target_x86.cc revision af263df7f643e699abf622c64447d31bacc14c34
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "dex/reg_storage_eq.h"
24#include "mirror/array.h"
25#include "mirror/string.h"
26#include "x86_lir.h"
27
28namespace art {
29
30static constexpr RegStorage core_regs_arr_32[] = {
31    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32};
33static constexpr RegStorage core_regs_arr_64[] = {
34    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
35    rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36};
37static constexpr RegStorage core_regs_arr_64q[] = {
38    rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
39    rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
40};
41static constexpr RegStorage sp_regs_arr_32[] = {
42    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43};
44static constexpr RegStorage sp_regs_arr_64[] = {
45    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
47};
48static constexpr RegStorage dp_regs_arr_32[] = {
49    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50};
51static constexpr RegStorage dp_regs_arr_64[] = {
52    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
53    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
54};
55static constexpr RegStorage xp_regs_arr_32[] = {
56    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
57};
58static constexpr RegStorage xp_regs_arr_64[] = {
59    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
60    rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
61};
62static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
63static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
64static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
65static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
66static constexpr RegStorage core_temps_arr_64[] = {
67    rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
68    rs_r8, rs_r9, rs_r10, rs_r11
69};
70
71// How to add register to be available for promotion:
72// 1) Remove register from array defining temp
73// 2) Update ClobberCallerSave
74// 3) Update JNI compiler ABI:
75// 3.1) add reg in JniCallingConvention method
76// 3.2) update CoreSpillMask/FpSpillMask
77// 4) Update entrypoints
78// 4.1) Update constants in asm_support_x86_64.h for new frame size
79// 4.2) Remove entry in SmashCallerSaves
80// 4.3) Update jni_entrypoints to spill/unspill new callee save reg
81// 4.4) Update quick_entrypoints to spill/unspill new callee save reg
82// 5) Update runtime ABI
83// 5.1) Update quick_method_frame_info with new required spills
84// 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms
85// Note that you cannot use register corresponding to incoming args
86// according to ABI and QCG needs one additional XMM temp for
87// bulk copy in preparation to call.
88static constexpr RegStorage core_temps_arr_64q[] = {
89    rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
90    rs_r8q, rs_r9q, rs_r10q, rs_r11q
91};
92static constexpr RegStorage sp_temps_arr_32[] = {
93    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
94};
95static constexpr RegStorage sp_temps_arr_64[] = {
96    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
97    rs_fr8, rs_fr9, rs_fr10, rs_fr11
98};
99static constexpr RegStorage dp_temps_arr_32[] = {
100    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
101};
102static constexpr RegStorage dp_temps_arr_64[] = {
103    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
104    rs_dr8, rs_dr9, rs_dr10, rs_dr11
105};
106
107static constexpr RegStorage xp_temps_arr_32[] = {
108    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
109};
110static constexpr RegStorage xp_temps_arr_64[] = {
111    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
112    rs_xr8, rs_xr9, rs_xr10, rs_xr11
113};
114
115static constexpr ArrayRef<const RegStorage> empty_pool;
116static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
117static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
118static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
119static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
120static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
121static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
122static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
123static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32);
124static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64);
125static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
126static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
127static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
128static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
129static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
130static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
131static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
132static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
133static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
134static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
135
136static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
137static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
138
139RegStorage rs_rX86_SP;
140
141X86NativeRegisterPool rX86_ARG0;
142X86NativeRegisterPool rX86_ARG1;
143X86NativeRegisterPool rX86_ARG2;
144X86NativeRegisterPool rX86_ARG3;
145X86NativeRegisterPool rX86_ARG4;
146X86NativeRegisterPool rX86_ARG5;
147X86NativeRegisterPool rX86_FARG0;
148X86NativeRegisterPool rX86_FARG1;
149X86NativeRegisterPool rX86_FARG2;
150X86NativeRegisterPool rX86_FARG3;
151X86NativeRegisterPool rX86_FARG4;
152X86NativeRegisterPool rX86_FARG5;
153X86NativeRegisterPool rX86_FARG6;
154X86NativeRegisterPool rX86_FARG7;
155X86NativeRegisterPool rX86_RET0;
156X86NativeRegisterPool rX86_RET1;
157X86NativeRegisterPool rX86_INVOKE_TGT;
158X86NativeRegisterPool rX86_COUNT;
159
160RegStorage rs_rX86_ARG0;
161RegStorage rs_rX86_ARG1;
162RegStorage rs_rX86_ARG2;
163RegStorage rs_rX86_ARG3;
164RegStorage rs_rX86_ARG4;
165RegStorage rs_rX86_ARG5;
166RegStorage rs_rX86_FARG0;
167RegStorage rs_rX86_FARG1;
168RegStorage rs_rX86_FARG2;
169RegStorage rs_rX86_FARG3;
170RegStorage rs_rX86_FARG4;
171RegStorage rs_rX86_FARG5;
172RegStorage rs_rX86_FARG6;
173RegStorage rs_rX86_FARG7;
174RegStorage rs_rX86_RET0;
175RegStorage rs_rX86_RET1;
176RegStorage rs_rX86_INVOKE_TGT;
177RegStorage rs_rX86_COUNT;
178
179RegLocation X86Mir2Lir::LocCReturn() {
180  return x86_loc_c_return;
181}
182
183RegLocation X86Mir2Lir::LocCReturnRef() {
184  return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
185}
186
187RegLocation X86Mir2Lir::LocCReturnWide() {
188  return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
189}
190
191RegLocation X86Mir2Lir::LocCReturnFloat() {
192  return x86_loc_c_return_float;
193}
194
195RegLocation X86Mir2Lir::LocCReturnDouble() {
196  return x86_loc_c_return_double;
197}
198
199// Return a target-dependent special register for 32-bit.
200RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) {
201  RegStorage res_reg = RegStorage::InvalidReg();
202  switch (reg) {
203    case kSelf: res_reg = RegStorage::InvalidReg(); break;
204    case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
205    case kLr: res_reg =  RegStorage::InvalidReg(); break;
206    case kPc: res_reg =  RegStorage::InvalidReg(); break;
207    case kSp: res_reg =  rs_rX86_SP; break;
208    case kArg0: res_reg = rs_rX86_ARG0; break;
209    case kArg1: res_reg = rs_rX86_ARG1; break;
210    case kArg2: res_reg = rs_rX86_ARG2; break;
211    case kArg3: res_reg = rs_rX86_ARG3; break;
212    case kArg4: res_reg = rs_rX86_ARG4; break;
213    case kArg5: res_reg = rs_rX86_ARG5; break;
214    case kFArg0: res_reg = rs_rX86_FARG0; break;
215    case kFArg1: res_reg = rs_rX86_FARG1; break;
216    case kFArg2: res_reg = rs_rX86_FARG2; break;
217    case kFArg3: res_reg = rs_rX86_FARG3; break;
218    case kFArg4: res_reg = rs_rX86_FARG4; break;
219    case kFArg5: res_reg = rs_rX86_FARG5; break;
220    case kFArg6: res_reg = rs_rX86_FARG6; break;
221    case kFArg7: res_reg = rs_rX86_FARG7; break;
222    case kRet0: res_reg = rs_rX86_RET0; break;
223    case kRet1: res_reg = rs_rX86_RET1; break;
224    case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
225    case kHiddenArg: res_reg = rs_rAX; break;
226    case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
227    case kCount: res_reg = rs_rX86_COUNT; break;
228    default: res_reg = RegStorage::InvalidReg();
229  }
230  return res_reg;
231}
232
233RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
234  LOG(FATAL) << "Do not use this function!!!";
235  return RegStorage::InvalidReg();
236}
237
238/*
239 * Decode the register id.
240 */
241ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
242  /* Double registers in x86 are just a single FP register. This is always just a single bit. */
243  return ResourceMask::Bit(
244      /* FP register starts at bit position 16 */
245      ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
246}
247
248ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
249  return kEncodeNone;
250}
251
252void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
253                                          ResourceMask* use_mask, ResourceMask* def_mask) {
254  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
255  DCHECK(!lir->flags.use_def_invalid);
256
257  // X86-specific resource map setup here.
258  if (flags & REG_USE_SP) {
259    use_mask->SetBit(kX86RegSP);
260  }
261
262  if (flags & REG_DEF_SP) {
263    def_mask->SetBit(kX86RegSP);
264  }
265
266  if (flags & REG_DEFA) {
267    SetupRegMask(def_mask, rs_rAX.GetReg());
268  }
269
270  if (flags & REG_DEFD) {
271    SetupRegMask(def_mask, rs_rDX.GetReg());
272  }
273  if (flags & REG_USEA) {
274    SetupRegMask(use_mask, rs_rAX.GetReg());
275  }
276
277  if (flags & REG_USEC) {
278    SetupRegMask(use_mask, rs_rCX.GetReg());
279  }
280
281  if (flags & REG_USED) {
282    SetupRegMask(use_mask, rs_rDX.GetReg());
283  }
284
285  if (flags & REG_USEB) {
286    SetupRegMask(use_mask, rs_rBX.GetReg());
287  }
288
289  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
290  if (lir->opcode == kX86RepneScasw) {
291    SetupRegMask(use_mask, rs_rAX.GetReg());
292    SetupRegMask(use_mask, rs_rCX.GetReg());
293    SetupRegMask(use_mask, rs_rDI.GetReg());
294    SetupRegMask(def_mask, rs_rDI.GetReg());
295  }
296
297  if (flags & USE_FP_STACK) {
298    use_mask->SetBit(kX86FPStack);
299    def_mask->SetBit(kX86FPStack);
300  }
301}
302
303/* For dumping instructions */
304static const char* x86RegName[] = {
305  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
306  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
307};
308
309static const char* x86CondName[] = {
310  "O",
311  "NO",
312  "B/NAE/C",
313  "NB/AE/NC",
314  "Z/EQ",
315  "NZ/NE",
316  "BE/NA",
317  "NBE/A",
318  "S",
319  "NS",
320  "P/PE",
321  "NP/PO",
322  "L/NGE",
323  "NL/GE",
324  "LE/NG",
325  "NLE/G"
326};
327
328/*
329 * Interpret a format string and build a string no longer than size
330 * See format key in Assemble.cc.
331 */
332std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
333  std::string buf;
334  size_t i = 0;
335  size_t fmt_len = strlen(fmt);
336  while (i < fmt_len) {
337    if (fmt[i] != '!') {
338      buf += fmt[i];
339      i++;
340    } else {
341      i++;
342      DCHECK_LT(i, fmt_len);
343      char operand_number_ch = fmt[i];
344      i++;
345      if (operand_number_ch == '!') {
346        buf += "!";
347      } else {
348        int operand_number = operand_number_ch - '0';
349        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
350        DCHECK_LT(i, fmt_len);
351        int operand = lir->operands[operand_number];
352        switch (fmt[i]) {
353          case 'c':
354            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
355            buf += x86CondName[operand];
356            break;
357          case 'd':
358            buf += StringPrintf("%d", operand);
359            break;
360          case 'q': {
361             int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
362                             static_cast<uint32_t>(lir->operands[operand_number+1]));
363             buf +=StringPrintf("%" PRId64, value);
364          }
365          case 'p': {
366            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
367            buf += StringPrintf("0x%08x", tab_rec->offset);
368            break;
369          }
370          case 'r':
371            if (RegStorage::IsFloat(operand)) {
372              int fp_reg = RegStorage::RegNum(operand);
373              buf += StringPrintf("xmm%d", fp_reg);
374            } else {
375              int reg_num = RegStorage::RegNum(operand);
376              DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
377              buf += x86RegName[reg_num];
378            }
379            break;
380          case 't':
381            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
382                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
383                                lir->target);
384            break;
385          default:
386            buf += StringPrintf("DecodeError '%c'", fmt[i]);
387            break;
388        }
389        i++;
390      }
391    }
392  }
393  return buf;
394}
395
396void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
397  char buf[256];
398  buf[0] = 0;
399
400  if (mask.Equals(kEncodeAll)) {
401    strcpy(buf, "all");
402  } else {
403    char num[8];
404    int i;
405
406    for (i = 0; i < kX86RegEnd; i++) {
407      if (mask.HasBit(i)) {
408        snprintf(num, arraysize(num), "%d ", i);
409        strcat(buf, num);
410      }
411    }
412
413    if (mask.HasBit(ResourceMask::kCCode)) {
414      strcat(buf, "cc ");
415    }
416    /* Memory bits */
417    if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
418      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
419               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
420               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
421    }
422    if (mask.HasBit(ResourceMask::kLiteral)) {
423      strcat(buf, "lit ");
424    }
425
426    if (mask.HasBit(ResourceMask::kHeapRef)) {
427      strcat(buf, "heap ");
428    }
429    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
430      strcat(buf, "noalias ");
431    }
432  }
433  if (buf[0]) {
434    LOG(INFO) << prefix << ": " <<  buf;
435  }
436}
437
438void X86Mir2Lir::AdjustSpillMask() {
439  // Adjustment for LR spilling, x86 has no LR so nothing to do here
440  core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
441  num_core_spills_++;
442}
443
444RegStorage X86Mir2Lir::AllocateByteRegister() {
445  RegStorage reg = AllocTypedTemp(false, kCoreReg);
446  if (!cu_->target64) {
447    DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
448  }
449  return reg;
450}
451
452RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) {
453  return GetRegInfo(reg)->FindMatchingView(RegisterInfo::k128SoloStorageMask)->GetReg();
454}
455
456bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
457  return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
458}
459
460/* Clobber all regs that might be used by an external C call */
461void X86Mir2Lir::ClobberCallerSave() {
462  if (cu_->target64) {
463    Clobber(rs_rAX);
464    Clobber(rs_rCX);
465    Clobber(rs_rDX);
466    Clobber(rs_rSI);
467    Clobber(rs_rDI);
468
469    Clobber(rs_r8);
470    Clobber(rs_r9);
471    Clobber(rs_r10);
472    Clobber(rs_r11);
473
474    Clobber(rs_fr8);
475    Clobber(rs_fr9);
476    Clobber(rs_fr10);
477    Clobber(rs_fr11);
478  } else {
479    Clobber(rs_rAX);
480    Clobber(rs_rCX);
481    Clobber(rs_rDX);
482    Clobber(rs_rBX);
483  }
484
485  Clobber(rs_fr0);
486  Clobber(rs_fr1);
487  Clobber(rs_fr2);
488  Clobber(rs_fr3);
489  Clobber(rs_fr4);
490  Clobber(rs_fr5);
491  Clobber(rs_fr6);
492  Clobber(rs_fr7);
493}
494
495RegLocation X86Mir2Lir::GetReturnWideAlt() {
496  RegLocation res = LocCReturnWide();
497  DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
498  DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
499  Clobber(rs_rAX);
500  Clobber(rs_rDX);
501  MarkInUse(rs_rAX);
502  MarkInUse(rs_rDX);
503  MarkWide(res.reg);
504  return res;
505}
506
507RegLocation X86Mir2Lir::GetReturnAlt() {
508  RegLocation res = LocCReturn();
509  res.reg.SetReg(rs_rDX.GetReg());
510  Clobber(rs_rDX);
511  MarkInUse(rs_rDX);
512  return res;
513}
514
515/* To be used when explicitly managing register use */
516void X86Mir2Lir::LockCallTemps() {
517  LockTemp(rs_rX86_ARG0);
518  LockTemp(rs_rX86_ARG1);
519  LockTemp(rs_rX86_ARG2);
520  LockTemp(rs_rX86_ARG3);
521  if (cu_->target64) {
522    LockTemp(rs_rX86_ARG4);
523    LockTemp(rs_rX86_ARG5);
524    LockTemp(rs_rX86_FARG0);
525    LockTemp(rs_rX86_FARG1);
526    LockTemp(rs_rX86_FARG2);
527    LockTemp(rs_rX86_FARG3);
528    LockTemp(rs_rX86_FARG4);
529    LockTemp(rs_rX86_FARG5);
530    LockTemp(rs_rX86_FARG6);
531    LockTemp(rs_rX86_FARG7);
532  }
533}
534
535/* To be used when explicitly managing register use */
536void X86Mir2Lir::FreeCallTemps() {
537  FreeTemp(rs_rX86_ARG0);
538  FreeTemp(rs_rX86_ARG1);
539  FreeTemp(rs_rX86_ARG2);
540  FreeTemp(rs_rX86_ARG3);
541  if (cu_->target64) {
542    FreeTemp(rs_rX86_ARG4);
543    FreeTemp(rs_rX86_ARG5);
544    FreeTemp(rs_rX86_FARG0);
545    FreeTemp(rs_rX86_FARG1);
546    FreeTemp(rs_rX86_FARG2);
547    FreeTemp(rs_rX86_FARG3);
548    FreeTemp(rs_rX86_FARG4);
549    FreeTemp(rs_rX86_FARG5);
550    FreeTemp(rs_rX86_FARG6);
551    FreeTemp(rs_rX86_FARG7);
552  }
553}
554
555bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
556    switch (opcode) {
557      case kX86LockCmpxchgMR:
558      case kX86LockCmpxchgAR:
559      case kX86LockCmpxchg64M:
560      case kX86LockCmpxchg64A:
561      case kX86XchgMR:
562      case kX86Mfence:
563        // Atomic memory instructions provide full barrier.
564        return true;
565      default:
566        break;
567    }
568
569    // Conservative if cannot prove it provides full barrier.
570    return false;
571}
572
573bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
574#if ANDROID_SMP != 0
575  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
576  LIR* mem_barrier = last_lir_insn_;
577
578  bool ret = false;
579  /*
580   * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
581   * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
582   * For those cases, all we need to ensure is that there is a scheduling barrier in place.
583   */
584  if (barrier_kind == kAnyAny) {
585    // If no LIR exists already that can be used a barrier, then generate an mfence.
586    if (mem_barrier == nullptr) {
587      mem_barrier = NewLIR0(kX86Mfence);
588      ret = true;
589    }
590
591    // If last instruction does not provide full barrier, then insert an mfence.
592    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
593      mem_barrier = NewLIR0(kX86Mfence);
594      ret = true;
595    }
596  }
597
598  // Now ensure that a scheduling barrier is in place.
599  if (mem_barrier == nullptr) {
600    GenBarrier();
601  } else {
602    // Mark as a scheduling barrier.
603    DCHECK(!mem_barrier->flags.use_def_invalid);
604    mem_barrier->u.m.def_mask = &kEncodeAll;
605  }
606  return ret;
607#else
608  return false;
609#endif
610}
611
612void X86Mir2Lir::CompilerInitializeRegAlloc() {
613  if (cu_->target64) {
614    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
615                                          dp_regs_64, reserved_regs_64, reserved_regs_64q,
616                                          core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
617  } else {
618    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
619                                          dp_regs_32, reserved_regs_32, empty_pool,
620                                          core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
621  }
622
623  // Target-specific adjustments.
624
625  // Add in XMM registers.
626  const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32;
627  for (RegStorage reg : *xp_regs) {
628    RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
629    reginfo_map_.Put(reg.GetReg(), info);
630  }
631  const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
632  for (RegStorage reg : *xp_temps) {
633    RegisterInfo* xp_reg_info = GetRegInfo(reg);
634    xp_reg_info->SetIsTemp(true);
635  }
636
637  // Alias single precision xmm to double xmms.
638  // TODO: as needed, add larger vector sizes - alias all to the largest.
639  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
640  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
641    int sp_reg_num = info->GetReg().GetRegNum();
642    RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
643    RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
644    // 128-bit xmm vector register's master storage should refer to itself.
645    DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
646
647    // Redirect 32-bit vector's master storage to 128-bit vector.
648    info->SetMaster(xp_reg_info);
649
650    RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
651    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
652    // Redirect 64-bit vector's master storage to 128-bit vector.
653    dp_reg_info->SetMaster(xp_reg_info);
654    // Singles should show a single 32-bit mask bit, at first referring to the low half.
655    DCHECK_EQ(info->StorageMask(), 0x1U);
656  }
657
658  if (cu_->target64) {
659    // Alias 32bit W registers to corresponding 64bit X registers.
660    GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
661    for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
662      int x_reg_num = info->GetReg().GetRegNum();
663      RegStorage x_reg = RegStorage::Solo64(x_reg_num);
664      RegisterInfo* x_reg_info = GetRegInfo(x_reg);
665      // 64bit X register's master storage should refer to itself.
666      DCHECK_EQ(x_reg_info, x_reg_info->Master());
667      // Redirect 32bit W master storage to 64bit X.
668      info->SetMaster(x_reg_info);
669      // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
670      DCHECK_EQ(info->StorageMask(), 0x1U);
671    }
672  }
673
674  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
675  // TODO: adjust for x86/hard float calling convention.
676  reg_pool_->next_core_reg_ = 2;
677  reg_pool_->next_sp_reg_ = 2;
678  reg_pool_->next_dp_reg_ = 1;
679}
680
681int X86Mir2Lir::VectorRegisterSize() {
682  return 128;
683}
684
685int X86Mir2Lir::NumReservableVectorRegisters(bool fp_used) {
686  return fp_used ? 5 : 7;
687}
688
689void X86Mir2Lir::SpillCoreRegs() {
690  if (num_core_spills_ == 0) {
691    return;
692  }
693  // Spill mask not including fake return address register
694  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
695  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
696  OpSize size = cu_->target64 ? k64 : k32;
697  for (int reg = 0; mask; mask >>= 1, reg++) {
698    if (mask & 0x1) {
699      StoreBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) :  RegStorage::Solo32(reg),
700                   size, kNotVolatile);
701      offset += GetInstructionSetPointerSize(cu_->instruction_set);
702    }
703  }
704}
705
706void X86Mir2Lir::UnSpillCoreRegs() {
707  if (num_core_spills_ == 0) {
708    return;
709  }
710  // Spill mask not including fake return address register
711  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
712  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
713  OpSize size = cu_->target64 ? k64 : k32;
714  for (int reg = 0; mask; mask >>= 1, reg++) {
715    if (mask & 0x1) {
716      LoadBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) :  RegStorage::Solo32(reg),
717                   size, kNotVolatile);
718      offset += GetInstructionSetPointerSize(cu_->instruction_set);
719    }
720  }
721}
722
723void X86Mir2Lir::SpillFPRegs() {
724  if (num_fp_spills_ == 0) {
725    return;
726  }
727  uint32_t mask = fp_spill_mask_;
728  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
729  for (int reg = 0; mask; mask >>= 1, reg++) {
730    if (mask & 0x1) {
731      StoreBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
732                   k64, kNotVolatile);
733      offset += sizeof(double);
734    }
735  }
736}
737void X86Mir2Lir::UnSpillFPRegs() {
738  if (num_fp_spills_ == 0) {
739    return;
740  }
741  uint32_t mask = fp_spill_mask_;
742  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
743  for (int reg = 0; mask; mask >>= 1, reg++) {
744    if (mask & 0x1) {
745      LoadBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
746                   k64, kNotVolatile);
747      offset += sizeof(double);
748    }
749  }
750}
751
752
753bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
754  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
755}
756
757bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
758  return true;
759}
760
761RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
762  // X86_64 can handle any size.
763  if (cu_->target64) {
764    if (size == kReference) {
765      return kRefReg;
766    }
767    return kCoreReg;
768  }
769
770  if (UNLIKELY(is_volatile)) {
771    // On x86, atomic 64-bit load/store requires an fp register.
772    // Smaller aligned load/store is atomic for both core and fp registers.
773    if (size == k64 || size == kDouble) {
774      return kFPReg;
775    }
776  }
777  return RegClassBySize(size);
778}
779
780X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
781    : Mir2Lir(cu, mir_graph, arena),
782      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
783      method_address_insns_(arena, 100, kGrowableArrayMisc),
784      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
785      call_method_insns_(arena, 100, kGrowableArrayMisc),
786      stack_decrement_(nullptr), stack_increment_(nullptr),
787      const_vectors_(nullptr) {
788  store_method_addr_used_ = false;
789  if (kIsDebugBuild) {
790    for (int i = 0; i < kX86Last; i++) {
791      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
792        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
793                   << " is wrong: expecting " << i << ", seeing "
794                   << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
795      }
796    }
797  }
798  if (cu_->target64) {
799    rs_rX86_SP = rs_rX86_SP_64;
800
801    rs_rX86_ARG0 = rs_rDI;
802    rs_rX86_ARG1 = rs_rSI;
803    rs_rX86_ARG2 = rs_rDX;
804    rs_rX86_ARG3 = rs_rCX;
805    rs_rX86_ARG4 = rs_r8;
806    rs_rX86_ARG5 = rs_r9;
807    rs_rX86_FARG0 = rs_fr0;
808    rs_rX86_FARG1 = rs_fr1;
809    rs_rX86_FARG2 = rs_fr2;
810    rs_rX86_FARG3 = rs_fr3;
811    rs_rX86_FARG4 = rs_fr4;
812    rs_rX86_FARG5 = rs_fr5;
813    rs_rX86_FARG6 = rs_fr6;
814    rs_rX86_FARG7 = rs_fr7;
815    rX86_ARG0 = rDI;
816    rX86_ARG1 = rSI;
817    rX86_ARG2 = rDX;
818    rX86_ARG3 = rCX;
819    rX86_ARG4 = r8;
820    rX86_ARG5 = r9;
821    rX86_FARG0 = fr0;
822    rX86_FARG1 = fr1;
823    rX86_FARG2 = fr2;
824    rX86_FARG3 = fr3;
825    rX86_FARG4 = fr4;
826    rX86_FARG5 = fr5;
827    rX86_FARG6 = fr6;
828    rX86_FARG7 = fr7;
829    rs_rX86_INVOKE_TGT = rs_rDI;
830  } else {
831    rs_rX86_SP = rs_rX86_SP_32;
832
833    rs_rX86_ARG0 = rs_rAX;
834    rs_rX86_ARG1 = rs_rCX;
835    rs_rX86_ARG2 = rs_rDX;
836    rs_rX86_ARG3 = rs_rBX;
837    rs_rX86_ARG4 = RegStorage::InvalidReg();
838    rs_rX86_ARG5 = RegStorage::InvalidReg();
839    rs_rX86_FARG0 = rs_rAX;
840    rs_rX86_FARG1 = rs_rCX;
841    rs_rX86_FARG2 = rs_rDX;
842    rs_rX86_FARG3 = rs_rBX;
843    rs_rX86_FARG4 = RegStorage::InvalidReg();
844    rs_rX86_FARG5 = RegStorage::InvalidReg();
845    rs_rX86_FARG6 = RegStorage::InvalidReg();
846    rs_rX86_FARG7 = RegStorage::InvalidReg();
847    rX86_ARG0 = rAX;
848    rX86_ARG1 = rCX;
849    rX86_ARG2 = rDX;
850    rX86_ARG3 = rBX;
851    rX86_FARG0 = rAX;
852    rX86_FARG1 = rCX;
853    rX86_FARG2 = rDX;
854    rX86_FARG3 = rBX;
855    rs_rX86_INVOKE_TGT = rs_rAX;
856    // TODO(64): Initialize with invalid reg
857//    rX86_ARG4 = RegStorage::InvalidReg();
858//    rX86_ARG5 = RegStorage::InvalidReg();
859  }
860  rs_rX86_RET0 = rs_rAX;
861  rs_rX86_RET1 = rs_rDX;
862  rs_rX86_COUNT = rs_rCX;
863  rX86_RET0 = rAX;
864  rX86_RET1 = rDX;
865  rX86_INVOKE_TGT = rAX;
866  rX86_COUNT = rCX;
867
868  // Initialize the number of reserved vector registers
869  num_reserved_vector_regs_ = -1;
870}
871
872Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
873                          ArenaAllocator* const arena) {
874  return new X86Mir2Lir(cu, mir_graph, arena);
875}
876
877// Not used in x86
878RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
879  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
880  return RegStorage::InvalidReg();
881}
882
883// Not used in x86
884RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
885  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
886  return RegStorage::InvalidReg();
887}
888
889LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
890  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
891  return nullptr;
892}
893
894uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
895  DCHECK(!IsPseudoLirOp(opcode));
896  return X86Mir2Lir::EncodingMap[opcode].flags;
897}
898
899const char* X86Mir2Lir::GetTargetInstName(int opcode) {
900  DCHECK(!IsPseudoLirOp(opcode));
901  return X86Mir2Lir::EncodingMap[opcode].name;
902}
903
904const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
905  DCHECK(!IsPseudoLirOp(opcode));
906  return X86Mir2Lir::EncodingMap[opcode].fmt;
907}
908
909void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
910  // Can we do this directly to memory?
911  rl_dest = UpdateLocWide(rl_dest);
912  if ((rl_dest.location == kLocDalvikFrame) ||
913      (rl_dest.location == kLocCompilerTemp)) {
914    int32_t val_lo = Low32Bits(value);
915    int32_t val_hi = High32Bits(value);
916    int r_base = rs_rX86_SP.GetReg();
917    int displacement = SRegOffset(rl_dest.s_reg_low);
918
919    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
920    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
921    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
922                              false /* is_load */, true /* is64bit */);
923    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
924    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
925                              false /* is_load */, true /* is64bit */);
926    return;
927  }
928
929  // Just use the standard code to do the generation.
930  Mir2Lir::GenConstWide(rl_dest, value);
931}
932
933// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
934void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
935  LOG(INFO)  << "location: " << loc.location << ','
936             << (loc.wide ? " w" : "  ")
937             << (loc.defined ? " D" : "  ")
938             << (loc.is_const ? " c" : "  ")
939             << (loc.fp ? " F" : "  ")
940             << (loc.core ? " C" : "  ")
941             << (loc.ref ? " r" : "  ")
942             << (loc.high_word ? " h" : "  ")
943             << (loc.home ? " H" : "  ")
944             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
945             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
946             << ", s_reg: " << loc.s_reg_low
947             << ", orig: " << loc.orig_sreg;
948}
949
950void X86Mir2Lir::Materialize() {
951  // A good place to put the analysis before starting.
952  AnalyzeMIR();
953
954  // Now continue with regular code generation.
955  Mir2Lir::Materialize();
956}
957
958void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
959                                   SpecialTargetRegister symbolic_reg) {
960  /*
961   * For x86, just generate a 32 bit move immediate instruction, that will be filled
962   * in at 'link time'.  For now, put a unique value based on target to ensure that
963   * code deduplication works.
964   */
965  int target_method_idx = target_method.dex_method_index;
966  const DexFile* target_dex_file = target_method.dex_file;
967  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
968  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
969
970  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
971  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, false).GetReg(),
972                     static_cast<int>(target_method_id_ptr), target_method_idx,
973                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
974  AppendLIR(move);
975  method_address_insns_.Insert(move);
976}
977
978void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
979  /*
980   * For x86, just generate a 32 bit move immediate instruction, that will be filled
981   * in at 'link time'.  For now, put a unique value based on target to ensure that
982   * code deduplication works.
983   */
984  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
985  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
986
987  // Generate the move instruction with the unique pointer and save index and type.
988  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, false).GetReg(),
989                     static_cast<int>(ptr), type_idx);
990  AppendLIR(move);
991  class_type_address_insns_.Insert(move);
992}
993
994LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
995  /*
996   * For x86, just generate a 32 bit call relative instruction, that will be filled
997   * in at 'link time'.  For now, put a unique value based on target to ensure that
998   * code deduplication works.
999   */
1000  int target_method_idx = target_method.dex_method_index;
1001  const DexFile* target_dex_file = target_method.dex_file;
1002  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
1003  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
1004
1005  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
1006  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
1007                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
1008  AppendLIR(call);
1009  call_method_insns_.Insert(call);
1010  return call;
1011}
1012
1013/*
1014 * @brief Enter a 32 bit quantity into a buffer
1015 * @param buf buffer.
1016 * @param data Data value.
1017 */
1018
1019static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
1020  buf.push_back(data & 0xff);
1021  buf.push_back((data >> 8) & 0xff);
1022  buf.push_back((data >> 16) & 0xff);
1023  buf.push_back((data >> 24) & 0xff);
1024}
1025
1026void X86Mir2Lir::InstallLiteralPools() {
1027  // These are handled differently for x86.
1028  DCHECK(code_literal_list_ == nullptr);
1029  DCHECK(method_literal_list_ == nullptr);
1030  DCHECK(class_literal_list_ == nullptr);
1031
1032  // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
1033  // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
1034  // will fail at runtime)?
1035  if (const_vectors_ != nullptr) {
1036    int align_size = (16-4) - (code_buffer_.size() & 0xF);
1037    if (align_size < 0) {
1038      align_size += 16;
1039    }
1040
1041    while (align_size > 0) {
1042      code_buffer_.push_back(0);
1043      align_size--;
1044    }
1045    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1046      PushWord(code_buffer_, p->operands[0]);
1047      PushWord(code_buffer_, p->operands[1]);
1048      PushWord(code_buffer_, p->operands[2]);
1049      PushWord(code_buffer_, p->operands[3]);
1050    }
1051  }
1052
1053  // Handle the fixups for methods.
1054  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
1055      LIR* p = method_address_insns_.Get(i);
1056      DCHECK_EQ(p->opcode, kX86Mov32RI);
1057      uint32_t target_method_idx = p->operands[2];
1058      const DexFile* target_dex_file =
1059          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
1060
1061      // The offset to patch is the last 4 bytes of the instruction.
1062      int patch_offset = p->offset + p->flags.size - 4;
1063      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
1064                                           cu_->method_idx, cu_->invoke_type,
1065                                           target_method_idx, target_dex_file,
1066                                           static_cast<InvokeType>(p->operands[4]),
1067                                           patch_offset);
1068  }
1069
1070  // Handle the fixups for class types.
1071  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
1072      LIR* p = class_type_address_insns_.Get(i);
1073      DCHECK_EQ(p->opcode, kX86Mov32RI);
1074      uint32_t target_method_idx = p->operands[2];
1075
1076      // The offset to patch is the last 4 bytes of the instruction.
1077      int patch_offset = p->offset + p->flags.size - 4;
1078      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
1079                                          cu_->method_idx, target_method_idx, patch_offset);
1080  }
1081
1082  // And now the PC-relative calls to methods.
1083  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1084      LIR* p = call_method_insns_.Get(i);
1085      DCHECK_EQ(p->opcode, kX86CallI);
1086      uint32_t target_method_idx = p->operands[1];
1087      const DexFile* target_dex_file =
1088          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1089
1090      // The offset to patch is the last 4 bytes of the instruction.
1091      int patch_offset = p->offset + p->flags.size - 4;
1092      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1093                                                 cu_->method_idx, cu_->invoke_type,
1094                                                 target_method_idx, target_dex_file,
1095                                                 static_cast<InvokeType>(p->operands[3]),
1096                                                 patch_offset, -4 /* offset */);
1097  }
1098
1099  // And do the normal processing.
1100  Mir2Lir::InstallLiteralPools();
1101}
1102
1103bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1104  if (cu_->target64) {
1105    // TODO: Implement ArrayCOpy intrinsic for x86_64
1106    return false;
1107  }
1108
1109  RegLocation rl_src = info->args[0];
1110  RegLocation rl_srcPos = info->args[1];
1111  RegLocation rl_dst = info->args[2];
1112  RegLocation rl_dstPos = info->args[3];
1113  RegLocation rl_length = info->args[4];
1114  if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) {
1115    return false;
1116  }
1117  if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) {
1118    return false;
1119  }
1120  ClobberCallerSave();
1121  LockCallTemps();  // Using fixed registers
1122  LoadValueDirectFixed(rl_src , rs_rAX);
1123  LoadValueDirectFixed(rl_dst , rs_rCX);
1124  LIR* src_dst_same  = OpCmpBranch(kCondEq, rs_rAX , rs_rCX, nullptr);
1125  LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX , 0, nullptr);
1126  LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX , 0, nullptr);
1127  LoadValueDirectFixed(rl_length , rs_rDX);
1128  LIR* len_negative  = OpCmpImmBranch(kCondLt, rs_rDX , 0, nullptr);
1129  LIR* len_too_big  = OpCmpImmBranch(kCondGt, rs_rDX , 128, nullptr);
1130  LoadValueDirectFixed(rl_src , rs_rAX);
1131  LoadWordDisp(rs_rAX , mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1132  LIR* src_bad_len  = nullptr;
1133  LIR* srcPos_negative  = nullptr;
1134  if (!rl_srcPos.is_const) {
1135    LoadValueDirectFixed(rl_srcPos , rs_rBX);
1136    srcPos_negative  = OpCmpImmBranch(kCondLt, rs_rBX , 0, nullptr);
1137    OpRegReg(kOpAdd, rs_rBX, rs_rDX);
1138    src_bad_len  = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1139  } else {
1140    int pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg);
1141    if (pos_val == 0) {
1142      src_bad_len  = OpCmpBranch(kCondLt, rs_rAX , rs_rDX, nullptr);
1143    } else {
1144      OpRegRegImm(kOpAdd, rs_rBX,  rs_rDX, pos_val);
1145      src_bad_len  = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1146    }
1147  }
1148  LIR* dstPos_negative = nullptr;
1149  LIR* dst_bad_len = nullptr;
1150  LoadValueDirectFixed(rl_dst, rs_rAX);
1151  LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1152  if (!rl_dstPos.is_const) {
1153    LoadValueDirectFixed(rl_dstPos , rs_rBX);
1154    dstPos_negative = OpCmpImmBranch(kCondLt, rs_rBX , 0, nullptr);
1155    OpRegRegReg(kOpAdd, rs_rBX, rs_rBX, rs_rDX);
1156    dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1157  } else {
1158    int pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg);
1159    if (pos_val == 0) {
1160      dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rDX, nullptr);
1161    } else {
1162      OpRegRegImm(kOpAdd, rs_rBX,  rs_rDX, pos_val);
1163      dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1164    }
1165  }
1166  // everything is checked now
1167  LoadValueDirectFixed(rl_src , rs_rAX);
1168  LoadValueDirectFixed(rl_dst , rs_rBX);
1169  LoadValueDirectFixed(rl_srcPos , rs_rCX);
1170  NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(),
1171       rs_rCX.GetReg() , 1, mirror::Array::DataOffset(2).Int32Value());
1172  // RAX now holds the address of the first src element to be copied
1173
1174  LoadValueDirectFixed(rl_dstPos , rs_rCX);
1175  NewLIR5(kX86Lea32RA, rs_rBX.GetReg(), rs_rBX.GetReg(),
1176       rs_rCX.GetReg() , 1, mirror::Array::DataOffset(2).Int32Value() );
1177  // RBX now holds the address of the first dst element to be copied
1178
1179  // check if the number of elements to be copied is odd or even. If odd
1180  // then copy the first element (so that the remaining number of elements
1181  // is even).
1182  LoadValueDirectFixed(rl_length , rs_rCX);
1183  OpRegImm(kOpAnd, rs_rCX, 1);
1184  LIR* jmp_to_begin_loop  = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1185  OpRegImm(kOpSub, rs_rDX, 1);
1186  LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1187  StoreBaseIndexedDisp(rs_rBX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1188
1189  // since the remaining number of elements is even, we will copy by
1190  // two elements at a time.
1191  LIR *beginLoop = NewLIR0(kPseudoTargetLabel);
1192  LIR* jmp_to_ret  = OpCmpImmBranch(kCondEq, rs_rDX , 0, nullptr);
1193  OpRegImm(kOpSub, rs_rDX, 2);
1194  LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle);
1195  StoreBaseIndexedDisp(rs_rBX, rs_rDX, 1, 0, rs_rCX, kSingle);
1196  OpUnconditionalBranch(beginLoop);
1197  LIR *check_failed = NewLIR0(kPseudoTargetLabel);
1198  LIR* launchpad_branch  = OpUnconditionalBranch(nullptr);
1199  LIR *return_point = NewLIR0(kPseudoTargetLabel);
1200  jmp_to_ret->target = return_point;
1201  jmp_to_begin_loop->target = beginLoop;
1202  src_dst_same->target = check_failed;
1203  len_negative->target = check_failed;
1204  len_too_big->target = check_failed;
1205  src_null_branch->target = check_failed;
1206  if (srcPos_negative != nullptr)
1207    srcPos_negative ->target = check_failed;
1208  if (src_bad_len != nullptr)
1209    src_bad_len->target = check_failed;
1210  dst_null_branch->target = check_failed;
1211  if (dstPos_negative != nullptr)
1212    dstPos_negative->target = check_failed;
1213  if (dst_bad_len != nullptr)
1214    dst_bad_len->target = check_failed;
1215  AddIntrinsicSlowPath(info, launchpad_branch, return_point);
1216  return true;
1217}
1218
1219
1220/*
1221 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1222 * otherwise bails to standard library code.
1223 */
1224bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1225  ClobberCallerSave();
1226  LockCallTemps();  // Using fixed registers
1227
1228  // EAX: 16 bit character being searched.
1229  // ECX: count: number of words to be searched.
1230  // EDI: String being searched.
1231  // EDX: temporary during execution.
1232  // EBX or R11: temporary during execution (depending on mode).
1233
1234  RegLocation rl_obj = info->args[0];
1235  RegLocation rl_char = info->args[1];
1236  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1237  RegStorage tmpReg = cu_->target64 ? rs_r11 : rs_rBX;
1238
1239  uint32_t char_value =
1240    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1241
1242  if (char_value > 0xFFFF) {
1243    // We have to punt to the real String.indexOf.
1244    return false;
1245  }
1246
1247  // Okay, we are commited to inlining this.
1248  RegLocation rl_return = GetReturn(kCoreReg);
1249  RegLocation rl_dest = InlineTarget(info);
1250
1251  // Is the string non-NULL?
1252  LoadValueDirectFixed(rl_obj, rs_rDX);
1253  GenNullCheck(rs_rDX, info->opt_flags);
1254  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1255
1256  // Does the character fit in 16 bits?
1257  LIR* slowpath_branch = nullptr;
1258  if (rl_char.is_const) {
1259    // We need the value in EAX.
1260    LoadConstantNoClobber(rs_rAX, char_value);
1261  } else {
1262    // Character is not a constant; compare at runtime.
1263    LoadValueDirectFixed(rl_char, rs_rAX);
1264    slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1265  }
1266
1267  // From here down, we know that we are looking for a char that fits in 16 bits.
1268  // Location of reference to data array within the String object.
1269  int value_offset = mirror::String::ValueOffset().Int32Value();
1270  // Location of count within the String object.
1271  int count_offset = mirror::String::CountOffset().Int32Value();
1272  // Starting offset within data array.
1273  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1274  // Start of char data with array_.
1275  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1276
1277  // Character is in EAX.
1278  // Object pointer is in EDX.
1279
1280  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1281  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1282  NewLIR1(kX86Push32R, rs_rDI.GetReg());
1283
1284  // Compute the number of words to search in to rCX.
1285  Load32Disp(rs_rDX, count_offset, rs_rCX);
1286  LIR *length_compare = nullptr;
1287  int start_value = 0;
1288  bool is_index_on_stack = false;
1289  if (zero_based) {
1290    // We have to handle an empty string.  Use special instruction JECXZ.
1291    length_compare = NewLIR0(kX86Jecxz8);
1292  } else {
1293    rl_start = info->args[2];
1294    // We have to offset by the start index.
1295    if (rl_start.is_const) {
1296      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1297      start_value = std::max(start_value, 0);
1298
1299      // Is the start > count?
1300      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1301
1302      if (start_value != 0) {
1303        OpRegImm(kOpSub, rs_rCX, start_value);
1304      }
1305    } else {
1306      // Runtime start index.
1307      rl_start = UpdateLocTyped(rl_start, kCoreReg);
1308      if (rl_start.location == kLocPhysReg) {
1309        // Handle "start index < 0" case.
1310        OpRegReg(kOpXor, tmpReg, tmpReg);
1311        OpRegReg(kOpCmp, rl_start.reg, tmpReg);
1312        OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, tmpReg);
1313
1314        // The length of the string should be greater than the start index.
1315        length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1316        OpRegReg(kOpSub, rs_rCX, rl_start.reg);
1317        if (rl_start.reg == rs_rDI) {
1318          // The special case. We will use EDI further, so lets put start index to stack.
1319          NewLIR1(kX86Push32R, rs_rDI.GetReg());
1320          is_index_on_stack = true;
1321        }
1322      } else {
1323        // Load the start index from stack, remembering that we pushed EDI.
1324        int displacement = SRegOffset(rl_start.s_reg_low) + (cu_->target64 ? 2 : 1) * sizeof(uint32_t);
1325        {
1326          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1327          Load32Disp(rs_rX86_SP, displacement, tmpReg);
1328        }
1329        OpRegReg(kOpXor, rs_rDI, rs_rDI);
1330        OpRegReg(kOpCmp, tmpReg, rs_rDI);
1331        OpCondRegReg(kOpCmov, kCondLt, tmpReg, rs_rDI);
1332
1333        length_compare = OpCmpBranch(kCondLe, rs_rCX, tmpReg, nullptr);
1334        OpRegReg(kOpSub, rs_rCX, tmpReg);
1335        // Put the start index to stack.
1336        NewLIR1(kX86Push32R, tmpReg.GetReg());
1337        is_index_on_stack = true;
1338      }
1339    }
1340  }
1341  DCHECK(length_compare != nullptr);
1342
1343  // ECX now contains the count in words to be searched.
1344
1345  // Load the address of the string into R11 or EBX (depending on mode).
1346  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1347  Load32Disp(rs_rDX, value_offset, rs_rDI);
1348  Load32Disp(rs_rDX, offset_offset, tmpReg);
1349  OpLea(tmpReg, rs_rDI, tmpReg, 1, data_offset);
1350
1351  // Now compute into EDI where the search will start.
1352  if (zero_based || rl_start.is_const) {
1353    if (start_value == 0) {
1354      OpRegCopy(rs_rDI, tmpReg);
1355    } else {
1356      NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), tmpReg.GetReg(), 2 * start_value);
1357    }
1358  } else {
1359    if (is_index_on_stack == true) {
1360      // Load the start index from stack.
1361      NewLIR1(kX86Pop32R, rs_rDX.GetReg());
1362      OpLea(rs_rDI, tmpReg, rs_rDX, 1, 0);
1363    } else {
1364      OpLea(rs_rDI, tmpReg, rl_start.reg, 1, 0);
1365    }
1366  }
1367
1368  // EDI now contains the start of the string to be searched.
1369  // We are all prepared to do the search for the character.
1370  NewLIR0(kX86RepneScasw);
1371
1372  // Did we find a match?
1373  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1374
1375  // yes, we matched.  Compute the index of the result.
1376  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1377  OpRegReg(kOpSub, rs_rDI, tmpReg);
1378  OpRegImm(kOpAsr, rs_rDI, 1);
1379  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
1380  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1381
1382  // Failed to match; return -1.
1383  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1384  length_compare->target = not_found;
1385  failed_branch->target = not_found;
1386  LoadConstantNoClobber(rl_return.reg, -1);
1387
1388  // And join up at the end.
1389  all_done->target = NewLIR0(kPseudoTargetLabel);
1390  // Restore EDI from the stack.
1391  NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1392
1393  // Out of line code returns here.
1394  if (slowpath_branch != nullptr) {
1395    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1396    AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1397  }
1398
1399  StoreValue(rl_dest, rl_return);
1400  return true;
1401}
1402
1403/*
1404 * @brief Enter an 'advance LOC' into the FDE buffer
1405 * @param buf FDE buffer.
1406 * @param increment Amount by which to increase the current location.
1407 */
1408static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1409  if (increment < 64) {
1410    // Encoding in opcode.
1411    buf.push_back(0x1 << 6 | increment);
1412  } else if (increment < 256) {
1413    // Single byte delta.
1414    buf.push_back(0x02);
1415    buf.push_back(increment);
1416  } else if (increment < 256 * 256) {
1417    // Two byte delta.
1418    buf.push_back(0x03);
1419    buf.push_back(increment & 0xff);
1420    buf.push_back((increment >> 8) & 0xff);
1421  } else {
1422    // Four byte delta.
1423    buf.push_back(0x04);
1424    PushWord(buf, increment);
1425  }
1426}
1427
1428
1429std::vector<uint8_t>* X86CFIInitialization() {
1430  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1431}
1432
1433std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1434  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1435
1436  // Length of the CIE (except for this field).
1437  PushWord(*cfi_info, 16);
1438
1439  // CIE id.
1440  PushWord(*cfi_info, 0xFFFFFFFFU);
1441
1442  // Version: 3.
1443  cfi_info->push_back(0x03);
1444
1445  // Augmentation: empty string.
1446  cfi_info->push_back(0x0);
1447
1448  // Code alignment: 1.
1449  cfi_info->push_back(0x01);
1450
1451  // Data alignment: -4.
1452  cfi_info->push_back(0x7C);
1453
1454  // Return address register (R8).
1455  cfi_info->push_back(0x08);
1456
1457  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1458  cfi_info->push_back(0x0C);
1459  cfi_info->push_back(0x04);
1460  cfi_info->push_back(0x04);
1461
1462  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1463  cfi_info->push_back(0x2 << 6 | 0x08);
1464  cfi_info->push_back(0x01);
1465
1466  // And 2 Noops to align to 4 byte boundary.
1467  cfi_info->push_back(0x0);
1468  cfi_info->push_back(0x0);
1469
1470  DCHECK_EQ(cfi_info->size() & 3, 0U);
1471  return cfi_info;
1472}
1473
1474static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1475  uint8_t buffer[12];
1476  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1477  for (uint8_t *p = buffer; p < ptr; p++) {
1478    buf.push_back(*p);
1479  }
1480}
1481
1482std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1483  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1484
1485  // Generate the FDE for the method.
1486  DCHECK_NE(data_offset_, 0U);
1487
1488  // Length (will be filled in later in this routine).
1489  PushWord(*cfi_info, 0);
1490
1491  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1492  // one CIE for the whole debug_frame section.
1493  PushWord(*cfi_info, 0);
1494
1495  // 'initial_location' (filled in by linker).
1496  PushWord(*cfi_info, 0);
1497
1498  // 'address_range' (number of bytes in the method).
1499  PushWord(*cfi_info, data_offset_);
1500
1501  // The instructions in the FDE.
1502  if (stack_decrement_ != nullptr) {
1503    // Advance LOC to just past the stack decrement.
1504    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1505    AdvanceLoc(*cfi_info, pc);
1506
1507    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1508    cfi_info->push_back(0x0e);
1509    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1510
1511    // We continue with that stack until the epilogue.
1512    if (stack_increment_ != nullptr) {
1513      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1514      AdvanceLoc(*cfi_info, new_pc - pc);
1515
1516      // We probably have code snippets after the epilogue, so save the
1517      // current state: DW_CFA_remember_state.
1518      cfi_info->push_back(0x0a);
1519
1520      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1521      // PC on the stack now.
1522      cfi_info->push_back(0x0e);
1523      EncodeUnsignedLeb128(*cfi_info, 4);
1524
1525      // Everything after that is the same as before the epilogue.
1526      // Stack bump was followed by RET instruction.
1527      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1528      if (post_ret_insn != nullptr) {
1529        pc = new_pc;
1530        new_pc = post_ret_insn->offset;
1531        AdvanceLoc(*cfi_info, new_pc - pc);
1532        // Restore the state: DW_CFA_restore_state.
1533        cfi_info->push_back(0x0b);
1534      }
1535    }
1536  }
1537
1538  // Padding to a multiple of 4
1539  while ((cfi_info->size() & 3) != 0) {
1540    // DW_CFA_nop is encoded as 0.
1541    cfi_info->push_back(0);
1542  }
1543
1544  // Set the length of the FDE inside the generated bytes.
1545  uint32_t length = cfi_info->size() - 4;
1546  (*cfi_info)[0] = length;
1547  (*cfi_info)[1] = length >> 8;
1548  (*cfi_info)[2] = length >> 16;
1549  (*cfi_info)[3] = length >> 24;
1550  return cfi_info;
1551}
1552
1553void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1554  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1555    case kMirOpReserveVectorRegisters:
1556      ReserveVectorRegisters(mir);
1557      break;
1558    case kMirOpReturnVectorRegisters:
1559      ReturnVectorRegisters();
1560      break;
1561    case kMirOpConstVector:
1562      GenConst128(bb, mir);
1563      break;
1564    case kMirOpMoveVector:
1565      GenMoveVector(bb, mir);
1566      break;
1567    case kMirOpPackedMultiply:
1568      GenMultiplyVector(bb, mir);
1569      break;
1570    case kMirOpPackedAddition:
1571      GenAddVector(bb, mir);
1572      break;
1573    case kMirOpPackedSubtract:
1574      GenSubtractVector(bb, mir);
1575      break;
1576    case kMirOpPackedShiftLeft:
1577      GenShiftLeftVector(bb, mir);
1578      break;
1579    case kMirOpPackedSignedShiftRight:
1580      GenSignedShiftRightVector(bb, mir);
1581      break;
1582    case kMirOpPackedUnsignedShiftRight:
1583      GenUnsignedShiftRightVector(bb, mir);
1584      break;
1585    case kMirOpPackedAnd:
1586      GenAndVector(bb, mir);
1587      break;
1588    case kMirOpPackedOr:
1589      GenOrVector(bb, mir);
1590      break;
1591    case kMirOpPackedXor:
1592      GenXorVector(bb, mir);
1593      break;
1594    case kMirOpPackedAddReduce:
1595      GenAddReduceVector(bb, mir);
1596      break;
1597    case kMirOpPackedReduce:
1598      GenReduceVector(bb, mir);
1599      break;
1600    case kMirOpPackedSet:
1601      GenSetVector(bb, mir);
1602      break;
1603    default:
1604      break;
1605  }
1606}
1607
1608void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) {
1609  // We should not try to reserve twice without returning the registers
1610  DCHECK_NE(num_reserved_vector_regs_, -1);
1611
1612  int num_vector_reg = mir->dalvikInsn.vA;
1613  for (int i = 0; i < num_vector_reg; i++) {
1614    RegStorage xp_reg = RegStorage::Solo128(i);
1615    RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1616    Clobber(xp_reg);
1617
1618    for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1619                       info != nullptr;
1620                       info = info->GetAliasChain()) {
1621      if (info->GetReg().IsSingle()) {
1622        reg_pool_->sp_regs_.Delete(info);
1623      } else {
1624        reg_pool_->dp_regs_.Delete(info);
1625      }
1626    }
1627  }
1628
1629  num_reserved_vector_regs_ = num_vector_reg;
1630}
1631
1632void X86Mir2Lir::ReturnVectorRegisters() {
1633  // Return all the reserved registers
1634  for (int i = 0; i < num_reserved_vector_regs_; i++) {
1635    RegStorage xp_reg = RegStorage::Solo128(i);
1636    RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1637
1638    for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1639                       info != nullptr;
1640                       info = info->GetAliasChain()) {
1641      if (info->GetReg().IsSingle()) {
1642        reg_pool_->sp_regs_.Insert(info);
1643      } else {
1644        reg_pool_->dp_regs_.Insert(info);
1645      }
1646    }
1647  }
1648
1649  // We don't have anymore reserved vector registers
1650  num_reserved_vector_regs_ = -1;
1651}
1652
1653void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1654  store_method_addr_used_ = true;
1655  int type_size = mir->dalvikInsn.vB;
1656  // We support 128 bit vectors.
1657  DCHECK_EQ(type_size & 0xFFFF, 128);
1658  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1659  uint32_t *args = mir->dalvikInsn.arg;
1660  int reg = rs_dest.GetReg();
1661  // Check for all 0 case.
1662  if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1663    NewLIR2(kX86XorpsRR, reg, reg);
1664    return;
1665  }
1666
1667  // Append the mov const vector to reg opcode.
1668  AppendOpcodeWithConst(kX86MovupsRM, reg, mir);
1669}
1670
1671void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) {
1672  // Okay, load it from the constant vector area.
1673  LIR *data_target = ScanVectorLiteral(mir);
1674  if (data_target == nullptr) {
1675    data_target = AddVectorLiteral(mir);
1676  }
1677
1678  // Address the start of the method.
1679  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1680  if (rl_method.wide) {
1681    rl_method = LoadValueWide(rl_method, kCoreReg);
1682  } else {
1683    rl_method = LoadValue(rl_method, kCoreReg);
1684  }
1685
1686  // Load the proper value from the literal area.
1687  // We don't know the proper offset for the value, so pick one that will force
1688  // 4 byte offset.  We will fix this up in the assembler later to have the right
1689  // value.
1690  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1691  LIR *load = NewLIR2(opcode, reg, rl_method.reg.GetReg());
1692  load->flags.fixup = kFixupLoad;
1693  load->target = data_target;
1694}
1695
1696void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1697  // We only support 128 bit registers.
1698  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1699  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1700  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1701  NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1702}
1703
1704void X86Mir2Lir::GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir) {
1705  const int BYTE_SIZE = 8;
1706  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1707  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1708  RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempWide());
1709
1710  /*
1711   * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM
1712   * and multiplying 8 at a time before recombining back into one XMM register.
1713   *
1714   *   let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes)
1715   *       xmm3 is tmp             (operate on high bits of 16bit lanes)
1716   *
1717   *    xmm3 = xmm1
1718   *    xmm1 = xmm1 .* xmm2
1719   *    xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff  // xmm1 now has low bits
1720   *    xmm3 = xmm3 .>> 8
1721   *    xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00
1722   *    xmm2 = xmm2 .* xmm3                               // xmm2 now has high bits
1723   *    xmm1 = xmm1 | xmm2                                // combine results
1724   */
1725
1726  // Copy xmm1.
1727  NewLIR2(kX86Mova128RR, rs_src1_high_tmp.GetReg(), rs_dest_src1.GetReg());
1728
1729  // Multiply low bits.
1730  NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1731
1732  // xmm1 now has low bits.
1733  AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
1734
1735  // Prepare high bits for multiplication.
1736  NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), BYTE_SIZE);
1737  AndMaskVectorRegister(rs_src2, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1738
1739  // Multiply high bits and xmm2 now has high bits.
1740  NewLIR2(kX86PmullwRR, rs_src2.GetReg(), rs_src1_high_tmp.GetReg());
1741
1742  // Combine back into dest XMM register.
1743  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1744}
1745
1746void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1747  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1748  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1749  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1750  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1751  int opcode = 0;
1752  switch (opsize) {
1753    case k32:
1754      opcode = kX86PmulldRR;
1755      break;
1756    case kSignedHalf:
1757      opcode = kX86PmullwRR;
1758      break;
1759    case kSingle:
1760      opcode = kX86MulpsRR;
1761      break;
1762    case kDouble:
1763      opcode = kX86MulpdRR;
1764      break;
1765    case kSignedByte:
1766      // HW doesn't support 16x16 byte multiplication so emulate it.
1767      GenMultiplyVectorSignedByte(bb, mir);
1768      return;
1769    default:
1770      LOG(FATAL) << "Unsupported vector multiply " << opsize;
1771      break;
1772  }
1773  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1774}
1775
1776void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1777  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1778  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1779  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1780  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1781  int opcode = 0;
1782  switch (opsize) {
1783    case k32:
1784      opcode = kX86PadddRR;
1785      break;
1786    case kSignedHalf:
1787    case kUnsignedHalf:
1788      opcode = kX86PaddwRR;
1789      break;
1790    case kUnsignedByte:
1791    case kSignedByte:
1792      opcode = kX86PaddbRR;
1793      break;
1794    case kSingle:
1795      opcode = kX86AddpsRR;
1796      break;
1797    case kDouble:
1798      opcode = kX86AddpdRR;
1799      break;
1800    default:
1801      LOG(FATAL) << "Unsupported vector addition " << opsize;
1802      break;
1803  }
1804  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1805}
1806
1807void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1808  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1809  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1810  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1811  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1812  int opcode = 0;
1813  switch (opsize) {
1814    case k32:
1815      opcode = kX86PsubdRR;
1816      break;
1817    case kSignedHalf:
1818    case kUnsignedHalf:
1819      opcode = kX86PsubwRR;
1820      break;
1821    case kUnsignedByte:
1822    case kSignedByte:
1823      opcode = kX86PsubbRR;
1824      break;
1825    case kSingle:
1826      opcode = kX86SubpsRR;
1827      break;
1828    case kDouble:
1829      opcode = kX86SubpdRR;
1830      break;
1831    default:
1832      LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1833      break;
1834  }
1835  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1836}
1837
1838void X86Mir2Lir::GenShiftByteVector(BasicBlock *bb, MIR *mir) {
1839  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1840  RegStorage rs_tmp = Get128BitRegister(AllocTempWide());
1841
1842  int opcode = 0;
1843  int imm = mir->dalvikInsn.vB;
1844
1845  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1846    case kMirOpPackedShiftLeft:
1847      opcode = kX86PsllwRI;
1848      break;
1849    case kMirOpPackedSignedShiftRight:
1850      opcode = kX86PsrawRI;
1851      break;
1852    case kMirOpPackedUnsignedShiftRight:
1853      opcode = kX86PsrlwRI;
1854      break;
1855    default:
1856      LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode;
1857      break;
1858  }
1859
1860  /*
1861   * xmm1 will have low bits
1862   * xmm2 will have high bits
1863   *
1864   * xmm2 = xmm1
1865   * xmm1 = xmm1 .<< N
1866   * xmm2 = xmm2 && 0xFF00FF00FF00FF00FF00FF00FF00FF00
1867   * xmm2 = xmm2 .<< N
1868   * xmm1 = xmm1 | xmm2
1869   */
1870
1871  // Copy xmm1.
1872  NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_dest_src1.GetReg());
1873
1874  // Shift lower values.
1875  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1876
1877  // Mask bottom bits.
1878  AndMaskVectorRegister(rs_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1879
1880  // Shift higher values.
1881  NewLIR2(opcode, rs_tmp.GetReg(), imm);
1882
1883  // Combine back into dest XMM register.
1884  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_tmp.GetReg());
1885}
1886
1887void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1888  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1889  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1890  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1891  int imm = mir->dalvikInsn.vB;
1892  int opcode = 0;
1893  switch (opsize) {
1894    case k32:
1895      opcode = kX86PslldRI;
1896      break;
1897    case k64:
1898      opcode = kX86PsllqRI;
1899      break;
1900    case kSignedHalf:
1901    case kUnsignedHalf:
1902      opcode = kX86PsllwRI;
1903      break;
1904    case kSignedByte:
1905    case kUnsignedByte:
1906      GenShiftByteVector(bb, mir);
1907      return;
1908    default:
1909      LOG(FATAL) << "Unsupported vector shift left " << opsize;
1910      break;
1911  }
1912  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1913}
1914
1915void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1916  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1917  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1918  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1919  int imm = mir->dalvikInsn.vB;
1920  int opcode = 0;
1921  switch (opsize) {
1922    case k32:
1923      opcode = kX86PsradRI;
1924      break;
1925    case kSignedHalf:
1926    case kUnsignedHalf:
1927      opcode = kX86PsrawRI;
1928      break;
1929    case kSignedByte:
1930    case kUnsignedByte:
1931      GenShiftByteVector(bb, mir);
1932      return;
1933    default:
1934      LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1935      break;
1936  }
1937  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1938}
1939
1940void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1941  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1942  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1943  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1944  int imm = mir->dalvikInsn.vB;
1945  int opcode = 0;
1946  switch (opsize) {
1947    case k32:
1948      opcode = kX86PsrldRI;
1949      break;
1950    case k64:
1951      opcode = kX86PsrlqRI;
1952      break;
1953    case kSignedHalf:
1954    case kUnsignedHalf:
1955      opcode = kX86PsrlwRI;
1956      break;
1957    case kSignedByte:
1958    case kUnsignedByte:
1959      GenShiftByteVector(bb, mir);
1960      return;
1961    default:
1962      LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1963      break;
1964  }
1965  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1966}
1967
1968void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1969  // We only support 128 bit registers.
1970  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1971  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1972  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1973  NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1974}
1975
1976void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1977  // We only support 128 bit registers.
1978  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1979  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1980  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1981  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1982}
1983
1984void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1985  // We only support 128 bit registers.
1986  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1987  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1988  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1989  NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1990}
1991
1992void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) {
1993  MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4);
1994}
1995
1996void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) {
1997  // Create temporary MIR as container for 128-bit binary mask.
1998  MIR const_mir;
1999  MIR* const_mirp = &const_mir;
2000  const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector);
2001  const_mirp->dalvikInsn.arg[0] = m0;
2002  const_mirp->dalvikInsn.arg[1] = m1;
2003  const_mirp->dalvikInsn.arg[2] = m2;
2004  const_mirp->dalvikInsn.arg[3] = m3;
2005
2006  // Mask vector with const from literal pool.
2007  AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp);
2008}
2009
2010void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
2011  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2012  RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2013  RegLocation rl_dest = mir_graph_->GetDest(mir);
2014  RegStorage rs_tmp;
2015
2016  int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8;
2017  int vec_unit_size = 0;
2018  int opcode = 0;
2019  int extr_opcode = 0;
2020  RegLocation rl_result;
2021
2022  switch (opsize) {
2023    case k32:
2024      extr_opcode = kX86PextrdRRI;
2025      opcode = kX86PhadddRR;
2026      vec_unit_size = 4;
2027      break;
2028    case kSignedByte:
2029    case kUnsignedByte:
2030      extr_opcode = kX86PextrbRRI;
2031      opcode = kX86PhaddwRR;
2032      vec_unit_size = 2;
2033      break;
2034    case kSignedHalf:
2035    case kUnsignedHalf:
2036      extr_opcode = kX86PextrwRRI;
2037      opcode = kX86PhaddwRR;
2038      vec_unit_size = 2;
2039      break;
2040    case kSingle:
2041      rl_result = EvalLoc(rl_dest, kFPReg, true);
2042      vec_unit_size = 4;
2043      for (int i = 0; i < 3; i++) {
2044        NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2045        NewLIR3(kX86ShufpsRRI, rs_src1.GetReg(), rs_src1.GetReg(), 0x39);
2046      }
2047      NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2048      StoreValue(rl_dest, rl_result);
2049
2050      // For single-precision floats, we are done here
2051      return;
2052    default:
2053      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2054      break;
2055  }
2056
2057  int elems = vec_bytes / vec_unit_size;
2058
2059  // Emulate horizontal add instruction by reducing 2 vectors with 8 values before adding them again
2060  // TODO is overflow handled correctly?
2061  if (opsize == kSignedByte || opsize == kUnsignedByte) {
2062    rs_tmp = Get128BitRegister(AllocTempWide());
2063
2064    // tmp = xmm1 .>> 8.
2065    NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_src1.GetReg());
2066    NewLIR2(kX86PsrlwRI, rs_tmp.GetReg(), 8);
2067
2068    // Zero extend low bits in xmm1.
2069    AndMaskVectorRegister(rs_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
2070  }
2071
2072  while (elems > 1) {
2073    if (opsize == kSignedByte || opsize == kUnsignedByte) {
2074      NewLIR2(opcode, rs_tmp.GetReg(), rs_tmp.GetReg());
2075    }
2076    NewLIR2(opcode, rs_src1.GetReg(), rs_src1.GetReg());
2077    elems >>= 1;
2078  }
2079
2080  // Combine the results if we separated them.
2081  if (opsize == kSignedByte || opsize == kUnsignedByte) {
2082    NewLIR2(kX86PaddbRR, rs_src1.GetReg(), rs_tmp.GetReg());
2083  }
2084
2085  // We need to extract to a GPR.
2086  RegStorage temp = AllocTemp();
2087  NewLIR3(extr_opcode, temp.GetReg(), rs_src1.GetReg(), 0);
2088
2089  // Can we do this directly into memory?
2090  rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2091  if (rl_result.location == kLocPhysReg) {
2092    // Ensure res is in a core reg
2093    rl_result = EvalLoc(rl_dest, kCoreReg, true);
2094    OpRegReg(kOpAdd, rl_result.reg, temp);
2095    StoreFinalValue(rl_dest, rl_result);
2096  } else {
2097    OpMemReg(kOpAdd, rl_result, temp.GetReg());
2098  }
2099
2100  FreeTemp(temp);
2101}
2102
2103void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
2104  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2105  RegLocation rl_dest = mir_graph_->GetDest(mir);
2106  RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2107  int extract_index = mir->dalvikInsn.arg[0];
2108  int extr_opcode = 0;
2109  RegLocation rl_result;
2110  bool is_wide = false;
2111
2112  switch (opsize) {
2113    case k32:
2114      rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2115      extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdMRI : kX86PextrdRRI;
2116      break;
2117    case kSignedHalf:
2118    case kUnsignedHalf:
2119      rl_result= UpdateLocTyped(rl_dest, kCoreReg);
2120      extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwMRI : kX86PextrwRRI;
2121      break;
2122    default:
2123      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2124      return;
2125      break;
2126  }
2127
2128  if (rl_result.location == kLocPhysReg) {
2129    NewLIR3(extr_opcode, rl_result.reg.GetReg(), rs_src1.GetReg(), extract_index);
2130    if (is_wide == true) {
2131      StoreFinalValue(rl_dest, rl_result);
2132    } else {
2133      StoreFinalValueWide(rl_dest, rl_result);
2134    }
2135  } else {
2136    int displacement = SRegOffset(rl_result.s_reg_low);
2137    LIR *l = NewLIR3(extr_opcode, rs_rX86_SP.GetReg(), displacement, rs_src1.GetReg());
2138    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is_wide /* is_64bit */);
2139    AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */);
2140  }
2141}
2142
2143void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
2144  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2145  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2146  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
2147  int op_low = 0, op_high = 0, imm = 0, op_mov = kX86MovdxrRR;
2148  RegisterClass reg_type = kCoreReg;
2149
2150  switch (opsize) {
2151    case k32:
2152      op_low = kX86PshufdRRI;
2153      break;
2154    case kSingle:
2155      op_low = kX86PshufdRRI;
2156      op_mov = kX86Mova128RR;
2157      reg_type = kFPReg;
2158      break;
2159    case k64:
2160      op_low = kX86PshufdRRI;
2161      imm = 0x44;
2162      break;
2163    case kDouble:
2164      op_low = kX86PshufdRRI;
2165      op_mov = kX86Mova128RR;
2166      reg_type = kFPReg;
2167      imm = 0x44;
2168      break;
2169    case kSignedByte:
2170    case kUnsignedByte:
2171      // Shuffle 8 bit value into 16 bit word.
2172      // We set val = val + (val << 8) below and use 16 bit shuffle.
2173    case kSignedHalf:
2174    case kUnsignedHalf:
2175      // Handles low quadword.
2176      op_low = kX86PshuflwRRI;
2177      // Handles upper quadword.
2178      op_high = kX86PshufdRRI;
2179      break;
2180    default:
2181      LOG(FATAL) << "Unsupported vector set " << opsize;
2182      break;
2183  }
2184
2185  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
2186
2187  // Load the value from the VR into the reg.
2188  if (rl_src.wide == 0) {
2189    rl_src = LoadValue(rl_src, reg_type);
2190  } else {
2191    rl_src = LoadValueWide(rl_src, reg_type);
2192  }
2193
2194  // If opsize is 8 bits wide then double value and use 16 bit shuffle instead.
2195  if (opsize == kSignedByte || opsize == kUnsignedByte) {
2196    RegStorage temp = AllocTemp();
2197    // val = val + (val << 8).
2198    NewLIR2(kX86Mov32RR, temp.GetReg(), rl_src.reg.GetReg());
2199    NewLIR2(kX86Sal32RI, temp.GetReg(), 8);
2200    NewLIR2(kX86Or32RR, rl_src.reg.GetReg(), temp.GetReg());
2201    FreeTemp(temp);
2202  }
2203
2204  // Load the value into the XMM register.
2205  NewLIR2(op_mov, rs_dest.GetReg(), rl_src.reg.GetReg());
2206
2207  // Now shuffle the value across the destination.
2208  NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2209
2210  // And then repeat as needed.
2211  if (op_high != 0) {
2212    NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2213  }
2214}
2215
2216LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
2217  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2218  for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
2219    if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
2220        args[2] == p->operands[2] && args[3] == p->operands[3]) {
2221      return p;
2222    }
2223  }
2224  return nullptr;
2225}
2226
2227LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
2228  LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
2229  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2230  new_value->operands[0] = args[0];
2231  new_value->operands[1] = args[1];
2232  new_value->operands[2] = args[2];
2233  new_value->operands[3] = args[3];
2234  new_value->next = const_vectors_;
2235  if (const_vectors_ == nullptr) {
2236    estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
2237  }
2238  estimated_native_code_size_ += 16;  // Space for one vector.
2239  const_vectors_ = new_value;
2240  return new_value;
2241}
2242
2243// ------------ ABI support: mapping of args to physical registers -------------
2244RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref) {
2245  const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
2246  const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister);
2247  const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
2248                                                  kFArg4, kFArg5, kFArg6, kFArg7};
2249  const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister);
2250
2251  if (is_double_or_float) {
2252    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
2253      return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide);
2254    }
2255  } else {
2256    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
2257      return is_ref ? ml_->TargetRefReg(coreArgMappingToPhysicalReg[cur_core_reg_++]) :
2258                      ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], is_wide);
2259    }
2260  }
2261  return RegStorage::InvalidReg();
2262}
2263
2264RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
2265  DCHECK(IsInitialized());
2266  auto res = mapping_.find(in_position);
2267  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
2268}
2269
2270void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
2271  DCHECK(mapper != nullptr);
2272  max_mapped_in_ = -1;
2273  is_there_stack_mapped_ = false;
2274  for (int in_position = 0; in_position < count; in_position++) {
2275     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
2276             arg_locs[in_position].wide, arg_locs[in_position].ref);
2277     if (reg.Valid()) {
2278       mapping_[in_position] = reg;
2279       max_mapped_in_ = std::max(max_mapped_in_, in_position);
2280       if (arg_locs[in_position].wide) {
2281         // We covered 2 args, so skip the next one
2282         in_position++;
2283       }
2284     } else {
2285       is_there_stack_mapped_ = true;
2286     }
2287  }
2288  initialized_ = true;
2289}
2290
2291RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
2292  if (!cu_->target64) {
2293    return GetCoreArgMappingToPhysicalReg(arg_num);
2294  }
2295
2296  if (!in_to_reg_storage_mapping_.IsInitialized()) {
2297    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2298    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
2299
2300    InToRegStorageX86_64Mapper mapper(this);
2301    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
2302  }
2303  return in_to_reg_storage_mapping_.Get(arg_num);
2304}
2305
2306RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
2307  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
2308  // Not used for 64-bit, TODO: Move X86_32 to the same framework
2309  switch (core_arg_num) {
2310    case 0:
2311      return rs_rX86_ARG1;
2312    case 1:
2313      return rs_rX86_ARG2;
2314    case 2:
2315      return rs_rX86_ARG3;
2316    default:
2317      return RegStorage::InvalidReg();
2318  }
2319}
2320
2321// ---------End of ABI support: mapping of args to physical registers -------------
2322
2323/*
2324 * If there are any ins passed in registers that have not been promoted
2325 * to a callee-save register, flush them to the frame.  Perform initial
2326 * assignment of promoted arguments.
2327 *
2328 * ArgLocs is an array of location records describing the incoming arguments
2329 * with one location record per word of argument.
2330 */
2331void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
2332  if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
2333  /*
2334   * Dummy up a RegLocation for the incoming Method*
2335   * It will attempt to keep kArg0 live (or copy it to home location
2336   * if promoted).
2337   */
2338
2339  RegLocation rl_src = rl_method;
2340  rl_src.location = kLocPhysReg;
2341  rl_src.reg = TargetRefReg(kArg0);
2342  rl_src.home = false;
2343  MarkLive(rl_src);
2344  StoreValue(rl_method, rl_src);
2345  // If Method* has been promoted, explicitly flush
2346  if (rl_method.location == kLocPhysReg) {
2347    StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetRefReg(kArg0)), kNotVolatile);
2348  }
2349
2350  if (cu_->num_ins == 0) {
2351    return;
2352  }
2353
2354  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2355  /*
2356   * Copy incoming arguments to their proper home locations.
2357   * NOTE: an older version of dx had an issue in which
2358   * it would reuse static method argument registers.
2359   * This could result in the same Dalvik virtual register
2360   * being promoted to both core and fp regs. To account for this,
2361   * we only copy to the corresponding promoted physical register
2362   * if it matches the type of the SSA name for the incoming
2363   * argument.  It is also possible that long and double arguments
2364   * end up half-promoted.  In those cases, we must flush the promoted
2365   * half to memory as well.
2366   */
2367  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2368  for (int i = 0; i < cu_->num_ins; i++) {
2369    // get reg corresponding to input
2370    RegStorage reg = GetArgMappingToPhysicalReg(i);
2371
2372    RegLocation* t_loc = &ArgLocs[i];
2373    if (reg.Valid()) {
2374      // If arriving in register.
2375
2376      // We have already updated the arg location with promoted info
2377      // so we can be based on it.
2378      if (t_loc->location == kLocPhysReg) {
2379        // Just copy it.
2380        OpRegCopy(t_loc->reg, reg);
2381      } else {
2382        // Needs flush.
2383        if (t_loc->ref) {
2384          StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile);
2385        } else {
2386          StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
2387                        kNotVolatile);
2388        }
2389      }
2390    } else {
2391      // If arriving in frame & promoted.
2392      if (t_loc->location == kLocPhysReg) {
2393        if (t_loc->ref) {
2394          LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
2395        } else {
2396          LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg,
2397                       t_loc->wide ? k64 : k32, kNotVolatile);
2398        }
2399      }
2400    }
2401    if (t_loc->wide) {
2402      // Increment i to skip the next one.
2403      i++;
2404    }
2405  }
2406}
2407
2408/*
2409 * Load up to 5 arguments, the first three of which will be in
2410 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
2411 * and as part of the load sequence, it must be replaced with
2412 * the target method pointer.  Note, this may also be called
2413 * for "range" variants if the number of arguments is 5 or fewer.
2414 */
2415int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
2416                                  int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
2417                                  const MethodReference& target_method,
2418                                  uint32_t vtable_idx, uintptr_t direct_code,
2419                                  uintptr_t direct_method, InvokeType type, bool skip_this) {
2420  if (!cu_->target64) {
2421    return Mir2Lir::GenDalvikArgsNoRange(info,
2422                                  call_state, pcrLabel, next_call_insn,
2423                                  target_method,
2424                                  vtable_idx, direct_code,
2425                                  direct_method, type, skip_this);
2426  }
2427  return GenDalvikArgsRange(info,
2428                       call_state, pcrLabel, next_call_insn,
2429                       target_method,
2430                       vtable_idx, direct_code,
2431                       direct_method, type, skip_this);
2432}
2433
2434/*
2435 * May have 0+ arguments (also used for jumbo).  Note that
2436 * source virtual registers may be in physical registers, so may
2437 * need to be flushed to home location before copying.  This
2438 * applies to arg3 and above (see below).
2439 *
2440 * Two general strategies:
2441 *    If < 20 arguments
2442 *       Pass args 3-18 using vldm/vstm block copy
2443 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2444 *    If 20+ arguments
2445 *       Pass args arg19+ using memcpy block copy
2446 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2447 *
2448 */
2449int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
2450                                LIR** pcrLabel, NextCallInsn next_call_insn,
2451                                const MethodReference& target_method,
2452                                uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
2453                                InvokeType type, bool skip_this) {
2454  if (!cu_->target64) {
2455    return Mir2Lir::GenDalvikArgsRange(info, call_state,
2456                                pcrLabel, next_call_insn,
2457                                target_method,
2458                                vtable_idx, direct_code, direct_method,
2459                                type, skip_this);
2460  }
2461
2462  /* If no arguments, just return */
2463  if (info->num_arg_words == 0)
2464    return call_state;
2465
2466  const int start_index = skip_this ? 1 : 0;
2467
2468  InToRegStorageX86_64Mapper mapper(this);
2469  InToRegStorageMapping in_to_reg_storage_mapping;
2470  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
2471  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
2472  const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2473          in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
2474  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2475
2476  // Fisrt of all, check whether it make sense to use bulk copying
2477  // Optimization is aplicable only for range case
2478  // TODO: make a constant instead of 2
2479  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2480    // Scan the rest of the args - if in phys_reg flush to memory
2481    for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2482      RegLocation loc = info->args[next_arg];
2483      if (loc.wide) {
2484        loc = UpdateLocWide(loc);
2485        if (loc.location == kLocPhysReg) {
2486          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2487          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
2488        }
2489        next_arg += 2;
2490      } else {
2491        loc = UpdateLoc(loc);
2492        if (loc.location == kLocPhysReg) {
2493          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2494          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
2495        }
2496        next_arg++;
2497      }
2498    }
2499
2500    // Logic below assumes that Method pointer is at offset zero from SP.
2501    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2502
2503    // The rest can be copied together
2504    int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2505    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2506
2507    int current_src_offset = start_offset;
2508    int current_dest_offset = outs_offset;
2509
2510    // Only davik regs are accessed in this loop; no next_call_insn() calls.
2511    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2512    while (regs_left_to_pass_via_stack > 0) {
2513      // This is based on the knowledge that the stack itself is 16-byte aligned.
2514      bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2515      bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2516      size_t bytes_to_move;
2517
2518      /*
2519       * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2520       * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2521       * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2522       * We do this because we could potentially do a smaller move to align.
2523       */
2524      if (regs_left_to_pass_via_stack == 4 ||
2525          (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2526        // Moving 128-bits via xmm register.
2527        bytes_to_move = sizeof(uint32_t) * 4;
2528
2529        // Allocate a free xmm temp. Since we are working through the calling sequence,
2530        // we expect to have an xmm temporary available.  AllocTempDouble will abort if
2531        // there are no free registers.
2532        RegStorage temp = AllocTempDouble();
2533
2534        LIR* ld1 = nullptr;
2535        LIR* ld2 = nullptr;
2536        LIR* st1 = nullptr;
2537        LIR* st2 = nullptr;
2538
2539        /*
2540         * The logic is similar for both loads and stores. If we have 16-byte alignment,
2541         * do an aligned move. If we have 8-byte alignment, then do the move in two
2542         * parts. This approach prevents possible cache line splits. Finally, fall back
2543         * to doing an unaligned move. In most cases we likely won't split the cache
2544         * line but we cannot prove it and thus take a conservative approach.
2545         */
2546        bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2547        bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2548
2549        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2550        if (src_is_16b_aligned) {
2551          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP);
2552        } else if (src_is_8b_aligned) {
2553          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP);
2554          ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1),
2555                            kMovHi128FP);
2556        } else {
2557          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP);
2558        }
2559
2560        if (dest_is_16b_aligned) {
2561          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP);
2562        } else if (dest_is_8b_aligned) {
2563          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP);
2564          st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1),
2565                            temp, kMovHi128FP);
2566        } else {
2567          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP);
2568        }
2569
2570        // TODO If we could keep track of aliasing information for memory accesses that are wider
2571        // than 64-bit, we wouldn't need to set up a barrier.
2572        if (ld1 != nullptr) {
2573          if (ld2 != nullptr) {
2574            // For 64-bit load we can actually set up the aliasing information.
2575            AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2576            AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2577          } else {
2578            // Set barrier for 128-bit load.
2579            ld1->u.m.def_mask = &kEncodeAll;
2580          }
2581        }
2582        if (st1 != nullptr) {
2583          if (st2 != nullptr) {
2584            // For 64-bit store we can actually set up the aliasing information.
2585            AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2586            AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2587          } else {
2588            // Set barrier for 128-bit store.
2589            st1->u.m.def_mask = &kEncodeAll;
2590          }
2591        }
2592
2593        // Free the temporary used for the data movement.
2594        FreeTemp(temp);
2595      } else {
2596        // Moving 32-bits via general purpose register.
2597        bytes_to_move = sizeof(uint32_t);
2598
2599        // Instead of allocating a new temp, simply reuse one of the registers being used
2600        // for argument passing.
2601        RegStorage temp = TargetReg(kArg3, false);
2602
2603        // Now load the argument VR and store to the outs.
2604        Load32Disp(rs_rX86_SP, current_src_offset, temp);
2605        Store32Disp(rs_rX86_SP, current_dest_offset, temp);
2606      }
2607
2608      current_src_offset += bytes_to_move;
2609      current_dest_offset += bytes_to_move;
2610      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2611    }
2612    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2613  }
2614
2615  // Now handle rest not registers if they are
2616  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2617    RegStorage regSingle = TargetReg(kArg2, false);
2618    RegStorage regWide = TargetReg(kArg3, true);
2619    for (int i = start_index;
2620         i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2621      RegLocation rl_arg = info->args[i];
2622      rl_arg = UpdateRawLoc(rl_arg);
2623      RegStorage reg = in_to_reg_storage_mapping.Get(i);
2624      if (!reg.Valid()) {
2625        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2626
2627        {
2628          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2629          if (rl_arg.wide) {
2630            if (rl_arg.location == kLocPhysReg) {
2631              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile);
2632            } else {
2633              LoadValueDirectWideFixed(rl_arg, regWide);
2634              StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile);
2635            }
2636          } else {
2637            if (rl_arg.location == kLocPhysReg) {
2638              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile);
2639            } else {
2640              LoadValueDirectFixed(rl_arg, regSingle);
2641              StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile);
2642            }
2643          }
2644        }
2645        call_state = next_call_insn(cu_, info, call_state, target_method,
2646                                    vtable_idx, direct_code, direct_method, type);
2647      }
2648      if (rl_arg.wide) {
2649        i++;
2650      }
2651    }
2652  }
2653
2654  // Finish with mapped registers
2655  for (int i = start_index; i <= last_mapped_in; i++) {
2656    RegLocation rl_arg = info->args[i];
2657    rl_arg = UpdateRawLoc(rl_arg);
2658    RegStorage reg = in_to_reg_storage_mapping.Get(i);
2659    if (reg.Valid()) {
2660      if (rl_arg.wide) {
2661        LoadValueDirectWideFixed(rl_arg, reg);
2662      } else {
2663        LoadValueDirectFixed(rl_arg, reg);
2664      }
2665      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2666                               direct_code, direct_method, type);
2667    }
2668    if (rl_arg.wide) {
2669      i++;
2670    }
2671  }
2672
2673  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2674                           direct_code, direct_method, type);
2675  if (pcrLabel) {
2676    if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
2677      *pcrLabel = GenExplicitNullCheck(TargetRefReg(kArg1), info->opt_flags);
2678    } else {
2679      *pcrLabel = nullptr;
2680      // In lieu of generating a check for kArg1 being null, we need to
2681      // perform a load when doing implicit checks.
2682      RegStorage tmp = AllocTemp();
2683      Load32Disp(TargetRefReg(kArg1), 0, tmp);
2684      MarkPossibleNullPointerException(info->opt_flags);
2685      FreeTemp(tmp);
2686    }
2687  }
2688  return call_state;
2689}
2690
2691}  // namespace art
2692