target_x86.cc revision b5860fb459f1ed71f39d8a87b45bee6727d79fe8
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "dex/reg_storage_eq.h"
24#include "mirror/array.h"
25#include "mirror/string.h"
26#include "x86_lir.h"
27
28namespace art {
29
30static constexpr RegStorage core_regs_arr_32[] = {
31    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32};
33static constexpr RegStorage core_regs_arr_64[] = {
34    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
35    rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36};
37static constexpr RegStorage core_regs_arr_64q[] = {
38    rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
39    rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
40};
41static constexpr RegStorage sp_regs_arr_32[] = {
42    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43};
44static constexpr RegStorage sp_regs_arr_64[] = {
45    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
47};
48static constexpr RegStorage dp_regs_arr_32[] = {
49    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50};
51static constexpr RegStorage dp_regs_arr_64[] = {
52    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
53    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
54};
55static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
56static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
57static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
58static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
59static constexpr RegStorage core_temps_arr_64[] = {
60    rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
61    rs_r8, rs_r9, rs_r10, rs_r11
62};
63static constexpr RegStorage core_temps_arr_64q[] = {
64    rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
65    rs_r8q, rs_r9q, rs_r10q, rs_r11q
66};
67static constexpr RegStorage sp_temps_arr_32[] = {
68    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
69};
70static constexpr RegStorage sp_temps_arr_64[] = {
71    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
72    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
73};
74static constexpr RegStorage dp_temps_arr_32[] = {
75    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
76};
77static constexpr RegStorage dp_temps_arr_64[] = {
78    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
79    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
80};
81
82static constexpr RegStorage xp_temps_arr_32[] = {
83    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
84};
85static constexpr RegStorage xp_temps_arr_64[] = {
86    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
87    rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
88};
89
90static constexpr ArrayRef<const RegStorage> empty_pool;
91static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
92static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
93static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
94static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
95static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
96static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
97static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
98static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
99static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
100static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
101static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
102static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
103static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
104static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
105static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
106static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
107static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
108
109static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
110static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
111
112RegStorage rs_rX86_SP;
113
114X86NativeRegisterPool rX86_ARG0;
115X86NativeRegisterPool rX86_ARG1;
116X86NativeRegisterPool rX86_ARG2;
117X86NativeRegisterPool rX86_ARG3;
118X86NativeRegisterPool rX86_ARG4;
119X86NativeRegisterPool rX86_ARG5;
120X86NativeRegisterPool rX86_FARG0;
121X86NativeRegisterPool rX86_FARG1;
122X86NativeRegisterPool rX86_FARG2;
123X86NativeRegisterPool rX86_FARG3;
124X86NativeRegisterPool rX86_FARG4;
125X86NativeRegisterPool rX86_FARG5;
126X86NativeRegisterPool rX86_FARG6;
127X86NativeRegisterPool rX86_FARG7;
128X86NativeRegisterPool rX86_RET0;
129X86NativeRegisterPool rX86_RET1;
130X86NativeRegisterPool rX86_INVOKE_TGT;
131X86NativeRegisterPool rX86_COUNT;
132
133RegStorage rs_rX86_ARG0;
134RegStorage rs_rX86_ARG1;
135RegStorage rs_rX86_ARG2;
136RegStorage rs_rX86_ARG3;
137RegStorage rs_rX86_ARG4;
138RegStorage rs_rX86_ARG5;
139RegStorage rs_rX86_FARG0;
140RegStorage rs_rX86_FARG1;
141RegStorage rs_rX86_FARG2;
142RegStorage rs_rX86_FARG3;
143RegStorage rs_rX86_FARG4;
144RegStorage rs_rX86_FARG5;
145RegStorage rs_rX86_FARG6;
146RegStorage rs_rX86_FARG7;
147RegStorage rs_rX86_RET0;
148RegStorage rs_rX86_RET1;
149RegStorage rs_rX86_INVOKE_TGT;
150RegStorage rs_rX86_COUNT;
151
152RegLocation X86Mir2Lir::LocCReturn() {
153  return x86_loc_c_return;
154}
155
156RegLocation X86Mir2Lir::LocCReturnRef() {
157  // FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
158  return x86_loc_c_return;
159}
160
161RegLocation X86Mir2Lir::LocCReturnWide() {
162  return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
163}
164
165RegLocation X86Mir2Lir::LocCReturnFloat() {
166  return x86_loc_c_return_float;
167}
168
169RegLocation X86Mir2Lir::LocCReturnDouble() {
170  return x86_loc_c_return_double;
171}
172
173// Return a target-dependent special register.
174RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
175  RegStorage res_reg = RegStorage::InvalidReg();
176  switch (reg) {
177    case kSelf: res_reg = RegStorage::InvalidReg(); break;
178    case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
179    case kLr: res_reg =  RegStorage::InvalidReg(); break;
180    case kPc: res_reg =  RegStorage::InvalidReg(); break;
181    case kSp: res_reg =  rs_rX86_SP; break;
182    case kArg0: res_reg = rs_rX86_ARG0; break;
183    case kArg1: res_reg = rs_rX86_ARG1; break;
184    case kArg2: res_reg = rs_rX86_ARG2; break;
185    case kArg3: res_reg = rs_rX86_ARG3; break;
186    case kArg4: res_reg = rs_rX86_ARG4; break;
187    case kArg5: res_reg = rs_rX86_ARG5; break;
188    case kFArg0: res_reg = rs_rX86_FARG0; break;
189    case kFArg1: res_reg = rs_rX86_FARG1; break;
190    case kFArg2: res_reg = rs_rX86_FARG2; break;
191    case kFArg3: res_reg = rs_rX86_FARG3; break;
192    case kFArg4: res_reg = rs_rX86_FARG4; break;
193    case kFArg5: res_reg = rs_rX86_FARG5; break;
194    case kFArg6: res_reg = rs_rX86_FARG6; break;
195    case kFArg7: res_reg = rs_rX86_FARG7; break;
196    case kRet0: res_reg = rs_rX86_RET0; break;
197    case kRet1: res_reg = rs_rX86_RET1; break;
198    case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
199    case kHiddenArg: res_reg = rs_rAX; break;
200    case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
201    case kCount: res_reg = rs_rX86_COUNT; break;
202    default: res_reg = RegStorage::InvalidReg();
203  }
204  return res_reg;
205}
206
207/*
208 * Decode the register id.
209 */
210ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
211  /* Double registers in x86 are just a single FP register. This is always just a single bit. */
212  return ResourceMask::Bit(
213      /* FP register starts at bit position 16 */
214      ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
215}
216
217ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
218  /*
219   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
220   * able to clean up some of the x86/Arm_Mips differences
221   */
222  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
223  return kEncodeNone;
224}
225
226void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
227                                          ResourceMask* use_mask, ResourceMask* def_mask) {
228  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
229  DCHECK(!lir->flags.use_def_invalid);
230
231  // X86-specific resource map setup here.
232  if (flags & REG_USE_SP) {
233    use_mask->SetBit(kX86RegSP);
234  }
235
236  if (flags & REG_DEF_SP) {
237    def_mask->SetBit(kX86RegSP);
238  }
239
240  if (flags & REG_DEFA) {
241    SetupRegMask(def_mask, rs_rAX.GetReg());
242  }
243
244  if (flags & REG_DEFD) {
245    SetupRegMask(def_mask, rs_rDX.GetReg());
246  }
247  if (flags & REG_USEA) {
248    SetupRegMask(use_mask, rs_rAX.GetReg());
249  }
250
251  if (flags & REG_USEC) {
252    SetupRegMask(use_mask, rs_rCX.GetReg());
253  }
254
255  if (flags & REG_USED) {
256    SetupRegMask(use_mask, rs_rDX.GetReg());
257  }
258
259  if (flags & REG_USEB) {
260    SetupRegMask(use_mask, rs_rBX.GetReg());
261  }
262
263  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
264  if (lir->opcode == kX86RepneScasw) {
265    SetupRegMask(use_mask, rs_rAX.GetReg());
266    SetupRegMask(use_mask, rs_rCX.GetReg());
267    SetupRegMask(use_mask, rs_rDI.GetReg());
268    SetupRegMask(def_mask, rs_rDI.GetReg());
269  }
270
271  if (flags & USE_FP_STACK) {
272    use_mask->SetBit(kX86FPStack);
273    def_mask->SetBit(kX86FPStack);
274  }
275}
276
277/* For dumping instructions */
278static const char* x86RegName[] = {
279  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
280  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
281};
282
283static const char* x86CondName[] = {
284  "O",
285  "NO",
286  "B/NAE/C",
287  "NB/AE/NC",
288  "Z/EQ",
289  "NZ/NE",
290  "BE/NA",
291  "NBE/A",
292  "S",
293  "NS",
294  "P/PE",
295  "NP/PO",
296  "L/NGE",
297  "NL/GE",
298  "LE/NG",
299  "NLE/G"
300};
301
302/*
303 * Interpret a format string and build a string no longer than size
304 * See format key in Assemble.cc.
305 */
306std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
307  std::string buf;
308  size_t i = 0;
309  size_t fmt_len = strlen(fmt);
310  while (i < fmt_len) {
311    if (fmt[i] != '!') {
312      buf += fmt[i];
313      i++;
314    } else {
315      i++;
316      DCHECK_LT(i, fmt_len);
317      char operand_number_ch = fmt[i];
318      i++;
319      if (operand_number_ch == '!') {
320        buf += "!";
321      } else {
322        int operand_number = operand_number_ch - '0';
323        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
324        DCHECK_LT(i, fmt_len);
325        int operand = lir->operands[operand_number];
326        switch (fmt[i]) {
327          case 'c':
328            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
329            buf += x86CondName[operand];
330            break;
331          case 'd':
332            buf += StringPrintf("%d", operand);
333            break;
334          case 'p': {
335            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
336            buf += StringPrintf("0x%08x", tab_rec->offset);
337            break;
338          }
339          case 'r':
340            if (RegStorage::IsFloat(operand)) {
341              int fp_reg = RegStorage::RegNum(operand);
342              buf += StringPrintf("xmm%d", fp_reg);
343            } else {
344              int reg_num = RegStorage::RegNum(operand);
345              DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
346              buf += x86RegName[reg_num];
347            }
348            break;
349          case 't':
350            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
351                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
352                                lir->target);
353            break;
354          default:
355            buf += StringPrintf("DecodeError '%c'", fmt[i]);
356            break;
357        }
358        i++;
359      }
360    }
361  }
362  return buf;
363}
364
365void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
366  char buf[256];
367  buf[0] = 0;
368
369  if (mask.Equals(kEncodeAll)) {
370    strcpy(buf, "all");
371  } else {
372    char num[8];
373    int i;
374
375    for (i = 0; i < kX86RegEnd; i++) {
376      if (mask.HasBit(i)) {
377        snprintf(num, arraysize(num), "%d ", i);
378        strcat(buf, num);
379      }
380    }
381
382    if (mask.HasBit(ResourceMask::kCCode)) {
383      strcat(buf, "cc ");
384    }
385    /* Memory bits */
386    if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
387      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
388               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
389               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
390    }
391    if (mask.HasBit(ResourceMask::kLiteral)) {
392      strcat(buf, "lit ");
393    }
394
395    if (mask.HasBit(ResourceMask::kHeapRef)) {
396      strcat(buf, "heap ");
397    }
398    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
399      strcat(buf, "noalias ");
400    }
401  }
402  if (buf[0]) {
403    LOG(INFO) << prefix << ": " <<  buf;
404  }
405}
406
407void X86Mir2Lir::AdjustSpillMask() {
408  // Adjustment for LR spilling, x86 has no LR so nothing to do here
409  core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
410  num_core_spills_++;
411}
412
413RegStorage X86Mir2Lir::AllocateByteRegister() {
414  RegStorage reg = AllocTypedTemp(false, kCoreReg);
415  if (!cu_->target64) {
416    DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
417  }
418  return reg;
419}
420
421bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
422  return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
423}
424
425/* Clobber all regs that might be used by an external C call */
426void X86Mir2Lir::ClobberCallerSave() {
427  Clobber(rs_rAX);
428  Clobber(rs_rCX);
429  Clobber(rs_rDX);
430  Clobber(rs_rBX);
431
432  Clobber(rs_fr0);
433  Clobber(rs_fr1);
434  Clobber(rs_fr2);
435  Clobber(rs_fr3);
436  Clobber(rs_fr4);
437  Clobber(rs_fr5);
438  Clobber(rs_fr6);
439  Clobber(rs_fr7);
440
441  if (cu_->target64) {
442    Clobber(rs_r8);
443    Clobber(rs_r9);
444    Clobber(rs_r10);
445    Clobber(rs_r11);
446
447    Clobber(rs_fr8);
448    Clobber(rs_fr9);
449    Clobber(rs_fr10);
450    Clobber(rs_fr11);
451    Clobber(rs_fr12);
452    Clobber(rs_fr13);
453    Clobber(rs_fr14);
454    Clobber(rs_fr15);
455  }
456}
457
458RegLocation X86Mir2Lir::GetReturnWideAlt() {
459  RegLocation res = LocCReturnWide();
460  DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
461  DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
462  Clobber(rs_rAX);
463  Clobber(rs_rDX);
464  MarkInUse(rs_rAX);
465  MarkInUse(rs_rDX);
466  MarkWide(res.reg);
467  return res;
468}
469
470RegLocation X86Mir2Lir::GetReturnAlt() {
471  RegLocation res = LocCReturn();
472  res.reg.SetReg(rs_rDX.GetReg());
473  Clobber(rs_rDX);
474  MarkInUse(rs_rDX);
475  return res;
476}
477
478/* To be used when explicitly managing register use */
479void X86Mir2Lir::LockCallTemps() {
480  LockTemp(rs_rX86_ARG0);
481  LockTemp(rs_rX86_ARG1);
482  LockTemp(rs_rX86_ARG2);
483  LockTemp(rs_rX86_ARG3);
484  if (cu_->target64) {
485    LockTemp(rs_rX86_ARG4);
486    LockTemp(rs_rX86_ARG5);
487    LockTemp(rs_rX86_FARG0);
488    LockTemp(rs_rX86_FARG1);
489    LockTemp(rs_rX86_FARG2);
490    LockTemp(rs_rX86_FARG3);
491    LockTemp(rs_rX86_FARG4);
492    LockTemp(rs_rX86_FARG5);
493    LockTemp(rs_rX86_FARG6);
494    LockTemp(rs_rX86_FARG7);
495  }
496}
497
498/* To be used when explicitly managing register use */
499void X86Mir2Lir::FreeCallTemps() {
500  FreeTemp(rs_rX86_ARG0);
501  FreeTemp(rs_rX86_ARG1);
502  FreeTemp(rs_rX86_ARG2);
503  FreeTemp(rs_rX86_ARG3);
504  if (cu_->target64) {
505    FreeTemp(rs_rX86_ARG4);
506    FreeTemp(rs_rX86_ARG5);
507    FreeTemp(rs_rX86_FARG0);
508    FreeTemp(rs_rX86_FARG1);
509    FreeTemp(rs_rX86_FARG2);
510    FreeTemp(rs_rX86_FARG3);
511    FreeTemp(rs_rX86_FARG4);
512    FreeTemp(rs_rX86_FARG5);
513    FreeTemp(rs_rX86_FARG6);
514    FreeTemp(rs_rX86_FARG7);
515  }
516}
517
518bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
519    switch (opcode) {
520      case kX86LockCmpxchgMR:
521      case kX86LockCmpxchgAR:
522      case kX86LockCmpxchg64M:
523      case kX86LockCmpxchg64A:
524      case kX86XchgMR:
525      case kX86Mfence:
526        // Atomic memory instructions provide full barrier.
527        return true;
528      default:
529        break;
530    }
531
532    // Conservative if cannot prove it provides full barrier.
533    return false;
534}
535
536bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
537#if ANDROID_SMP != 0
538  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
539  LIR* mem_barrier = last_lir_insn_;
540
541  bool ret = false;
542  /*
543   * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
544   * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
545   * to ensure is that there is a scheduling barrier in place.
546   */
547  if (barrier_kind == kStoreLoad) {
548    // If no LIR exists already that can be used a barrier, then generate an mfence.
549    if (mem_barrier == nullptr) {
550      mem_barrier = NewLIR0(kX86Mfence);
551      ret = true;
552    }
553
554    // If last instruction does not provide full barrier, then insert an mfence.
555    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
556      mem_barrier = NewLIR0(kX86Mfence);
557      ret = true;
558    }
559  }
560
561  // Now ensure that a scheduling barrier is in place.
562  if (mem_barrier == nullptr) {
563    GenBarrier();
564  } else {
565    // Mark as a scheduling barrier.
566    DCHECK(!mem_barrier->flags.use_def_invalid);
567    mem_barrier->u.m.def_mask = &kEncodeAll;
568  }
569  return ret;
570#else
571  return false;
572#endif
573}
574
575void X86Mir2Lir::CompilerInitializeRegAlloc() {
576  if (cu_->target64) {
577    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
578                                          dp_regs_64, reserved_regs_64, reserved_regs_64q,
579                                          core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
580  } else {
581    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
582                                          dp_regs_32, reserved_regs_32, empty_pool,
583                                          core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
584  }
585
586  // Target-specific adjustments.
587
588  // Add in XMM registers.
589  const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
590  for (RegStorage reg : *xp_temps) {
591    RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
592    reginfo_map_.Put(reg.GetReg(), info);
593    info->SetIsTemp(true);
594  }
595
596  // Alias single precision xmm to double xmms.
597  // TODO: as needed, add larger vector sizes - alias all to the largest.
598  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
599  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
600    int sp_reg_num = info->GetReg().GetRegNum();
601    RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
602    RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
603    // 128-bit xmm vector register's master storage should refer to itself.
604    DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
605
606    // Redirect 32-bit vector's master storage to 128-bit vector.
607    info->SetMaster(xp_reg_info);
608
609    RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
610    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
611    // Redirect 64-bit vector's master storage to 128-bit vector.
612    dp_reg_info->SetMaster(xp_reg_info);
613    // Singles should show a single 32-bit mask bit, at first referring to the low half.
614    DCHECK_EQ(info->StorageMask(), 0x1U);
615  }
616
617  if (cu_->target64) {
618    // Alias 32bit W registers to corresponding 64bit X registers.
619    GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
620    for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
621      int x_reg_num = info->GetReg().GetRegNum();
622      RegStorage x_reg = RegStorage::Solo64(x_reg_num);
623      RegisterInfo* x_reg_info = GetRegInfo(x_reg);
624      // 64bit X register's master storage should refer to itself.
625      DCHECK_EQ(x_reg_info, x_reg_info->Master());
626      // Redirect 32bit W master storage to 64bit X.
627      info->SetMaster(x_reg_info);
628      // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
629      DCHECK_EQ(info->StorageMask(), 0x1U);
630    }
631  }
632
633  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
634  // TODO: adjust for x86/hard float calling convention.
635  reg_pool_->next_core_reg_ = 2;
636  reg_pool_->next_sp_reg_ = 2;
637  reg_pool_->next_dp_reg_ = 1;
638}
639
640void X86Mir2Lir::SpillCoreRegs() {
641  if (num_core_spills_ == 0) {
642    return;
643  }
644  // Spill mask not including fake return address register
645  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
646  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
647  for (int reg = 0; mask; mask >>= 1, reg++) {
648    if (mask & 0x1) {
649      StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
650      offset += GetInstructionSetPointerSize(cu_->instruction_set);
651    }
652  }
653}
654
655void X86Mir2Lir::UnSpillCoreRegs() {
656  if (num_core_spills_ == 0) {
657    return;
658  }
659  // Spill mask not including fake return address register
660  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
661  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
662  for (int reg = 0; mask; mask >>= 1, reg++) {
663    if (mask & 0x1) {
664      LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
665      offset += GetInstructionSetPointerSize(cu_->instruction_set);
666    }
667  }
668}
669
670bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
671  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
672}
673
674bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
675  return true;
676}
677
678RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
679  // X86_64 can handle any size.
680  if (cu_->target64) {
681    if (size == kReference) {
682      return kRefReg;
683    }
684    return kCoreReg;
685  }
686
687  if (UNLIKELY(is_volatile)) {
688    // On x86, atomic 64-bit load/store requires an fp register.
689    // Smaller aligned load/store is atomic for both core and fp registers.
690    if (size == k64 || size == kDouble) {
691      return kFPReg;
692    }
693  }
694  return RegClassBySize(size);
695}
696
697X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
698    : Mir2Lir(cu, mir_graph, arena),
699      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
700      method_address_insns_(arena, 100, kGrowableArrayMisc),
701      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
702      call_method_insns_(arena, 100, kGrowableArrayMisc),
703      stack_decrement_(nullptr), stack_increment_(nullptr),
704      const_vectors_(nullptr) {
705  store_method_addr_used_ = false;
706  if (kIsDebugBuild) {
707    for (int i = 0; i < kX86Last; i++) {
708      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
709        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
710                   << " is wrong: expecting " << i << ", seeing "
711                   << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
712      }
713    }
714  }
715  if (cu_->target64) {
716    rs_rX86_SP = rs_rX86_SP_64;
717
718    rs_rX86_ARG0 = rs_rDI;
719    rs_rX86_ARG1 = rs_rSI;
720    rs_rX86_ARG2 = rs_rDX;
721    rs_rX86_ARG3 = rs_rCX;
722    rs_rX86_ARG4 = rs_r8;
723    rs_rX86_ARG5 = rs_r9;
724    rs_rX86_FARG0 = rs_fr0;
725    rs_rX86_FARG1 = rs_fr1;
726    rs_rX86_FARG2 = rs_fr2;
727    rs_rX86_FARG3 = rs_fr3;
728    rs_rX86_FARG4 = rs_fr4;
729    rs_rX86_FARG5 = rs_fr5;
730    rs_rX86_FARG6 = rs_fr6;
731    rs_rX86_FARG7 = rs_fr7;
732    rX86_ARG0 = rDI;
733    rX86_ARG1 = rSI;
734    rX86_ARG2 = rDX;
735    rX86_ARG3 = rCX;
736    rX86_ARG4 = r8;
737    rX86_ARG5 = r9;
738    rX86_FARG0 = fr0;
739    rX86_FARG1 = fr1;
740    rX86_FARG2 = fr2;
741    rX86_FARG3 = fr3;
742    rX86_FARG4 = fr4;
743    rX86_FARG5 = fr5;
744    rX86_FARG6 = fr6;
745    rX86_FARG7 = fr7;
746    rs_rX86_INVOKE_TGT = rs_rDI;
747  } else {
748    rs_rX86_SP = rs_rX86_SP_32;
749
750    rs_rX86_ARG0 = rs_rAX;
751    rs_rX86_ARG1 = rs_rCX;
752    rs_rX86_ARG2 = rs_rDX;
753    rs_rX86_ARG3 = rs_rBX;
754    rs_rX86_ARG4 = RegStorage::InvalidReg();
755    rs_rX86_ARG5 = RegStorage::InvalidReg();
756    rs_rX86_FARG0 = rs_rAX;
757    rs_rX86_FARG1 = rs_rCX;
758    rs_rX86_FARG2 = rs_rDX;
759    rs_rX86_FARG3 = rs_rBX;
760    rs_rX86_FARG4 = RegStorage::InvalidReg();
761    rs_rX86_FARG5 = RegStorage::InvalidReg();
762    rs_rX86_FARG6 = RegStorage::InvalidReg();
763    rs_rX86_FARG7 = RegStorage::InvalidReg();
764    rX86_ARG0 = rAX;
765    rX86_ARG1 = rCX;
766    rX86_ARG2 = rDX;
767    rX86_ARG3 = rBX;
768    rX86_FARG0 = rAX;
769    rX86_FARG1 = rCX;
770    rX86_FARG2 = rDX;
771    rX86_FARG3 = rBX;
772    rs_rX86_INVOKE_TGT = rs_rAX;
773    // TODO(64): Initialize with invalid reg
774//    rX86_ARG4 = RegStorage::InvalidReg();
775//    rX86_ARG5 = RegStorage::InvalidReg();
776  }
777  rs_rX86_RET0 = rs_rAX;
778  rs_rX86_RET1 = rs_rDX;
779  rs_rX86_COUNT = rs_rCX;
780  rX86_RET0 = rAX;
781  rX86_RET1 = rDX;
782  rX86_INVOKE_TGT = rAX;
783  rX86_COUNT = rCX;
784}
785
786Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
787                          ArenaAllocator* const arena) {
788  return new X86Mir2Lir(cu, mir_graph, arena);
789}
790
791// Not used in x86
792RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
793  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
794  return RegStorage::InvalidReg();
795}
796
797// Not used in x86
798RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
799  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
800  return RegStorage::InvalidReg();
801}
802
803LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
804  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
805  return nullptr;
806}
807
808uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
809  DCHECK(!IsPseudoLirOp(opcode));
810  return X86Mir2Lir::EncodingMap[opcode].flags;
811}
812
813const char* X86Mir2Lir::GetTargetInstName(int opcode) {
814  DCHECK(!IsPseudoLirOp(opcode));
815  return X86Mir2Lir::EncodingMap[opcode].name;
816}
817
818const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
819  DCHECK(!IsPseudoLirOp(opcode));
820  return X86Mir2Lir::EncodingMap[opcode].fmt;
821}
822
823void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
824  // Can we do this directly to memory?
825  rl_dest = UpdateLocWide(rl_dest);
826  if ((rl_dest.location == kLocDalvikFrame) ||
827      (rl_dest.location == kLocCompilerTemp)) {
828    int32_t val_lo = Low32Bits(value);
829    int32_t val_hi = High32Bits(value);
830    int r_base = TargetReg(kSp).GetReg();
831    int displacement = SRegOffset(rl_dest.s_reg_low);
832
833    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
834    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
835    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
836                              false /* is_load */, true /* is64bit */);
837    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
838    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
839                              false /* is_load */, true /* is64bit */);
840    return;
841  }
842
843  // Just use the standard code to do the generation.
844  Mir2Lir::GenConstWide(rl_dest, value);
845}
846
847// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
848void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
849  LOG(INFO)  << "location: " << loc.location << ','
850             << (loc.wide ? " w" : "  ")
851             << (loc.defined ? " D" : "  ")
852             << (loc.is_const ? " c" : "  ")
853             << (loc.fp ? " F" : "  ")
854             << (loc.core ? " C" : "  ")
855             << (loc.ref ? " r" : "  ")
856             << (loc.high_word ? " h" : "  ")
857             << (loc.home ? " H" : "  ")
858             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
859             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
860             << ", s_reg: " << loc.s_reg_low
861             << ", orig: " << loc.orig_sreg;
862}
863
864void X86Mir2Lir::Materialize() {
865  // A good place to put the analysis before starting.
866  AnalyzeMIR();
867
868  // Now continue with regular code generation.
869  Mir2Lir::Materialize();
870}
871
872void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
873                                   SpecialTargetRegister symbolic_reg) {
874  /*
875   * For x86, just generate a 32 bit move immediate instruction, that will be filled
876   * in at 'link time'.  For now, put a unique value based on target to ensure that
877   * code deduplication works.
878   */
879  int target_method_idx = target_method.dex_method_index;
880  const DexFile* target_dex_file = target_method.dex_file;
881  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
882  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
883
884  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
885  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
886                     static_cast<int>(target_method_id_ptr), target_method_idx,
887                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
888  AppendLIR(move);
889  method_address_insns_.Insert(move);
890}
891
892void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
893  /*
894   * For x86, just generate a 32 bit move immediate instruction, that will be filled
895   * in at 'link time'.  For now, put a unique value based on target to ensure that
896   * code deduplication works.
897   */
898  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
899  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
900
901  // Generate the move instruction with the unique pointer and save index and type.
902  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
903                     static_cast<int>(ptr), type_idx);
904  AppendLIR(move);
905  class_type_address_insns_.Insert(move);
906}
907
908LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
909  /*
910   * For x86, just generate a 32 bit call relative instruction, that will be filled
911   * in at 'link time'.  For now, put a unique value based on target to ensure that
912   * code deduplication works.
913   */
914  int target_method_idx = target_method.dex_method_index;
915  const DexFile* target_dex_file = target_method.dex_file;
916  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
917  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
918
919  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
920  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
921                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
922  AppendLIR(call);
923  call_method_insns_.Insert(call);
924  return call;
925}
926
927/*
928 * @brief Enter a 32 bit quantity into a buffer
929 * @param buf buffer.
930 * @param data Data value.
931 */
932
933static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
934  buf.push_back(data & 0xff);
935  buf.push_back((data >> 8) & 0xff);
936  buf.push_back((data >> 16) & 0xff);
937  buf.push_back((data >> 24) & 0xff);
938}
939
940void X86Mir2Lir::InstallLiteralPools() {
941  // These are handled differently for x86.
942  DCHECK(code_literal_list_ == nullptr);
943  DCHECK(method_literal_list_ == nullptr);
944  DCHECK(class_literal_list_ == nullptr);
945
946  // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
947  // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
948  // will fail at runtime)?
949  if (const_vectors_ != nullptr) {
950    int align_size = (16-4) - (code_buffer_.size() & 0xF);
951    if (align_size < 0) {
952      align_size += 16;
953    }
954
955    while (align_size > 0) {
956      code_buffer_.push_back(0);
957      align_size--;
958    }
959    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
960      PushWord(code_buffer_, p->operands[0]);
961      PushWord(code_buffer_, p->operands[1]);
962      PushWord(code_buffer_, p->operands[2]);
963      PushWord(code_buffer_, p->operands[3]);
964    }
965  }
966
967  // Handle the fixups for methods.
968  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
969      LIR* p = method_address_insns_.Get(i);
970      DCHECK_EQ(p->opcode, kX86Mov32RI);
971      uint32_t target_method_idx = p->operands[2];
972      const DexFile* target_dex_file =
973          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
974
975      // The offset to patch is the last 4 bytes of the instruction.
976      int patch_offset = p->offset + p->flags.size - 4;
977      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
978                                           cu_->method_idx, cu_->invoke_type,
979                                           target_method_idx, target_dex_file,
980                                           static_cast<InvokeType>(p->operands[4]),
981                                           patch_offset);
982  }
983
984  // Handle the fixups for class types.
985  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
986      LIR* p = class_type_address_insns_.Get(i);
987      DCHECK_EQ(p->opcode, kX86Mov32RI);
988      uint32_t target_method_idx = p->operands[2];
989
990      // The offset to patch is the last 4 bytes of the instruction.
991      int patch_offset = p->offset + p->flags.size - 4;
992      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
993                                          cu_->method_idx, target_method_idx, patch_offset);
994  }
995
996  // And now the PC-relative calls to methods.
997  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
998      LIR* p = call_method_insns_.Get(i);
999      DCHECK_EQ(p->opcode, kX86CallI);
1000      uint32_t target_method_idx = p->operands[1];
1001      const DexFile* target_dex_file =
1002          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1003
1004      // The offset to patch is the last 4 bytes of the instruction.
1005      int patch_offset = p->offset + p->flags.size - 4;
1006      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1007                                                 cu_->method_idx, cu_->invoke_type,
1008                                                 target_method_idx, target_dex_file,
1009                                                 static_cast<InvokeType>(p->operands[3]),
1010                                                 patch_offset, -4 /* offset */);
1011  }
1012
1013  // And do the normal processing.
1014  Mir2Lir::InstallLiteralPools();
1015}
1016
1017/*
1018 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1019 * otherwise bails to standard library code.
1020 */
1021bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1022  ClobberCallerSave();
1023  LockCallTemps();  // Using fixed registers
1024
1025  // EAX: 16 bit character being searched.
1026  // ECX: count: number of words to be searched.
1027  // EDI: String being searched.
1028  // EDX: temporary during execution.
1029  // EBX: temporary during execution.
1030
1031  RegLocation rl_obj = info->args[0];
1032  RegLocation rl_char = info->args[1];
1033  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1034
1035  uint32_t char_value =
1036    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1037
1038  if (char_value > 0xFFFF) {
1039    // We have to punt to the real String.indexOf.
1040    return false;
1041  }
1042
1043  // Okay, we are commited to inlining this.
1044  RegLocation rl_return = GetReturn(kCoreReg);
1045  RegLocation rl_dest = InlineTarget(info);
1046
1047  // Is the string non-NULL?
1048  LoadValueDirectFixed(rl_obj, rs_rDX);
1049  GenNullCheck(rs_rDX, info->opt_flags);
1050  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1051
1052  // Does the character fit in 16 bits?
1053  LIR* slowpath_branch = nullptr;
1054  if (rl_char.is_const) {
1055    // We need the value in EAX.
1056    LoadConstantNoClobber(rs_rAX, char_value);
1057  } else {
1058    // Character is not a constant; compare at runtime.
1059    LoadValueDirectFixed(rl_char, rs_rAX);
1060    slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1061  }
1062
1063  // From here down, we know that we are looking for a char that fits in 16 bits.
1064  // Location of reference to data array within the String object.
1065  int value_offset = mirror::String::ValueOffset().Int32Value();
1066  // Location of count within the String object.
1067  int count_offset = mirror::String::CountOffset().Int32Value();
1068  // Starting offset within data array.
1069  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1070  // Start of char data with array_.
1071  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1072
1073  // Character is in EAX.
1074  // Object pointer is in EDX.
1075
1076  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1077  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1078  NewLIR1(kX86Push32R, rs_rDI.GetReg());
1079
1080  // Compute the number of words to search in to rCX.
1081  Load32Disp(rs_rDX, count_offset, rs_rCX);
1082  LIR *length_compare = nullptr;
1083  int start_value = 0;
1084  bool is_index_on_stack = false;
1085  if (zero_based) {
1086    // We have to handle an empty string.  Use special instruction JECXZ.
1087    length_compare = NewLIR0(kX86Jecxz8);
1088  } else {
1089    rl_start = info->args[2];
1090    // We have to offset by the start index.
1091    if (rl_start.is_const) {
1092      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1093      start_value = std::max(start_value, 0);
1094
1095      // Is the start > count?
1096      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1097
1098      if (start_value != 0) {
1099        OpRegImm(kOpSub, rs_rCX, start_value);
1100      }
1101    } else {
1102      // Runtime start index.
1103      rl_start = UpdateLocTyped(rl_start, kCoreReg);
1104      if (rl_start.location == kLocPhysReg) {
1105        // Handle "start index < 0" case.
1106        OpRegReg(kOpXor, rs_rBX, rs_rBX);
1107        OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1108        OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1109
1110        // The length of the string should be greater than the start index.
1111        length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1112        OpRegReg(kOpSub, rs_rCX, rl_start.reg);
1113        if (rl_start.reg == rs_rDI) {
1114          // The special case. We will use EDI further, so lets put start index to stack.
1115          NewLIR1(kX86Push32R, rs_rDI.GetReg());
1116          is_index_on_stack = true;
1117        }
1118      } else {
1119        // Load the start index from stack, remembering that we pushed EDI.
1120        int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1121        {
1122          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1123          Load32Disp(rs_rX86_SP, displacement, rs_rBX);
1124        }
1125        OpRegReg(kOpXor, rs_rDI, rs_rDI);
1126        OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1127        OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1128
1129        length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1130        OpRegReg(kOpSub, rs_rCX, rs_rBX);
1131        // Put the start index to stack.
1132        NewLIR1(kX86Push32R, rs_rBX.GetReg());
1133        is_index_on_stack = true;
1134      }
1135    }
1136  }
1137  DCHECK(length_compare != nullptr);
1138
1139  // ECX now contains the count in words to be searched.
1140
1141  // Load the address of the string into EBX.
1142  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1143  Load32Disp(rs_rDX, value_offset, rs_rDI);
1144  Load32Disp(rs_rDX, offset_offset, rs_rBX);
1145  OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
1146
1147  // Now compute into EDI where the search will start.
1148  if (zero_based || rl_start.is_const) {
1149    if (start_value == 0) {
1150      OpRegCopy(rs_rDI, rs_rBX);
1151    } else {
1152      NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
1153    }
1154  } else {
1155    if (is_index_on_stack == true) {
1156      // Load the start index from stack.
1157      NewLIR1(kX86Pop32R, rs_rDX.GetReg());
1158      OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
1159    } else {
1160      OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
1161    }
1162  }
1163
1164  // EDI now contains the start of the string to be searched.
1165  // We are all prepared to do the search for the character.
1166  NewLIR0(kX86RepneScasw);
1167
1168  // Did we find a match?
1169  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1170
1171  // yes, we matched.  Compute the index of the result.
1172  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1173  OpRegReg(kOpSub, rs_rDI, rs_rBX);
1174  OpRegImm(kOpAsr, rs_rDI, 1);
1175  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
1176  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1177
1178  // Failed to match; return -1.
1179  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1180  length_compare->target = not_found;
1181  failed_branch->target = not_found;
1182  LoadConstantNoClobber(rl_return.reg, -1);
1183
1184  // And join up at the end.
1185  all_done->target = NewLIR0(kPseudoTargetLabel);
1186  // Restore EDI from the stack.
1187  NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1188
1189  // Out of line code returns here.
1190  if (slowpath_branch != nullptr) {
1191    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1192    AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1193  }
1194
1195  StoreValue(rl_dest, rl_return);
1196  return true;
1197}
1198
1199/*
1200 * @brief Enter an 'advance LOC' into the FDE buffer
1201 * @param buf FDE buffer.
1202 * @param increment Amount by which to increase the current location.
1203 */
1204static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1205  if (increment < 64) {
1206    // Encoding in opcode.
1207    buf.push_back(0x1 << 6 | increment);
1208  } else if (increment < 256) {
1209    // Single byte delta.
1210    buf.push_back(0x02);
1211    buf.push_back(increment);
1212  } else if (increment < 256 * 256) {
1213    // Two byte delta.
1214    buf.push_back(0x03);
1215    buf.push_back(increment & 0xff);
1216    buf.push_back((increment >> 8) & 0xff);
1217  } else {
1218    // Four byte delta.
1219    buf.push_back(0x04);
1220    PushWord(buf, increment);
1221  }
1222}
1223
1224
1225std::vector<uint8_t>* X86CFIInitialization() {
1226  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1227}
1228
1229std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1230  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1231
1232  // Length of the CIE (except for this field).
1233  PushWord(*cfi_info, 16);
1234
1235  // CIE id.
1236  PushWord(*cfi_info, 0xFFFFFFFFU);
1237
1238  // Version: 3.
1239  cfi_info->push_back(0x03);
1240
1241  // Augmentation: empty string.
1242  cfi_info->push_back(0x0);
1243
1244  // Code alignment: 1.
1245  cfi_info->push_back(0x01);
1246
1247  // Data alignment: -4.
1248  cfi_info->push_back(0x7C);
1249
1250  // Return address register (R8).
1251  cfi_info->push_back(0x08);
1252
1253  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1254  cfi_info->push_back(0x0C);
1255  cfi_info->push_back(0x04);
1256  cfi_info->push_back(0x04);
1257
1258  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1259  cfi_info->push_back(0x2 << 6 | 0x08);
1260  cfi_info->push_back(0x01);
1261
1262  // And 2 Noops to align to 4 byte boundary.
1263  cfi_info->push_back(0x0);
1264  cfi_info->push_back(0x0);
1265
1266  DCHECK_EQ(cfi_info->size() & 3, 0U);
1267  return cfi_info;
1268}
1269
1270static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1271  uint8_t buffer[12];
1272  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1273  for (uint8_t *p = buffer; p < ptr; p++) {
1274    buf.push_back(*p);
1275  }
1276}
1277
1278std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1279  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1280
1281  // Generate the FDE for the method.
1282  DCHECK_NE(data_offset_, 0U);
1283
1284  // Length (will be filled in later in this routine).
1285  PushWord(*cfi_info, 0);
1286
1287  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1288  // one CIE for the whole debug_frame section.
1289  PushWord(*cfi_info, 0);
1290
1291  // 'initial_location' (filled in by linker).
1292  PushWord(*cfi_info, 0);
1293
1294  // 'address_range' (number of bytes in the method).
1295  PushWord(*cfi_info, data_offset_);
1296
1297  // The instructions in the FDE.
1298  if (stack_decrement_ != nullptr) {
1299    // Advance LOC to just past the stack decrement.
1300    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1301    AdvanceLoc(*cfi_info, pc);
1302
1303    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1304    cfi_info->push_back(0x0e);
1305    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1306
1307    // We continue with that stack until the epilogue.
1308    if (stack_increment_ != nullptr) {
1309      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1310      AdvanceLoc(*cfi_info, new_pc - pc);
1311
1312      // We probably have code snippets after the epilogue, so save the
1313      // current state: DW_CFA_remember_state.
1314      cfi_info->push_back(0x0a);
1315
1316      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1317      // PC on the stack now.
1318      cfi_info->push_back(0x0e);
1319      EncodeUnsignedLeb128(*cfi_info, 4);
1320
1321      // Everything after that is the same as before the epilogue.
1322      // Stack bump was followed by RET instruction.
1323      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1324      if (post_ret_insn != nullptr) {
1325        pc = new_pc;
1326        new_pc = post_ret_insn->offset;
1327        AdvanceLoc(*cfi_info, new_pc - pc);
1328        // Restore the state: DW_CFA_restore_state.
1329        cfi_info->push_back(0x0b);
1330      }
1331    }
1332  }
1333
1334  // Padding to a multiple of 4
1335  while ((cfi_info->size() & 3) != 0) {
1336    // DW_CFA_nop is encoded as 0.
1337    cfi_info->push_back(0);
1338  }
1339
1340  // Set the length of the FDE inside the generated bytes.
1341  uint32_t length = cfi_info->size() - 4;
1342  (*cfi_info)[0] = length;
1343  (*cfi_info)[1] = length >> 8;
1344  (*cfi_info)[2] = length >> 16;
1345  (*cfi_info)[3] = length >> 24;
1346  return cfi_info;
1347}
1348
1349void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1350  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1351    case kMirOpConstVector:
1352      GenConst128(bb, mir);
1353      break;
1354    case kMirOpMoveVector:
1355      GenMoveVector(bb, mir);
1356      break;
1357    case kMirOpPackedMultiply:
1358      GenMultiplyVector(bb, mir);
1359      break;
1360    case kMirOpPackedAddition:
1361      GenAddVector(bb, mir);
1362      break;
1363    case kMirOpPackedSubtract:
1364      GenSubtractVector(bb, mir);
1365      break;
1366    case kMirOpPackedShiftLeft:
1367      GenShiftLeftVector(bb, mir);
1368      break;
1369    case kMirOpPackedSignedShiftRight:
1370      GenSignedShiftRightVector(bb, mir);
1371      break;
1372    case kMirOpPackedUnsignedShiftRight:
1373      GenUnsignedShiftRightVector(bb, mir);
1374      break;
1375    case kMirOpPackedAnd:
1376      GenAndVector(bb, mir);
1377      break;
1378    case kMirOpPackedOr:
1379      GenOrVector(bb, mir);
1380      break;
1381    case kMirOpPackedXor:
1382      GenXorVector(bb, mir);
1383      break;
1384    case kMirOpPackedAddReduce:
1385      GenAddReduceVector(bb, mir);
1386      break;
1387    case kMirOpPackedReduce:
1388      GenReduceVector(bb, mir);
1389      break;
1390    case kMirOpPackedSet:
1391      GenSetVector(bb, mir);
1392      break;
1393    default:
1394      break;
1395  }
1396}
1397
1398void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1399  int type_size = mir->dalvikInsn.vA;
1400  // We support 128 bit vectors.
1401  DCHECK_EQ(type_size & 0xFFFF, 128);
1402  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1403  uint32_t *args = mir->dalvikInsn.arg;
1404  int reg = rs_dest.GetReg();
1405  // Check for all 0 case.
1406  if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1407    NewLIR2(kX86XorpsRR, reg, reg);
1408    return;
1409  }
1410  // Okay, load it from the constant vector area.
1411  LIR *data_target = ScanVectorLiteral(mir);
1412  if (data_target == nullptr) {
1413    data_target = AddVectorLiteral(mir);
1414  }
1415
1416  // Address the start of the method.
1417  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1418  if (rl_method.wide) {
1419    rl_method = LoadValueWide(rl_method, kCoreReg);
1420  } else {
1421    rl_method = LoadValue(rl_method, kCoreReg);
1422  }
1423
1424  // Load the proper value from the literal area.
1425  // We don't know the proper offset for the value, so pick one that will force
1426  // 4 byte offset.  We will fix this up in the assembler later to have the right
1427  // value.
1428  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1429  LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(),  256 /* bogus */);
1430  load->flags.fixup = kFixupLoad;
1431  load->target = data_target;
1432}
1433
1434void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1435  // We only support 128 bit registers.
1436  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1437  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1438  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1439  NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1440}
1441
1442void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1443  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1444  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1445  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1446  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1447  int opcode = 0;
1448  switch (opsize) {
1449    case k32:
1450      opcode = kX86PmulldRR;
1451      break;
1452    case kSignedHalf:
1453      opcode = kX86PmullwRR;
1454      break;
1455    case kSingle:
1456      opcode = kX86MulpsRR;
1457      break;
1458    case kDouble:
1459      opcode = kX86MulpdRR;
1460      break;
1461    default:
1462      LOG(FATAL) << "Unsupported vector multiply " << opsize;
1463      break;
1464  }
1465  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1466}
1467
1468void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1469  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1470  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1471  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1472  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1473  int opcode = 0;
1474  switch (opsize) {
1475    case k32:
1476      opcode = kX86PadddRR;
1477      break;
1478    case kSignedHalf:
1479    case kUnsignedHalf:
1480      opcode = kX86PaddwRR;
1481      break;
1482    case kUnsignedByte:
1483    case kSignedByte:
1484      opcode = kX86PaddbRR;
1485      break;
1486    case kSingle:
1487      opcode = kX86AddpsRR;
1488      break;
1489    case kDouble:
1490      opcode = kX86AddpdRR;
1491      break;
1492    default:
1493      LOG(FATAL) << "Unsupported vector addition " << opsize;
1494      break;
1495  }
1496  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1497}
1498
1499void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1500  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1501  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1502  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1503  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1504  int opcode = 0;
1505  switch (opsize) {
1506    case k32:
1507      opcode = kX86PsubdRR;
1508      break;
1509    case kSignedHalf:
1510    case kUnsignedHalf:
1511      opcode = kX86PsubwRR;
1512      break;
1513    case kUnsignedByte:
1514    case kSignedByte:
1515      opcode = kX86PsubbRR;
1516      break;
1517    case kSingle:
1518      opcode = kX86SubpsRR;
1519      break;
1520    case kDouble:
1521      opcode = kX86SubpdRR;
1522      break;
1523    default:
1524      LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1525      break;
1526  }
1527  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1528}
1529
1530void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1531  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1532  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1533  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1534  int imm = mir->dalvikInsn.vC;
1535  int opcode = 0;
1536  switch (opsize) {
1537    case k32:
1538      opcode = kX86PslldRI;
1539      break;
1540    case k64:
1541      opcode = kX86PsllqRI;
1542      break;
1543    case kSignedHalf:
1544    case kUnsignedHalf:
1545      opcode = kX86PsllwRI;
1546      break;
1547    default:
1548      LOG(FATAL) << "Unsupported vector shift left " << opsize;
1549      break;
1550  }
1551  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1552}
1553
1554void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1555  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1556  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1557  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1558  int imm = mir->dalvikInsn.vC;
1559  int opcode = 0;
1560  switch (opsize) {
1561    case k32:
1562      opcode = kX86PsradRI;
1563      break;
1564    case kSignedHalf:
1565    case kUnsignedHalf:
1566      opcode = kX86PsrawRI;
1567      break;
1568    default:
1569      LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1570      break;
1571  }
1572  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1573}
1574
1575void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1576  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1577  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1578  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1579  int imm = mir->dalvikInsn.vC;
1580  int opcode = 0;
1581  switch (opsize) {
1582    case k32:
1583      opcode = kX86PsrldRI;
1584      break;
1585    case k64:
1586      opcode = kX86PsrlqRI;
1587      break;
1588    case kSignedHalf:
1589    case kUnsignedHalf:
1590      opcode = kX86PsrlwRI;
1591      break;
1592    default:
1593      LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1594      break;
1595  }
1596  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1597}
1598
1599void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1600  // We only support 128 bit registers.
1601  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1602  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1603  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1604  NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1605}
1606
1607void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1608  // We only support 128 bit registers.
1609  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1610  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1611  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1612  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1613}
1614
1615void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1616  // We only support 128 bit registers.
1617  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1618  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1619  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1620  NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1621}
1622
1623void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1624  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1625  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1626  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1627  int imm = mir->dalvikInsn.vC;
1628  int opcode = 0;
1629  switch (opsize) {
1630    case k32:
1631      opcode = kX86PhadddRR;
1632      break;
1633    case kSignedHalf:
1634    case kUnsignedHalf:
1635      opcode = kX86PhaddwRR;
1636      break;
1637    default:
1638      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1639      break;
1640  }
1641  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1642}
1643
1644void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1645  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1646  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1647  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1648  int index = mir->dalvikInsn.arg[0];
1649  int opcode = 0;
1650  switch (opsize) {
1651    case k32:
1652      opcode = kX86PextrdRRI;
1653      break;
1654    case kSignedHalf:
1655    case kUnsignedHalf:
1656      opcode = kX86PextrwRRI;
1657      break;
1658    case kUnsignedByte:
1659    case kSignedByte:
1660      opcode = kX86PextrbRRI;
1661      break;
1662    default:
1663      LOG(FATAL) << "Unsupported vector reduce " << opsize;
1664      break;
1665  }
1666  // We need to extract to a GPR.
1667  RegStorage temp = AllocTemp();
1668  NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1669
1670  // Assume that the destination VR is in the def for the mir.
1671  RegLocation rl_dest = mir_graph_->GetDest(mir);
1672  RegLocation rl_temp =
1673    {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1674  StoreValue(rl_dest, rl_temp);
1675}
1676
1677void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1678  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1679  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1680  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1681  int op_low = 0, op_high = 0;
1682  switch (opsize) {
1683    case k32:
1684      op_low = kX86PshufdRRI;
1685      break;
1686    case kSignedHalf:
1687    case kUnsignedHalf:
1688      // Handles low quadword.
1689      op_low = kX86PshuflwRRI;
1690      // Handles upper quadword.
1691      op_high = kX86PshufdRRI;
1692      break;
1693    default:
1694      LOG(FATAL) << "Unsupported vector set " << opsize;
1695      break;
1696  }
1697
1698  // Load the value from the VR into a GPR.
1699  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1700  rl_src = LoadValue(rl_src, kCoreReg);
1701
1702  // Load the value into the XMM register.
1703  NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1704
1705  // Now shuffle the value across the destination.
1706  NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1707
1708  // And then repeat as needed.
1709  if (op_high != 0) {
1710    NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1711  }
1712}
1713
1714
1715LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1716  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1717  for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1718    if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1719        args[2] == p->operands[2] && args[3] == p->operands[3]) {
1720      return p;
1721    }
1722  }
1723  return nullptr;
1724}
1725
1726LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1727  LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1728  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1729  new_value->operands[0] = args[0];
1730  new_value->operands[1] = args[1];
1731  new_value->operands[2] = args[2];
1732  new_value->operands[3] = args[3];
1733  new_value->next = const_vectors_;
1734  if (const_vectors_ == nullptr) {
1735    estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
1736  }
1737  estimated_native_code_size_ += 16;  // Space for one vector.
1738  const_vectors_ = new_value;
1739  return new_value;
1740}
1741
1742// ------------ ABI support: mapping of args to physical registers -------------
1743RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
1744  const RegStorage coreArgMappingToPhysicalReg[] = {rs_rX86_ARG1, rs_rX86_ARG2, rs_rX86_ARG3, rs_rX86_ARG4, rs_rX86_ARG5};
1745  const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
1746  const RegStorage fpArgMappingToPhysicalReg[] = {rs_rX86_FARG0, rs_rX86_FARG1, rs_rX86_FARG2, rs_rX86_FARG3,
1747                                                  rs_rX86_FARG4, rs_rX86_FARG5, rs_rX86_FARG6, rs_rX86_FARG7};
1748  const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
1749
1750  RegStorage result = RegStorage::InvalidReg();
1751  if (is_double_or_float) {
1752    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
1753      result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
1754      if (result.Valid()) {
1755        result = is_wide ? RegStorage::FloatSolo64(result.GetReg()) : RegStorage::FloatSolo32(result.GetReg());
1756      }
1757    }
1758  } else {
1759    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
1760      result = coreArgMappingToPhysicalReg[cur_core_reg_++];
1761      if (result.Valid()) {
1762        result = is_wide ? RegStorage::Solo64(result.GetReg()) : RegStorage::Solo32(result.GetReg());
1763      }
1764    }
1765  }
1766  return result;
1767}
1768
1769RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
1770  DCHECK(IsInitialized());
1771  auto res = mapping_.find(in_position);
1772  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
1773}
1774
1775void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
1776  DCHECK(mapper != nullptr);
1777  max_mapped_in_ = -1;
1778  is_there_stack_mapped_ = false;
1779  for (int in_position = 0; in_position < count; in_position++) {
1780     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
1781     if (reg.Valid()) {
1782       mapping_[in_position] = reg;
1783       max_mapped_in_ = std::max(max_mapped_in_, in_position);
1784       if (reg.Is64BitSolo()) {
1785         // We covered 2 args, so skip the next one
1786         in_position++;
1787       }
1788     } else {
1789       is_there_stack_mapped_ = true;
1790     }
1791  }
1792  initialized_ = true;
1793}
1794
1795RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
1796  if (!cu_->target64) {
1797    return GetCoreArgMappingToPhysicalReg(arg_num);
1798  }
1799
1800  if (!in_to_reg_storage_mapping_.IsInitialized()) {
1801    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1802    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
1803
1804    InToRegStorageX86_64Mapper mapper;
1805    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
1806  }
1807  return in_to_reg_storage_mapping_.Get(arg_num);
1808}
1809
1810RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
1811  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
1812  // Not used for 64-bit, TODO: Move X86_32 to the same framework
1813  switch (core_arg_num) {
1814    case 0:
1815      return rs_rX86_ARG1;
1816    case 1:
1817      return rs_rX86_ARG2;
1818    case 2:
1819      return rs_rX86_ARG3;
1820    default:
1821      return RegStorage::InvalidReg();
1822  }
1823}
1824
1825// ---------End of ABI support: mapping of args to physical registers -------------
1826
1827/*
1828 * If there are any ins passed in registers that have not been promoted
1829 * to a callee-save register, flush them to the frame.  Perform initial
1830 * assignment of promoted arguments.
1831 *
1832 * ArgLocs is an array of location records describing the incoming arguments
1833 * with one location record per word of argument.
1834 */
1835void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
1836  if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
1837  /*
1838   * Dummy up a RegLocation for the incoming Method*
1839   * It will attempt to keep kArg0 live (or copy it to home location
1840   * if promoted).
1841   */
1842
1843  RegLocation rl_src = rl_method;
1844  rl_src.location = kLocPhysReg;
1845  rl_src.reg = TargetReg(kArg0);
1846  rl_src.home = false;
1847  MarkLive(rl_src);
1848  StoreValue(rl_method, rl_src);
1849  // If Method* has been promoted, explicitly flush
1850  if (rl_method.location == kLocPhysReg) {
1851    StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0), kNotVolatile);
1852  }
1853
1854  if (cu_->num_ins == 0) {
1855    return;
1856  }
1857
1858  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1859  /*
1860   * Copy incoming arguments to their proper home locations.
1861   * NOTE: an older version of dx had an issue in which
1862   * it would reuse static method argument registers.
1863   * This could result in the same Dalvik virtual register
1864   * being promoted to both core and fp regs. To account for this,
1865   * we only copy to the corresponding promoted physical register
1866   * if it matches the type of the SSA name for the incoming
1867   * argument.  It is also possible that long and double arguments
1868   * end up half-promoted.  In those cases, we must flush the promoted
1869   * half to memory as well.
1870   */
1871  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1872  for (int i = 0; i < cu_->num_ins; i++) {
1873    // get reg corresponding to input
1874    RegStorage reg = GetArgMappingToPhysicalReg(i);
1875
1876    RegLocation* t_loc = &ArgLocs[i];
1877    if (reg.Valid()) {
1878      // If arriving in register.
1879
1880      // We have already updated the arg location with promoted info
1881      // so we can be based on it.
1882      if (t_loc->location == kLocPhysReg) {
1883        // Just copy it.
1884        OpRegCopy(t_loc->reg, reg);
1885      } else {
1886        // Needs flush.
1887        if (t_loc->ref) {
1888          StoreRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kNotVolatile);
1889        } else {
1890          StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
1891                        kNotVolatile);
1892        }
1893      }
1894    } else {
1895      // If arriving in frame & promoted.
1896      if (t_loc->location == kLocPhysReg) {
1897        if (t_loc->ref) {
1898          LoadRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
1899        } else {
1900          LoadBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg,
1901                       t_loc->wide ? k64 : k32, kNotVolatile);
1902        }
1903      }
1904    }
1905    if (t_loc->wide) {
1906      // Increment i to skip the next one.
1907      i++;
1908    }
1909  }
1910}
1911
1912/*
1913 * Load up to 5 arguments, the first three of which will be in
1914 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
1915 * and as part of the load sequence, it must be replaced with
1916 * the target method pointer.  Note, this may also be called
1917 * for "range" variants if the number of arguments is 5 or fewer.
1918 */
1919int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1920                                  int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1921                                  const MethodReference& target_method,
1922                                  uint32_t vtable_idx, uintptr_t direct_code,
1923                                  uintptr_t direct_method, InvokeType type, bool skip_this) {
1924  if (!cu_->target64) {
1925    return Mir2Lir::GenDalvikArgsNoRange(info,
1926                                  call_state, pcrLabel, next_call_insn,
1927                                  target_method,
1928                                  vtable_idx, direct_code,
1929                                  direct_method, type, skip_this);
1930  }
1931  return GenDalvikArgsRange(info,
1932                       call_state, pcrLabel, next_call_insn,
1933                       target_method,
1934                       vtable_idx, direct_code,
1935                       direct_method, type, skip_this);
1936}
1937
1938/*
1939 * May have 0+ arguments (also used for jumbo).  Note that
1940 * source virtual registers may be in physical registers, so may
1941 * need to be flushed to home location before copying.  This
1942 * applies to arg3 and above (see below).
1943 *
1944 * Two general strategies:
1945 *    If < 20 arguments
1946 *       Pass args 3-18 using vldm/vstm block copy
1947 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1948 *    If 20+ arguments
1949 *       Pass args arg19+ using memcpy block copy
1950 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1951 *
1952 */
1953int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1954                                LIR** pcrLabel, NextCallInsn next_call_insn,
1955                                const MethodReference& target_method,
1956                                uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
1957                                InvokeType type, bool skip_this) {
1958  if (!cu_->target64) {
1959    return Mir2Lir::GenDalvikArgsRange(info, call_state,
1960                                pcrLabel, next_call_insn,
1961                                target_method,
1962                                vtable_idx, direct_code, direct_method,
1963                                type, skip_this);
1964  }
1965
1966  /* If no arguments, just return */
1967  if (info->num_arg_words == 0)
1968    return call_state;
1969
1970  const int start_index = skip_this ? 1 : 0;
1971
1972  InToRegStorageX86_64Mapper mapper;
1973  InToRegStorageMapping in_to_reg_storage_mapping;
1974  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1975  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1976  const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
1977          in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
1978  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
1979
1980  // Fisrt of all, check whether it make sense to use bulk copying
1981  // Optimization is aplicable only for range case
1982  // TODO: make a constant instead of 2
1983  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
1984    // Scan the rest of the args - if in phys_reg flush to memory
1985    for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
1986      RegLocation loc = info->args[next_arg];
1987      if (loc.wide) {
1988        loc = UpdateLocWide(loc);
1989        if (loc.location == kLocPhysReg) {
1990          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1991          StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
1992        }
1993        next_arg += 2;
1994      } else {
1995        loc = UpdateLoc(loc);
1996        if (loc.location == kLocPhysReg) {
1997          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1998          StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
1999        }
2000        next_arg++;
2001      }
2002    }
2003
2004    // Logic below assumes that Method pointer is at offset zero from SP.
2005    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2006
2007    // The rest can be copied together
2008    int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2009    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2010
2011    int current_src_offset = start_offset;
2012    int current_dest_offset = outs_offset;
2013
2014    // Only davik regs are accessed in this loop; no next_call_insn() calls.
2015    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2016    while (regs_left_to_pass_via_stack > 0) {
2017      // This is based on the knowledge that the stack itself is 16-byte aligned.
2018      bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2019      bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2020      size_t bytes_to_move;
2021
2022      /*
2023       * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2024       * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2025       * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2026       * We do this because we could potentially do a smaller move to align.
2027       */
2028      if (regs_left_to_pass_via_stack == 4 ||
2029          (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2030        // Moving 128-bits via xmm register.
2031        bytes_to_move = sizeof(uint32_t) * 4;
2032
2033        // Allocate a free xmm temp. Since we are working through the calling sequence,
2034        // we expect to have an xmm temporary available.  AllocTempDouble will abort if
2035        // there are no free registers.
2036        RegStorage temp = AllocTempDouble();
2037
2038        LIR* ld1 = nullptr;
2039        LIR* ld2 = nullptr;
2040        LIR* st1 = nullptr;
2041        LIR* st2 = nullptr;
2042
2043        /*
2044         * The logic is similar for both loads and stores. If we have 16-byte alignment,
2045         * do an aligned move. If we have 8-byte alignment, then do the move in two
2046         * parts. This approach prevents possible cache line splits. Finally, fall back
2047         * to doing an unaligned move. In most cases we likely won't split the cache
2048         * line but we cannot prove it and thus take a conservative approach.
2049         */
2050        bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2051        bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2052
2053        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2054        if (src_is_16b_aligned) {
2055          ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
2056        } else if (src_is_8b_aligned) {
2057          ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
2058          ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1),
2059                            kMovHi128FP);
2060        } else {
2061          ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
2062        }
2063
2064        if (dest_is_16b_aligned) {
2065          st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
2066        } else if (dest_is_8b_aligned) {
2067          st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
2068          st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1),
2069                            temp, kMovHi128FP);
2070        } else {
2071          st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
2072        }
2073
2074        // TODO If we could keep track of aliasing information for memory accesses that are wider
2075        // than 64-bit, we wouldn't need to set up a barrier.
2076        if (ld1 != nullptr) {
2077          if (ld2 != nullptr) {
2078            // For 64-bit load we can actually set up the aliasing information.
2079            AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2080            AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2081          } else {
2082            // Set barrier for 128-bit load.
2083            ld1->u.m.def_mask = &kEncodeAll;
2084          }
2085        }
2086        if (st1 != nullptr) {
2087          if (st2 != nullptr) {
2088            // For 64-bit store we can actually set up the aliasing information.
2089            AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2090            AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2091          } else {
2092            // Set barrier for 128-bit store.
2093            st1->u.m.def_mask = &kEncodeAll;
2094          }
2095        }
2096
2097        // Free the temporary used for the data movement.
2098        FreeTemp(temp);
2099      } else {
2100        // Moving 32-bits via general purpose register.
2101        bytes_to_move = sizeof(uint32_t);
2102
2103        // Instead of allocating a new temp, simply reuse one of the registers being used
2104        // for argument passing.
2105        RegStorage temp = TargetReg(kArg3);
2106
2107        // Now load the argument VR and store to the outs.
2108        Load32Disp(TargetReg(kSp), current_src_offset, temp);
2109        Store32Disp(TargetReg(kSp), current_dest_offset, temp);
2110      }
2111
2112      current_src_offset += bytes_to_move;
2113      current_dest_offset += bytes_to_move;
2114      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2115    }
2116    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2117  }
2118
2119  // Now handle rest not registers if they are
2120  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2121    RegStorage regSingle = TargetReg(kArg2);
2122    RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
2123    for (int i = start_index;
2124         i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2125      RegLocation rl_arg = info->args[i];
2126      rl_arg = UpdateRawLoc(rl_arg);
2127      RegStorage reg = in_to_reg_storage_mapping.Get(i);
2128      if (!reg.Valid()) {
2129        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2130
2131        {
2132          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2133          if (rl_arg.wide) {
2134            if (rl_arg.location == kLocPhysReg) {
2135              StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
2136            } else {
2137              LoadValueDirectWideFixed(rl_arg, regWide);
2138              StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64, kNotVolatile);
2139            }
2140          } else {
2141            if (rl_arg.location == kLocPhysReg) {
2142              StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
2143            } else {
2144              LoadValueDirectFixed(rl_arg, regSingle);
2145              StoreBaseDisp(TargetReg(kSp), out_offset, regSingle, k32, kNotVolatile);
2146            }
2147          }
2148        }
2149        call_state = next_call_insn(cu_, info, call_state, target_method,
2150                                    vtable_idx, direct_code, direct_method, type);
2151      }
2152      if (rl_arg.wide) {
2153        i++;
2154      }
2155    }
2156  }
2157
2158  // Finish with mapped registers
2159  for (int i = start_index; i <= last_mapped_in; i++) {
2160    RegLocation rl_arg = info->args[i];
2161    rl_arg = UpdateRawLoc(rl_arg);
2162    RegStorage reg = in_to_reg_storage_mapping.Get(i);
2163    if (reg.Valid()) {
2164      if (rl_arg.wide) {
2165        LoadValueDirectWideFixed(rl_arg, reg);
2166      } else {
2167        LoadValueDirectFixed(rl_arg, reg);
2168      }
2169      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2170                               direct_code, direct_method, type);
2171    }
2172    if (rl_arg.wide) {
2173      i++;
2174    }
2175  }
2176
2177  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2178                           direct_code, direct_method, type);
2179  if (pcrLabel) {
2180    if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
2181      *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
2182    } else {
2183      *pcrLabel = nullptr;
2184      // In lieu of generating a check for kArg1 being null, we need to
2185      // perform a load when doing implicit checks.
2186      RegStorage tmp = AllocTemp();
2187      Load32Disp(TargetReg(kArg1), 0, tmp);
2188      MarkPossibleNullPointerException(info->opt_flags);
2189      FreeTemp(tmp);
2190    }
2191  }
2192  return call_state;
2193}
2194
2195}  // namespace art
2196