arr_32[] = {
75    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
76};
77static constexpr RegStorage dp_temps_arr_64[] = {
78    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
79    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
80};
81
82static constexpr RegStorage xp_temps_arr_32[] = {
83    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
84};
85static constexpr RegStorage xp_temps_arr_64[] = {
86    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
87    rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
88};
89
90static constexpr ArrayRef<const RegStorage> empty_pool;
91static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
92static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
93static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
94static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
95static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
96static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
97static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
98static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
99static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
100static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
101static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
102static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
103static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
104static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
105static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
106static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
107static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
108
109static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
110static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
111
112RegStorage rs_rX86_SP;
113
114X86NativeRegisterPool rX86_ARG0;
115X86NativeRegisterPool rX86_ARG1;
116X86NativeRegisterPool rX86_ARG2;
117X86NativeRegisterPool rX86_ARG3;
118X86NativeRegisterPool rX86_ARG4;
119X86NativeRegisterPool rX86_ARG5;
120X86NativeRegisterPool rX86_FARG0;
121X86NativeRegisterPool rX86_FARG1;
122X86NativeRegisterPool rX86_FARG2;
123X86NativeRegisterPool rX86_FARG3;
124X86NativeRegisterPool rX86_FARG4;
125X86NativeRegisterPool rX86_FARG5;
126X86NativeRegisterPool rX86_FARG6;
127X86NativeRegisterPool rX86_FARG7;
128X86NativeRegisterPool rX86_RET0;
129X86NativeRegisterPool rX86_RET1;
130X86NativeRegisterPool rX86_INVOKE_TGT;
131X86NativeRegisterPool rX86_COUNT;
132
133RegStorage rs_rX86_ARG0;
134RegStorage rs_rX86_ARG1;
135RegStorage rs_rX86_ARG2;
136RegStorage rs_rX86_ARG3;
137RegStorage rs_rX86_ARG4;
138RegStorage rs_rX86_ARG5;
139RegStorage rs_rX86_FARG0;
140RegStorage rs_rX86_FARG1;
141RegStorage rs_rX86_FARG2;
142RegStorage rs_rX86_FARG3;
143RegStorage rs_rX86_FARG4;
144RegStorage rs_rX86_FARG5;
145RegStorage rs_rX86_FARG6;
146RegStorage rs_rX86_FARG7;
147RegStorage rs_rX86_RET0;
148RegStorage rs_rX86_RET1;
149RegStorage rs_rX86_INVOKE_TGT;
150RegStorage rs_rX86_COUNT;
151
152RegLocation X86Mir2Lir::LocCReturn() {
153  return x86_loc_c_return;
154}
155
156RegLocation X86Mir2Lir::LocCReturnRef() {
157  return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
158}
159
160RegLocation X86Mir2Lir::LocCReturnWide() {
161  return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
162}
163
164RegLocation X86Mir2Lir::LocCReturnFloat() {
165  return x86_loc_c_return_float;
166}
167
168RegLocation X86Mir2Lir::LocCReturnDouble() {
169  return x86_loc_c_return_double;
170}
171
172// Return a target-dependent special register for 32-bit.
173RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) {
174  RegStorage res_reg = RegStorage::InvalidReg();
175  switch (reg) {
176    case kSelf: res_reg = RegStorage::InvalidReg(); break;
177    case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
178    case kLr: res_reg =  RegStorage::InvalidReg(); break;
179    case kPc: res_reg =  RegStorage::InvalidReg(); break;
180    case kSp: res_reg =  rs_rX86_SP; break;
181    case kArg0: res_reg = rs_rX86_ARG0; break;
182    case kArg1: res_reg = rs_rX86_ARG1; break;
183    case kArg2: res_reg = rs_rX86_ARG2; break;
184    case kArg3: res_reg = rs_rX86_ARG3; break;
185    case kArg4: res_reg = rs_rX86_ARG4; break;
186    case kArg5: res_reg = rs_rX86_ARG5; break;
187    case kFArg0: res_reg = rs_rX86_FARG0; break;
188    case kFArg1: res_reg = rs_rX86_FARG1; break;
189    case kFArg2: res_reg = rs_rX86_FARG2; break;
190    case kFArg3: res_reg = rs_rX86_FARG3; break;
191    case kFArg4: res_reg = rs_rX86_FARG4; break;
192    case kFArg5: res_reg = rs_rX86_FARG5; break;
193    case kFArg6: res_reg = rs_rX86_FARG6; break;
194    case kFArg7: res_reg = rs_rX86_FARG7; break;
195    case kRet0: res_reg = rs_rX86_RET0; break;
196    case kRet1: res_reg = rs_rX86_RET1; break;
197    case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
198    case kHiddenArg: res_reg = rs_rAX; break;
199    case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
200    case kCount: res_reg = rs_rX86_COUNT; break;
201    default: res_reg = RegStorage::InvalidReg();
202  }
203  return res_reg;
204}
205
206RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
207  LOG(FATAL) << "Do not use this function!!!";
208  return RegStorage::InvalidReg();
209}
210
211/*
212 * Decode the register id.
213 */
214ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
215  /* Double registers in x86 are just a single FP register. This is always just a single bit. */
216  return ResourceMask::Bit(
217      /* FP register starts at bit position 16 */
218      ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
219}
220
221ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
222  /*
223   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
224   * able to clean up some of the x86/Arm_Mips differences
225   */
226  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
227  return kEncodeNone;
228}
229
230void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
231                                          ResourceMask* use_mask, ResourceMask* def_mask) {
232  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
233  DCHECK(!lir->flags.use_def_invalid);
234
235  // X86-specific resource map setup here.
236  if (flags & REG_USE_SP) {
237    use_mask->SetBit(kX86RegSP);
238  }
239
240  if (flags & REG_DEF_SP) {
241    def_mask->SetBit(kX86RegSP);
242  }
243
244  if (flags & REG_DEFA) {
245    SetupRegMask(def_mask, rs_rAX.GetReg());
246  }
247
248  if (flags & REG_DEFD) {
249    SetupRegMask(def_mask, rs_rDX.GetReg());
250  }
251  if (flags & REG_USEA) {
252    SetupRegMask(use_mask, rs_rAX.GetReg());
253  }
254
255  if (flags & REG_USEC) {
256    SetupRegMask(use_mask, rs_rCX.GetReg());
257  }
258
259  if (flags & REG_USED) {
260    SetupRegMask(use_mask, rs_rDX.GetReg());
261  }
262
263  if (flags & REG_USEB) {
264    SetupRegMask(use_mask, rs_rBX.GetReg());
265  }
266
267  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
268  if (lir->opcode == kX86RepneScasw) {
269    SetupRegMask(use_mask, rs_rAX.GetReg());
270    SetupRegMask(use_mask, rs_rCX.GetReg());
271    SetupRegMask(use_mask, rs_rDI.GetReg());
272    SetupRegMask(def_mask, rs_rDI.GetReg());
273  }
274
275  if (flags & USE_FP_STACK) {
276    use_mask->SetBit(kX86FPStack);
277    def_mask->SetBit(kX86FPStack);
278  }
279}
280
281/* For dumping instructions */
282static const char* x86RegName[] = {
283  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
284  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
285};
286
287static const char* x86CondName[] = {
288  "O",
289  "NO",
290  "B/NAE/C",
291  "NB/AE/NC",
292  "Z/EQ",
293  "NZ/NE",
294  "BE/NA",
295  "NBE/A",
296  "S",
297  "NS",
298  "P/PE",
299  "NP/PO",
300  "L/NGE",
301  "NL/GE",
302  "LE/NG",
303  "NLE/G"
304};
305
306/*
307 * Interpret a format string and build a string no longer than size
308 * See format key in Assemble.cc.
309 */
310std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
311  std::string buf;
312  size_t i = 0;
313  size_t fmt_len = strlen(fmt);
314  while (i < fmt_len) {
315    if (fmt[i] != '!') {
316      buf += fmt[i];
317      i++;
318    } else {
319      i++;
320      DCHECK_LT(i, fmt_len);
321      char operand_number_ch = fmt[i];
322      i++;
323      if (operand_number_ch == '!') {
324        buf += "!";
325      } else {
326        int operand_number = operand_number_ch - '0';
327        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
328        DCHECK_LT(i, fmt_len);
329        int operand = lir->operands[operand_number];
330        switch (fmt[i]) {
331          case 'c':
332            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
333            buf += x86CondName[operand];
334            break;
335          case 'd':
336            buf += StringPrintf("%d", operand);
337            break;
338          case 'q': {
339             int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
340                             static_cast<uint32_t>(lir->operands[operand_number+1]));
341             buf +=StringPrintf("%" PRId64, value);
342          }
343          case 'p': {
344            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
345            buf += StringPrintf("0x%08x", tab_rec->offset);
346            break;
347          }
348          case 'r':
349            if (RegStorage::IsFloat(operand)) {
350              int fp_reg = RegStorage::RegNum(operand);
351              buf += StringPrintf("xmm%d", fp_reg);
352            } else {
353              int reg_num = RegStorage::RegNum(operand);
354              DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
355              buf += x86RegName[reg_num];
356            }
357            break;
358          case 't':
359            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
360                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
361                                lir->target);
362            break;
363          default:
364            buf += StringPrintf("DecodeError '%c'", fmt[i]);
365            break;
366        }
367        i++;
368      }
369    }
370  }
371  return buf;
372}
373
374void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
375  char buf[256];
376  buf[0] = 0;
377
378  if (mask.Equals(kEncodeAll)) {
379    strcpy(buf, "all");
380  } else {
381    char num[8];
382    int i;
383
384    for (i = 0; i < kX86RegEnd; i++) {
385      if (mask.HasBit(i)) {
386        snprintf(num, arraysize(num), "%d ", i);
387        strcat(buf, num);
388      }
389    }
390
391    if (mask.HasBit(ResourceMask::kCCode)) {
392      strcat(buf, "cc ");
393    }
394    /* Memory bits */
395    if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
396      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
397               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
398               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
399    }
400    if (mask.HasBit(ResourceMask::kLiteral)) {
401      strcat(buf, "lit ");
402    }
403
404    if (mask.HasBit(ResourceMask::kHeapRef)) {
405      strcat(buf, "heap ");
406    }
407    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
408      strcat(buf, "noalias ");
409    }
410  }
411  if (buf[0]) {
412    LOG(INFO) << prefix << ": " <<  buf;
413  }
414}
415
416void X86Mir2Lir::AdjustSpillMask() {
417  // Adjustment for LR spilling, x86 has no LR so nothing to do here
418  core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
419  num_core_spills_++;
420}
421
422RegStorage X86Mir2Lir::AllocateByteRegister() {
423  RegStorage reg = AllocTypedTemp(false, kCoreReg);
424  if (!cu_->target64) {
425    DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
426  }
427  return reg;
428}
429
430bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
431  return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
432}
433
434/* Clobber all regs that might be used by an external C call */
435void X86Mir2Lir::ClobberCallerSave() {
436  Clobber(rs_rAX);
437  Clobber(rs_rCX);
438  Clobber(rs_rDX);
439  Clobber(rs_rBX);
440
441  Clobber(rs_fr0);
442  Clobber(rs_fr1);
443  Clobber(rs_fr2);
444  Clobber(rs_fr3);
445  Clobber(rs_fr4);
446  Clobber(rs_fr5);
447  Clobber(rs_fr6);
448  Clobber(rs_fr7);
449
450  if (cu_->target64) {
451    Clobber(rs_r8);
452    Clobber(rs_r9);
453    Clobber(rs_r10);
454    Clobber(rs_r11);
455
456    Clobber(rs_fr8);
457    Clobber(rs_fr9);
458    Clobber(rs_fr10);
459    Clobber(rs_fr11);
460    Clobber(rs_fr12);
461    Clobber(rs_fr13);
462    Clobber(rs_fr14);
463    Clobber(rs_fr15);
464  }
465}
466
467RegLocation X86Mir2Lir::GetReturnWideAlt() {
468  RegLocation res = LocCReturnWide();
469  DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
470  DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
471  Clobber(rs_rAX);
472  Clobber(rs_rDX);
473  MarkInUse(rs_rAX);
474  MarkInUse(rs_rDX);
475  MarkWide(res.reg);
476  return res;
477}
478
479RegLocation X86Mir2Lir::GetReturnAlt() {
480  RegLocation res = LocCReturn();
481  res.reg.SetReg(rs_rDX.GetReg());
482  Clobber(rs_rDX);
483  MarkInUse(rs_rDX);
484  return res;
485}
486
487/* To be used when explicitly managing register use */
488void X86Mir2Lir::LockCallTemps() {
489  LockTemp(rs_rX86_ARG0);
490  LockTemp(rs_rX86_ARG1);
491  LockTemp(rs_rX86_ARG2);
492  LockTemp(rs_rX86_ARG3);
493  if (cu_->target64) {
494    LockTemp(rs_rX86_ARG4);
495    LockTemp(rs_rX86_ARG5);
496    LockTemp(rs_rX86_FARG0);
497    LockTemp(rs_rX86_FARG1);
498    LockTemp(rs_rX86_FARG2);
499    LockTemp(rs_rX86_FARG3);
500    LockTemp(rs_rX86_FARG4);
501    LockTemp(rs_rX86_FARG5);
502    LockTemp(rs_rX86_FARG6);
503    LockTemp(rs_rX86_FARG7);
504  }
505}
506
507/* To be used when explicitly managing register use */
508void X86Mir2Lir::FreeCallTemps() {
509  FreeTemp(rs_rX86_ARG0);
510  FreeTemp(rs_rX86_ARG1);
511  FreeTemp(rs_rX86_ARG2);
512  FreeTemp(rs_rX86_ARG3);
513  if (cu_->target64) {
514    FreeTemp(rs_rX86_ARG4);
515    FreeTemp(rs_rX86_ARG5);
516    FreeTemp(rs_rX86_FARG0);
517    FreeTemp(rs_rX86_FARG1);
518    FreeTemp(rs_rX86_FARG2);
519    FreeTemp(rs_rX86_FARG3);
520    FreeTemp(rs_rX86_FARG4);
521    FreeTemp(rs_rX86_FARG5);
522    FreeTemp(rs_rX86_FARG6);
523    FreeTemp(rs_rX86_FARG7);
524  }
525}
526
527bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
528    switch (opcode) {
529      case kX86LockCmpxchgMR:
530      case kX86LockCmpxchgAR:
531      case kX86LockCmpxchg64M:
532      case kX86LockCmpxchg64A:
533      case kX86XchgMR:
534      case kX86Mfence:
535        // Atomic memory instructions provide full barrier.
536        return true;
537      default:
538        break;
539    }
540
541    // Conservative if cannot prove it provides full barrier.
542    return false;
543}
544
545bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
546#if ANDROID_SMP != 0
547  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
548  LIR* mem_barrier = last_lir_insn_;
549
550  bool ret = false;
551  /*
552   * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
553   * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
554   * to ensure is that there is a scheduling barrier in place.
555   */
556  if (barrier_kind == kStoreLoad) {
557    // If no LIR exists already that can be used a barrier, then generate an mfence.
558    if (mem_barrier == nullptr) {
559      mem_barrier = NewLIR0(kX86Mfence);
560      ret = true;
561    }
562
563    // If last instruction does not provide full barrier, then insert an mfence.
564    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
565      mem_barrier = NewLIR0(kX86Mfence);
566      ret = true;
567    }
568  }
569
570  // Now ensure that a scheduling barrier is in place.
571  if (mem_barrier == nullptr) {
572    GenBarrier();
573  } else {
574    // Mark as a scheduling barrier.
575    DCHECK(!mem_barrier->flags.use_def_invalid);
576    mem_barrier->u.m.def_mask = &kEncodeAll;
577  }
578  return ret;
579#else
580  return false;
581#endif
582}
583
584void X86Mir2Lir::CompilerInitializeRegAlloc() {
585  if (cu_->target64) {
586    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
587                                          dp_regs_64, reserved_regs_64, reserved_regs_64q,
588                                          core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
589  } else {
590    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
591                                          dp_regs_32, reserved_regs_32, empty_pool,
592                                          core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
593  }
594
595  // Target-specific adjustments.
596
597  // Add in XMM registers.
598  const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
599  for (RegStorage reg : *xp_temps) {
600    RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
601    reginfo_map_.Put(reg.GetReg(), info);
602    info->SetIsTemp(true);
603  }
604
605  // Alias single precision xmm to double xmms.
606  // TODO: as needed, add larger vector sizes - alias all to the largest.
607  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
608  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
609    int sp_reg_num = info->GetReg().GetRegNum();
610    RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
611    RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
612    // 128-bit xmm vector register's master storage should refer to itself.
613    DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
614
615    // Redirect 32-bit vector's master storage to 128-bit vector.
616    info->SetMaster(xp_reg_info);
617
618    RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
619    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
620    // Redirect 64-bit vector's master storage to 128-bit vector.
621    dp_reg_info->SetMaster(xp_reg_info);
622    // Singles should show a single 32-bit mask bit, at first referring to the low half.
623    DCHECK_EQ(info->StorageMask(), 0x1U);
624  }
625
626  if (cu_->target64) {
627    // Alias 32bit W registers to corresponding 64bit X registers.
628    GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
629    for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
630      int x_reg_num = info->GetReg().GetRegNum();
631      RegStorage x_reg = RegStorage::Solo64(x_reg_num);
632      RegisterInfo* x_reg_info = GetRegInfo(x_reg);
633      // 64bit X register's master storage should refer to itself.
634      DCHECK_EQ(x_reg_info, x_reg_info->Master());
635      // Redirect 32bit W master storage to 64bit X.
636      info->SetMaster(x_reg_info);
637      // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
638      DCHECK_EQ(info->StorageMask(), 0x1U);
639    }
640  }
641
642  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
643  // TODO: adjust for x86/hard float calling convention.
644  reg_pool_->next_core_reg_ = 2;
645  reg_pool_->next_sp_reg_ = 2;
646  reg_pool_->next_dp_reg_ = 1;
647}
648
649void X86Mir2Lir::SpillCoreRegs() {
650  if (num_core_spills_ == 0) {
651    return;
652  }
653  // Spill mask not including fake return address register
654  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
655  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
656  for (int reg = 0; mask; mask >>= 1, reg++) {
657    if (mask & 0x1) {
658      StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
659      offset += GetInstructionSetPointerSize(cu_->instruction_set);
660    }
661  }
662}
663
664void X86Mir2Lir::UnSpillCoreRegs() {
665  if (num_core_spills_ == 0) {
666    return;
667  }
668  // Spill mask not including fake return address register
669  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
670  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
671  for (int reg = 0; mask; mask >>= 1, reg++) {
672    if (mask & 0x1) {
673      LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
674      offset += GetInstructionSetPointerSize(cu_->instruction_set);
675    }
676  }
677}
678
679bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
680  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
681}
682
683bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
684  return true;
685}
686
687RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
688  // X86_64 can handle any size.
689  if (cu_->target64) {
690    if (size == kReference) {
691      return kRefReg;
692    }
693    return kCoreReg;
694  }
695
696  if (UNLIKELY(is_volatile)) {
697    // On x86, atomic 64-bit load/store requires an fp register.
698    // Smaller aligned load/store is atomic for both core and fp registers.
699    if (size == k64 || size == kDouble) {
700      return kFPReg;
701    }
702  }
703  return RegClassBySize(size);
704}
705
706X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
707    : Mir2Lir(cu, mir_graph, arena),
708      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
709      method_address_insns_(arena, 100, kGrowableArrayMisc),
710      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
711      call_method_insns_(arena, 100, kGrowableArrayMisc),
712      stack_decrement_(nullptr), stack_increment_(nullptr),
713      const_vectors_(nullptr) {
714  store_method_addr_used_ = false;
715  if (kIsDebugBuild) {
716    for (int i = 0; i < kX86Last; i++) {
717      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
718        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
719                   << " is wrong: expecting " << i << ", seeing "
720                   << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
721      }
722    }
723  }
724  if (cu_->target64) {
725    rs_rX86_SP = rs_rX86_SP_64;
726
727    rs_rX86_ARG0 = rs_rDI;
728    rs_rX86_ARG1 = rs_rSI;
729    rs_rX86_ARG2 = rs_rDX;
730    rs_rX86_ARG3 = rs_rCX;
731    rs_rX86_ARG4 = rs_r8;
732    rs_rX86_ARG5 = rs_r9;
733    rs_rX86_FARG0 = rs_fr0;
734    rs_rX86_FARG1 = rs_fr1;
735    rs_rX86_FARG2 = rs_fr2;
736    rs_rX86_FARG3 = rs_fr3;
737    rs_rX86_FARG4 = rs_fr4;
738    rs_rX86_FARG5 = rs_fr5;
739    rs_rX86_FARG6 = rs_fr6;
740    rs_rX86_FARG7 = rs_fr7;
741    rX86_ARG0 = rDI;
742    rX86_ARG1 = rSI;
743    rX86_ARG2 = rDX;
744    rX86_ARG3 = rCX;
745    rX86_ARG4 = r8;
746    rX86_ARG5 = r9;
747    rX86_FARG0 = fr0;
748    rX86_FARG1 = fr1;
749    rX86_FARG2 = fr2;
750    rX86_FARG3 = fr3;
751    rX86_FARG4 = fr4;
752    rX86_FARG5 = fr5;
753    rX86_FARG6 = fr6;
754    rX86_FARG7 = fr7;
755    rs_rX86_INVOKE_TGT = rs_rDI;
756  } else {
757    rs_rX86_SP = rs_rX86_SP_32;
758
759    rs_rX86_ARG0 = rs_rAX;
760    rs_rX86_ARG1 = rs_rCX;
761    rs_rX86_ARG2 = rs_rDX;
762    rs_rX86_ARG3 = rs_rBX;
763    rs_rX86_ARG4 = RegStorage::InvalidReg();
764    rs_rX86_ARG5 = RegStorage::InvalidReg();
765    rs_rX86_FARG0 = rs_rAX;
766    rs_rX86_FARG1 = rs_rCX;
767    rs_rX86_FARG2 = rs_rDX;
768    rs_rX86_FARG3 = rs_rBX;
769    rs_rX86_FARG4 = RegStorage::InvalidReg();
770    rs_rX86_FARG5 = RegStorage::InvalidReg();
771    rs_rX86_FARG6 = RegStorage::InvalidReg();
772    rs_rX86_FARG7 = RegStorage::InvalidReg();
773    rX86_ARG0 = rAX;
774    rX86_ARG1 = rCX;
775    rX86_ARG2 = rDX;
776    rX86_ARG3 = rBX;
777    rX86_FARG0 = rAX;
778    rX86_FARG1 = rCX;
779    rX86_FARG2 = rDX;
780    rX86_FARG3 = rBX;
781    rs_rX86_INVOKE_TGT = rs_rAX;
782    // TODO(64): Initialize with invalid reg
783//    rX86_ARG4 = RegStorage::InvalidReg();
784//    rX86_ARG5 = RegStorage::InvalidReg();
785  }
786  rs_rX86_RET0 = rs_rAX;
787  rs_rX86_RET1 = rs_rDX;
788  rs_rX86_COUNT = rs_rCX;
789  rX86_RET0 = rAX;
790  rX86_RET1 = rDX;
791  rX86_INVOKE_TGT = rAX;
792  rX86_COUNT = rCX;
793}
794
795Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
796                          ArenaAllocator* const arena) {
797  return new X86Mir2Lir(cu, mir_graph, arena);
798}
799
800// Not used in x86
801RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
802  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
803  return RegStorage::InvalidReg();
804}
805
806// Not used in x86
807RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
808  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
809  return RegStorage::InvalidReg();
810}
811
812LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
813  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
814  return nullptr;
815}
816
817uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
818  DCHECK(!IsPseudoLirOp(opcode));
819  return X86Mir2Lir::EncodingMap[opcode].flags;
820}
821
822const char* X86Mir2Lir::GetTargetInstName(int opcode) {
823  DCHECK(!IsPseudoLirOp(opcode));
824  return X86Mir2Lir::EncodingMap[opcode].name;
825}
826
827const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
828  DCHECK(!IsPseudoLirOp(opcode));
829  return X86Mir2Lir::EncodingMap[opcode].fmt;
830}
831
832void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
833  // Can we do this directly to memory?
834  rl_dest = UpdateLocWide(rl_dest);
835  if ((rl_dest.location == kLocDalvikFrame) ||
836      (rl_dest.location == kLocCompilerTemp)) {
837    int32_t val_lo = Low32Bits(value);
838    int32_t val_hi = High32Bits(value);
839    int r_base = rs_rX86_SP.GetReg();
840    int displacement = SRegOffset(rl_dest.s_reg_low);
841
842    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
843    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
844    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
845                              false /* is_load */, true /* is64bit */);
846    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
847    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
848                              false /* is_load */, true /* is64bit */);
849    return;
850  }
851
852  // Just use the standard code to do the generation.
853  Mir2Lir::GenConstWide(rl_dest, value);
854}
855
856// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
857void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
858  LOG(INFO)  << "location: " << loc.location << ','
859             << (loc.wide ? " w" : "  ")
860             << (loc.defined ? " D" : "  ")
861             << (loc.is_const ? " c" : "  ")
862             << (loc.fp ? " F" : "  ")
863             << (loc.core ? " C" : "  ")
864             << (loc.ref ? " r" : "  ")
865             << (loc.high_word ? " h" : "  ")
866             << (loc.home ? " H" : "  ")
867             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
868             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
869             << ", s_reg: " << loc.s_reg_low
870             << ", orig: " << loc.orig_sreg;
871}
872
873void X86Mir2Lir::Materialize() {
874  // A good place to put the analysis before starting.
875  AnalyzeMIR();
876
877  // Now continue with regular code generation.
878  Mir2Lir::Materialize();
879}
880
881void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
882                                   SpecialTargetRegister symbolic_reg) {
883  /*
884   * For x86, just generate a 32 bit move immediate instruction, that will be filled
885   * in at 'link time'.  For now, put a unique value based on target to ensure that
886   * code deduplication works.
887   */
888  int target_method_idx = target_method.dex_method_index;
889  const DexFile* target_dex_file = target_method.dex_file;
890  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
891  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
892
893  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
894  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, false).GetReg(),
895                     static_cast<int>(target_method_id_ptr), target_method_idx,
896                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
897  AppendLIR(move);
898  method_address_insns_.Insert(move);
899}
900
901void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
902  /*
903   * For x86, just generate a 32 bit move immediate instruction, that will be filled
904   * in at 'link time'.  For now, put a unique value based on target to ensure that
905   * code deduplication works.
906   */
907  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
908  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
909
910  // Generate the move instruction with the unique pointer and save index and type.
911  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, false).GetReg(),
912                     static_cast<int>(ptr), type_idx);
913  AppendLIR(move);
914  class_type_address_insns_.Insert(move);
915}
916
917LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
918  /*
919   * For x86, just generate a 32 bit call relative instruction, that will be filled
920   * in at 'link time'.  For now, put a unique value based on target to ensure that
921   * code deduplication works.
922   */
923  int target_method_idx = target_method.dex_method_index;
924  const DexFile* target_dex_file = target_method.dex_file;
925  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
926  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
927
928  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
929  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
930                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
931  AppendLIR(call);
932  call_method_insns_.Insert(call);
933  return call;
934}
935
936/*
937 * @brief Enter a 32 bit quantity into a buffer
938 * @param buf buffer.
939 * @param data Data value.
940 */
941
942static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
943  buf.push_back(data & 0xff);
944  buf.push_back((data >> 8) & 0xff);
945  buf.push_back((data >> 16) & 0xff);
946  buf.push_back((data >> 24) & 0xff);
947}
948
949void X86Mir2Lir::InstallLiteralPools() {
950  // These are handled differently for x86.
951  DCHECK(code_literal_list_ == nullptr);
952  DCHECK(method_literal_list_ == nullptr);
953  DCHECK(class_literal_list_ == nullptr);
954
955  // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
956  // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
957  // will fail at runtime)?
958  if (const_vectors_ != nullptr) {
959    int align_size = (16-4) - (code_buffer_.size() & 0xF);
960    if (align_size < 0) {
961      align_size += 16;
962    }
963
964    while (align_size > 0) {
965      code_buffer_.push_back(0);
966      align_size--;
967    }
968    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
969      PushWord(code_buffer_, p->operands[0]);
970      PushWord(code_buffer_, p->operands[1]);
971      PushWord(code_buffer_, p->operands[2]);
972      PushWord(code_buffer_, p->operands[3]);
973    }
974  }
975
976  // Handle the fixups for methods.
977  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
978      LIR* p = method_address_insns_.Get(i);
979      DCHECK_EQ(p->opcode, kX86Mov32RI);
980      uint32_t target_method_idx = p->operands[2];
981      const DexFile* target_dex_file =
982          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
983
984      // The offset to patch is the last 4 bytes of the instruction.
985      int patch_offset = p->offset + p->flags.size - 4;
986      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
987                                           cu_->method_idx, cu_->invoke_type,
988                                           target_method_idx, target_dex_file,
989                                           static_cast<InvokeType>(p->operands[4]),
990                                           patch_offset);
991  }
992
993  // Handle the fixups for class types.
994  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
995      LIR* p = class_type_address_insns_.Get(i);
996      DCHECK_EQ(p->opcode, kX86Mov32RI);
997      uint32_t target_method_idx = p->operands[2];
998
999      // The offset to patch is the last 4 bytes of the instruction.
1000      int patch_offset = p->offset + p->flags.size - 4;
1001      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
1002                                          cu_->method_idx, target_method_idx, patch_offset);
1003  }
1004
1005  // And now the PC-relative calls to methods.
1006  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1007      LIR* p = call_method_insns_.Get(i);
1008      DCHECK_EQ(p->opcode, kX86CallI);
1009      uint32_t target_method_idx = p->operands[1];
1010      const DexFile* target_dex_file =
1011          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1012
1013      // The offset to patch is the last 4 bytes of the instruction.
1014      int patch_offset = p->offset + p->flags.size - 4;
1015      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1016                                                 cu_->method_idx, cu_->invoke_type,
1017                                                 target_method_idx, target_dex_file,
1018                                                 static_cast<InvokeType>(p->operands[3]),
1019                                                 patch_offset, -4 /* offset */);
1020  }
1021
1022  // And do the normal processing.
1023  Mir2Lir::InstallLiteralPools();
1024}
1025
1026/*
1027 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1028 * otherwise bails to standard library code.
1029 */
1030bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1031  ClobberCallerSave();
1032  LockCallTemps();  // Using fixed registers
1033
1034  // EAX: 16 bit character being searched.
1035  // ECX: count: number of words to be searched.
1036  // EDI: String being searched.
1037  // EDX: temporary during execution.
1038  // EBX: temporary during execution.
1039
1040  RegLocation rl_obj = info->args[0];
1041  RegLocation rl_char = info->args[1];
1042  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1043
1044  uint32_t char_value =
1045    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1046
1047  if (char_value > 0xFFFF) {
1048    // We have to punt to the real String.indexOf.
1049    return false;
1050  }
1051
1052  // Okay, we are commited to inlining this.
1053  RegLocation rl_return = GetReturn(kCoreReg);
1054  RegLocation rl_dest = InlineTarget(info);
1055
1056  // Is the string non-NULL?
1057  LoadValueDirectFixed(rl_obj, rs_rDX);
1058  GenNullCheck(rs_rDX, info->opt_flags);
1059  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1060
1061  // Does the character fit in 16 bits?
1062  LIR* slowpath_branch = nullptr;
1063  if (rl_char.is_const) {
1064    // We need the value in EAX.
1065    LoadConstantNoClobber(rs_rAX, char_value);
1066  } else {
1067    // Character is not a constant; compare at runtime.
1068    LoadValueDirectFixed(rl_char, rs_rAX);
1069    slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1070  }
1071
1072  // From here down, we know that we are looking for a char that fits in 16 bits.
1073  // Location of reference to data array within the String object.
1074  int value_offset = mirror::String::ValueOffset().Int32Value();
1075  // Location of count within the String object.
1076  int count_offset = mirror::String::CountOffset().Int32Value();
1077  // Starting offset within data array.
1078  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1079  // Start of char data with array_.
1080  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1081
1082  // Character is in EAX.
1083  // Object pointer is in EDX.
1084
1085  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1086  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1087  NewLIR1(kX86Push32R, rs_rDI.GetReg());
1088
1089  // Compute the number of words to search in to rCX.
1090  Load32Disp(rs_rDX, count_offset, rs_rCX);
1091  LIR *length_compare = nullptr;
1092  int start_value = 0;
1093  bool is_index_on_stack = false;
1094  if (zero_based) {
1095    // We have to handle an empty string.  Use special instruction JECXZ.
1096    length_compare = NewLIR0(kX86Jecxz8);
1097  } else {
1098    rl_start = info->args[2];
1099    // We have to offset by the start index.
1100    if (rl_start.is_const) {
1101      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1102      start_value = std::max(start_value, 0);
1103
1104      // Is the start > count?
1105      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1106
1107      if (start_value != 0) {
1108        OpRegImm(kOpSub, rs_rCX, start_value);
1109      }
1110    } else {
1111      // Runtime start index.
1112      rl_start = UpdateLocTyped(rl_start, kCoreReg);
1113      if (rl_start.location == kLocPhysReg) {
1114        // Handle "start index < 0" case.
1115        OpRegReg(kOpXor, rs_rBX, rs_rBX);
1116        OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1117        OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1118
1119        // The length of the string should be greater than the start index.
1120        length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1121        OpRegReg(kOpSub, rs_rCX, rl_start.reg);
1122        if (rl_start.reg == rs_rDI) {
1123          // The special case. We will use EDI further, so lets put start index to stack.
1124          NewLIR1(kX86Push32R, rs_rDI.GetReg());
1125          is_index_on_stack = true;
1126        }
1127      } else {
1128        // Load the start index from stack, remembering that we pushed EDI.
1129        int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1130        {
1131          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1132          Load32Disp(rs_rX86_SP, displacement, rs_rBX);
1133        }
1134        OpRegReg(kOpXor, rs_rDI, rs_rDI);
1135        OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1136        OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1137
1138        length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1139        OpRegReg(kOpSub, rs_rCX, rs_rBX);
1140        // Put the start index to stack.
1141        NewLIR1(kX86Push32R, rs_rBX.GetReg());
1142        is_index_on_stack = true;
1143      }
1144    }
1145  }
1146  DCHECK(length_compare != nullptr);
1147
1148  // ECX now contains the count in words to be searched.
1149
1150  // Load the address of the string into EBX.
1151  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1152  Load32Disp(rs_rDX, value_offset, rs_rDI);
1153  Load32Disp(rs_rDX, offset_offset, rs_rBX);
1154  OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
1155
1156  // Now compute into EDI where the search will start.
1157  if (zero_based || rl_start.is_const) {
1158    if (start_value == 0) {
1159      OpRegCopy(rs_rDI, rs_rBX);
1160    } else {
1161      NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
1162    }
1163  } else {
1164    if (is_index_on_stack == true) {
1165      // Load the start index from stack.
1166      NewLIR1(kX86Pop32R, rs_rDX.GetReg());
1167      OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
1168    } else {
1169      OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
1170    }
1171  }
1172
1173  // EDI now contains the start of the string to be searched.
1174  // We are all prepared to do the search for the character.
1175  NewLIR0(kX86RepneScasw);
1176
1177  // Did we find a match?
1178  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1179
1180  // yes, we matched.  Compute the index of the result.
1181  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1182  OpRegReg(kOpSub, rs_rDI, rs_rBX);
1183  OpRegImm(kOpAsr, rs_rDI, 1);
1184  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
1185  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1186
1187  // Failed to match; return -1.
1188  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1189  length_compare->target = not_found;
1190  failed_branch->target = not_found;
1191  LoadConstantNoClobber(rl_return.reg, -1);
1192
1193  // And join up at the end.
1194  all_done->target = NewLIR0(kPseudoTargetLabel);
1195  // Restore EDI from the stack.
1196  NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1197
1198  // Out of line code returns here.
1199  if (slowpath_branch != nullptr) {
1200    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1201    AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1202  }
1203
1204  StoreValue(rl_dest, rl_return);
1205  return true;
1206}
1207
1208/*
1209 * @brief Enter an 'advance LOC' into the FDE buffer
1210 * @param buf FDE buffer.
1211 * @param increment Amount by which to increase the current location.
1212 */
1213static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1214  if (increment < 64) {
1215    // Encoding in opcode.
1216    buf.push_back(0x1 << 6 | increment);
1217  } else if (increment < 256) {
1218    // Single byte delta.
1219    buf.push_back(0x02);
1220    buf.push_back(increment);
1221  } else if (increment < 256 * 256) {
1222    // Two byte delta.
1223    buf.push_back(0x03);
1224    buf.push_back(increment & 0xff);
1225    buf.push_back((increment >> 8) & 0xff);
1226  } else {
1227    // Four byte delta.
1228    buf.push_back(0x04);
1229    PushWord(buf, increment);
1230  }
1231}
1232
1233
1234std::vector<uint8_t>* X86CFIInitialization() {
1235  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1236}
1237
1238std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1239  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1240
1241  // Length of the CIE (except for this field).
1242  PushWord(*cfi_info, 16);
1243
1244  // CIE id.
1245  PushWord(*cfi_info, 0xFFFFFFFFU);
1246
1247  // Version: 3.
1248  cfi_info->push_back(0x03);
1249
1250  // Augmentation: empty string.
1251  cfi_info->push_back(0x0);
1252
1253  // Code alignment: 1.
1254  cfi_info->push_back(0x01);
1255
1256  // Data alignment: -4.
1257  cfi_info->push_back(0x7C);
1258
1259  // Return address register (R8).
1260  cfi_info->push_back(0x08);
1261
1262  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1263  cfi_info->push_back(0x0C);
1264  cfi_info->push_back(0x04);
1265  cfi_info->push_back(0x04);
1266
1267  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1268  cfi_info->push_back(0x2 << 6 | 0x08);
1269  cfi_info->push_back(0x01);
1270
1271  // And 2 Noops to align to 4 byte boundary.
1272  cfi_info->push_back(0x0);
1273  cfi_info->push_back(0x0);
1274
1275  DCHECK_EQ(cfi_info->size() & 3, 0U);
1276  return cfi_info;
1277}
1278
1279static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1280  uint8_t buffer[12];
1281  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1282  for (uint8_t *p = buffer; p < ptr; p++) {
1283    buf.push_back(*p);
1284  }
1285}
1286
1287std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1288  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1289
1290  // Generate the FDE for the method.
1291  DCHECK_NE(data_offset_, 0U);
1292
1293  // Length (will be filled in later in this routine).
1294  PushWord(*cfi_info, 0);
1295
1296  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1297  // one CIE for the whole debug_frame section.
1298  PushWord(*cfi_info, 0);
1299
1300  // 'initial_location' (filled in by linker).
1301  PushWord(*cfi_info, 0);
1302
1303  // 'address_range' (number of bytes in the method).
1304  PushWord(*cfi_info, data_offset_);
1305
1306  // The instructions in the FDE.
1307  if (stack_decrement_ != nullptr) {
1308    // Advance LOC to just past the stack decrement.
1309    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1310    AdvanceLoc(*cfi_info, pc);
1311
1312    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1313    cfi_info->push_back(0x0e);
1314    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1315
1316    // We continue with that stack until the epilogue.
1317    if (stack_increment_ != nullptr) {
1318      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1319      AdvanceLoc(*cfi_info, new_pc - pc);
1320
1321      // We probably have code snippets after the epilogue, so save the
1322      // current state: DW_CFA_remember_state.
1323      cfi_info->push_back(0x0a);
1324
1325      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1326      // PC on the stack now.
1327      cfi_info->push_back(0x0e);
1328      EncodeUnsignedLeb128(*cfi_info, 4);
1329
1330      // Everything after that is the same as before the epilogue.
1331      // Stack bump was followed by RET instruction.
1332      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1333      if (post_ret_insn != nullptr) {
1334        pc = new_pc;
1335        new_pc = post_ret_insn->offset;
1336        AdvanceLoc(*cfi_info, new_pc - pc);
1337        // Restore the state: DW_CFA_restore_state.
1338        cfi_info->push_back(0x0b);
1339      }
1340    }
1341  }
1342
1343  // Padding to a multiple of 4
1344  while ((cfi_info->size() & 3) != 0) {
1345    // DW_CFA_nop is encoded as 0.
1346    cfi_info->push_back(0);
1347  }
1348
1349  // Set the length of the FDE inside the generated bytes.
1350  uint32_t length = cfi_info->size() - 4;
1351  (*cfi_info)[0] = length;
1352  (*cfi_info)[1] = length >> 8;
1353  (*cfi_info)[2] = length >> 16;
1354  (*cfi_info)[3] = length >> 24;
1355  return cfi_info;
1356}
1357
1358void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1359  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1360    case kMirOpConstVector:
1361      GenConst128(bb, mir);
1362      break;
1363    case kMirOpMoveVector:
1364      GenMoveVector(bb, mir);
1365      break;
1366    case kMirOpPackedMultiply:
1367      GenMultiplyVector(bb, mir);
1368      break;
1369    case kMirOpPackedAddition:
1370      GenAddVector(bb, mir);
1371      break;
1372    case kMirOpPackedSubtract:
1373      GenSubtractVector(bb, mir);
1374      break;
1375    case kMirOpPackedShiftLeft:
1376      GenShiftLeftVector(bb, mir);
1377      break;
1378    case kMirOpPackedSignedShiftRight:
1379      GenSignedShiftRightVector(bb, mir);
1380      break;
1381    case kMirOpPackedUnsignedShiftRight:
1382      GenUnsignedShiftRightVector(bb, mir);
1383      break;
1384    case kMirOpPackedAnd:
1385      GenAndVector(bb, mir);
1386      break;
1387    case kMirOpPackedOr:
1388      GenOrVector(bb, mir);
1389      break;
1390    case kMirOpPackedXor:
1391      GenXorVector(bb, mir);
1392      break;
1393    case kMirOpPackedAddReduce:
1394      GenAddReduceVector(bb, mir);
1395      break;
1396    case kMirOpPackedReduce:
1397      GenReduceVector(bb, mir);
1398      break;
1399    case kMirOpPackedSet:
1400      GenSetVector(bb, mir);
1401      break;
1402    default:
1403      break;
1404  }
1405}
1406
1407void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1408  int type_size = mir->dalvikInsn.vA;
1409  // We support 128 bit vectors.
1410  DCHECK_EQ(type_size & 0xFFFF, 128);
1411  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1412  uint32_t *args = mir->dalvikInsn.arg;
1413  int reg = rs_dest.GetReg();
1414  // Check for all 0 case.
1415  if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1416    NewLIR2(kX86XorpsRR, reg, reg);
1417    return;
1418  }
1419  // Okay, load it from the constant vector area.
1420  LIR *data_target = ScanVectorLiteral(mir);
1421  if (data_target == nullptr) {
1422    data_target = AddVectorLiteral(mir);
1423  }
1424
1425  // Address the start of the method.
1426  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1427  if (rl_method.wide) {
1428    rl_method = LoadValueWide(rl_method, kCoreReg);
1429  } else {
1430    rl_method = LoadValue(rl_method, kCoreReg);
1431  }
1432
1433  // Load the proper value from the literal area.
1434  // We don't know the proper offset for the value, so pick one that will force
1435  // 4 byte offset.  We will fix this up in the assembler later to have the right
1436  // value.
1437  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1438  LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(),  256 /* bogus */);
1439  load->flags.fixup = kFixupLoad;
1440  load->target = data_target;
1441}
1442
1443void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1444  // We only support 128 bit registers.
1445  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1446  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1447  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1448  NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1449}
1450
1451void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1452  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1453  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1454  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1455  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1456  int opcode = 0;
1457  switch (opsize) {
1458    case k32:
1459      opcode = kX86PmulldRR;
1460      break;
1461    case kSignedHalf:
1462      opcode = kX86PmullwRR;
1463      break;
1464    case kSingle:
1465      opcode = kX86MulpsRR;
1466      break;
1467    case kDouble:
1468      opcode = kX86MulpdRR;
1469      break;
1470    default:
1471      LOG(FATAL) << "Unsupported vector multiply " << opsize;
1472      break;
1473  }
1474  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1475}
1476
1477void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1478  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1479  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1480  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1481  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1482  int opcode = 0;
1483  switch (opsize) {
1484    case k32:
1485      opcode = kX86PadddRR;
1486      break;
1487    case kSignedHalf:
1488    case kUnsignedHalf:
1489      opcode = kX86PaddwRR;
1490      break;
1491    case kUnsignedByte:
1492    case kSignedByte:
1493      opcode = kX86PaddbRR;
1494      break;
1495    case kSingle:
1496      opcode = kX86AddpsRR;
1497      break;
1498    case kDouble:
1499      opcode = kX86AddpdRR;
1500      break;
1501    default:
1502      LOG(FATAL) << "Unsupported vector addition " << opsize;
1503      break;
1504  }
1505  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1506}
1507
1508void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1509  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1510  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1511  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1512  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1513  int opcode = 0;
1514  switch (opsize) {
1515    case k32:
1516      opcode = kX86PsubdRR;
1517      break;
1518    case kSignedHalf:
1519    case kUnsignedHalf:
1520      opcode = kX86PsubwRR;
1521      break;
1522    case kUnsignedByte:
1523    case kSignedByte:
1524      opcode = kX86PsubbRR;
1525      break;
1526    case kSingle:
1527      opcode = kX86SubpsRR;
1528      break;
1529    case kDouble:
1530      opcode = kX86SubpdRR;
1531      break;
1532    default:
1533      LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1534      break;
1535  }
1536  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1537}
1538
1539void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1540  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1541  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1542  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1543  int imm = mir->dalvikInsn.vC;
1544  int opcode = 0;
1545  switch (opsize) {
1546    case k32:
1547      opcode = kX86PslldRI;
1548      break;
1549    case k64:
1550      opcode = kX86PsllqRI;
1551      break;
1552    case kSignedHalf:
1553    case kUnsignedHalf:
1554      opcode = kX86PsllwRI;
1555      break;
1556    default:
1557      LOG(FATAL) << "Unsupported vector shift left " << opsize;
1558      break;
1559  }
1560  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1561}
1562
1563void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1564  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1565  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1566  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1567  int imm = mir->dalvikInsn.vC;
1568  int opcode = 0;
1569  switch (opsize) {
1570    case k32:
1571      opcode = kX86PsradRI;
1572      break;
1573    case kSignedHalf:
1574    case kUnsignedHalf:
1575      opcode = kX86PsrawRI;
1576      break;
1577    default:
1578      LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1579      break;
1580  }
1581  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1582}
1583
1584void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1585  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1586  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1587  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1588  int imm = mir->dalvikInsn.vC;
1589  int opcode = 0;
1590  switch (opsize) {
1591    case k32:
1592      opcode = kX86PsrldRI;
1593      break;
1594    case k64:
1595      opcode = kX86PsrlqRI;
1596      break;
1597    case kSignedHalf:
1598    case kUnsignedHalf:
1599      opcode = kX86PsrlwRI;
1600      break;
1601    default:
1602      LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1603      break;
1604  }
1605  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1606}
1607
1608void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1609  // We only support 128 bit registers.
1610  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1611  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1612  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1613  NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1614}
1615
1616void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1617  // We only support 128 bit registers.
1618  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1619  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1620  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1621  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1622}
1623
1624void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1625  // We only support 128 bit registers.
1626  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1627  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1628  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1629  NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1630}
1631
1632void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1633  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1634  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1635  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1636  int imm = mir->dalvikInsn.vC;
1637  int opcode = 0;
1638  switch (opsize) {
1639    case k32:
1640      opcode = kX86PhadddRR;
1641      break;
1642    case kSignedHalf:
1643    case kUnsignedHalf:
1644      opcode = kX86PhaddwRR;
1645      break;
1646    default:
1647      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1648      break;
1649  }
1650  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1651}
1652
1653void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1654  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1655  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1656  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1657  int index = mir->dalvikInsn.arg[0];
1658  int opcode = 0;
1659  switch (opsize) {
1660    case k32:
1661      opcode = kX86PextrdRRI;
1662      break;
1663    case kSignedHalf:
1664    case kUnsignedHalf:
1665      opcode = kX86PextrwRRI;
1666      break;
1667    case kUnsignedByte:
1668    case kSignedByte:
1669      opcode = kX86PextrbRRI;
1670      break;
1671    default:
1672      LOG(FATAL) << "Unsupported vector reduce " << opsize;
1673      break;
1674  }
1675  // We need to extract to a GPR.
1676  RegStorage temp = AllocTemp();
1677  NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1678
1679  // Assume that the destination VR is in the def for the mir.
1680  RegLocation rl_dest = mir_graph_->GetDest(mir);
1681  RegLocation rl_temp =
1682    {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1683  StoreValue(rl_dest, rl_temp);
1684}
1685
1686void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1687  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1688  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1689  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1690  int op_low = 0, op_high = 0;
1691  switch (opsize) {
1692    case k32:
1693      op_low = kX86PshufdRRI;
1694      break;
1695    case kSignedHalf:
1696    case kUnsignedHalf:
1697      // Handles low quadword.
1698      op_low = kX86PshuflwRRI;
1699      // Handles upper quadword.
1700      op_high = kX86PshufdRRI;
1701      break;
1702    default:
1703      LOG(FATAL) << "Unsupported vector set " << opsize;
1704      break;
1705  }
1706
1707  // Load the value from the VR into a GPR.
1708  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1709  rl_src = LoadValue(rl_src, kCoreReg);
1710
1711  // Load the value into the XMM register.
1712  NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1713
1714  // Now shuffle the value across the destination.
1715  NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1716
1717  // And then repeat as needed.
1718  if (op_high != 0) {
1719    NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1720  }
1721}
1722
1723
1724LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1725  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1726  for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1727    if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1728        args[2] == p->operands[2] && args[3] == p->operands[3]) {
1729      return p;
1730    }
1731  }
1732  return nullptr;
1733}
1734
1735LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1736  LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1737  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1738  new_value->operands[0] = args[0];
1739  new_value->operands[1] = args[1];
1740  new_value->operands[2] = args[2];
1741  new_value->operands[3] = args[3];
1742  new_value->next = const_vectors_;
1743  if (const_vectors_ == nullptr) {
1744    estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
1745  }
1746  estimated_native_code_size_ += 16;  // Space for one vector.
1747  const_vectors_ = new_value;
1748  return new_value;
1749}
1750
1751// ------------ ABI support: mapping of args to physical registers -------------
1752RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
1753  const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
1754  const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister);
1755  const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
1756                                                  kFArg4, kFArg5, kFArg6, kFArg7};
1757  const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister);
1758
1759  if (is_double_or_float) {
1760    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
1761      return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide);
1762    }
1763  } else {
1764    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
1765      return ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], is_wide);
1766    }
1767  }
1768  return RegStorage::InvalidReg();
1769}
1770
1771RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
1772  DCHECK(IsInitialized());
1773  auto res = mapping_.find(in_position);
1774  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
1775}
1776
1777void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
1778  DCHECK(mapper != nullptr);
1779  max_mapped_in_ = -1;
1780  is_there_stack_mapped_ = false;
1781  for (int in_position = 0; in_position < count; in_position++) {
1782     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
1783     if (reg.Valid()) {
1784       mapping_[in_position] = reg;
1785       max_mapped_in_ = std::max(max_mapped_in_, in_position);
1786       if (reg.Is64BitSolo()) {
1787         // We covered 2 args, so skip the next one
1788         in_position++;
1789       }
1790     } else {
1791       is_there_stack_mapped_ = true;
1792     }
1793  }
1794  initialized_ = true;
1795}
1796
1797RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
1798  if (!cu_->target64) {
1799    return GetCoreArgMappingToPhysicalReg(arg_num);
1800  }
1801
1802  if (!in_to_reg_storage_mapping_.IsInitialized()) {
1803    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1804    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
1805
1806    InToRegStorageX86_64Mapper mapper(this);
1807    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
1808  }
1809  return in_to_reg_storage_mapping_.Get(arg_num);
1810}
1811
1812RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
1813  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
1814  // Not used for 64-bit, TODO: Move X86_32 to the same framework
1815  switch (core_arg_num) {
1816    case 0:
1817      return rs_rX86_ARG1;
1818    case 1:
1819      return rs_rX86_ARG2;
1820    case 2:
1821      return rs_rX86_ARG3;
1822    default:
1823      return RegStorage::InvalidReg();
1824  }
1825}
1826
1827// ---------End of ABI support: mapping of args to physical registers -------------
1828
1829/*
1830 * If there are any ins passed in registers that have not been promoted
1831 * to a callee-save register, flush them to the frame.  Perform initial
1832 * assignment of promoted arguments.
1833 *
1834 * ArgLocs is an array of location records describing the incoming arguments
1835 * with one location record per word of argument.
1836 */
1837void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
1838  if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
1839  /*
1840   * Dummy up a RegLocation for the incoming Method*
1841   * It will attempt to keep kArg0 live (or copy it to home location
1842   * if promoted).
1843   */
1844
1845  RegLocation rl_src = rl_method;
1846  rl_src.location = kLocPhysReg;
1847  rl_src.reg = TargetRefReg(kArg0);
1848  rl_src.home = false;
1849  MarkLive(rl_src);
1850  StoreValue(rl_method, rl_src);
1851  // If Method* has been promoted, explicitly flush
1852  if (rl_method.location == kLocPhysReg) {
1853    StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetRefReg(kArg0)), kNotVolatile);
1854  }
1855
1856  if (cu_->num_ins == 0) {
1857    return;
1858  }
1859
1860  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1861  /*
1862   * Copy incoming arguments to their proper home locations.
1863   * NOTE: an older version of dx had an issue in which
1864   * it would reuse static method argument registers.
1865   * This could result in the same Dalvik virtual register
1866   * being promoted to both core and fp regs. To account for this,
1867   * we only copy to the corresponding promoted physical register
1868   * if it matches the type of the SSA name for the incoming
1869   * argument.  It is also possible that long and double arguments
1870   * end up half-promoted.  In those cases, we must flush the promoted
1871   * half to memory as well.
1872   */
1873  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1874  for (int i = 0; i < cu_->num_ins; i++) {
1875    // get reg corresponding to input
1876    RegStorage reg = GetArgMappingToPhysicalReg(i);
1877
1878    RegLocation* t_loc = &ArgLocs[i];
1879    if (reg.Valid()) {
1880      // If arriving in register.
1881
1882      // We have already updated the arg location with promoted info
1883      // so we can be based on it.
1884      if (t_loc->location == kLocPhysReg) {
1885        // Just copy it.
1886        OpRegCopy(t_loc->reg, reg);
1887      } else {
1888        // Needs flush.
1889        if (t_loc->ref) {
1890          StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile);
1891        } else {
1892          StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
1893                        kNotVolatile);
1894        }
1895      }
1896    } else {
1897      // If arriving in frame & promoted.
1898      if (t_loc->location == kLocPhysReg) {
1899        if (t_loc->ref) {
1900          LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
1901        } else {
1902          LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg,
1903                       t_loc->wide ? k64 : k32, kNotVolatile);
1904        }
1905      }
1906    }
1907    if (t_loc->wide) {
1908      // Increment i to skip the next one.
1909      i++;
1910    }
1911  }
1912}
1913
1914/*
1915 * Load up to 5 arguments, the first three of which will be in
1916 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
1917 * and as part of the load sequence, it must be replaced with
1918 * the target method pointer.  Note, this may also be called
1919 * for "range" variants if the number of arguments is 5 or fewer.
1920 */
1921int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1922                                  int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1923                                  const MethodReference& target_method,
1924                                  uint32_t vtable_idx, uintptr_t direct_code,
1925                                  uintptr_t direct_method, InvokeType type, bool skip_this) {
1926  if (!cu_->target64) {
1927    return Mir2Lir::GenDalvikArgsNoRange(info,
1928                                  call_state, pcrLabel, next_call_insn,
1929                                  target_method,
1930                                  vtable_idx, direct_code,
1931                                  direct_method, type, skip_this);
1932  }
1933  return GenDalvikArgsRange(info,
1934                       call_state, pcrLabel, next_call_insn,
1935                       target_method,
1936                       vtable_idx, direct_code,
1937                       direct_method, type, skip_this);
1938}
1939
1940/*
1941 * May have 0+ arguments (also used for jumbo).  Note that
1942 * source virtual registers may be in physical registers, so may
1943 * need to be flushed to home location before copying.  This
1944 * applies to arg3 and above (see below).
1945 *
1946 * Two general strategies:
1947 *    If < 20 arguments
1948 *       Pass args 3-18 using vldm/vstm block copy
1949 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1950 *    If 20+ arguments
1951 *       Pass args arg19+ using memcpy block copy
1952 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1953 *
1954 */
1955int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1956                                LIR** pcrLabel, NextCallInsn next_call_insn,
1957                                const MethodReference& target_method,
1958                                uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
1959                                InvokeType type, bool skip_this) {
1960  if (!cu_->target64) {
1961    return Mir2Lir::GenDalvikArgsRange(info, call_state,
1962                                pcrLabel, next_call_insn,
1963                                target_method,
1964                                vtable_idx, direct_code, direct_method,
1965                                type, skip_this);
1966  }
1967
1968  /* If no arguments, just return */
1969  if (info->num_arg_words == 0)
1970    return call_state;
1971
1972  const int start_index = skip_this ? 1 : 0;
1973
1974  InToRegStorageX86_64Mapper mapper(this);
1975  InToRegStorageMapping in_to_reg_storage_mapping;
1976  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1977  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1978  const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
1979          in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
1980  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
1981
1982  // Fisrt of all, check whether it make sense to use bulk copying
1983  // Optimization is aplicable only for range case
1984  // TODO: make a constant instead of 2
1985  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
1986    // Scan the rest of the args - if in phys_reg flush to memory
1987    for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
1988      RegLocation loc = info->args[next_arg];
1989      if (loc.wide) {
1990        loc = UpdateLocWide(loc);
1991        if (loc.location == kLocPhysReg) {
1992          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1993          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
1994        }
1995        next_arg += 2;
1996      } else {
1997        loc = UpdateLoc(loc);
1998        if (loc.location == kLocPhysReg) {
1999          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2000          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
2001        }
2002        next_arg++;
2003      }
2004    }
2005
2006    // Logic below assumes that Method pointer is at offset zero from SP.
2007    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2008
2009    // The rest can be copied together
2010    int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2011    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2012
2013    int current_src_offset = start_offset;
2014    int current_dest_offset = outs_offset;
2015
2016    // Only davik regs are accessed in this loop; no next_call_insn() calls.
2017    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2018    while (regs_left_to_pass_via_stack > 0) {
2019      // This is based on the knowledge that the stack itself is 16-byte aligned.
2020      bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2021      bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2022      size_t bytes_to_move;
2023
2024      /*
2025       * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2026       * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2027       * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2028       * We do this because we could potentially do a smaller move to align.
2029       */
2030      if (regs_left_to_pass_via_stack == 4 ||
2031          (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2032        // Moving 128-bits via xmm register.
2033        bytes_to_move = sizeof(uint32_t) * 4;
2034
2035        // Allocate a free xmm temp. Since we are working through the calling sequence,
2036        // we expect to have an xmm temporary available.  AllocTempDouble will abort if
2037        // there are no free registers.
2038        RegStorage temp = AllocTempDouble();
2039
2040        LIR* ld1 = nullptr;
2041        LIR* ld2 = nullptr;
2042        LIR* st1 = nullptr;
2043        LIR* st2 = nullptr;
2044
2045        /*
2046         * The logic is similar for both loads and stores. If we have 16-byte alignment,
2047         * do an aligned move. If we have 8-byte alignment, then do the move in two
2048         * parts. This approach prevents possible cache line splits. Finally, fall back
2049         * to doing an unaligned move. In most cases we likely won't split the cache
2050         * line but we cannot prove it and thus take a conservative approach.
2051         */
2052        bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2053        bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2054
2055        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2056        if (src_is_16b_aligned) {
2057          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP);
2058        } else if (src_is_8b_aligned) {
2059          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP);
2060          ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1),
2061                            kMovHi128FP);
2062        } else {
2063          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP);
2064        }
2065
2066        if (dest_is_16b_aligned) {
2067          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP);
2068        } else if (dest_is_8b_aligned) {
2069          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP);
2070          st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1),
2071                            temp, kMovHi128FP);
2072        } else {
2073          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP);
2074        }
2075
2076        // TODO If we could keep track of aliasing information for memory accesses that are wider
2077        // than 64-bit, we wouldn't need to set up a barrier.
2078        if (ld1 != nullptr) {
2079          if (ld2 != nullptr) {
2080            // For 64-bit load we can actually set up the aliasing information.
2081            AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2082            AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2083          } else {
2084            // Set barrier for 128-bit load.
2085            ld1->u.m.def_mask = &kEncodeAll;
2086          }
2087        }
2088        if (st1 != nullptr) {
2089          if (st2 != nullptr) {
2090            // For 64-bit store we can actually set up the aliasing information.
2091            AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2092            AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2093          } else {
2094            // Set barrier for 128-bit store.
2095            st1->u.m.def_mask = &kEncodeAll;
2096          }
2097        }
2098
2099        // Free the temporary used for the data movement.
2100        FreeTemp(temp);
2101      } else {
2102        // Moving 32-bits via general purpose register.
2103        bytes_to_move = sizeof(uint32_t);
2104
2105        // Instead of allocating a new temp, simply reuse one of the registers being used
2106        // for argument passing.
2107        RegStorage temp = TargetReg(kArg3, false);
2108
2109        // Now load the argument VR and store to the outs.
2110        Load32Disp(rs_rX86_SP, current_src_offset, temp);
2111        Store32Disp(rs_rX86_SP, current_dest_offset, temp);
2112      }
2113
2114      current_src_offset += bytes_to_move;
2115      current_dest_offset += bytes_to_move;
2116      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2117    }
2118    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2119  }
2120
2121  // Now handle rest not registers if they are
2122  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2123    RegStorage regSingle = TargetReg(kArg2, false);
2124    RegStorage regWide = TargetReg(kArg3, true);
2125    for (int i = start_index;
2126         i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2127      RegLocation rl_arg = info->args[i];
2128      rl_arg = UpdateRawLoc(rl_arg);
2129      RegStorage reg = in_to_reg_storage_mapping.Get(i);
2130      if (!reg.Valid()) {
2131        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2132
2133        {
2134          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2135          if (rl_arg.wide) {
2136            if (rl_arg.location == kLocPhysReg) {
2137              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile);
2138            } else {
2139              LoadValueDirectWideFixed(rl_arg, regWide);
2140              StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile);
2141            }
2142          } else {
2143            if (rl_arg.location == kLocPhysReg) {
2144              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile);
2145            } else {
2146              LoadValueDirectFixed(rl_arg, regSingle);
2147              StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile);
2148            }
2149          }
2150        }
2151        call_state = next_call_insn(cu_, info, call_state, target_method,
2152                                    vtable_idx, direct_code, direct_method, type);
2153      }
2154      if (rl_arg.wide) {
2155        i++;
2156      }
2157    }
2158  }
2159
2160  // Finish with mapped registers
2161  for (int i = start_index; i <= last_mapped_in; i++) {
2162    RegLocation rl_arg = info->args[i];
2163    rl_arg = UpdateRawLoc(rl_arg);
2164    RegStorage reg = in_to_reg_storage_mapping.Get(i);
2165    if (reg.Valid()) {
2166      if (rl_arg.wide) {
2167        LoadValueDirectWideFixed(rl_arg, reg);
2168      } else {
2169        LoadValueDirectFixed(rl_arg, reg);
2170      }
2171      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2172                               direct_code, direct_method, type);
2173    }
2174    if (rl_arg.wide) {
2175      i++;
2176    }
2177  }
2178
2179  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2180                           direct_code, direct_method, type);
2181  if (pcrLabel) {
2182    if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
2183      *pcrLabel = GenExplicitNullCheck(TargetRefReg(kArg1), info->opt_flags);
2184    } else {
2185      *pcrLabel = nullptr;
2186      // In lieu of generating a check for kArg1 being null, we need to
2187      // perform a load when doing implicit checks.
2188      RegStorage tmp = AllocTemp();
2189      Load32Disp(TargetRefReg(kArg1), 0, tmp);
2190      MarkPossibleNullPointerException(info->opt_flags);
2191      FreeTemp(tmp);
2192    }
2193  }
2194  return call_state;
2195}
2196
2197}  // namespace art
2198