target_x86.cc revision ccc60264229ac96d798528d2cb7dbbdd0deca993
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "dex/reg_storage_eq.h"
24#include "mirror/array.h"
25#include "mirror/string.h"
26#include "x86_lir.h"
27
28namespace art {
29
30static constexpr RegStorage core_regs_arr_32[] = {
31    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32};
33static constexpr RegStorage core_regs_arr_64[] = {
34    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
35    rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36};
37static constexpr RegStorage core_regs_arr_64q[] = {
38    rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
39    rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
40};
41static constexpr RegStorage sp_regs_arr_32[] = {
42    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43};
44static constexpr RegStorage sp_regs_arr_64[] = {
45    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
47};
48static constexpr RegStorage dp_regs_arr_32[] = {
49    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50};
51static constexpr RegStorage dp_regs_arr_64[] = {
52    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
53    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
54};
55static constexpr RegStorage xp_regs_arr_32[] = {
56    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
57};
58static constexpr RegStorage xp_regs_arr_64[] = {
59    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
60    rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
61};
62static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
63static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
64static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
65static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
66static constexpr RegStorage core_temps_arr_64[] = {
67    rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
68    rs_r8, rs_r9, rs_r10, rs_r11
69};
70
71// How to add register to be available for promotion:
72// 1) Remove register from array defining temp
73// 2) Update ClobberCallerSave
74// 3) Update JNI compiler ABI:
75// 3.1) add reg in JniCallingConvention method
76// 3.2) update CoreSpillMask/FpSpillMask
77// 4) Update entrypoints
78// 4.1) Update constants in asm_support_x86_64.h for new frame size
79// 4.2) Remove entry in SmashCallerSaves
80// 4.3) Update jni_entrypoints to spill/unspill new callee save reg
81// 4.4) Update quick_entrypoints to spill/unspill new callee save reg
82// 5) Update runtime ABI
83// 5.1) Update quick_method_frame_info with new required spills
84// 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms
85// Note that you cannot use register corresponding to incoming args
86// according to ABI and QCG needs one additional XMM temp for
87// bulk copy in preparation to call.
88static constexpr RegStorage core_temps_arr_64q[] = {
89    rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
90    rs_r8q, rs_r9q, rs_r10q, rs_r11q
91};
92static constexpr RegStorage sp_temps_arr_32[] = {
93    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
94};
95static constexpr RegStorage sp_temps_arr_64[] = {
96    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
97    rs_fr8, rs_fr9, rs_fr10, rs_fr11
98};
99static constexpr RegStorage dp_temps_arr_32[] = {
100    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
101};
102static constexpr RegStorage dp_temps_arr_64[] = {
103    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
104    rs_dr8, rs_dr9, rs_dr10, rs_dr11
105};
106
107static constexpr RegStorage xp_temps_arr_32[] = {
108    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
109};
110static constexpr RegStorage xp_temps_arr_64[] = {
111    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
112    rs_xr8, rs_xr9, rs_xr10, rs_xr11
113};
114
115static constexpr ArrayRef<const RegStorage> empty_pool;
116static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
117static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
118static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
119static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
120static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
121static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
122static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
123static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32);
124static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64);
125static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
126static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
127static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
128static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
129static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
130static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
131static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
132static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
133static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
134static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
135
136static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
137static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
138
139RegStorage rs_rX86_SP;
140
141X86NativeRegisterPool rX86_ARG0;
142X86NativeRegisterPool rX86_ARG1;
143X86NativeRegisterPool rX86_ARG2;
144X86NativeRegisterPool rX86_ARG3;
145X86NativeRegisterPool rX86_ARG4;
146X86NativeRegisterPool rX86_ARG5;
147X86NativeRegisterPool rX86_FARG0;
148X86NativeRegisterPool rX86_FARG1;
149X86NativeRegisterPool rX86_FARG2;
150X86NativeRegisterPool rX86_FARG3;
151X86NativeRegisterPool rX86_FARG4;
152X86NativeRegisterPool rX86_FARG5;
153X86NativeRegisterPool rX86_FARG6;
154X86NativeRegisterPool rX86_FARG7;
155X86NativeRegisterPool rX86_RET0;
156X86NativeRegisterPool rX86_RET1;
157X86NativeRegisterPool rX86_INVOKE_TGT;
158X86NativeRegisterPool rX86_COUNT;
159
160RegStorage rs_rX86_ARG0;
161RegStorage rs_rX86_ARG1;
162RegStorage rs_rX86_ARG2;
163RegStorage rs_rX86_ARG3;
164RegStorage rs_rX86_ARG4;
165RegStorage rs_rX86_ARG5;
166RegStorage rs_rX86_FARG0;
167RegStorage rs_rX86_FARG1;
168RegStorage rs_rX86_FARG2;
169RegStorage rs_rX86_FARG3;
170RegStorage rs_rX86_FARG4;
171RegStorage rs_rX86_FARG5;
172RegStorage rs_rX86_FARG6;
173RegStorage rs_rX86_FARG7;
174RegStorage rs_rX86_RET0;
175RegStorage rs_rX86_RET1;
176RegStorage rs_rX86_INVOKE_TGT;
177RegStorage rs_rX86_COUNT;
178
179RegLocation X86Mir2Lir::LocCReturn() {
180  return x86_loc_c_return;
181}
182
183RegLocation X86Mir2Lir::LocCReturnRef() {
184  return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
185}
186
187RegLocation X86Mir2Lir::LocCReturnWide() {
188  return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
189}
190
191RegLocation X86Mir2Lir::LocCReturnFloat() {
192  return x86_loc_c_return_float;
193}
194
195RegLocation X86Mir2Lir::LocCReturnDouble() {
196  return x86_loc_c_return_double;
197}
198
199// Return a target-dependent special register for 32-bit.
200RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) {
201  RegStorage res_reg = RegStorage::InvalidReg();
202  switch (reg) {
203    case kSelf: res_reg = RegStorage::InvalidReg(); break;
204    case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
205    case kLr: res_reg =  RegStorage::InvalidReg(); break;
206    case kPc: res_reg =  RegStorage::InvalidReg(); break;
207    case kSp: res_reg =  rs_rX86_SP_32; break;  // This must be the concrete one, as _SP is target-
208                                                // specific size.
209    case kArg0: res_reg = rs_rX86_ARG0; break;
210    case kArg1: res_reg = rs_rX86_ARG1; break;
211    case kArg2: res_reg = rs_rX86_ARG2; break;
212    case kArg3: res_reg = rs_rX86_ARG3; break;
213    case kArg4: res_reg = rs_rX86_ARG4; break;
214    case kArg5: res_reg = rs_rX86_ARG5; break;
215    case kFArg0: res_reg = rs_rX86_FARG0; break;
216    case kFArg1: res_reg = rs_rX86_FARG1; break;
217    case kFArg2: res_reg = rs_rX86_FARG2; break;
218    case kFArg3: res_reg = rs_rX86_FARG3; break;
219    case kFArg4: res_reg = rs_rX86_FARG4; break;
220    case kFArg5: res_reg = rs_rX86_FARG5; break;
221    case kFArg6: res_reg = rs_rX86_FARG6; break;
222    case kFArg7: res_reg = rs_rX86_FARG7; break;
223    case kRet0: res_reg = rs_rX86_RET0; break;
224    case kRet1: res_reg = rs_rX86_RET1; break;
225    case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
226    case kHiddenArg: res_reg = rs_rAX; break;
227    case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
228    case kCount: res_reg = rs_rX86_COUNT; break;
229    default: res_reg = RegStorage::InvalidReg();
230  }
231  return res_reg;
232}
233
234RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
235  LOG(FATAL) << "Do not use this function!!!";
236  return RegStorage::InvalidReg();
237}
238
239/*
240 * Decode the register id.
241 */
242ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
243  /* Double registers in x86 are just a single FP register. This is always just a single bit. */
244  return ResourceMask::Bit(
245      /* FP register starts at bit position 16 */
246      ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
247}
248
249ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
250  return kEncodeNone;
251}
252
253void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
254                                          ResourceMask* use_mask, ResourceMask* def_mask) {
255  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
256  DCHECK(!lir->flags.use_def_invalid);
257
258  // X86-specific resource map setup here.
259  if (flags & REG_USE_SP) {
260    use_mask->SetBit(kX86RegSP);
261  }
262
263  if (flags & REG_DEF_SP) {
264    def_mask->SetBit(kX86RegSP);
265  }
266
267  if (flags & REG_DEFA) {
268    SetupRegMask(def_mask, rs_rAX.GetReg());
269  }
270
271  if (flags & REG_DEFD) {
272    SetupRegMask(def_mask, rs_rDX.GetReg());
273  }
274  if (flags & REG_USEA) {
275    SetupRegMask(use_mask, rs_rAX.GetReg());
276  }
277
278  if (flags & REG_USEC) {
279    SetupRegMask(use_mask, rs_rCX.GetReg());
280  }
281
282  if (flags & REG_USED) {
283    SetupRegMask(use_mask, rs_rDX.GetReg());
284  }
285
286  if (flags & REG_USEB) {
287    SetupRegMask(use_mask, rs_rBX.GetReg());
288  }
289
290  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
291  if (lir->opcode == kX86RepneScasw) {
292    SetupRegMask(use_mask, rs_rAX.GetReg());
293    SetupRegMask(use_mask, rs_rCX.GetReg());
294    SetupRegMask(use_mask, rs_rDI.GetReg());
295    SetupRegMask(def_mask, rs_rDI.GetReg());
296  }
297
298  if (flags & USE_FP_STACK) {
299    use_mask->SetBit(kX86FPStack);
300    def_mask->SetBit(kX86FPStack);
301  }
302}
303
304/* For dumping instructions */
305static const char* x86RegName[] = {
306  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
307  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
308};
309
310static const char* x86CondName[] = {
311  "O",
312  "NO",
313  "B/NAE/C",
314  "NB/AE/NC",
315  "Z/EQ",
316  "NZ/NE",
317  "BE/NA",
318  "NBE/A",
319  "S",
320  "NS",
321  "P/PE",
322  "NP/PO",
323  "L/NGE",
324  "NL/GE",
325  "LE/NG",
326  "NLE/G"
327};
328
329/*
330 * Interpret a format string and build a string no longer than size
331 * See format key in Assemble.cc.
332 */
333std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
334  std::string buf;
335  size_t i = 0;
336  size_t fmt_len = strlen(fmt);
337  while (i < fmt_len) {
338    if (fmt[i] != '!') {
339      buf += fmt[i];
340      i++;
341    } else {
342      i++;
343      DCHECK_LT(i, fmt_len);
344      char operand_number_ch = fmt[i];
345      i++;
346      if (operand_number_ch == '!') {
347        buf += "!";
348      } else {
349        int operand_number = operand_number_ch - '0';
350        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
351        DCHECK_LT(i, fmt_len);
352        int operand = lir->operands[operand_number];
353        switch (fmt[i]) {
354          case 'c':
355            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
356            buf += x86CondName[operand];
357            break;
358          case 'd':
359            buf += StringPrintf("%d", operand);
360            break;
361          case 'q': {
362             int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
363                             static_cast<uint32_t>(lir->operands[operand_number+1]));
364             buf +=StringPrintf("%" PRId64, value);
365          }
366          case 'p': {
367            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
368            buf += StringPrintf("0x%08x", tab_rec->offset);
369            break;
370          }
371          case 'r':
372            if (RegStorage::IsFloat(operand)) {
373              int fp_reg = RegStorage::RegNum(operand);
374              buf += StringPrintf("xmm%d", fp_reg);
375            } else {
376              int reg_num = RegStorage::RegNum(operand);
377              DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
378              buf += x86RegName[reg_num];
379            }
380            break;
381          case 't':
382            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
383                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
384                                lir->target);
385            break;
386          default:
387            buf += StringPrintf("DecodeError '%c'", fmt[i]);
388            break;
389        }
390        i++;
391      }
392    }
393  }
394  return buf;
395}
396
397void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
398  char buf[256];
399  buf[0] = 0;
400
401  if (mask.Equals(kEncodeAll)) {
402    strcpy(buf, "all");
403  } else {
404    char num[8];
405    int i;
406
407    for (i = 0; i < kX86RegEnd; i++) {
408      if (mask.HasBit(i)) {
409        snprintf(num, arraysize(num), "%d ", i);
410        strcat(buf, num);
411      }
412    }
413
414    if (mask.HasBit(ResourceMask::kCCode)) {
415      strcat(buf, "cc ");
416    }
417    /* Memory bits */
418    if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
419      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
420               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
421               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
422    }
423    if (mask.HasBit(ResourceMask::kLiteral)) {
424      strcat(buf, "lit ");
425    }
426
427    if (mask.HasBit(ResourceMask::kHeapRef)) {
428      strcat(buf, "heap ");
429    }
430    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
431      strcat(buf, "noalias ");
432    }
433  }
434  if (buf[0]) {
435    LOG(INFO) << prefix << ": " <<  buf;
436  }
437}
438
439void X86Mir2Lir::AdjustSpillMask() {
440  // Adjustment for LR spilling, x86 has no LR so nothing to do here
441  core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
442  num_core_spills_++;
443}
444
445RegStorage X86Mir2Lir::AllocateByteRegister() {
446  RegStorage reg = AllocTypedTemp(false, kCoreReg);
447  if (!cu_->target64) {
448    DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
449  }
450  return reg;
451}
452
453RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) {
454  return GetRegInfo(reg)->FindMatchingView(RegisterInfo::k128SoloStorageMask)->GetReg();
455}
456
457bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
458  return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
459}
460
461/* Clobber all regs that might be used by an external C call */
462void X86Mir2Lir::ClobberCallerSave() {
463  if (cu_->target64) {
464    Clobber(rs_rAX);
465    Clobber(rs_rCX);
466    Clobber(rs_rDX);
467    Clobber(rs_rSI);
468    Clobber(rs_rDI);
469
470    Clobber(rs_r8);
471    Clobber(rs_r9);
472    Clobber(rs_r10);
473    Clobber(rs_r11);
474
475    Clobber(rs_fr8);
476    Clobber(rs_fr9);
477    Clobber(rs_fr10);
478    Clobber(rs_fr11);
479  } else {
480    Clobber(rs_rAX);
481    Clobber(rs_rCX);
482    Clobber(rs_rDX);
483    Clobber(rs_rBX);
484  }
485
486  Clobber(rs_fr0);
487  Clobber(rs_fr1);
488  Clobber(rs_fr2);
489  Clobber(rs_fr3);
490  Clobber(rs_fr4);
491  Clobber(rs_fr5);
492  Clobber(rs_fr6);
493  Clobber(rs_fr7);
494}
495
496RegLocation X86Mir2Lir::GetReturnWideAlt() {
497  RegLocation res = LocCReturnWide();
498  DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
499  DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
500  Clobber(rs_rAX);
501  Clobber(rs_rDX);
502  MarkInUse(rs_rAX);
503  MarkInUse(rs_rDX);
504  MarkWide(res.reg);
505  return res;
506}
507
508RegLocation X86Mir2Lir::GetReturnAlt() {
509  RegLocation res = LocCReturn();
510  res.reg.SetReg(rs_rDX.GetReg());
511  Clobber(rs_rDX);
512  MarkInUse(rs_rDX);
513  return res;
514}
515
516/* To be used when explicitly managing register use */
517void X86Mir2Lir::LockCallTemps() {
518  LockTemp(rs_rX86_ARG0);
519  LockTemp(rs_rX86_ARG1);
520  LockTemp(rs_rX86_ARG2);
521  LockTemp(rs_rX86_ARG3);
522  if (cu_->target64) {
523    LockTemp(rs_rX86_ARG4);
524    LockTemp(rs_rX86_ARG5);
525    LockTemp(rs_rX86_FARG0);
526    LockTemp(rs_rX86_FARG1);
527    LockTemp(rs_rX86_FARG2);
528    LockTemp(rs_rX86_FARG3);
529    LockTemp(rs_rX86_FARG4);
530    LockTemp(rs_rX86_FARG5);
531    LockTemp(rs_rX86_FARG6);
532    LockTemp(rs_rX86_FARG7);
533  }
534}
535
536/* To be used when explicitly managing register use */
537void X86Mir2Lir::FreeCallTemps() {
538  FreeTemp(rs_rX86_ARG0);
539  FreeTemp(rs_rX86_ARG1);
540  FreeTemp(rs_rX86_ARG2);
541  FreeTemp(rs_rX86_ARG3);
542  if (cu_->target64) {
543    FreeTemp(rs_rX86_ARG4);
544    FreeTemp(rs_rX86_ARG5);
545    FreeTemp(rs_rX86_FARG0);
546    FreeTemp(rs_rX86_FARG1);
547    FreeTemp(rs_rX86_FARG2);
548    FreeTemp(rs_rX86_FARG3);
549    FreeTemp(rs_rX86_FARG4);
550    FreeTemp(rs_rX86_FARG5);
551    FreeTemp(rs_rX86_FARG6);
552    FreeTemp(rs_rX86_FARG7);
553  }
554}
555
556bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
557    switch (opcode) {
558      case kX86LockCmpxchgMR:
559      case kX86LockCmpxchgAR:
560      case kX86LockCmpxchg64M:
561      case kX86LockCmpxchg64A:
562      case kX86XchgMR:
563      case kX86Mfence:
564        // Atomic memory instructions provide full barrier.
565        return true;
566      default:
567        break;
568    }
569
570    // Conservative if cannot prove it provides full barrier.
571    return false;
572}
573
574bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
575#if ANDROID_SMP != 0
576  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
577  LIR* mem_barrier = last_lir_insn_;
578
579  bool ret = false;
580  /*
581   * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
582   * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
583   * For those cases, all we need to ensure is that there is a scheduling barrier in place.
584   */
585  if (barrier_kind == kAnyAny) {
586    // If no LIR exists already that can be used a barrier, then generate an mfence.
587    if (mem_barrier == nullptr) {
588      mem_barrier = NewLIR0(kX86Mfence);
589      ret = true;
590    }
591
592    // If last instruction does not provide full barrier, then insert an mfence.
593    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
594      mem_barrier = NewLIR0(kX86Mfence);
595      ret = true;
596    }
597  }
598
599  // Now ensure that a scheduling barrier is in place.
600  if (mem_barrier == nullptr) {
601    GenBarrier();
602  } else {
603    // Mark as a scheduling barrier.
604    DCHECK(!mem_barrier->flags.use_def_invalid);
605    mem_barrier->u.m.def_mask = &kEncodeAll;
606  }
607  return ret;
608#else
609  return false;
610#endif
611}
612
613void X86Mir2Lir::CompilerInitializeRegAlloc() {
614  if (cu_->target64) {
615    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
616                                          dp_regs_64, reserved_regs_64, reserved_regs_64q,
617                                          core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
618  } else {
619    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
620                                          dp_regs_32, reserved_regs_32, empty_pool,
621                                          core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
622  }
623
624  // Target-specific adjustments.
625
626  // Add in XMM registers.
627  const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32;
628  for (RegStorage reg : *xp_regs) {
629    RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
630    reginfo_map_.Put(reg.GetReg(), info);
631  }
632  const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
633  for (RegStorage reg : *xp_temps) {
634    RegisterInfo* xp_reg_info = GetRegInfo(reg);
635    xp_reg_info->SetIsTemp(true);
636  }
637
638  // Alias single precision xmm to double xmms.
639  // TODO: as needed, add larger vector sizes - alias all to the largest.
640  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
641  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
642    int sp_reg_num = info->GetReg().GetRegNum();
643    RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
644    RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
645    // 128-bit xmm vector register's master storage should refer to itself.
646    DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
647
648    // Redirect 32-bit vector's master storage to 128-bit vector.
649    info->SetMaster(xp_reg_info);
650
651    RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
652    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
653    // Redirect 64-bit vector's master storage to 128-bit vector.
654    dp_reg_info->SetMaster(xp_reg_info);
655    // Singles should show a single 32-bit mask bit, at first referring to the low half.
656    DCHECK_EQ(info->StorageMask(), 0x1U);
657  }
658
659  if (cu_->target64) {
660    // Alias 32bit W registers to corresponding 64bit X registers.
661    GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
662    for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
663      int x_reg_num = info->GetReg().GetRegNum();
664      RegStorage x_reg = RegStorage::Solo64(x_reg_num);
665      RegisterInfo* x_reg_info = GetRegInfo(x_reg);
666      // 64bit X register's master storage should refer to itself.
667      DCHECK_EQ(x_reg_info, x_reg_info->Master());
668      // Redirect 32bit W master storage to 64bit X.
669      info->SetMaster(x_reg_info);
670      // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
671      DCHECK_EQ(info->StorageMask(), 0x1U);
672    }
673  }
674
675  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
676  // TODO: adjust for x86/hard float calling convention.
677  reg_pool_->next_core_reg_ = 2;
678  reg_pool_->next_sp_reg_ = 2;
679  reg_pool_->next_dp_reg_ = 1;
680}
681
682int X86Mir2Lir::VectorRegisterSize() {
683  return 128;
684}
685
686int X86Mir2Lir::NumReservableVectorRegisters(bool fp_used) {
687  return fp_used ? 5 : 7;
688}
689
690void X86Mir2Lir::SpillCoreRegs() {
691  if (num_core_spills_ == 0) {
692    return;
693  }
694  // Spill mask not including fake return address register
695  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
696  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
697  OpSize size = cu_->target64 ? k64 : k32;
698  for (int reg = 0; mask; mask >>= 1, reg++) {
699    if (mask & 0x1) {
700      StoreBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) :  RegStorage::Solo32(reg),
701                   size, kNotVolatile);
702      offset += GetInstructionSetPointerSize(cu_->instruction_set);
703    }
704  }
705}
706
707void X86Mir2Lir::UnSpillCoreRegs() {
708  if (num_core_spills_ == 0) {
709    return;
710  }
711  // Spill mask not including fake return address register
712  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
713  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
714  OpSize size = cu_->target64 ? k64 : k32;
715  for (int reg = 0; mask; mask >>= 1, reg++) {
716    if (mask & 0x1) {
717      LoadBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) :  RegStorage::Solo32(reg),
718                   size, kNotVolatile);
719      offset += GetInstructionSetPointerSize(cu_->instruction_set);
720    }
721  }
722}
723
724void X86Mir2Lir::SpillFPRegs() {
725  if (num_fp_spills_ == 0) {
726    return;
727  }
728  uint32_t mask = fp_spill_mask_;
729  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
730  for (int reg = 0; mask; mask >>= 1, reg++) {
731    if (mask & 0x1) {
732      StoreBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
733                   k64, kNotVolatile);
734      offset += sizeof(double);
735    }
736  }
737}
738void X86Mir2Lir::UnSpillFPRegs() {
739  if (num_fp_spills_ == 0) {
740    return;
741  }
742  uint32_t mask = fp_spill_mask_;
743  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
744  for (int reg = 0; mask; mask >>= 1, reg++) {
745    if (mask & 0x1) {
746      LoadBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
747                   k64, kNotVolatile);
748      offset += sizeof(double);
749    }
750  }
751}
752
753
754bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
755  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
756}
757
758bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
759  return true;
760}
761
762RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
763  // X86_64 can handle any size.
764  if (cu_->target64) {
765    if (size == kReference) {
766      return kRefReg;
767    }
768    return kCoreReg;
769  }
770
771  if (UNLIKELY(is_volatile)) {
772    // On x86, atomic 64-bit load/store requires an fp register.
773    // Smaller aligned load/store is atomic for both core and fp registers.
774    if (size == k64 || size == kDouble) {
775      return kFPReg;
776    }
777  }
778  return RegClassBySize(size);
779}
780
781X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
782    : Mir2Lir(cu, mir_graph, arena),
783      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
784      method_address_insns_(arena, 100, kGrowableArrayMisc),
785      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
786      call_method_insns_(arena, 100, kGrowableArrayMisc),
787      stack_decrement_(nullptr), stack_increment_(nullptr),
788      const_vectors_(nullptr) {
789  store_method_addr_used_ = false;
790  if (kIsDebugBuild) {
791    for (int i = 0; i < kX86Last; i++) {
792      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
793        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
794                   << " is wrong: expecting " << i << ", seeing "
795                   << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
796      }
797    }
798  }
799  if (cu_->target64) {
800    rs_rX86_SP = rs_rX86_SP_64;
801
802    rs_rX86_ARG0 = rs_rDI;
803    rs_rX86_ARG1 = rs_rSI;
804    rs_rX86_ARG2 = rs_rDX;
805    rs_rX86_ARG3 = rs_rCX;
806    rs_rX86_ARG4 = rs_r8;
807    rs_rX86_ARG5 = rs_r9;
808    rs_rX86_FARG0 = rs_fr0;
809    rs_rX86_FARG1 = rs_fr1;
810    rs_rX86_FARG2 = rs_fr2;
811    rs_rX86_FARG3 = rs_fr3;
812    rs_rX86_FARG4 = rs_fr4;
813    rs_rX86_FARG5 = rs_fr5;
814    rs_rX86_FARG6 = rs_fr6;
815    rs_rX86_FARG7 = rs_fr7;
816    rX86_ARG0 = rDI;
817    rX86_ARG1 = rSI;
818    rX86_ARG2 = rDX;
819    rX86_ARG3 = rCX;
820    rX86_ARG4 = r8;
821    rX86_ARG5 = r9;
822    rX86_FARG0 = fr0;
823    rX86_FARG1 = fr1;
824    rX86_FARG2 = fr2;
825    rX86_FARG3 = fr3;
826    rX86_FARG4 = fr4;
827    rX86_FARG5 = fr5;
828    rX86_FARG6 = fr6;
829    rX86_FARG7 = fr7;
830    rs_rX86_INVOKE_TGT = rs_rDI;
831  } else {
832    rs_rX86_SP = rs_rX86_SP_32;
833
834    rs_rX86_ARG0 = rs_rAX;
835    rs_rX86_ARG1 = rs_rCX;
836    rs_rX86_ARG2 = rs_rDX;
837    rs_rX86_ARG3 = rs_rBX;
838    rs_rX86_ARG4 = RegStorage::InvalidReg();
839    rs_rX86_ARG5 = RegStorage::InvalidReg();
840    rs_rX86_FARG0 = rs_rAX;
841    rs_rX86_FARG1 = rs_rCX;
842    rs_rX86_FARG2 = rs_rDX;
843    rs_rX86_FARG3 = rs_rBX;
844    rs_rX86_FARG4 = RegStorage::InvalidReg();
845    rs_rX86_FARG5 = RegStorage::InvalidReg();
846    rs_rX86_FARG6 = RegStorage::InvalidReg();
847    rs_rX86_FARG7 = RegStorage::InvalidReg();
848    rX86_ARG0 = rAX;
849    rX86_ARG1 = rCX;
850    rX86_ARG2 = rDX;
851    rX86_ARG3 = rBX;
852    rX86_FARG0 = rAX;
853    rX86_FARG1 = rCX;
854    rX86_FARG2 = rDX;
855    rX86_FARG3 = rBX;
856    rs_rX86_INVOKE_TGT = rs_rAX;
857    // TODO(64): Initialize with invalid reg
858//    rX86_ARG4 = RegStorage::InvalidReg();
859//    rX86_ARG5 = RegStorage::InvalidReg();
860  }
861  rs_rX86_RET0 = rs_rAX;
862  rs_rX86_RET1 = rs_rDX;
863  rs_rX86_COUNT = rs_rCX;
864  rX86_RET0 = rAX;
865  rX86_RET1 = rDX;
866  rX86_INVOKE_TGT = rAX;
867  rX86_COUNT = rCX;
868
869  // Initialize the number of reserved vector registers
870  num_reserved_vector_regs_ = -1;
871}
872
873Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
874                          ArenaAllocator* const arena) {
875  return new X86Mir2Lir(cu, mir_graph, arena);
876}
877
878// Not used in x86
879RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
880  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
881  return RegStorage::InvalidReg();
882}
883
884// Not used in x86
885RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
886  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
887  return RegStorage::InvalidReg();
888}
889
890LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
891  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
892  return nullptr;
893}
894
895uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
896  DCHECK(!IsPseudoLirOp(opcode));
897  return X86Mir2Lir::EncodingMap[opcode].flags;
898}
899
900const char* X86Mir2Lir::GetTargetInstName(int opcode) {
901  DCHECK(!IsPseudoLirOp(opcode));
902  return X86Mir2Lir::EncodingMap[opcode].name;
903}
904
905const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
906  DCHECK(!IsPseudoLirOp(opcode));
907  return X86Mir2Lir::EncodingMap[opcode].fmt;
908}
909
910void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
911  // Can we do this directly to memory?
912  rl_dest = UpdateLocWide(rl_dest);
913  if ((rl_dest.location == kLocDalvikFrame) ||
914      (rl_dest.location == kLocCompilerTemp)) {
915    int32_t val_lo = Low32Bits(value);
916    int32_t val_hi = High32Bits(value);
917    int r_base = rs_rX86_SP.GetReg();
918    int displacement = SRegOffset(rl_dest.s_reg_low);
919
920    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
921    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
922    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
923                              false /* is_load */, true /* is64bit */);
924    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
925    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
926                              false /* is_load */, true /* is64bit */);
927    return;
928  }
929
930  // Just use the standard code to do the generation.
931  Mir2Lir::GenConstWide(rl_dest, value);
932}
933
934// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
935void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
936  LOG(INFO)  << "location: " << loc.location << ','
937             << (loc.wide ? " w" : "  ")
938             << (loc.defined ? " D" : "  ")
939             << (loc.is_const ? " c" : "  ")
940             << (loc.fp ? " F" : "  ")
941             << (loc.core ? " C" : "  ")
942             << (loc.ref ? " r" : "  ")
943             << (loc.high_word ? " h" : "  ")
944             << (loc.home ? " H" : "  ")
945             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
946             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
947             << ", s_reg: " << loc.s_reg_low
948             << ", orig: " << loc.orig_sreg;
949}
950
951void X86Mir2Lir::Materialize() {
952  // A good place to put the analysis before starting.
953  AnalyzeMIR();
954
955  // Now continue with regular code generation.
956  Mir2Lir::Materialize();
957}
958
959void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
960                                   SpecialTargetRegister symbolic_reg) {
961  /*
962   * For x86, just generate a 32 bit move immediate instruction, that will be filled
963   * in at 'link time'.  For now, put a unique value based on target to ensure that
964   * code deduplication works.
965   */
966  int target_method_idx = target_method.dex_method_index;
967  const DexFile* target_dex_file = target_method.dex_file;
968  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
969  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
970
971  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
972  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
973                     TargetReg(symbolic_reg, kNotWide).GetReg(),
974                     static_cast<int>(target_method_id_ptr), target_method_idx,
975                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
976  AppendLIR(move);
977  method_address_insns_.Insert(move);
978}
979
980void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
981  /*
982   * For x86, just generate a 32 bit move immediate instruction, that will be filled
983   * in at 'link time'.  For now, put a unique value based on target to ensure that
984   * code deduplication works.
985   */
986  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
987  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
988
989  // Generate the move instruction with the unique pointer and save index and type.
990  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
991                     TargetReg(symbolic_reg, kNotWide).GetReg(),
992                     static_cast<int>(ptr), type_idx);
993  AppendLIR(move);
994  class_type_address_insns_.Insert(move);
995}
996
997LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
998  /*
999   * For x86, just generate a 32 bit call relative instruction, that will be filled
1000   * in at 'link time'.  For now, put a unique value based on target to ensure that
1001   * code deduplication works.
1002   */
1003  int target_method_idx = target_method.dex_method_index;
1004  const DexFile* target_dex_file = target_method.dex_file;
1005  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
1006  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
1007
1008  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
1009  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
1010                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
1011  AppendLIR(call);
1012  call_method_insns_.Insert(call);
1013  return call;
1014}
1015
1016/*
1017 * @brief Enter a 32 bit quantity into a buffer
1018 * @param buf buffer.
1019 * @param data Data value.
1020 */
1021
1022static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
1023  buf.push_back(data & 0xff);
1024  buf.push_back((data >> 8) & 0xff);
1025  buf.push_back((data >> 16) & 0xff);
1026  buf.push_back((data >> 24) & 0xff);
1027}
1028
1029void X86Mir2Lir::InstallLiteralPools() {
1030  // These are handled differently for x86.
1031  DCHECK(code_literal_list_ == nullptr);
1032  DCHECK(method_literal_list_ == nullptr);
1033  DCHECK(class_literal_list_ == nullptr);
1034
1035  // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
1036  // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
1037  // will fail at runtime)?
1038  if (const_vectors_ != nullptr) {
1039    int align_size = (16-4) - (code_buffer_.size() & 0xF);
1040    if (align_size < 0) {
1041      align_size += 16;
1042    }
1043
1044    while (align_size > 0) {
1045      code_buffer_.push_back(0);
1046      align_size--;
1047    }
1048    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1049      PushWord(code_buffer_, p->operands[0]);
1050      PushWord(code_buffer_, p->operands[1]);
1051      PushWord(code_buffer_, p->operands[2]);
1052      PushWord(code_buffer_, p->operands[3]);
1053    }
1054  }
1055
1056  // Handle the fixups for methods.
1057  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
1058      LIR* p = method_address_insns_.Get(i);
1059      DCHECK_EQ(p->opcode, kX86Mov32RI);
1060      uint32_t target_method_idx = p->operands[2];
1061      const DexFile* target_dex_file =
1062          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
1063
1064      // The offset to patch is the last 4 bytes of the instruction.
1065      int patch_offset = p->offset + p->flags.size - 4;
1066      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
1067                                           cu_->method_idx, cu_->invoke_type,
1068                                           target_method_idx, target_dex_file,
1069                                           static_cast<InvokeType>(p->operands[4]),
1070                                           patch_offset);
1071  }
1072
1073  // Handle the fixups for class types.
1074  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
1075      LIR* p = class_type_address_insns_.Get(i);
1076      DCHECK_EQ(p->opcode, kX86Mov32RI);
1077      uint32_t target_method_idx = p->operands[2];
1078
1079      // The offset to patch is the last 4 bytes of the instruction.
1080      int patch_offset = p->offset + p->flags.size - 4;
1081      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
1082                                          cu_->method_idx, target_method_idx, patch_offset);
1083  }
1084
1085  // And now the PC-relative calls to methods.
1086  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1087      LIR* p = call_method_insns_.Get(i);
1088      DCHECK_EQ(p->opcode, kX86CallI);
1089      uint32_t target_method_idx = p->operands[1];
1090      const DexFile* target_dex_file =
1091          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1092
1093      // The offset to patch is the last 4 bytes of the instruction.
1094      int patch_offset = p->offset + p->flags.size - 4;
1095      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1096                                                 cu_->method_idx, cu_->invoke_type,
1097                                                 target_method_idx, target_dex_file,
1098                                                 static_cast<InvokeType>(p->operands[3]),
1099                                                 patch_offset, -4 /* offset */);
1100  }
1101
1102  // And do the normal processing.
1103  Mir2Lir::InstallLiteralPools();
1104}
1105
1106bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1107  if (cu_->target64) {
1108    // TODO: Implement ArrayCOpy intrinsic for x86_64
1109    return false;
1110  }
1111
1112  RegLocation rl_src = info->args[0];
1113  RegLocation rl_srcPos = info->args[1];
1114  RegLocation rl_dst = info->args[2];
1115  RegLocation rl_dstPos = info->args[3];
1116  RegLocation rl_length = info->args[4];
1117  if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) {
1118    return false;
1119  }
1120  if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) {
1121    return false;
1122  }
1123  ClobberCallerSave();
1124  LockCallTemps();  // Using fixed registers
1125  LoadValueDirectFixed(rl_src , rs_rAX);
1126  LoadValueDirectFixed(rl_dst , rs_rCX);
1127  LIR* src_dst_same  = OpCmpBranch(kCondEq, rs_rAX , rs_rCX, nullptr);
1128  LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX , 0, nullptr);
1129  LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX , 0, nullptr);
1130  LoadValueDirectFixed(rl_length , rs_rDX);
1131  LIR* len_negative  = OpCmpImmBranch(kCondLt, rs_rDX , 0, nullptr);
1132  LIR* len_too_big  = OpCmpImmBranch(kCondGt, rs_rDX , 128, nullptr);
1133  LoadValueDirectFixed(rl_src , rs_rAX);
1134  LoadWordDisp(rs_rAX , mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1135  LIR* src_bad_len  = nullptr;
1136  LIR* srcPos_negative  = nullptr;
1137  if (!rl_srcPos.is_const) {
1138    LoadValueDirectFixed(rl_srcPos , rs_rBX);
1139    srcPos_negative  = OpCmpImmBranch(kCondLt, rs_rBX , 0, nullptr);
1140    OpRegReg(kOpAdd, rs_rBX, rs_rDX);
1141    src_bad_len  = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1142  } else {
1143    int pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg);
1144    if (pos_val == 0) {
1145      src_bad_len  = OpCmpBranch(kCondLt, rs_rAX , rs_rDX, nullptr);
1146    } else {
1147      OpRegRegImm(kOpAdd, rs_rBX,  rs_rDX, pos_val);
1148      src_bad_len  = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1149    }
1150  }
1151  LIR* dstPos_negative = nullptr;
1152  LIR* dst_bad_len = nullptr;
1153  LoadValueDirectFixed(rl_dst, rs_rAX);
1154  LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1155  if (!rl_dstPos.is_const) {
1156    LoadValueDirectFixed(rl_dstPos , rs_rBX);
1157    dstPos_negative = OpCmpImmBranch(kCondLt, rs_rBX , 0, nullptr);
1158    OpRegRegReg(kOpAdd, rs_rBX, rs_rBX, rs_rDX);
1159    dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1160  } else {
1161    int pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg);
1162    if (pos_val == 0) {
1163      dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rDX, nullptr);
1164    } else {
1165      OpRegRegImm(kOpAdd, rs_rBX,  rs_rDX, pos_val);
1166      dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1167    }
1168  }
1169  // everything is checked now
1170  LoadValueDirectFixed(rl_src , rs_rAX);
1171  LoadValueDirectFixed(rl_dst , rs_rBX);
1172  LoadValueDirectFixed(rl_srcPos , rs_rCX);
1173  NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(),
1174       rs_rCX.GetReg() , 1, mirror::Array::DataOffset(2).Int32Value());
1175  // RAX now holds the address of the first src element to be copied
1176
1177  LoadValueDirectFixed(rl_dstPos , rs_rCX);
1178  NewLIR5(kX86Lea32RA, rs_rBX.GetReg(), rs_rBX.GetReg(),
1179       rs_rCX.GetReg() , 1, mirror::Array::DataOffset(2).Int32Value() );
1180  // RBX now holds the address of the first dst element to be copied
1181
1182  // check if the number of elements to be copied is odd or even. If odd
1183  // then copy the first element (so that the remaining number of elements
1184  // is even).
1185  LoadValueDirectFixed(rl_length , rs_rCX);
1186  OpRegImm(kOpAnd, rs_rCX, 1);
1187  LIR* jmp_to_begin_loop  = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1188  OpRegImm(kOpSub, rs_rDX, 1);
1189  LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1190  StoreBaseIndexedDisp(rs_rBX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1191
1192  // since the remaining number of elements is even, we will copy by
1193  // two elements at a time.
1194  LIR *beginLoop = NewLIR0(kPseudoTargetLabel);
1195  LIR* jmp_to_ret  = OpCmpImmBranch(kCondEq, rs_rDX , 0, nullptr);
1196  OpRegImm(kOpSub, rs_rDX, 2);
1197  LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle);
1198  StoreBaseIndexedDisp(rs_rBX, rs_rDX, 1, 0, rs_rCX, kSingle);
1199  OpUnconditionalBranch(beginLoop);
1200  LIR *check_failed = NewLIR0(kPseudoTargetLabel);
1201  LIR* launchpad_branch  = OpUnconditionalBranch(nullptr);
1202  LIR *return_point = NewLIR0(kPseudoTargetLabel);
1203  jmp_to_ret->target = return_point;
1204  jmp_to_begin_loop->target = beginLoop;
1205  src_dst_same->target = check_failed;
1206  len_negative->target = check_failed;
1207  len_too_big->target = check_failed;
1208  src_null_branch->target = check_failed;
1209  if (srcPos_negative != nullptr)
1210    srcPos_negative ->target = check_failed;
1211  if (src_bad_len != nullptr)
1212    src_bad_len->target = check_failed;
1213  dst_null_branch->target = check_failed;
1214  if (dstPos_negative != nullptr)
1215    dstPos_negative->target = check_failed;
1216  if (dst_bad_len != nullptr)
1217    dst_bad_len->target = check_failed;
1218  AddIntrinsicSlowPath(info, launchpad_branch, return_point);
1219  return true;
1220}
1221
1222
1223/*
1224 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1225 * otherwise bails to standard library code.
1226 */
1227bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1228  ClobberCallerSave();
1229  LockCallTemps();  // Using fixed registers
1230
1231  // EAX: 16 bit character being searched.
1232  // ECX: count: number of words to be searched.
1233  // EDI: String being searched.
1234  // EDX: temporary during execution.
1235  // EBX or R11: temporary during execution (depending on mode).
1236
1237  RegLocation rl_obj = info->args[0];
1238  RegLocation rl_char = info->args[1];
1239  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1240  RegStorage tmpReg = cu_->target64 ? rs_r11 : rs_rBX;
1241
1242  uint32_t char_value =
1243    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1244
1245  if (char_value > 0xFFFF) {
1246    // We have to punt to the real String.indexOf.
1247    return false;
1248  }
1249
1250  // Okay, we are commited to inlining this.
1251  RegLocation rl_return = GetReturn(kCoreReg);
1252  RegLocation rl_dest = InlineTarget(info);
1253
1254  // Is the string non-NULL?
1255  LoadValueDirectFixed(rl_obj, rs_rDX);
1256  GenNullCheck(rs_rDX, info->opt_flags);
1257  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1258
1259  // Does the character fit in 16 bits?
1260  LIR* slowpath_branch = nullptr;
1261  if (rl_char.is_const) {
1262    // We need the value in EAX.
1263    LoadConstantNoClobber(rs_rAX, char_value);
1264  } else {
1265    // Character is not a constant; compare at runtime.
1266    LoadValueDirectFixed(rl_char, rs_rAX);
1267    slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1268  }
1269
1270  // From here down, we know that we are looking for a char that fits in 16 bits.
1271  // Location of reference to data array within the String object.
1272  int value_offset = mirror::String::ValueOffset().Int32Value();
1273  // Location of count within the String object.
1274  int count_offset = mirror::String::CountOffset().Int32Value();
1275  // Starting offset within data array.
1276  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1277  // Start of char data with array_.
1278  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1279
1280  // Character is in EAX.
1281  // Object pointer is in EDX.
1282
1283  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1284  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1285  NewLIR1(kX86Push32R, rs_rDI.GetReg());
1286
1287  // Compute the number of words to search in to rCX.
1288  Load32Disp(rs_rDX, count_offset, rs_rCX);
1289  LIR *length_compare = nullptr;
1290  int start_value = 0;
1291  bool is_index_on_stack = false;
1292  if (zero_based) {
1293    // We have to handle an empty string.  Use special instruction JECXZ.
1294    length_compare = NewLIR0(kX86Jecxz8);
1295  } else {
1296    rl_start = info->args[2];
1297    // We have to offset by the start index.
1298    if (rl_start.is_const) {
1299      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1300      start_value = std::max(start_value, 0);
1301
1302      // Is the start > count?
1303      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1304
1305      if (start_value != 0) {
1306        OpRegImm(kOpSub, rs_rCX, start_value);
1307      }
1308    } else {
1309      // Runtime start index.
1310      rl_start = UpdateLocTyped(rl_start, kCoreReg);
1311      if (rl_start.location == kLocPhysReg) {
1312        // Handle "start index < 0" case.
1313        OpRegReg(kOpXor, tmpReg, tmpReg);
1314        OpRegReg(kOpCmp, rl_start.reg, tmpReg);
1315        OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, tmpReg);
1316
1317        // The length of the string should be greater than the start index.
1318        length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1319        OpRegReg(kOpSub, rs_rCX, rl_start.reg);
1320        if (rl_start.reg == rs_rDI) {
1321          // The special case. We will use EDI further, so lets put start index to stack.
1322          NewLIR1(kX86Push32R, rs_rDI.GetReg());
1323          is_index_on_stack = true;
1324        }
1325      } else {
1326        // Load the start index from stack, remembering that we pushed EDI.
1327        int displacement = SRegOffset(rl_start.s_reg_low) +
1328                           (cu_->target64 ? 2 : 1) * sizeof(uint32_t);
1329        {
1330          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1331          Load32Disp(rs_rX86_SP, displacement, tmpReg);
1332        }
1333        OpRegReg(kOpXor, rs_rDI, rs_rDI);
1334        OpRegReg(kOpCmp, tmpReg, rs_rDI);
1335        OpCondRegReg(kOpCmov, kCondLt, tmpReg, rs_rDI);
1336
1337        length_compare = OpCmpBranch(kCondLe, rs_rCX, tmpReg, nullptr);
1338        OpRegReg(kOpSub, rs_rCX, tmpReg);
1339        // Put the start index to stack.
1340        NewLIR1(kX86Push32R, tmpReg.GetReg());
1341        is_index_on_stack = true;
1342      }
1343    }
1344  }
1345  DCHECK(length_compare != nullptr);
1346
1347  // ECX now contains the count in words to be searched.
1348
1349  // Load the address of the string into R11 or EBX (depending on mode).
1350  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1351  Load32Disp(rs_rDX, value_offset, rs_rDI);
1352  Load32Disp(rs_rDX, offset_offset, tmpReg);
1353  OpLea(tmpReg, rs_rDI, tmpReg, 1, data_offset);
1354
1355  // Now compute into EDI where the search will start.
1356  if (zero_based || rl_start.is_const) {
1357    if (start_value == 0) {
1358      OpRegCopy(rs_rDI, tmpReg);
1359    } else {
1360      NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), tmpReg.GetReg(), 2 * start_value);
1361    }
1362  } else {
1363    if (is_index_on_stack == true) {
1364      // Load the start index from stack.
1365      NewLIR1(kX86Pop32R, rs_rDX.GetReg());
1366      OpLea(rs_rDI, tmpReg, rs_rDX, 1, 0);
1367    } else {
1368      OpLea(rs_rDI, tmpReg, rl_start.reg, 1, 0);
1369    }
1370  }
1371
1372  // EDI now contains the start of the string to be searched.
1373  // We are all prepared to do the search for the character.
1374  NewLIR0(kX86RepneScasw);
1375
1376  // Did we find a match?
1377  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1378
1379  // yes, we matched.  Compute the index of the result.
1380  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1381  OpRegReg(kOpSub, rs_rDI, tmpReg);
1382  OpRegImm(kOpAsr, rs_rDI, 1);
1383  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
1384  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1385
1386  // Failed to match; return -1.
1387  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1388  length_compare->target = not_found;
1389  failed_branch->target = not_found;
1390  LoadConstantNoClobber(rl_return.reg, -1);
1391
1392  // And join up at the end.
1393  all_done->target = NewLIR0(kPseudoTargetLabel);
1394  // Restore EDI from the stack.
1395  NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1396
1397  // Out of line code returns here.
1398  if (slowpath_branch != nullptr) {
1399    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1400    AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1401  }
1402
1403  StoreValue(rl_dest, rl_return);
1404  return true;
1405}
1406
1407/*
1408 * @brief Enter an 'advance LOC' into the FDE buffer
1409 * @param buf FDE buffer.
1410 * @param increment Amount by which to increase the current location.
1411 */
1412static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1413  if (increment < 64) {
1414    // Encoding in opcode.
1415    buf.push_back(0x1 << 6 | increment);
1416  } else if (increment < 256) {
1417    // Single byte delta.
1418    buf.push_back(0x02);
1419    buf.push_back(increment);
1420  } else if (increment < 256 * 256) {
1421    // Two byte delta.
1422    buf.push_back(0x03);
1423    buf.push_back(increment & 0xff);
1424    buf.push_back((increment >> 8) & 0xff);
1425  } else {
1426    // Four byte delta.
1427    buf.push_back(0x04);
1428    PushWord(buf, increment);
1429  }
1430}
1431
1432
1433std::vector<uint8_t>* X86CFIInitialization() {
1434  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1435}
1436
1437std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1438  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1439
1440  // Length of the CIE (except for this field).
1441  PushWord(*cfi_info, 16);
1442
1443  // CIE id.
1444  PushWord(*cfi_info, 0xFFFFFFFFU);
1445
1446  // Version: 3.
1447  cfi_info->push_back(0x03);
1448
1449  // Augmentation: empty string.
1450  cfi_info->push_back(0x0);
1451
1452  // Code alignment: 1.
1453  cfi_info->push_back(0x01);
1454
1455  // Data alignment: -4.
1456  cfi_info->push_back(0x7C);
1457
1458  // Return address register (R8).
1459  cfi_info->push_back(0x08);
1460
1461  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1462  cfi_info->push_back(0x0C);
1463  cfi_info->push_back(0x04);
1464  cfi_info->push_back(0x04);
1465
1466  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1467  cfi_info->push_back(0x2 << 6 | 0x08);
1468  cfi_info->push_back(0x01);
1469
1470  // And 2 Noops to align to 4 byte boundary.
1471  cfi_info->push_back(0x0);
1472  cfi_info->push_back(0x0);
1473
1474  DCHECK_EQ(cfi_info->size() & 3, 0U);
1475  return cfi_info;
1476}
1477
1478static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1479  uint8_t buffer[12];
1480  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1481  for (uint8_t *p = buffer; p < ptr; p++) {
1482    buf.push_back(*p);
1483  }
1484}
1485
1486std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1487  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1488
1489  // Generate the FDE for the method.
1490  DCHECK_NE(data_offset_, 0U);
1491
1492  // Length (will be filled in later in this routine).
1493  PushWord(*cfi_info, 0);
1494
1495  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1496  // one CIE for the whole debug_frame section.
1497  PushWord(*cfi_info, 0);
1498
1499  // 'initial_location' (filled in by linker).
1500  PushWord(*cfi_info, 0);
1501
1502  // 'address_range' (number of bytes in the method).
1503  PushWord(*cfi_info, data_offset_);
1504
1505  // The instructions in the FDE.
1506  if (stack_decrement_ != nullptr) {
1507    // Advance LOC to just past the stack decrement.
1508    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1509    AdvanceLoc(*cfi_info, pc);
1510
1511    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1512    cfi_info->push_back(0x0e);
1513    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1514
1515    // We continue with that stack until the epilogue.
1516    if (stack_increment_ != nullptr) {
1517      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1518      AdvanceLoc(*cfi_info, new_pc - pc);
1519
1520      // We probably have code snippets after the epilogue, so save the
1521      // current state: DW_CFA_remember_state.
1522      cfi_info->push_back(0x0a);
1523
1524      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1525      // PC on the stack now.
1526      cfi_info->push_back(0x0e);
1527      EncodeUnsignedLeb128(*cfi_info, 4);
1528
1529      // Everything after that is the same as before the epilogue.
1530      // Stack bump was followed by RET instruction.
1531      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1532      if (post_ret_insn != nullptr) {
1533        pc = new_pc;
1534        new_pc = post_ret_insn->offset;
1535        AdvanceLoc(*cfi_info, new_pc - pc);
1536        // Restore the state: DW_CFA_restore_state.
1537        cfi_info->push_back(0x0b);
1538      }
1539    }
1540  }
1541
1542  // Padding to a multiple of 4
1543  while ((cfi_info->size() & 3) != 0) {
1544    // DW_CFA_nop is encoded as 0.
1545    cfi_info->push_back(0);
1546  }
1547
1548  // Set the length of the FDE inside the generated bytes.
1549  uint32_t length = cfi_info->size() - 4;
1550  (*cfi_info)[0] = length;
1551  (*cfi_info)[1] = length >> 8;
1552  (*cfi_info)[2] = length >> 16;
1553  (*cfi_info)[3] = length >> 24;
1554  return cfi_info;
1555}
1556
1557void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1558  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1559    case kMirOpReserveVectorRegisters:
1560      ReserveVectorRegisters(mir);
1561      break;
1562    case kMirOpReturnVectorRegisters:
1563      ReturnVectorRegisters();
1564      break;
1565    case kMirOpConstVector:
1566      GenConst128(bb, mir);
1567      break;
1568    case kMirOpMoveVector:
1569      GenMoveVector(bb, mir);
1570      break;
1571    case kMirOpPackedMultiply:
1572      GenMultiplyVector(bb, mir);
1573      break;
1574    case kMirOpPackedAddition:
1575      GenAddVector(bb, mir);
1576      break;
1577    case kMirOpPackedSubtract:
1578      GenSubtractVector(bb, mir);
1579      break;
1580    case kMirOpPackedShiftLeft:
1581      GenShiftLeftVector(bb, mir);
1582      break;
1583    case kMirOpPackedSignedShiftRight:
1584      GenSignedShiftRightVector(bb, mir);
1585      break;
1586    case kMirOpPackedUnsignedShiftRight:
1587      GenUnsignedShiftRightVector(bb, mir);
1588      break;
1589    case kMirOpPackedAnd:
1590      GenAndVector(bb, mir);
1591      break;
1592    case kMirOpPackedOr:
1593      GenOrVector(bb, mir);
1594      break;
1595    case kMirOpPackedXor:
1596      GenXorVector(bb, mir);
1597      break;
1598    case kMirOpPackedAddReduce:
1599      GenAddReduceVector(bb, mir);
1600      break;
1601    case kMirOpPackedReduce:
1602      GenReduceVector(bb, mir);
1603      break;
1604    case kMirOpPackedSet:
1605      GenSetVector(bb, mir);
1606      break;
1607    default:
1608      break;
1609  }
1610}
1611
1612void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) {
1613  // We should not try to reserve twice without returning the registers
1614  DCHECK_NE(num_reserved_vector_regs_, -1);
1615
1616  int num_vector_reg = mir->dalvikInsn.vA;
1617  for (int i = 0; i < num_vector_reg; i++) {
1618    RegStorage xp_reg = RegStorage::Solo128(i);
1619    RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1620    Clobber(xp_reg);
1621
1622    for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1623                       info != nullptr;
1624                       info = info->GetAliasChain()) {
1625      if (info->GetReg().IsSingle()) {
1626        reg_pool_->sp_regs_.Delete(info);
1627      } else {
1628        reg_pool_->dp_regs_.Delete(info);
1629      }
1630    }
1631  }
1632
1633  num_reserved_vector_regs_ = num_vector_reg;
1634}
1635
1636void X86Mir2Lir::ReturnVectorRegisters() {
1637  // Return all the reserved registers
1638  for (int i = 0; i < num_reserved_vector_regs_; i++) {
1639    RegStorage xp_reg = RegStorage::Solo128(i);
1640    RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1641
1642    for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1643                       info != nullptr;
1644                       info = info->GetAliasChain()) {
1645      if (info->GetReg().IsSingle()) {
1646        reg_pool_->sp_regs_.Insert(info);
1647      } else {
1648        reg_pool_->dp_regs_.Insert(info);
1649      }
1650    }
1651  }
1652
1653  // We don't have anymore reserved vector registers
1654  num_reserved_vector_regs_ = -1;
1655}
1656
1657void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1658  store_method_addr_used_ = true;
1659  int type_size = mir->dalvikInsn.vB;
1660  // We support 128 bit vectors.
1661  DCHECK_EQ(type_size & 0xFFFF, 128);
1662  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1663  uint32_t *args = mir->dalvikInsn.arg;
1664  int reg = rs_dest.GetReg();
1665  // Check for all 0 case.
1666  if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1667    NewLIR2(kX86XorpsRR, reg, reg);
1668    return;
1669  }
1670
1671  // Append the mov const vector to reg opcode.
1672  AppendOpcodeWithConst(kX86MovupsRM, reg, mir);
1673}
1674
1675void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) {
1676  // Okay, load it from the constant vector area.
1677  LIR *data_target = ScanVectorLiteral(mir);
1678  if (data_target == nullptr) {
1679    data_target = AddVectorLiteral(mir);
1680  }
1681
1682  // Address the start of the method.
1683  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1684  if (rl_method.wide) {
1685    rl_method = LoadValueWide(rl_method, kCoreReg);
1686  } else {
1687    rl_method = LoadValue(rl_method, kCoreReg);
1688  }
1689
1690  // Load the proper value from the literal area.
1691  // We don't know the proper offset for the value, so pick one that will force
1692  // 4 byte offset.  We will fix this up in the assembler later to have the right
1693  // value.
1694  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1695  LIR *load = NewLIR2(opcode, reg, rl_method.reg.GetReg());
1696  load->flags.fixup = kFixupLoad;
1697  load->target = data_target;
1698}
1699
1700void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1701  // We only support 128 bit registers.
1702  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1703  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1704  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1705  NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1706}
1707
1708void X86Mir2Lir::GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir) {
1709  const int BYTE_SIZE = 8;
1710  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1711  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1712  RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempWide());
1713
1714  /*
1715   * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM
1716   * and multiplying 8 at a time before recombining back into one XMM register.
1717   *
1718   *   let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes)
1719   *       xmm3 is tmp             (operate on high bits of 16bit lanes)
1720   *
1721   *    xmm3 = xmm1
1722   *    xmm1 = xmm1 .* xmm2
1723   *    xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff  // xmm1 now has low bits
1724   *    xmm3 = xmm3 .>> 8
1725   *    xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00
1726   *    xmm2 = xmm2 .* xmm3                               // xmm2 now has high bits
1727   *    xmm1 = xmm1 | xmm2                                // combine results
1728   */
1729
1730  // Copy xmm1.
1731  NewLIR2(kX86Mova128RR, rs_src1_high_tmp.GetReg(), rs_dest_src1.GetReg());
1732
1733  // Multiply low bits.
1734  NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1735
1736  // xmm1 now has low bits.
1737  AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
1738
1739  // Prepare high bits for multiplication.
1740  NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), BYTE_SIZE);
1741  AndMaskVectorRegister(rs_src2, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1742
1743  // Multiply high bits and xmm2 now has high bits.
1744  NewLIR2(kX86PmullwRR, rs_src2.GetReg(), rs_src1_high_tmp.GetReg());
1745
1746  // Combine back into dest XMM register.
1747  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1748}
1749
1750void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1751  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1752  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1753  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1754  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1755  int opcode = 0;
1756  switch (opsize) {
1757    case k32:
1758      opcode = kX86PmulldRR;
1759      break;
1760    case kSignedHalf:
1761      opcode = kX86PmullwRR;
1762      break;
1763    case kSingle:
1764      opcode = kX86MulpsRR;
1765      break;
1766    case kDouble:
1767      opcode = kX86MulpdRR;
1768      break;
1769    case kSignedByte:
1770      // HW doesn't support 16x16 byte multiplication so emulate it.
1771      GenMultiplyVectorSignedByte(bb, mir);
1772      return;
1773    default:
1774      LOG(FATAL) << "Unsupported vector multiply " << opsize;
1775      break;
1776  }
1777  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1778}
1779
1780void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1781  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1782  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1783  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1784  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1785  int opcode = 0;
1786  switch (opsize) {
1787    case k32:
1788      opcode = kX86PadddRR;
1789      break;
1790    case kSignedHalf:
1791    case kUnsignedHalf:
1792      opcode = kX86PaddwRR;
1793      break;
1794    case kUnsignedByte:
1795    case kSignedByte:
1796      opcode = kX86PaddbRR;
1797      break;
1798    case kSingle:
1799      opcode = kX86AddpsRR;
1800      break;
1801    case kDouble:
1802      opcode = kX86AddpdRR;
1803      break;
1804    default:
1805      LOG(FATAL) << "Unsupported vector addition " << opsize;
1806      break;
1807  }
1808  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1809}
1810
1811void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1812  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1813  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1814  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1815  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1816  int opcode = 0;
1817  switch (opsize) {
1818    case k32:
1819      opcode = kX86PsubdRR;
1820      break;
1821    case kSignedHalf:
1822    case kUnsignedHalf:
1823      opcode = kX86PsubwRR;
1824      break;
1825    case kUnsignedByte:
1826    case kSignedByte:
1827      opcode = kX86PsubbRR;
1828      break;
1829    case kSingle:
1830      opcode = kX86SubpsRR;
1831      break;
1832    case kDouble:
1833      opcode = kX86SubpdRR;
1834      break;
1835    default:
1836      LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1837      break;
1838  }
1839  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1840}
1841
1842void X86Mir2Lir::GenShiftByteVector(BasicBlock *bb, MIR *mir) {
1843  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1844  RegStorage rs_tmp = Get128BitRegister(AllocTempWide());
1845
1846  int opcode = 0;
1847  int imm = mir->dalvikInsn.vB;
1848
1849  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1850    case kMirOpPackedShiftLeft:
1851      opcode = kX86PsllwRI;
1852      break;
1853    case kMirOpPackedSignedShiftRight:
1854      opcode = kX86PsrawRI;
1855      break;
1856    case kMirOpPackedUnsignedShiftRight:
1857      opcode = kX86PsrlwRI;
1858      break;
1859    default:
1860      LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode;
1861      break;
1862  }
1863
1864  /*
1865   * xmm1 will have low bits
1866   * xmm2 will have high bits
1867   *
1868   * xmm2 = xmm1
1869   * xmm1 = xmm1 .<< N
1870   * xmm2 = xmm2 && 0xFF00FF00FF00FF00FF00FF00FF00FF00
1871   * xmm2 = xmm2 .<< N
1872   * xmm1 = xmm1 | xmm2
1873   */
1874
1875  // Copy xmm1.
1876  NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_dest_src1.GetReg());
1877
1878  // Shift lower values.
1879  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1880
1881  // Mask bottom bits.
1882  AndMaskVectorRegister(rs_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1883
1884  // Shift higher values.
1885  NewLIR2(opcode, rs_tmp.GetReg(), imm);
1886
1887  // Combine back into dest XMM register.
1888  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_tmp.GetReg());
1889}
1890
1891void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1892  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1893  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1894  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1895  int imm = mir->dalvikInsn.vB;
1896  int opcode = 0;
1897  switch (opsize) {
1898    case k32:
1899      opcode = kX86PslldRI;
1900      break;
1901    case k64:
1902      opcode = kX86PsllqRI;
1903      break;
1904    case kSignedHalf:
1905    case kUnsignedHalf:
1906      opcode = kX86PsllwRI;
1907      break;
1908    case kSignedByte:
1909    case kUnsignedByte:
1910      GenShiftByteVector(bb, mir);
1911      return;
1912    default:
1913      LOG(FATAL) << "Unsupported vector shift left " << opsize;
1914      break;
1915  }
1916  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1917}
1918
1919void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1920  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1921  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1922  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1923  int imm = mir->dalvikInsn.vB;
1924  int opcode = 0;
1925  switch (opsize) {
1926    case k32:
1927      opcode = kX86PsradRI;
1928      break;
1929    case kSignedHalf:
1930    case kUnsignedHalf:
1931      opcode = kX86PsrawRI;
1932      break;
1933    case kSignedByte:
1934    case kUnsignedByte:
1935      GenShiftByteVector(bb, mir);
1936      return;
1937    default:
1938      LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1939      break;
1940  }
1941  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1942}
1943
1944void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1945  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1946  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1947  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1948  int imm = mir->dalvikInsn.vB;
1949  int opcode = 0;
1950  switch (opsize) {
1951    case k32:
1952      opcode = kX86PsrldRI;
1953      break;
1954    case k64:
1955      opcode = kX86PsrlqRI;
1956      break;
1957    case kSignedHalf:
1958    case kUnsignedHalf:
1959      opcode = kX86PsrlwRI;
1960      break;
1961    case kSignedByte:
1962    case kUnsignedByte:
1963      GenShiftByteVector(bb, mir);
1964      return;
1965    default:
1966      LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1967      break;
1968  }
1969  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1970}
1971
1972void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1973  // We only support 128 bit registers.
1974  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1975  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1976  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1977  NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1978}
1979
1980void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1981  // We only support 128 bit registers.
1982  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1983  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1984  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1985  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1986}
1987
1988void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1989  // We only support 128 bit registers.
1990  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1991  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1992  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1993  NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1994}
1995
1996void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) {
1997  MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4);
1998}
1999
2000void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) {
2001  // Create temporary MIR as container for 128-bit binary mask.
2002  MIR const_mir;
2003  MIR* const_mirp = &const_mir;
2004  const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector);
2005  const_mirp->dalvikInsn.arg[0] = m0;
2006  const_mirp->dalvikInsn.arg[1] = m1;
2007  const_mirp->dalvikInsn.arg[2] = m2;
2008  const_mirp->dalvikInsn.arg[3] = m3;
2009
2010  // Mask vector with const from literal pool.
2011  AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp);
2012}
2013
2014void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
2015  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2016  RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2017  RegLocation rl_dest = mir_graph_->GetDest(mir);
2018  RegStorage rs_tmp;
2019
2020  int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8;
2021  int vec_unit_size = 0;
2022  int opcode = 0;
2023  int extr_opcode = 0;
2024  RegLocation rl_result;
2025
2026  switch (opsize) {
2027    case k32:
2028      extr_opcode = kX86PextrdRRI;
2029      opcode = kX86PhadddRR;
2030      vec_unit_size = 4;
2031      break;
2032    case kSignedByte:
2033    case kUnsignedByte:
2034      extr_opcode = kX86PextrbRRI;
2035      opcode = kX86PhaddwRR;
2036      vec_unit_size = 2;
2037      break;
2038    case kSignedHalf:
2039    case kUnsignedHalf:
2040      extr_opcode = kX86PextrwRRI;
2041      opcode = kX86PhaddwRR;
2042      vec_unit_size = 2;
2043      break;
2044    case kSingle:
2045      rl_result = EvalLoc(rl_dest, kFPReg, true);
2046      vec_unit_size = 4;
2047      for (int i = 0; i < 3; i++) {
2048        NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2049        NewLIR3(kX86ShufpsRRI, rs_src1.GetReg(), rs_src1.GetReg(), 0x39);
2050      }
2051      NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2052      StoreValue(rl_dest, rl_result);
2053
2054      // For single-precision floats, we are done here
2055      return;
2056    default:
2057      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2058      break;
2059  }
2060
2061  int elems = vec_bytes / vec_unit_size;
2062
2063  // Emulate horizontal add instruction by reducing 2 vectors with 8 values before adding them again
2064  // TODO is overflow handled correctly?
2065  if (opsize == kSignedByte || opsize == kUnsignedByte) {
2066    rs_tmp = Get128BitRegister(AllocTempWide());
2067
2068    // tmp = xmm1 .>> 8.
2069    NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_src1.GetReg());
2070    NewLIR2(kX86PsrlwRI, rs_tmp.GetReg(), 8);
2071
2072    // Zero extend low bits in xmm1.
2073    AndMaskVectorRegister(rs_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
2074  }
2075
2076  while (elems > 1) {
2077    if (opsize == kSignedByte || opsize == kUnsignedByte) {
2078      NewLIR2(opcode, rs_tmp.GetReg(), rs_tmp.GetReg());
2079    }
2080    NewLIR2(opcode, rs_src1.GetReg(), rs_src1.GetReg());
2081    elems >>= 1;
2082  }
2083
2084  // Combine the results if we separated them.
2085  if (opsize == kSignedByte || opsize == kUnsignedByte) {
2086    NewLIR2(kX86PaddbRR, rs_src1.GetReg(), rs_tmp.GetReg());
2087  }
2088
2089  // We need to extract to a GPR.
2090  RegStorage temp = AllocTemp();
2091  NewLIR3(extr_opcode, temp.GetReg(), rs_src1.GetReg(), 0);
2092
2093  // Can we do this directly into memory?
2094  rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2095  if (rl_result.location == kLocPhysReg) {
2096    // Ensure res is in a core reg
2097    rl_result = EvalLoc(rl_dest, kCoreReg, true);
2098    OpRegReg(kOpAdd, rl_result.reg, temp);
2099    StoreFinalValue(rl_dest, rl_result);
2100  } else {
2101    OpMemReg(kOpAdd, rl_result, temp.GetReg());
2102  }
2103
2104  FreeTemp(temp);
2105}
2106
2107void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
2108  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2109  RegLocation rl_dest = mir_graph_->GetDest(mir);
2110  RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2111  int extract_index = mir->dalvikInsn.arg[0];
2112  int extr_opcode = 0;
2113  RegLocation rl_result;
2114  bool is_wide = false;
2115
2116  switch (opsize) {
2117    case k32:
2118      rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2119      extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdMRI : kX86PextrdRRI;
2120      break;
2121    case kSignedHalf:
2122    case kUnsignedHalf:
2123      rl_result= UpdateLocTyped(rl_dest, kCoreReg);
2124      extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwMRI : kX86PextrwRRI;
2125      break;
2126    default:
2127      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2128      return;
2129      break;
2130  }
2131
2132  if (rl_result.location == kLocPhysReg) {
2133    NewLIR3(extr_opcode, rl_result.reg.GetReg(), rs_src1.GetReg(), extract_index);
2134    if (is_wide == true) {
2135      StoreFinalValue(rl_dest, rl_result);
2136    } else {
2137      StoreFinalValueWide(rl_dest, rl_result);
2138    }
2139  } else {
2140    int displacement = SRegOffset(rl_result.s_reg_low);
2141    LIR *l = NewLIR3(extr_opcode, rs_rX86_SP.GetReg(), displacement, rs_src1.GetReg());
2142    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is_wide /* is_64bit */);
2143    AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */);
2144  }
2145}
2146
2147void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
2148  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2149  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2150  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
2151  int op_low = 0, op_high = 0, imm = 0, op_mov = kX86MovdxrRR;
2152  RegisterClass reg_type = kCoreReg;
2153
2154  switch (opsize) {
2155    case k32:
2156      op_low = kX86PshufdRRI;
2157      break;
2158    case kSingle:
2159      op_low = kX86PshufdRRI;
2160      op_mov = kX86Mova128RR;
2161      reg_type = kFPReg;
2162      break;
2163    case k64:
2164      op_low = kX86PshufdRRI;
2165      imm = 0x44;
2166      break;
2167    case kDouble:
2168      op_low = kX86PshufdRRI;
2169      op_mov = kX86Mova128RR;
2170      reg_type = kFPReg;
2171      imm = 0x44;
2172      break;
2173    case kSignedByte:
2174    case kUnsignedByte:
2175      // Shuffle 8 bit value into 16 bit word.
2176      // We set val = val + (val << 8) below and use 16 bit shuffle.
2177    case kSignedHalf:
2178    case kUnsignedHalf:
2179      // Handles low quadword.
2180      op_low = kX86PshuflwRRI;
2181      // Handles upper quadword.
2182      op_high = kX86PshufdRRI;
2183      break;
2184    default:
2185      LOG(FATAL) << "Unsupported vector set " << opsize;
2186      break;
2187  }
2188
2189  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
2190
2191  // Load the value from the VR into the reg.
2192  if (rl_src.wide == 0) {
2193    rl_src = LoadValue(rl_src, reg_type);
2194  } else {
2195    rl_src = LoadValueWide(rl_src, reg_type);
2196  }
2197
2198  // If opsize is 8 bits wide then double value and use 16 bit shuffle instead.
2199  if (opsize == kSignedByte || opsize == kUnsignedByte) {
2200    RegStorage temp = AllocTemp();
2201    // val = val + (val << 8).
2202    NewLIR2(kX86Mov32RR, temp.GetReg(), rl_src.reg.GetReg());
2203    NewLIR2(kX86Sal32RI, temp.GetReg(), 8);
2204    NewLIR2(kX86Or32RR, rl_src.reg.GetReg(), temp.GetReg());
2205    FreeTemp(temp);
2206  }
2207
2208  // Load the value into the XMM register.
2209  NewLIR2(op_mov, rs_dest.GetReg(), rl_src.reg.GetReg());
2210
2211  // Now shuffle the value across the destination.
2212  NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2213
2214  // And then repeat as needed.
2215  if (op_high != 0) {
2216    NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2217  }
2218}
2219
2220LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
2221  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2222  for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
2223    if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
2224        args[2] == p->operands[2] && args[3] == p->operands[3]) {
2225      return p;
2226    }
2227  }
2228  return nullptr;
2229}
2230
2231LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
2232  LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
2233  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2234  new_value->operands[0] = args[0];
2235  new_value->operands[1] = args[1];
2236  new_value->operands[2] = args[2];
2237  new_value->operands[3] = args[3];
2238  new_value->next = const_vectors_;
2239  if (const_vectors_ == nullptr) {
2240    estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
2241  }
2242  estimated_native_code_size_ += 16;  // Space for one vector.
2243  const_vectors_ = new_value;
2244  return new_value;
2245}
2246
2247// ------------ ABI support: mapping of args to physical registers -------------
2248RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide,
2249                                                              bool is_ref) {
2250  const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
2251  const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) /
2252      sizeof(SpecialTargetRegister);
2253  const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
2254                                                             kFArg4, kFArg5, kFArg6, kFArg7};
2255  const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) /
2256      sizeof(SpecialTargetRegister);
2257
2258  if (is_double_or_float) {
2259    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
2260      return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide ? kWide : kNotWide);
2261    }
2262  } else {
2263    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
2264      return ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
2265                            is_ref ? kRef : (is_wide ? kWide : kNotWide));
2266    }
2267  }
2268  return RegStorage::InvalidReg();
2269}
2270
2271RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
2272  DCHECK(IsInitialized());
2273  auto res = mapping_.find(in_position);
2274  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
2275}
2276
2277void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count,
2278                                                   InToRegStorageMapper* mapper) {
2279  DCHECK(mapper != nullptr);
2280  max_mapped_in_ = -1;
2281  is_there_stack_mapped_ = false;
2282  for (int in_position = 0; in_position < count; in_position++) {
2283     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
2284             arg_locs[in_position].wide, arg_locs[in_position].ref);
2285     if (reg.Valid()) {
2286       mapping_[in_position] = reg;
2287       max_mapped_in_ = std::max(max_mapped_in_, in_position);
2288       if (arg_locs[in_position].wide) {
2289         // We covered 2 args, so skip the next one
2290         in_position++;
2291       }
2292     } else {
2293       is_there_stack_mapped_ = true;
2294     }
2295  }
2296  initialized_ = true;
2297}
2298
2299RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
2300  if (!cu_->target64) {
2301    return GetCoreArgMappingToPhysicalReg(arg_num);
2302  }
2303
2304  if (!in_to_reg_storage_mapping_.IsInitialized()) {
2305    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2306    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
2307
2308    InToRegStorageX86_64Mapper mapper(this);
2309    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
2310  }
2311  return in_to_reg_storage_mapping_.Get(arg_num);
2312}
2313
2314RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
2315  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
2316  // Not used for 64-bit, TODO: Move X86_32 to the same framework
2317  switch (core_arg_num) {
2318    case 0:
2319      return rs_rX86_ARG1;
2320    case 1:
2321      return rs_rX86_ARG2;
2322    case 2:
2323      return rs_rX86_ARG3;
2324    default:
2325      return RegStorage::InvalidReg();
2326  }
2327}
2328
2329// ---------End of ABI support: mapping of args to physical registers -------------
2330
2331/*
2332 * If there are any ins passed in registers that have not been promoted
2333 * to a callee-save register, flush them to the frame.  Perform initial
2334 * assignment of promoted arguments.
2335 *
2336 * ArgLocs is an array of location records describing the incoming arguments
2337 * with one location record per word of argument.
2338 */
2339void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
2340  if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
2341  /*
2342   * Dummy up a RegLocation for the incoming Method*
2343   * It will attempt to keep kArg0 live (or copy it to home location
2344   * if promoted).
2345   */
2346
2347  RegLocation rl_src = rl_method;
2348  rl_src.location = kLocPhysReg;
2349  rl_src.reg = TargetReg(kArg0, kRef);
2350  rl_src.home = false;
2351  MarkLive(rl_src);
2352  StoreValue(rl_method, rl_src);
2353  // If Method* has been promoted, explicitly flush
2354  if (rl_method.location == kLocPhysReg) {
2355    StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetReg(kArg0, kRef)), kNotVolatile);
2356  }
2357
2358  if (cu_->num_ins == 0) {
2359    return;
2360  }
2361
2362  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2363  /*
2364   * Copy incoming arguments to their proper home locations.
2365   * NOTE: an older version of dx had an issue in which
2366   * it would reuse static method argument registers.
2367   * This could result in the same Dalvik virtual register
2368   * being promoted to both core and fp regs. To account for this,
2369   * we only copy to the corresponding promoted physical register
2370   * if it matches the type of the SSA name for the incoming
2371   * argument.  It is also possible that long and double arguments
2372   * end up half-promoted.  In those cases, we must flush the promoted
2373   * half to memory as well.
2374   */
2375  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2376  for (int i = 0; i < cu_->num_ins; i++) {
2377    // get reg corresponding to input
2378    RegStorage reg = GetArgMappingToPhysicalReg(i);
2379
2380    RegLocation* t_loc = &ArgLocs[i];
2381    if (reg.Valid()) {
2382      // If arriving in register.
2383
2384      // We have already updated the arg location with promoted info
2385      // so we can be based on it.
2386      if (t_loc->location == kLocPhysReg) {
2387        // Just copy it.
2388        OpRegCopy(t_loc->reg, reg);
2389      } else {
2390        // Needs flush.
2391        if (t_loc->ref) {
2392          StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile);
2393        } else {
2394          StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
2395                        kNotVolatile);
2396        }
2397      }
2398    } else {
2399      // If arriving in frame & promoted.
2400      if (t_loc->location == kLocPhysReg) {
2401        if (t_loc->ref) {
2402          LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
2403        } else {
2404          LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg,
2405                       t_loc->wide ? k64 : k32, kNotVolatile);
2406        }
2407      }
2408    }
2409    if (t_loc->wide) {
2410      // Increment i to skip the next one.
2411      i++;
2412    }
2413  }
2414}
2415
2416/*
2417 * Load up to 5 arguments, the first three of which will be in
2418 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
2419 * and as part of the load sequence, it must be replaced with
2420 * the target method pointer.  Note, this may also be called
2421 * for "range" variants if the number of arguments is 5 or fewer.
2422 */
2423int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
2424                                  int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
2425                                  const MethodReference& target_method,
2426                                  uint32_t vtable_idx, uintptr_t direct_code,
2427                                  uintptr_t direct_method, InvokeType type, bool skip_this) {
2428  if (!cu_->target64) {
2429    return Mir2Lir::GenDalvikArgsNoRange(info,
2430                                  call_state, pcrLabel, next_call_insn,
2431                                  target_method,
2432                                  vtable_idx, direct_code,
2433                                  direct_method, type, skip_this);
2434  }
2435  return GenDalvikArgsRange(info,
2436                       call_state, pcrLabel, next_call_insn,
2437                       target_method,
2438                       vtable_idx, direct_code,
2439                       direct_method, type, skip_this);
2440}
2441
2442/*
2443 * May have 0+ arguments (also used for jumbo).  Note that
2444 * source virtual registers may be in physical registers, so may
2445 * need to be flushed to home location before copying.  This
2446 * applies to arg3 and above (see below).
2447 *
2448 * Two general strategies:
2449 *    If < 20 arguments
2450 *       Pass args 3-18 using vldm/vstm block copy
2451 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2452 *    If 20+ arguments
2453 *       Pass args arg19+ using memcpy block copy
2454 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2455 *
2456 */
2457int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
2458                                LIR** pcrLabel, NextCallInsn next_call_insn,
2459                                const MethodReference& target_method,
2460                                uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
2461                                InvokeType type, bool skip_this) {
2462  if (!cu_->target64) {
2463    return Mir2Lir::GenDalvikArgsRange(info, call_state,
2464                                pcrLabel, next_call_insn,
2465                                target_method,
2466                                vtable_idx, direct_code, direct_method,
2467                                type, skip_this);
2468  }
2469
2470  /* If no arguments, just return */
2471  if (info->num_arg_words == 0)
2472    return call_state;
2473
2474  const int start_index = skip_this ? 1 : 0;
2475
2476  InToRegStorageX86_64Mapper mapper(this);
2477  InToRegStorageMapping in_to_reg_storage_mapping;
2478  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
2479  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
2480  const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2481          in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
2482  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2483
2484  // Fisrt of all, check whether it make sense to use bulk copying
2485  // Optimization is aplicable only for range case
2486  // TODO: make a constant instead of 2
2487  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2488    // Scan the rest of the args - if in phys_reg flush to memory
2489    for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2490      RegLocation loc = info->args[next_arg];
2491      if (loc.wide) {
2492        loc = UpdateLocWide(loc);
2493        if (loc.location == kLocPhysReg) {
2494          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2495          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
2496        }
2497        next_arg += 2;
2498      } else {
2499        loc = UpdateLoc(loc);
2500        if (loc.location == kLocPhysReg) {
2501          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2502          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
2503        }
2504        next_arg++;
2505      }
2506    }
2507
2508    // Logic below assumes that Method pointer is at offset zero from SP.
2509    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2510
2511    // The rest can be copied together
2512    int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2513    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped,
2514                                                   cu_->instruction_set);
2515
2516    int current_src_offset = start_offset;
2517    int current_dest_offset = outs_offset;
2518
2519    // Only davik regs are accessed in this loop; no next_call_insn() calls.
2520    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2521    while (regs_left_to_pass_via_stack > 0) {
2522      // This is based on the knowledge that the stack itself is 16-byte aligned.
2523      bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2524      bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2525      size_t bytes_to_move;
2526
2527      /*
2528       * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2529       * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2530       * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2531       * We do this because we could potentially do a smaller move to align.
2532       */
2533      if (regs_left_to_pass_via_stack == 4 ||
2534          (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2535        // Moving 128-bits via xmm register.
2536        bytes_to_move = sizeof(uint32_t) * 4;
2537
2538        // Allocate a free xmm temp. Since we are working through the calling sequence,
2539        // we expect to have an xmm temporary available.  AllocTempDouble will abort if
2540        // there are no free registers.
2541        RegStorage temp = AllocTempDouble();
2542
2543        LIR* ld1 = nullptr;
2544        LIR* ld2 = nullptr;
2545        LIR* st1 = nullptr;
2546        LIR* st2 = nullptr;
2547
2548        /*
2549         * The logic is similar for both loads and stores. If we have 16-byte alignment,
2550         * do an aligned move. If we have 8-byte alignment, then do the move in two
2551         * parts. This approach prevents possible cache line splits. Finally, fall back
2552         * to doing an unaligned move. In most cases we likely won't split the cache
2553         * line but we cannot prove it and thus take a conservative approach.
2554         */
2555        bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2556        bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2557
2558        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2559        if (src_is_16b_aligned) {
2560          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP);
2561        } else if (src_is_8b_aligned) {
2562          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP);
2563          ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1),
2564                            kMovHi128FP);
2565        } else {
2566          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP);
2567        }
2568
2569        if (dest_is_16b_aligned) {
2570          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP);
2571        } else if (dest_is_8b_aligned) {
2572          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP);
2573          st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1),
2574                            temp, kMovHi128FP);
2575        } else {
2576          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP);
2577        }
2578
2579        // TODO If we could keep track of aliasing information for memory accesses that are wider
2580        // than 64-bit, we wouldn't need to set up a barrier.
2581        if (ld1 != nullptr) {
2582          if (ld2 != nullptr) {
2583            // For 64-bit load we can actually set up the aliasing information.
2584            AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2585            AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2586          } else {
2587            // Set barrier for 128-bit load.
2588            ld1->u.m.def_mask = &kEncodeAll;
2589          }
2590        }
2591        if (st1 != nullptr) {
2592          if (st2 != nullptr) {
2593            // For 64-bit store we can actually set up the aliasing information.
2594            AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2595            AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2596          } else {
2597            // Set barrier for 128-bit store.
2598            st1->u.m.def_mask = &kEncodeAll;
2599          }
2600        }
2601
2602        // Free the temporary used for the data movement.
2603        FreeTemp(temp);
2604      } else {
2605        // Moving 32-bits via general purpose register.
2606        bytes_to_move = sizeof(uint32_t);
2607
2608        // Instead of allocating a new temp, simply reuse one of the registers being used
2609        // for argument passing.
2610        RegStorage temp = TargetReg(kArg3, kNotWide);
2611
2612        // Now load the argument VR and store to the outs.
2613        Load32Disp(rs_rX86_SP, current_src_offset, temp);
2614        Store32Disp(rs_rX86_SP, current_dest_offset, temp);
2615      }
2616
2617      current_src_offset += bytes_to_move;
2618      current_dest_offset += bytes_to_move;
2619      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2620    }
2621    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2622  }
2623
2624  // Now handle rest not registers if they are
2625  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2626    RegStorage regSingle = TargetReg(kArg2, kNotWide);
2627    RegStorage regWide = TargetReg(kArg3, kWide);
2628    for (int i = start_index;
2629         i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2630      RegLocation rl_arg = info->args[i];
2631      rl_arg = UpdateRawLoc(rl_arg);
2632      RegStorage reg = in_to_reg_storage_mapping.Get(i);
2633      if (!reg.Valid()) {
2634        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2635
2636        {
2637          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2638          if (rl_arg.wide) {
2639            if (rl_arg.location == kLocPhysReg) {
2640              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile);
2641            } else {
2642              LoadValueDirectWideFixed(rl_arg, regWide);
2643              StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile);
2644            }
2645          } else {
2646            if (rl_arg.location == kLocPhysReg) {
2647              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile);
2648            } else {
2649              LoadValueDirectFixed(rl_arg, regSingle);
2650              StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile);
2651            }
2652          }
2653        }
2654        call_state = next_call_insn(cu_, info, call_state, target_method,
2655                                    vtable_idx, direct_code, direct_method, type);
2656      }
2657      if (rl_arg.wide) {
2658        i++;
2659      }
2660    }
2661  }
2662
2663  // Finish with mapped registers
2664  for (int i = start_index; i <= last_mapped_in; i++) {
2665    RegLocation rl_arg = info->args[i];
2666    rl_arg = UpdateRawLoc(rl_arg);
2667    RegStorage reg = in_to_reg_storage_mapping.Get(i);
2668    if (reg.Valid()) {
2669      if (rl_arg.wide) {
2670        LoadValueDirectWideFixed(rl_arg, reg);
2671      } else {
2672        LoadValueDirectFixed(rl_arg, reg);
2673      }
2674      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2675                               direct_code, direct_method, type);
2676    }
2677    if (rl_arg.wide) {
2678      i++;
2679    }
2680  }
2681
2682  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2683                           direct_code, direct_method, type);
2684  if (pcrLabel) {
2685    if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
2686      *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
2687    } else {
2688      *pcrLabel = nullptr;
2689      // In lieu of generating a check for kArg1 being null, we need to
2690      // perform a load when doing implicit checks.
2691      RegStorage tmp = AllocTemp();
2692      Load32Disp(TargetReg(kArg1, kRef), 0, tmp);
2693      MarkPossibleNullPointerException(info->opt_flags);
2694      FreeTemp(tmp);
2695    }
2696  }
2697  return call_state;
2698}
2699
2700}  // namespace art
2701