target_x86.cc revision db7239ccce7748f2b494fb3b91c128b37019a093
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "dex/reg_storage_eq.h"
24#include "mirror/array.h"
25#include "mirror/string.h"
26#include "x86_lir.h"
27
28namespace art {
29
30static constexpr RegStorage core_regs_arr_32[] = {
31    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32};
33static constexpr RegStorage core_regs_arr_64[] = {
34    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
35    rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36};
37static constexpr RegStorage core_regs_arr_64q[] = {
38    rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
39    rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
40};
41static constexpr RegStorage sp_regs_arr_32[] = {
42    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43};
44static constexpr RegStorage sp_regs_arr_64[] = {
45    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
47};
48static constexpr RegStorage dp_regs_arr_32[] = {
49    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50};
51static constexpr RegStorage dp_regs_arr_64[] = {
52    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
53    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
54};
55static constexpr RegStorage xp_regs_arr_32[] = {
56    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
57};
58static constexpr RegStorage xp_regs_arr_64[] = {
59    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
60    rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
61};
62static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
63static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
64static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
65static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
66static constexpr RegStorage core_temps_arr_64[] = {
67    rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
68    rs_r8, rs_r9, rs_r10, rs_r11
69};
70
71// How to add register to be available for promotion:
72// 1) Remove register from array defining temp
73// 2) Update ClobberCallerSave
74// 3) Update JNI compiler ABI:
75// 3.1) add reg in JniCallingConvention method
76// 3.2) update CoreSpillMask/FpSpillMask
77// 4) Update entrypoints
78// 4.1) Update constants in asm_support_x86_64.h for new frame size
79// 4.2) Remove entry in SmashCallerSaves
80// 4.3) Update jni_entrypoints to spill/unspill new callee save reg
81// 4.4) Update quick_entrypoints to spill/unspill new callee save reg
82// 5) Update runtime ABI
83// 5.1) Update quick_method_frame_info with new required spills
84// 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms
85// Note that you cannot use register corresponding to incoming args
86// according to ABI and QCG needs one additional XMM temp for
87// bulk copy in preparation to call.
88static constexpr RegStorage core_temps_arr_64q[] = {
89    rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
90    rs_r8q, rs_r9q, rs_r10q, rs_r11q
91};
92static constexpr RegStorage sp_temps_arr_32[] = {
93    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
94};
95static constexpr RegStorage sp_temps_arr_64[] = {
96    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
97    rs_fr8, rs_fr9, rs_fr10, rs_fr11
98};
99static constexpr RegStorage dp_temps_arr_32[] = {
100    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
101};
102static constexpr RegStorage dp_temps_arr_64[] = {
103    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
104    rs_dr8, rs_dr9, rs_dr10, rs_dr11
105};
106
107static constexpr RegStorage xp_temps_arr_32[] = {
108    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
109};
110static constexpr RegStorage xp_temps_arr_64[] = {
111    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
112    rs_xr8, rs_xr9, rs_xr10, rs_xr11
113};
114
115static constexpr ArrayRef<const RegStorage> empty_pool;
116static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
117static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
118static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
119static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
120static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
121static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
122static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
123static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32);
124static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64);
125static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
126static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
127static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
128static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
129static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
130static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
131static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
132static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
133static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
134static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
135
136static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
137static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
138
139RegStorage rs_rX86_SP;
140
141X86NativeRegisterPool rX86_ARG0;
142X86NativeRegisterPool rX86_ARG1;
143X86NativeRegisterPool rX86_ARG2;
144X86NativeRegisterPool rX86_ARG3;
145X86NativeRegisterPool rX86_ARG4;
146X86NativeRegisterPool rX86_ARG5;
147X86NativeRegisterPool rX86_FARG0;
148X86NativeRegisterPool rX86_FARG1;
149X86NativeRegisterPool rX86_FARG2;
150X86NativeRegisterPool rX86_FARG3;
151X86NativeRegisterPool rX86_FARG4;
152X86NativeRegisterPool rX86_FARG5;
153X86NativeRegisterPool rX86_FARG6;
154X86NativeRegisterPool rX86_FARG7;
155X86NativeRegisterPool rX86_RET0;
156X86NativeRegisterPool rX86_RET1;
157X86NativeRegisterPool rX86_INVOKE_TGT;
158X86NativeRegisterPool rX86_COUNT;
159
160RegStorage rs_rX86_ARG0;
161RegStorage rs_rX86_ARG1;
162RegStorage rs_rX86_ARG2;
163RegStorage rs_rX86_ARG3;
164RegStorage rs_rX86_ARG4;
165RegStorage rs_rX86_ARG5;
166RegStorage rs_rX86_FARG0;
167RegStorage rs_rX86_FARG1;
168RegStorage rs_rX86_FARG2;
169RegStorage rs_rX86_FARG3;
170RegStorage rs_rX86_FARG4;
171RegStorage rs_rX86_FARG5;
172RegStorage rs_rX86_FARG6;
173RegStorage rs_rX86_FARG7;
174RegStorage rs_rX86_RET0;
175RegStorage rs_rX86_RET1;
176RegStorage rs_rX86_INVOKE_TGT;
177RegStorage rs_rX86_COUNT;
178
179RegLocation X86Mir2Lir::LocCReturn() {
180  return x86_loc_c_return;
181}
182
183RegLocation X86Mir2Lir::LocCReturnRef() {
184  return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
185}
186
187RegLocation X86Mir2Lir::LocCReturnWide() {
188  return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
189}
190
191RegLocation X86Mir2Lir::LocCReturnFloat() {
192  return x86_loc_c_return_float;
193}
194
195RegLocation X86Mir2Lir::LocCReturnDouble() {
196  return x86_loc_c_return_double;
197}
198
199// Return a target-dependent special register for 32-bit.
200RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) {
201  RegStorage res_reg = RegStorage::InvalidReg();
202  switch (reg) {
203    case kSelf: res_reg = RegStorage::InvalidReg(); break;
204    case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
205    case kLr: res_reg =  RegStorage::InvalidReg(); break;
206    case kPc: res_reg =  RegStorage::InvalidReg(); break;
207    case kSp: res_reg =  rs_rX86_SP_32; break;  // This must be the concrete one, as _SP is target-
208                                                // specific size.
209    case kArg0: res_reg = rs_rX86_ARG0; break;
210    case kArg1: res_reg = rs_rX86_ARG1; break;
211    case kArg2: res_reg = rs_rX86_ARG2; break;
212    case kArg3: res_reg = rs_rX86_ARG3; break;
213    case kArg4: res_reg = rs_rX86_ARG4; break;
214    case kArg5: res_reg = rs_rX86_ARG5; break;
215    case kFArg0: res_reg = rs_rX86_FARG0; break;
216    case kFArg1: res_reg = rs_rX86_FARG1; break;
217    case kFArg2: res_reg = rs_rX86_FARG2; break;
218    case kFArg3: res_reg = rs_rX86_FARG3; break;
219    case kFArg4: res_reg = rs_rX86_FARG4; break;
220    case kFArg5: res_reg = rs_rX86_FARG5; break;
221    case kFArg6: res_reg = rs_rX86_FARG6; break;
222    case kFArg7: res_reg = rs_rX86_FARG7; break;
223    case kRet0: res_reg = rs_rX86_RET0; break;
224    case kRet1: res_reg = rs_rX86_RET1; break;
225    case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
226    case kHiddenArg: res_reg = rs_rAX; break;
227    case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
228    case kCount: res_reg = rs_rX86_COUNT; break;
229    default: res_reg = RegStorage::InvalidReg();
230  }
231  return res_reg;
232}
233
234RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
235  LOG(FATAL) << "Do not use this function!!!";
236  return RegStorage::InvalidReg();
237}
238
239/*
240 * Decode the register id.
241 */
242ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
243  /* Double registers in x86 are just a single FP register. This is always just a single bit. */
244  return ResourceMask::Bit(
245      /* FP register starts at bit position 16 */
246      ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
247}
248
249ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
250  return kEncodeNone;
251}
252
253void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
254                                          ResourceMask* use_mask, ResourceMask* def_mask) {
255  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
256  DCHECK(!lir->flags.use_def_invalid);
257
258  // X86-specific resource map setup here.
259  if (flags & REG_USE_SP) {
260    use_mask->SetBit(kX86RegSP);
261  }
262
263  if (flags & REG_DEF_SP) {
264    def_mask->SetBit(kX86RegSP);
265  }
266
267  if (flags & REG_DEFA) {
268    SetupRegMask(def_mask, rs_rAX.GetReg());
269  }
270
271  if (flags & REG_DEFD) {
272    SetupRegMask(def_mask, rs_rDX.GetReg());
273  }
274  if (flags & REG_USEA) {
275    SetupRegMask(use_mask, rs_rAX.GetReg());
276  }
277
278  if (flags & REG_USEC) {
279    SetupRegMask(use_mask, rs_rCX.GetReg());
280  }
281
282  if (flags & REG_USED) {
283    SetupRegMask(use_mask, rs_rDX.GetReg());
284  }
285
286  if (flags & REG_USEB) {
287    SetupRegMask(use_mask, rs_rBX.GetReg());
288  }
289
290  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
291  if (lir->opcode == kX86RepneScasw) {
292    SetupRegMask(use_mask, rs_rAX.GetReg());
293    SetupRegMask(use_mask, rs_rCX.GetReg());
294    SetupRegMask(use_mask, rs_rDI.GetReg());
295    SetupRegMask(def_mask, rs_rDI.GetReg());
296  }
297
298  if (flags & USE_FP_STACK) {
299    use_mask->SetBit(kX86FPStack);
300    def_mask->SetBit(kX86FPStack);
301  }
302}
303
304/* For dumping instructions */
305static const char* x86RegName[] = {
306  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
307  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
308};
309
310static const char* x86CondName[] = {
311  "O",
312  "NO",
313  "B/NAE/C",
314  "NB/AE/NC",
315  "Z/EQ",
316  "NZ/NE",
317  "BE/NA",
318  "NBE/A",
319  "S",
320  "NS",
321  "P/PE",
322  "NP/PO",
323  "L/NGE",
324  "NL/GE",
325  "LE/NG",
326  "NLE/G"
327};
328
329/*
330 * Interpret a format string and build a string no longer than size
331 * See format key in Assemble.cc.
332 */
333std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
334  std::string buf;
335  size_t i = 0;
336  size_t fmt_len = strlen(fmt);
337  while (i < fmt_len) {
338    if (fmt[i] != '!') {
339      buf += fmt[i];
340      i++;
341    } else {
342      i++;
343      DCHECK_LT(i, fmt_len);
344      char operand_number_ch = fmt[i];
345      i++;
346      if (operand_number_ch == '!') {
347        buf += "!";
348      } else {
349        int operand_number = operand_number_ch - '0';
350        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
351        DCHECK_LT(i, fmt_len);
352        int operand = lir->operands[operand_number];
353        switch (fmt[i]) {
354          case 'c':
355            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
356            buf += x86CondName[operand];
357            break;
358          case 'd':
359            buf += StringPrintf("%d", operand);
360            break;
361          case 'q': {
362             int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
363                             static_cast<uint32_t>(lir->operands[operand_number+1]));
364             buf +=StringPrintf("%" PRId64, value);
365          }
366          case 'p': {
367            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
368            buf += StringPrintf("0x%08x", tab_rec->offset);
369            break;
370          }
371          case 'r':
372            if (RegStorage::IsFloat(operand)) {
373              int fp_reg = RegStorage::RegNum(operand);
374              buf += StringPrintf("xmm%d", fp_reg);
375            } else {
376              int reg_num = RegStorage::RegNum(operand);
377              DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
378              buf += x86RegName[reg_num];
379            }
380            break;
381          case 't':
382            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
383                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
384                                lir->target);
385            break;
386          default:
387            buf += StringPrintf("DecodeError '%c'", fmt[i]);
388            break;
389        }
390        i++;
391      }
392    }
393  }
394  return buf;
395}
396
397void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
398  char buf[256];
399  buf[0] = 0;
400
401  if (mask.Equals(kEncodeAll)) {
402    strcpy(buf, "all");
403  } else {
404    char num[8];
405    int i;
406
407    for (i = 0; i < kX86RegEnd; i++) {
408      if (mask.HasBit(i)) {
409        snprintf(num, arraysize(num), "%d ", i);
410        strcat(buf, num);
411      }
412    }
413
414    if (mask.HasBit(ResourceMask::kCCode)) {
415      strcat(buf, "cc ");
416    }
417    /* Memory bits */
418    if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
419      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
420               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
421               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
422    }
423    if (mask.HasBit(ResourceMask::kLiteral)) {
424      strcat(buf, "lit ");
425    }
426
427    if (mask.HasBit(ResourceMask::kHeapRef)) {
428      strcat(buf, "heap ");
429    }
430    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
431      strcat(buf, "noalias ");
432    }
433  }
434  if (buf[0]) {
435    LOG(INFO) << prefix << ": " <<  buf;
436  }
437}
438
439void X86Mir2Lir::AdjustSpillMask() {
440  // Adjustment for LR spilling, x86 has no LR so nothing to do here
441  core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
442  num_core_spills_++;
443}
444
445RegStorage X86Mir2Lir::AllocateByteRegister() {
446  RegStorage reg = AllocTypedTemp(false, kCoreReg);
447  if (!cu_->target64) {
448    DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
449  }
450  return reg;
451}
452
453RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) {
454  return GetRegInfo(reg)->FindMatchingView(RegisterInfo::k128SoloStorageMask)->GetReg();
455}
456
457bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
458  return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
459}
460
461/* Clobber all regs that might be used by an external C call */
462void X86Mir2Lir::ClobberCallerSave() {
463  if (cu_->target64) {
464    Clobber(rs_rAX);
465    Clobber(rs_rCX);
466    Clobber(rs_rDX);
467    Clobber(rs_rSI);
468    Clobber(rs_rDI);
469
470    Clobber(rs_r8);
471    Clobber(rs_r9);
472    Clobber(rs_r10);
473    Clobber(rs_r11);
474
475    Clobber(rs_fr8);
476    Clobber(rs_fr9);
477    Clobber(rs_fr10);
478    Clobber(rs_fr11);
479  } else {
480    Clobber(rs_rAX);
481    Clobber(rs_rCX);
482    Clobber(rs_rDX);
483    Clobber(rs_rBX);
484  }
485
486  Clobber(rs_fr0);
487  Clobber(rs_fr1);
488  Clobber(rs_fr2);
489  Clobber(rs_fr3);
490  Clobber(rs_fr4);
491  Clobber(rs_fr5);
492  Clobber(rs_fr6);
493  Clobber(rs_fr7);
494}
495
496RegLocation X86Mir2Lir::GetReturnWideAlt() {
497  RegLocation res = LocCReturnWide();
498  DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
499  DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
500  Clobber(rs_rAX);
501  Clobber(rs_rDX);
502  MarkInUse(rs_rAX);
503  MarkInUse(rs_rDX);
504  MarkWide(res.reg);
505  return res;
506}
507
508RegLocation X86Mir2Lir::GetReturnAlt() {
509  RegLocation res = LocCReturn();
510  res.reg.SetReg(rs_rDX.GetReg());
511  Clobber(rs_rDX);
512  MarkInUse(rs_rDX);
513  return res;
514}
515
516/* To be used when explicitly managing register use */
517void X86Mir2Lir::LockCallTemps() {
518  LockTemp(rs_rX86_ARG0);
519  LockTemp(rs_rX86_ARG1);
520  LockTemp(rs_rX86_ARG2);
521  LockTemp(rs_rX86_ARG3);
522  if (cu_->target64) {
523    LockTemp(rs_rX86_ARG4);
524    LockTemp(rs_rX86_ARG5);
525    LockTemp(rs_rX86_FARG0);
526    LockTemp(rs_rX86_FARG1);
527    LockTemp(rs_rX86_FARG2);
528    LockTemp(rs_rX86_FARG3);
529    LockTemp(rs_rX86_FARG4);
530    LockTemp(rs_rX86_FARG5);
531    LockTemp(rs_rX86_FARG6);
532    LockTemp(rs_rX86_FARG7);
533  }
534}
535
536/* To be used when explicitly managing register use */
537void X86Mir2Lir::FreeCallTemps() {
538  FreeTemp(rs_rX86_ARG0);
539  FreeTemp(rs_rX86_ARG1);
540  FreeTemp(rs_rX86_ARG2);
541  FreeTemp(rs_rX86_ARG3);
542  if (cu_->target64) {
543    FreeTemp(rs_rX86_ARG4);
544    FreeTemp(rs_rX86_ARG5);
545    FreeTemp(rs_rX86_FARG0);
546    FreeTemp(rs_rX86_FARG1);
547    FreeTemp(rs_rX86_FARG2);
548    FreeTemp(rs_rX86_FARG3);
549    FreeTemp(rs_rX86_FARG4);
550    FreeTemp(rs_rX86_FARG5);
551    FreeTemp(rs_rX86_FARG6);
552    FreeTemp(rs_rX86_FARG7);
553  }
554}
555
556bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
557    switch (opcode) {
558      case kX86LockCmpxchgMR:
559      case kX86LockCmpxchgAR:
560      case kX86LockCmpxchg64M:
561      case kX86LockCmpxchg64A:
562      case kX86XchgMR:
563      case kX86Mfence:
564        // Atomic memory instructions provide full barrier.
565        return true;
566      default:
567        break;
568    }
569
570    // Conservative if cannot prove it provides full barrier.
571    return false;
572}
573
574bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
575#if ANDROID_SMP != 0
576  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
577  LIR* mem_barrier = last_lir_insn_;
578
579  bool ret = false;
580  /*
581   * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
582   * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
583   * For those cases, all we need to ensure is that there is a scheduling barrier in place.
584   */
585  if (barrier_kind == kAnyAny) {
586    // If no LIR exists already that can be used a barrier, then generate an mfence.
587    if (mem_barrier == nullptr) {
588      mem_barrier = NewLIR0(kX86Mfence);
589      ret = true;
590    }
591
592    // If last instruction does not provide full barrier, then insert an mfence.
593    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
594      mem_barrier = NewLIR0(kX86Mfence);
595      ret = true;
596    }
597  }
598
599  // Now ensure that a scheduling barrier is in place.
600  if (mem_barrier == nullptr) {
601    GenBarrier();
602  } else {
603    // Mark as a scheduling barrier.
604    DCHECK(!mem_barrier->flags.use_def_invalid);
605    mem_barrier->u.m.def_mask = &kEncodeAll;
606  }
607  return ret;
608#else
609  return false;
610#endif
611}
612
613void X86Mir2Lir::CompilerInitializeRegAlloc() {
614  if (cu_->target64) {
615    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
616                                          dp_regs_64, reserved_regs_64, reserved_regs_64q,
617                                          core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
618  } else {
619    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
620                                          dp_regs_32, reserved_regs_32, empty_pool,
621                                          core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
622  }
623
624  // Target-specific adjustments.
625
626  // Add in XMM registers.
627  const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32;
628  for (RegStorage reg : *xp_regs) {
629    RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
630    reginfo_map_.Put(reg.GetReg(), info);
631  }
632  const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
633  for (RegStorage reg : *xp_temps) {
634    RegisterInfo* xp_reg_info = GetRegInfo(reg);
635    xp_reg_info->SetIsTemp(true);
636  }
637
638  // Alias single precision xmm to double xmms.
639  // TODO: as needed, add larger vector sizes - alias all to the largest.
640  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
641  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
642    int sp_reg_num = info->GetReg().GetRegNum();
643    RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
644    RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
645    // 128-bit xmm vector register's master storage should refer to itself.
646    DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
647
648    // Redirect 32-bit vector's master storage to 128-bit vector.
649    info->SetMaster(xp_reg_info);
650
651    RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
652    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
653    // Redirect 64-bit vector's master storage to 128-bit vector.
654    dp_reg_info->SetMaster(xp_reg_info);
655    // Singles should show a single 32-bit mask bit, at first referring to the low half.
656    DCHECK_EQ(info->StorageMask(), 0x1U);
657  }
658
659  if (cu_->target64) {
660    // Alias 32bit W registers to corresponding 64bit X registers.
661    GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
662    for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
663      int x_reg_num = info->GetReg().GetRegNum();
664      RegStorage x_reg = RegStorage::Solo64(x_reg_num);
665      RegisterInfo* x_reg_info = GetRegInfo(x_reg);
666      // 64bit X register's master storage should refer to itself.
667      DCHECK_EQ(x_reg_info, x_reg_info->Master());
668      // Redirect 32bit W master storage to 64bit X.
669      info->SetMaster(x_reg_info);
670      // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
671      DCHECK_EQ(info->StorageMask(), 0x1U);
672    }
673  }
674
675  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
676  // TODO: adjust for x86/hard float calling convention.
677  reg_pool_->next_core_reg_ = 2;
678  reg_pool_->next_sp_reg_ = 2;
679  reg_pool_->next_dp_reg_ = 1;
680}
681
682int X86Mir2Lir::VectorRegisterSize() {
683  return 128;
684}
685
686int X86Mir2Lir::NumReservableVectorRegisters(bool fp_used) {
687  return fp_used ? 5 : 7;
688}
689
690void X86Mir2Lir::SpillCoreRegs() {
691  if (num_core_spills_ == 0) {
692    return;
693  }
694  // Spill mask not including fake return address register
695  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
696  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
697  OpSize size = cu_->target64 ? k64 : k32;
698  for (int reg = 0; mask; mask >>= 1, reg++) {
699    if (mask & 0x1) {
700      StoreBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) :  RegStorage::Solo32(reg),
701                   size, kNotVolatile);
702      offset += GetInstructionSetPointerSize(cu_->instruction_set);
703    }
704  }
705}
706
707void X86Mir2Lir::UnSpillCoreRegs() {
708  if (num_core_spills_ == 0) {
709    return;
710  }
711  // Spill mask not including fake return address register
712  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
713  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
714  OpSize size = cu_->target64 ? k64 : k32;
715  for (int reg = 0; mask; mask >>= 1, reg++) {
716    if (mask & 0x1) {
717      LoadBaseDisp(rs_rX86_SP, offset, cu_->target64 ? RegStorage::Solo64(reg) :  RegStorage::Solo32(reg),
718                   size, kNotVolatile);
719      offset += GetInstructionSetPointerSize(cu_->instruction_set);
720    }
721  }
722}
723
724void X86Mir2Lir::SpillFPRegs() {
725  if (num_fp_spills_ == 0) {
726    return;
727  }
728  uint32_t mask = fp_spill_mask_;
729  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
730  for (int reg = 0; mask; mask >>= 1, reg++) {
731    if (mask & 0x1) {
732      StoreBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
733                   k64, kNotVolatile);
734      offset += sizeof(double);
735    }
736  }
737}
738void X86Mir2Lir::UnSpillFPRegs() {
739  if (num_fp_spills_ == 0) {
740    return;
741  }
742  uint32_t mask = fp_spill_mask_;
743  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
744  for (int reg = 0; mask; mask >>= 1, reg++) {
745    if (mask & 0x1) {
746      LoadBaseDisp(rs_rX86_SP, offset, RegStorage::FloatSolo64(reg),
747                   k64, kNotVolatile);
748      offset += sizeof(double);
749    }
750  }
751}
752
753
754bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
755  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
756}
757
758RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
759  // X86_64 can handle any size.
760  if (cu_->target64) {
761    if (size == kReference) {
762      return kRefReg;
763    }
764    return kCoreReg;
765  }
766
767  if (UNLIKELY(is_volatile)) {
768    // On x86, atomic 64-bit load/store requires an fp register.
769    // Smaller aligned load/store is atomic for both core and fp registers.
770    if (size == k64 || size == kDouble) {
771      return kFPReg;
772    }
773  }
774  return RegClassBySize(size);
775}
776
777X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
778    : Mir2Lir(cu, mir_graph, arena),
779      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
780      method_address_insns_(arena, 100, kGrowableArrayMisc),
781      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
782      call_method_insns_(arena, 100, kGrowableArrayMisc),
783      stack_decrement_(nullptr), stack_increment_(nullptr),
784      const_vectors_(nullptr) {
785  store_method_addr_used_ = false;
786  if (kIsDebugBuild) {
787    for (int i = 0; i < kX86Last; i++) {
788      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
789        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
790                   << " is wrong: expecting " << i << ", seeing "
791                   << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
792      }
793    }
794  }
795  if (cu_->target64) {
796    rs_rX86_SP = rs_rX86_SP_64;
797
798    rs_rX86_ARG0 = rs_rDI;
799    rs_rX86_ARG1 = rs_rSI;
800    rs_rX86_ARG2 = rs_rDX;
801    rs_rX86_ARG3 = rs_rCX;
802    rs_rX86_ARG4 = rs_r8;
803    rs_rX86_ARG5 = rs_r9;
804    rs_rX86_FARG0 = rs_fr0;
805    rs_rX86_FARG1 = rs_fr1;
806    rs_rX86_FARG2 = rs_fr2;
807    rs_rX86_FARG3 = rs_fr3;
808    rs_rX86_FARG4 = rs_fr4;
809    rs_rX86_FARG5 = rs_fr5;
810    rs_rX86_FARG6 = rs_fr6;
811    rs_rX86_FARG7 = rs_fr7;
812    rX86_ARG0 = rDI;
813    rX86_ARG1 = rSI;
814    rX86_ARG2 = rDX;
815    rX86_ARG3 = rCX;
816    rX86_ARG4 = r8;
817    rX86_ARG5 = r9;
818    rX86_FARG0 = fr0;
819    rX86_FARG1 = fr1;
820    rX86_FARG2 = fr2;
821    rX86_FARG3 = fr3;
822    rX86_FARG4 = fr4;
823    rX86_FARG5 = fr5;
824    rX86_FARG6 = fr6;
825    rX86_FARG7 = fr7;
826    rs_rX86_INVOKE_TGT = rs_rDI;
827  } else {
828    rs_rX86_SP = rs_rX86_SP_32;
829
830    rs_rX86_ARG0 = rs_rAX;
831    rs_rX86_ARG1 = rs_rCX;
832    rs_rX86_ARG2 = rs_rDX;
833    rs_rX86_ARG3 = rs_rBX;
834    rs_rX86_ARG4 = RegStorage::InvalidReg();
835    rs_rX86_ARG5 = RegStorage::InvalidReg();
836    rs_rX86_FARG0 = rs_rAX;
837    rs_rX86_FARG1 = rs_rCX;
838    rs_rX86_FARG2 = rs_rDX;
839    rs_rX86_FARG3 = rs_rBX;
840    rs_rX86_FARG4 = RegStorage::InvalidReg();
841    rs_rX86_FARG5 = RegStorage::InvalidReg();
842    rs_rX86_FARG6 = RegStorage::InvalidReg();
843    rs_rX86_FARG7 = RegStorage::InvalidReg();
844    rX86_ARG0 = rAX;
845    rX86_ARG1 = rCX;
846    rX86_ARG2 = rDX;
847    rX86_ARG3 = rBX;
848    rX86_FARG0 = rAX;
849    rX86_FARG1 = rCX;
850    rX86_FARG2 = rDX;
851    rX86_FARG3 = rBX;
852    rs_rX86_INVOKE_TGT = rs_rAX;
853    // TODO(64): Initialize with invalid reg
854//    rX86_ARG4 = RegStorage::InvalidReg();
855//    rX86_ARG5 = RegStorage::InvalidReg();
856  }
857  rs_rX86_RET0 = rs_rAX;
858  rs_rX86_RET1 = rs_rDX;
859  rs_rX86_COUNT = rs_rCX;
860  rX86_RET0 = rAX;
861  rX86_RET1 = rDX;
862  rX86_INVOKE_TGT = rAX;
863  rX86_COUNT = rCX;
864
865  // Initialize the number of reserved vector registers
866  num_reserved_vector_regs_ = -1;
867}
868
869Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
870                          ArenaAllocator* const arena) {
871  return new X86Mir2Lir(cu, mir_graph, arena);
872}
873
874// Not used in x86(-64)
875RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
876  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
877  return RegStorage::InvalidReg();
878}
879
880LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
881  // First load the pointer in fs:[suspend-trigger] into eax
882  // Then use a test instruction to indirect via that address.
883  if (cu_->target64) {
884    NewLIR2(kX86Mov64RT, rs_rAX.GetReg(),
885        Thread::ThreadSuspendTriggerOffset<8>().Int32Value());
886  } else {
887    NewLIR2(kX86Mov32RT, rs_rAX.GetReg(),
888        Thread::ThreadSuspendTriggerOffset<4>().Int32Value());
889  }
890  return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0);
891}
892
893uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
894  DCHECK(!IsPseudoLirOp(opcode));
895  return X86Mir2Lir::EncodingMap[opcode].flags;
896}
897
898const char* X86Mir2Lir::GetTargetInstName(int opcode) {
899  DCHECK(!IsPseudoLirOp(opcode));
900  return X86Mir2Lir::EncodingMap[opcode].name;
901}
902
903const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
904  DCHECK(!IsPseudoLirOp(opcode));
905  return X86Mir2Lir::EncodingMap[opcode].fmt;
906}
907
908void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
909  // Can we do this directly to memory?
910  rl_dest = UpdateLocWide(rl_dest);
911  if ((rl_dest.location == kLocDalvikFrame) ||
912      (rl_dest.location == kLocCompilerTemp)) {
913    int32_t val_lo = Low32Bits(value);
914    int32_t val_hi = High32Bits(value);
915    int r_base = rs_rX86_SP.GetReg();
916    int displacement = SRegOffset(rl_dest.s_reg_low);
917
918    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
919    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
920    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
921                              false /* is_load */, true /* is64bit */);
922    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
923    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
924                              false /* is_load */, true /* is64bit */);
925    return;
926  }
927
928  // Just use the standard code to do the generation.
929  Mir2Lir::GenConstWide(rl_dest, value);
930}
931
932// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
933void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
934  LOG(INFO)  << "location: " << loc.location << ','
935             << (loc.wide ? " w" : "  ")
936             << (loc.defined ? " D" : "  ")
937             << (loc.is_const ? " c" : "  ")
938             << (loc.fp ? " F" : "  ")
939             << (loc.core ? " C" : "  ")
940             << (loc.ref ? " r" : "  ")
941             << (loc.high_word ? " h" : "  ")
942             << (loc.home ? " H" : "  ")
943             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
944             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
945             << ", s_reg: " << loc.s_reg_low
946             << ", orig: " << loc.orig_sreg;
947}
948
949void X86Mir2Lir::Materialize() {
950  // A good place to put the analysis before starting.
951  AnalyzeMIR();
952
953  // Now continue with regular code generation.
954  Mir2Lir::Materialize();
955}
956
957void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
958                                   SpecialTargetRegister symbolic_reg) {
959  /*
960   * For x86, just generate a 32 bit move immediate instruction, that will be filled
961   * in at 'link time'.  For now, put a unique value based on target to ensure that
962   * code deduplication works.
963   */
964  int target_method_idx = target_method.dex_method_index;
965  const DexFile* target_dex_file = target_method.dex_file;
966  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
967  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
968
969  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
970  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
971                     TargetReg(symbolic_reg, kNotWide).GetReg(),
972                     static_cast<int>(target_method_id_ptr), target_method_idx,
973                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
974  AppendLIR(move);
975  method_address_insns_.Insert(move);
976}
977
978void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
979  /*
980   * For x86, just generate a 32 bit move immediate instruction, that will be filled
981   * in at 'link time'.  For now, put a unique value based on target to ensure that
982   * code deduplication works.
983   */
984  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
985  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
986
987  // Generate the move instruction with the unique pointer and save index and type.
988  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
989                     TargetReg(symbolic_reg, kNotWide).GetReg(),
990                     static_cast<int>(ptr), type_idx);
991  AppendLIR(move);
992  class_type_address_insns_.Insert(move);
993}
994
995LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
996  /*
997   * For x86, just generate a 32 bit call relative instruction, that will be filled
998   * in at 'link time'.  For now, put a unique value based on target to ensure that
999   * code deduplication works.
1000   */
1001  int target_method_idx = target_method.dex_method_index;
1002  const DexFile* target_dex_file = target_method.dex_file;
1003  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
1004  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
1005
1006  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
1007  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
1008                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
1009  AppendLIR(call);
1010  call_method_insns_.Insert(call);
1011  return call;
1012}
1013
1014/*
1015 * @brief Enter a 32 bit quantity into a buffer
1016 * @param buf buffer.
1017 * @param data Data value.
1018 */
1019
1020static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
1021  buf.push_back(data & 0xff);
1022  buf.push_back((data >> 8) & 0xff);
1023  buf.push_back((data >> 16) & 0xff);
1024  buf.push_back((data >> 24) & 0xff);
1025}
1026
1027void X86Mir2Lir::InstallLiteralPools() {
1028  // These are handled differently for x86.
1029  DCHECK(code_literal_list_ == nullptr);
1030  DCHECK(method_literal_list_ == nullptr);
1031  DCHECK(class_literal_list_ == nullptr);
1032
1033  // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
1034  // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
1035  // will fail at runtime)?
1036  if (const_vectors_ != nullptr) {
1037    int align_size = (16-4) - (code_buffer_.size() & 0xF);
1038    if (align_size < 0) {
1039      align_size += 16;
1040    }
1041
1042    while (align_size > 0) {
1043      code_buffer_.push_back(0);
1044      align_size--;
1045    }
1046    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1047      PushWord(code_buffer_, p->operands[0]);
1048      PushWord(code_buffer_, p->operands[1]);
1049      PushWord(code_buffer_, p->operands[2]);
1050      PushWord(code_buffer_, p->operands[3]);
1051    }
1052  }
1053
1054  // Handle the fixups for methods.
1055  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
1056      LIR* p = method_address_insns_.Get(i);
1057      DCHECK_EQ(p->opcode, kX86Mov32RI);
1058      uint32_t target_method_idx = p->operands[2];
1059      const DexFile* target_dex_file =
1060          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
1061
1062      // The offset to patch is the last 4 bytes of the instruction.
1063      int patch_offset = p->offset + p->flags.size - 4;
1064      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
1065                                           cu_->method_idx, cu_->invoke_type,
1066                                           target_method_idx, target_dex_file,
1067                                           static_cast<InvokeType>(p->operands[4]),
1068                                           patch_offset);
1069  }
1070
1071  // Handle the fixups for class types.
1072  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
1073      LIR* p = class_type_address_insns_.Get(i);
1074      DCHECK_EQ(p->opcode, kX86Mov32RI);
1075      uint32_t target_method_idx = p->operands[2];
1076
1077      // The offset to patch is the last 4 bytes of the instruction.
1078      int patch_offset = p->offset + p->flags.size - 4;
1079      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
1080                                          cu_->method_idx, target_method_idx, patch_offset);
1081  }
1082
1083  // And now the PC-relative calls to methods.
1084  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1085      LIR* p = call_method_insns_.Get(i);
1086      DCHECK_EQ(p->opcode, kX86CallI);
1087      uint32_t target_method_idx = p->operands[1];
1088      const DexFile* target_dex_file =
1089          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1090
1091      // The offset to patch is the last 4 bytes of the instruction.
1092      int patch_offset = p->offset + p->flags.size - 4;
1093      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1094                                                 cu_->method_idx, cu_->invoke_type,
1095                                                 target_method_idx, target_dex_file,
1096                                                 static_cast<InvokeType>(p->operands[3]),
1097                                                 patch_offset, -4 /* offset */);
1098  }
1099
1100  // And do the normal processing.
1101  Mir2Lir::InstallLiteralPools();
1102}
1103
1104bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1105  RegLocation rl_src = info->args[0];
1106  RegLocation rl_srcPos = info->args[1];
1107  RegLocation rl_dst = info->args[2];
1108  RegLocation rl_dstPos = info->args[3];
1109  RegLocation rl_length = info->args[4];
1110  if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) {
1111    return false;
1112  }
1113  if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) {
1114    return false;
1115  }
1116  ClobberCallerSave();
1117  LockCallTemps();  // Using fixed registers.
1118  RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX;
1119  LoadValueDirectFixed(rl_src, rs_rAX);
1120  LoadValueDirectFixed(rl_dst, rs_rCX);
1121  LIR* src_dst_same  = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr);
1122  LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr);
1123  LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1124  LoadValueDirectFixed(rl_length, rs_rDX);
1125  // If the length of the copy is > 128 characters (256 bytes) or negative then go slow path.
1126  LIR* len_too_big  = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr);
1127  LoadValueDirectFixed(rl_src, rs_rAX);
1128  LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1129  LIR* src_bad_len  = nullptr;
1130  LIR* src_bad_off = nullptr;
1131  LIR* srcPos_negative  = nullptr;
1132  if (!rl_srcPos.is_const) {
1133    LoadValueDirectFixed(rl_srcPos, tmp_reg);
1134    srcPos_negative  = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
1135    // src_pos < src_len
1136    src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
1137    // src_len - src_pos < copy_len
1138    OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
1139    src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1140  } else {
1141    int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg);
1142    if (pos_val == 0) {
1143      src_bad_len  = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
1144    } else {
1145      // src_pos < src_len
1146      src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
1147      // src_len - src_pos < copy_len
1148      OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
1149      src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1150    }
1151  }
1152  LIR* dstPos_negative = nullptr;
1153  LIR* dst_bad_len = nullptr;
1154  LIR* dst_bad_off = nullptr;
1155  LoadValueDirectFixed(rl_dst, rs_rAX);
1156  LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1157  if (!rl_dstPos.is_const) {
1158    LoadValueDirectFixed(rl_dstPos, tmp_reg);
1159    dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
1160    // dst_pos < dst_len
1161    dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
1162    // dst_len - dst_pos < copy_len
1163    OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
1164    dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1165  } else {
1166    int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg);
1167    if (pos_val == 0) {
1168      dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
1169    } else {
1170      // dst_pos < dst_len
1171      dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
1172      // dst_len - dst_pos < copy_len
1173      OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
1174      dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1175    }
1176  }
1177  // Everything is checked now.
1178  LoadValueDirectFixed(rl_src, rs_rAX);
1179  LoadValueDirectFixed(rl_dst, tmp_reg);
1180  LoadValueDirectFixed(rl_srcPos, rs_rCX);
1181  NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(),
1182       rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value());
1183  // RAX now holds the address of the first src element to be copied.
1184
1185  LoadValueDirectFixed(rl_dstPos, rs_rCX);
1186  NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(),
1187       rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() );
1188  // RBX now holds the address of the first dst element to be copied.
1189
1190  // Check if the number of elements to be copied is odd or even. If odd
1191  // then copy the first element (so that the remaining number of elements
1192  // is even).
1193  LoadValueDirectFixed(rl_length, rs_rCX);
1194  OpRegImm(kOpAnd, rs_rCX, 1);
1195  LIR* jmp_to_begin_loop  = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1196  OpRegImm(kOpSub, rs_rDX, 1);
1197  LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1198  StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1199
1200  // Since the remaining number of elements is even, we will copy by
1201  // two elements at a time.
1202  LIR* beginLoop = NewLIR0(kPseudoTargetLabel);
1203  LIR* jmp_to_ret  = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr);
1204  OpRegImm(kOpSub, rs_rDX, 2);
1205  LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle);
1206  StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle);
1207  OpUnconditionalBranch(beginLoop);
1208  LIR *check_failed = NewLIR0(kPseudoTargetLabel);
1209  LIR* launchpad_branch  = OpUnconditionalBranch(nullptr);
1210  LIR *return_point = NewLIR0(kPseudoTargetLabel);
1211  jmp_to_ret->target = return_point;
1212  jmp_to_begin_loop->target = beginLoop;
1213  src_dst_same->target = check_failed;
1214  len_too_big->target = check_failed;
1215  src_null_branch->target = check_failed;
1216  if (srcPos_negative != nullptr)
1217    srcPos_negative ->target = check_failed;
1218  if (src_bad_off != nullptr)
1219    src_bad_off->target = check_failed;
1220  if (src_bad_len != nullptr)
1221    src_bad_len->target = check_failed;
1222  dst_null_branch->target = check_failed;
1223  if (dstPos_negative != nullptr)
1224    dstPos_negative->target = check_failed;
1225  if (dst_bad_off != nullptr)
1226    dst_bad_off->target = check_failed;
1227  if (dst_bad_len != nullptr)
1228    dst_bad_len->target = check_failed;
1229  AddIntrinsicSlowPath(info, launchpad_branch, return_point);
1230  return true;
1231}
1232
1233
1234/*
1235 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1236 * otherwise bails to standard library code.
1237 */
1238bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1239  RegLocation rl_obj = info->args[0];
1240  RegLocation rl_char = info->args[1];
1241  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1242  // RBX is callee-save register in 64-bit mode.
1243  RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX;
1244  int start_value = -1;
1245
1246  uint32_t char_value =
1247    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1248
1249  if (char_value > 0xFFFF) {
1250    // We have to punt to the real String.indexOf.
1251    return false;
1252  }
1253
1254  // Okay, we are commited to inlining this.
1255  // EAX: 16 bit character being searched.
1256  // ECX: count: number of words to be searched.
1257  // EDI: String being searched.
1258  // EDX: temporary during execution.
1259  // EBX or R11: temporary during execution (depending on mode).
1260  // REP SCASW: search instruction.
1261
1262  FlushReg(rs_rAX);
1263  Clobber(rs_rAX);
1264  LockTemp(rs_rAX);
1265  FlushReg(rs_rCX);
1266  Clobber(rs_rCX);
1267  LockTemp(rs_rCX);
1268  FlushReg(rs_rDX);
1269  Clobber(rs_rDX);
1270  LockTemp(rs_rDX);
1271  FlushReg(rs_tmp);
1272  Clobber(rs_tmp);
1273  LockTemp(rs_tmp);
1274  if (cu_->target64) {
1275    FlushReg(rs_rDI);
1276    Clobber(rs_rDI);
1277    LockTemp(rs_rDI);
1278  }
1279
1280  RegLocation rl_return = GetReturn(kCoreReg);
1281  RegLocation rl_dest = InlineTarget(info);
1282
1283  // Is the string non-NULL?
1284  LoadValueDirectFixed(rl_obj, rs_rDX);
1285  GenNullCheck(rs_rDX, info->opt_flags);
1286  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1287
1288  LIR *slowpath_branch = nullptr, *length_compare = nullptr;
1289
1290  // We need the value in EAX.
1291  if (rl_char.is_const) {
1292    LoadConstantNoClobber(rs_rAX, char_value);
1293  } else {
1294    // Does the character fit in 16 bits? Compare it at runtime.
1295    LoadValueDirectFixed(rl_char, rs_rAX);
1296    slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1297  }
1298
1299  // From here down, we know that we are looking for a char that fits in 16 bits.
1300  // Location of reference to data array within the String object.
1301  int value_offset = mirror::String::ValueOffset().Int32Value();
1302  // Location of count within the String object.
1303  int count_offset = mirror::String::CountOffset().Int32Value();
1304  // Starting offset within data array.
1305  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1306  // Start of char data with array_.
1307  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1308
1309  // Compute the number of words to search in to rCX.
1310  Load32Disp(rs_rDX, count_offset, rs_rCX);
1311
1312  // Possible signal here due to null pointer dereference.
1313  // Note that the signal handler will expect the top word of
1314  // the stack to be the ArtMethod*.  If the PUSH edi instruction
1315  // below is ahead of the load above then this will not be true
1316  // and the signal handler will not work.
1317  MarkPossibleNullPointerException(0);
1318
1319  if (!cu_->target64) {
1320    // EDI is callee-save register in 32-bit mode.
1321    NewLIR1(kX86Push32R, rs_rDI.GetReg());
1322  }
1323
1324  if (zero_based) {
1325    // Start index is not present.
1326    // We have to handle an empty string.  Use special instruction JECXZ.
1327    length_compare = NewLIR0(kX86Jecxz8);
1328
1329    // Copy the number of words to search in a temporary register.
1330    // We will use the register at the end to calculate result.
1331    OpRegReg(kOpMov, rs_tmp, rs_rCX);
1332  } else {
1333    // Start index is present.
1334    rl_start = info->args[2];
1335
1336    // We have to offset by the start index.
1337    if (rl_start.is_const) {
1338      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1339      start_value = std::max(start_value, 0);
1340
1341      // Is the start > count?
1342      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1343      OpRegImm(kOpMov, rs_rDI, start_value);
1344
1345      // Copy the number of words to search in a temporary register.
1346      // We will use the register at the end to calculate result.
1347      OpRegReg(kOpMov, rs_tmp, rs_rCX);
1348
1349      if (start_value != 0) {
1350        // Decrease the number of words to search by the start index.
1351        OpRegImm(kOpSub, rs_rCX, start_value);
1352      }
1353    } else {
1354      // Handle "start index < 0" case.
1355      if (!cu_->target64 && rl_start.location != kLocPhysReg) {
1356        // Load the start index from stack, remembering that we pushed EDI.
1357        int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1358        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1359        Load32Disp(rs_rX86_SP, displacement, rs_rDI);
1360        // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
1361        DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
1362        int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1;
1363        AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
1364      } else {
1365        LoadValueDirectFixed(rl_start, rs_rDI);
1366      }
1367      OpRegReg(kOpXor, rs_tmp, rs_tmp);
1368      OpRegReg(kOpCmp, rs_rDI, rs_tmp);
1369      OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp);
1370
1371      // The length of the string should be greater than the start index.
1372      length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr);
1373
1374      // Copy the number of words to search in a temporary register.
1375      // We will use the register at the end to calculate result.
1376      OpRegReg(kOpMov, rs_tmp, rs_rCX);
1377
1378      // Decrease the number of words to search by the start index.
1379      OpRegReg(kOpSub, rs_rCX, rs_rDI);
1380    }
1381  }
1382
1383  // Load the address of the string into EDI.
1384  // In case of start index we have to add the address to existing value in EDI.
1385  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1386  if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) {
1387    Load32Disp(rs_rDX, offset_offset, rs_rDI);
1388  } else {
1389    OpRegMem(kOpAdd, rs_rDI, rs_rDX, offset_offset);
1390  }
1391  OpRegImm(kOpLsl, rs_rDI, 1);
1392  OpRegMem(kOpAdd, rs_rDI, rs_rDX, value_offset);
1393  OpRegImm(kOpAdd, rs_rDI, data_offset);
1394
1395  // EDI now contains the start of the string to be searched.
1396  // We are all prepared to do the search for the character.
1397  NewLIR0(kX86RepneScasw);
1398
1399  // Did we find a match?
1400  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1401
1402  // yes, we matched.  Compute the index of the result.
1403  OpRegReg(kOpSub, rs_tmp, rs_rCX);
1404  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1);
1405
1406  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1407
1408  // Failed to match; return -1.
1409  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1410  length_compare->target = not_found;
1411  failed_branch->target = not_found;
1412  LoadConstantNoClobber(rl_return.reg, -1);
1413
1414  // And join up at the end.
1415  all_done->target = NewLIR0(kPseudoTargetLabel);
1416
1417  if (!cu_->target64)
1418    NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1419
1420  // Out of line code returns here.
1421  if (slowpath_branch != nullptr) {
1422    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1423    AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1424  }
1425
1426  StoreValue(rl_dest, rl_return);
1427
1428  FreeTemp(rs_rAX);
1429  FreeTemp(rs_rCX);
1430  FreeTemp(rs_rDX);
1431  FreeTemp(rs_tmp);
1432  if (cu_->target64) {
1433    FreeTemp(rs_rDI);
1434  }
1435
1436  return true;
1437}
1438
1439/*
1440 * @brief Enter an 'advance LOC' into the FDE buffer
1441 * @param buf FDE buffer.
1442 * @param increment Amount by which to increase the current location.
1443 */
1444static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1445  if (increment < 64) {
1446    // Encoding in opcode.
1447    buf.push_back(0x1 << 6 | increment);
1448  } else if (increment < 256) {
1449    // Single byte delta.
1450    buf.push_back(0x02);
1451    buf.push_back(increment);
1452  } else if (increment < 256 * 256) {
1453    // Two byte delta.
1454    buf.push_back(0x03);
1455    buf.push_back(increment & 0xff);
1456    buf.push_back((increment >> 8) & 0xff);
1457  } else {
1458    // Four byte delta.
1459    buf.push_back(0x04);
1460    PushWord(buf, increment);
1461  }
1462}
1463
1464
1465std::vector<uint8_t>* X86CFIInitialization(bool is_x86_64) {
1466  return X86Mir2Lir::ReturnCommonCallFrameInformation(is_x86_64);
1467}
1468
1469static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1470  uint8_t buffer[12];
1471  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1472  for (uint8_t *p = buffer; p < ptr; p++) {
1473    buf.push_back(*p);
1474  }
1475}
1476
1477static void EncodeSignedLeb128(std::vector<uint8_t>& buf, int32_t value) {
1478  uint8_t buffer[12];
1479  uint8_t *ptr = EncodeSignedLeb128(buffer, value);
1480  for (uint8_t *p = buffer; p < ptr; p++) {
1481    buf.push_back(*p);
1482  }
1483}
1484
1485std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation(bool is_x86_64) {
1486  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1487
1488  // Length (will be filled in later in this routine).
1489  PushWord(*cfi_info, 0);
1490
1491  // CIE id: always 0.
1492  PushWord(*cfi_info, 0);
1493
1494  // Version: always 1.
1495  cfi_info->push_back(0x01);
1496
1497  // Augmentation: 'zR\0'
1498  cfi_info->push_back(0x7a);
1499  cfi_info->push_back(0x52);
1500  cfi_info->push_back(0x0);
1501
1502  // Code alignment: 1.
1503  EncodeUnsignedLeb128(*cfi_info, 1);
1504
1505  // Data alignment.
1506  if (is_x86_64) {
1507    EncodeSignedLeb128(*cfi_info, -8);
1508  } else {
1509    EncodeSignedLeb128(*cfi_info, -4);
1510  }
1511
1512  // Return address register.
1513  if (is_x86_64) {
1514    // R16(RIP)
1515    cfi_info->push_back(0x10);
1516  } else {
1517    // R8(EIP)
1518    cfi_info->push_back(0x08);
1519  }
1520
1521  // Augmentation length: 1.
1522  cfi_info->push_back(1);
1523
1524  // Augmentation data: 0x03 ((DW_EH_PE_absptr << 4) | DW_EH_PE_udata4).
1525  cfi_info->push_back(0x03);
1526
1527  // Initial instructions.
1528  if (is_x86_64) {
1529    // DW_CFA_def_cfa R7(RSP) 8.
1530    cfi_info->push_back(0x0c);
1531    cfi_info->push_back(0x07);
1532    cfi_info->push_back(0x08);
1533
1534    // DW_CFA_offset R16(RIP) 1 (* -8).
1535    cfi_info->push_back(0x90);
1536    cfi_info->push_back(0x01);
1537  } else {
1538    // DW_CFA_def_cfa R4(ESP) 4.
1539    cfi_info->push_back(0x0c);
1540    cfi_info->push_back(0x04);
1541    cfi_info->push_back(0x04);
1542
1543    // DW_CFA_offset R8(EIP) 1 (* -4).
1544    cfi_info->push_back(0x88);
1545    cfi_info->push_back(0x01);
1546  }
1547
1548  // Padding to a multiple of 4
1549  while ((cfi_info->size() & 3) != 0) {
1550    // DW_CFA_nop is encoded as 0.
1551    cfi_info->push_back(0);
1552  }
1553
1554  // Set the length of the CIE inside the generated bytes.
1555  uint32_t length = cfi_info->size() - 4;
1556  (*cfi_info)[0] = length;
1557  (*cfi_info)[1] = length >> 8;
1558  (*cfi_info)[2] = length >> 16;
1559  (*cfi_info)[3] = length >> 24;
1560  return cfi_info;
1561}
1562
1563static bool ARTRegIDToDWARFRegID(bool is_x86_64, int art_reg_id, int* dwarf_reg_id) {
1564  if (is_x86_64) {
1565    switch (art_reg_id) {
1566    case 3 : *dwarf_reg_id =  3; return true;  // %rbx
1567    // This is the only discrepancy between ART & DWARF register numbering.
1568    case 5 : *dwarf_reg_id =  6; return true;  // %rbp
1569    case 12: *dwarf_reg_id = 12; return true;  // %r12
1570    case 13: *dwarf_reg_id = 13; return true;  // %r13
1571    case 14: *dwarf_reg_id = 14; return true;  // %r14
1572    case 15: *dwarf_reg_id = 15; return true;  // %r15
1573    default: return false;  // Should not get here
1574    }
1575  } else {
1576    switch (art_reg_id) {
1577    case 5: *dwarf_reg_id = 5; return true;  // %ebp
1578    case 6: *dwarf_reg_id = 6; return true;  // %esi
1579    case 7: *dwarf_reg_id = 7; return true;  // %edi
1580    default: return false;  // Should not get here
1581    }
1582  }
1583}
1584
1585std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1586  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1587
1588  // Generate the FDE for the method.
1589  DCHECK_NE(data_offset_, 0U);
1590
1591  // Length (will be filled in later in this routine).
1592  PushWord(*cfi_info, 0);
1593
1594  // 'CIE_pointer' (filled in by linker).
1595  PushWord(*cfi_info, 0);
1596
1597  // 'initial_location' (filled in by linker).
1598  PushWord(*cfi_info, 0);
1599
1600  // 'address_range' (number of bytes in the method).
1601  PushWord(*cfi_info, data_offset_);
1602
1603  // Augmentation length: 0
1604  cfi_info->push_back(0);
1605
1606  // The instructions in the FDE.
1607  if (stack_decrement_ != nullptr) {
1608    // Advance LOC to just past the stack decrement.
1609    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1610    AdvanceLoc(*cfi_info, pc);
1611
1612    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1613    cfi_info->push_back(0x0e);
1614    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1615
1616    // Handle register spills
1617    const uint32_t kSpillInstLen = (cu_->target64) ? 5 : 4;
1618    const int kDataAlignmentFactor = (cu_->target64) ? -8 : -4;
1619    uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
1620    int offset = -(GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
1621    for (int reg = 0; mask; mask >>= 1, reg++) {
1622      if (mask & 0x1) {
1623        pc += kSpillInstLen;
1624
1625        // Advance LOC to pass this instruction
1626        AdvanceLoc(*cfi_info, kSpillInstLen);
1627
1628        int dwarf_reg_id;
1629        if (ARTRegIDToDWARFRegID(cu_->target64, reg, &dwarf_reg_id)) {
1630          // DW_CFA_offset_extended_sf reg_no offset
1631          cfi_info->push_back(0x11);
1632          EncodeUnsignedLeb128(*cfi_info, dwarf_reg_id);
1633          EncodeSignedLeb128(*cfi_info, offset / kDataAlignmentFactor);
1634        }
1635
1636        offset += GetInstructionSetPointerSize(cu_->instruction_set);
1637      }
1638    }
1639
1640    // We continue with that stack until the epilogue.
1641    if (stack_increment_ != nullptr) {
1642      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1643      AdvanceLoc(*cfi_info, new_pc - pc);
1644
1645      // We probably have code snippets after the epilogue, so save the
1646      // current state: DW_CFA_remember_state.
1647      cfi_info->push_back(0x0a);
1648
1649      // We have now popped the stack: DW_CFA_def_cfa_offset 4/8.
1650      // There is only the return PC on the stack now.
1651      cfi_info->push_back(0x0e);
1652      EncodeUnsignedLeb128(*cfi_info, GetInstructionSetPointerSize(cu_->instruction_set));
1653
1654      // Everything after that is the same as before the epilogue.
1655      // Stack bump was followed by RET instruction.
1656      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1657      if (post_ret_insn != nullptr) {
1658        pc = new_pc;
1659        new_pc = post_ret_insn->offset;
1660        AdvanceLoc(*cfi_info, new_pc - pc);
1661        // Restore the state: DW_CFA_restore_state.
1662        cfi_info->push_back(0x0b);
1663      }
1664    }
1665  }
1666
1667  // Padding to a multiple of 4
1668  while ((cfi_info->size() & 3) != 0) {
1669    // DW_CFA_nop is encoded as 0.
1670    cfi_info->push_back(0);
1671  }
1672
1673  // Set the length of the FDE inside the generated bytes.
1674  uint32_t length = cfi_info->size() - 4;
1675  (*cfi_info)[0] = length;
1676  (*cfi_info)[1] = length >> 8;
1677  (*cfi_info)[2] = length >> 16;
1678  (*cfi_info)[3] = length >> 24;
1679  return cfi_info;
1680}
1681
1682void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1683  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1684    case kMirOpReserveVectorRegisters:
1685      ReserveVectorRegisters(mir);
1686      break;
1687    case kMirOpReturnVectorRegisters:
1688      ReturnVectorRegisters();
1689      break;
1690    case kMirOpConstVector:
1691      GenConst128(bb, mir);
1692      break;
1693    case kMirOpMoveVector:
1694      GenMoveVector(bb, mir);
1695      break;
1696    case kMirOpPackedMultiply:
1697      GenMultiplyVector(bb, mir);
1698      break;
1699    case kMirOpPackedAddition:
1700      GenAddVector(bb, mir);
1701      break;
1702    case kMirOpPackedSubtract:
1703      GenSubtractVector(bb, mir);
1704      break;
1705    case kMirOpPackedShiftLeft:
1706      GenShiftLeftVector(bb, mir);
1707      break;
1708    case kMirOpPackedSignedShiftRight:
1709      GenSignedShiftRightVector(bb, mir);
1710      break;
1711    case kMirOpPackedUnsignedShiftRight:
1712      GenUnsignedShiftRightVector(bb, mir);
1713      break;
1714    case kMirOpPackedAnd:
1715      GenAndVector(bb, mir);
1716      break;
1717    case kMirOpPackedOr:
1718      GenOrVector(bb, mir);
1719      break;
1720    case kMirOpPackedXor:
1721      GenXorVector(bb, mir);
1722      break;
1723    case kMirOpPackedAddReduce:
1724      GenAddReduceVector(bb, mir);
1725      break;
1726    case kMirOpPackedReduce:
1727      GenReduceVector(bb, mir);
1728      break;
1729    case kMirOpPackedSet:
1730      GenSetVector(bb, mir);
1731      break;
1732    default:
1733      break;
1734  }
1735}
1736
1737void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) {
1738  // We should not try to reserve twice without returning the registers
1739  DCHECK_NE(num_reserved_vector_regs_, -1);
1740
1741  int num_vector_reg = mir->dalvikInsn.vA;
1742  for (int i = 0; i < num_vector_reg; i++) {
1743    RegStorage xp_reg = RegStorage::Solo128(i);
1744    RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1745    Clobber(xp_reg);
1746
1747    for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1748                       info != nullptr;
1749                       info = info->GetAliasChain()) {
1750      if (info->GetReg().IsSingle()) {
1751        reg_pool_->sp_regs_.Delete(info);
1752      } else {
1753        reg_pool_->dp_regs_.Delete(info);
1754      }
1755    }
1756  }
1757
1758  num_reserved_vector_regs_ = num_vector_reg;
1759}
1760
1761void X86Mir2Lir::ReturnVectorRegisters() {
1762  // Return all the reserved registers
1763  for (int i = 0; i < num_reserved_vector_regs_; i++) {
1764    RegStorage xp_reg = RegStorage::Solo128(i);
1765    RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1766
1767    for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1768                       info != nullptr;
1769                       info = info->GetAliasChain()) {
1770      if (info->GetReg().IsSingle()) {
1771        reg_pool_->sp_regs_.Insert(info);
1772      } else {
1773        reg_pool_->dp_regs_.Insert(info);
1774      }
1775    }
1776  }
1777
1778  // We don't have anymore reserved vector registers
1779  num_reserved_vector_regs_ = -1;
1780}
1781
1782void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1783  store_method_addr_used_ = true;
1784  int type_size = mir->dalvikInsn.vB;
1785  // We support 128 bit vectors.
1786  DCHECK_EQ(type_size & 0xFFFF, 128);
1787  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1788  uint32_t *args = mir->dalvikInsn.arg;
1789  int reg = rs_dest.GetReg();
1790  // Check for all 0 case.
1791  if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1792    NewLIR2(kX86XorpsRR, reg, reg);
1793    return;
1794  }
1795
1796  // Append the mov const vector to reg opcode.
1797  AppendOpcodeWithConst(kX86MovupsRM, reg, mir);
1798}
1799
1800void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) {
1801  // Okay, load it from the constant vector area.
1802  LIR *data_target = ScanVectorLiteral(mir);
1803  if (data_target == nullptr) {
1804    data_target = AddVectorLiteral(mir);
1805  }
1806
1807  // Address the start of the method.
1808  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1809  if (rl_method.wide) {
1810    rl_method = LoadValueWide(rl_method, kCoreReg);
1811  } else {
1812    rl_method = LoadValue(rl_method, kCoreReg);
1813  }
1814
1815  // Load the proper value from the literal area.
1816  // We don't know the proper offset for the value, so pick one that will force
1817  // 4 byte offset.  We will fix this up in the assembler later to have the right
1818  // value.
1819  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1820  LIR *load = NewLIR2(opcode, reg, rl_method.reg.GetReg());
1821  load->flags.fixup = kFixupLoad;
1822  load->target = data_target;
1823}
1824
1825void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1826  // We only support 128 bit registers.
1827  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1828  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1829  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1830  NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1831}
1832
1833void X86Mir2Lir::GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir) {
1834  const int BYTE_SIZE = 8;
1835  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1836  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1837  RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempWide());
1838
1839  /*
1840   * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM
1841   * and multiplying 8 at a time before recombining back into one XMM register.
1842   *
1843   *   let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes)
1844   *       xmm3 is tmp             (operate on high bits of 16bit lanes)
1845   *
1846   *    xmm3 = xmm1
1847   *    xmm1 = xmm1 .* xmm2
1848   *    xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff  // xmm1 now has low bits
1849   *    xmm3 = xmm3 .>> 8
1850   *    xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00
1851   *    xmm2 = xmm2 .* xmm3                               // xmm2 now has high bits
1852   *    xmm1 = xmm1 | xmm2                                // combine results
1853   */
1854
1855  // Copy xmm1.
1856  NewLIR2(kX86Mova128RR, rs_src1_high_tmp.GetReg(), rs_dest_src1.GetReg());
1857
1858  // Multiply low bits.
1859  NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1860
1861  // xmm1 now has low bits.
1862  AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
1863
1864  // Prepare high bits for multiplication.
1865  NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), BYTE_SIZE);
1866  AndMaskVectorRegister(rs_src2, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1867
1868  // Multiply high bits and xmm2 now has high bits.
1869  NewLIR2(kX86PmullwRR, rs_src2.GetReg(), rs_src1_high_tmp.GetReg());
1870
1871  // Combine back into dest XMM register.
1872  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1873}
1874
1875void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1876  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1877  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1878  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1879  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1880  int opcode = 0;
1881  switch (opsize) {
1882    case k32:
1883      opcode = kX86PmulldRR;
1884      break;
1885    case kSignedHalf:
1886      opcode = kX86PmullwRR;
1887      break;
1888    case kSingle:
1889      opcode = kX86MulpsRR;
1890      break;
1891    case kDouble:
1892      opcode = kX86MulpdRR;
1893      break;
1894    case kSignedByte:
1895      // HW doesn't support 16x16 byte multiplication so emulate it.
1896      GenMultiplyVectorSignedByte(bb, mir);
1897      return;
1898    default:
1899      LOG(FATAL) << "Unsupported vector multiply " << opsize;
1900      break;
1901  }
1902  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1903}
1904
1905void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1906  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1907  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1908  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1909  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1910  int opcode = 0;
1911  switch (opsize) {
1912    case k32:
1913      opcode = kX86PadddRR;
1914      break;
1915    case kSignedHalf:
1916    case kUnsignedHalf:
1917      opcode = kX86PaddwRR;
1918      break;
1919    case kUnsignedByte:
1920    case kSignedByte:
1921      opcode = kX86PaddbRR;
1922      break;
1923    case kSingle:
1924      opcode = kX86AddpsRR;
1925      break;
1926    case kDouble:
1927      opcode = kX86AddpdRR;
1928      break;
1929    default:
1930      LOG(FATAL) << "Unsupported vector addition " << opsize;
1931      break;
1932  }
1933  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1934}
1935
1936void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1937  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1938  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1939  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1940  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1941  int opcode = 0;
1942  switch (opsize) {
1943    case k32:
1944      opcode = kX86PsubdRR;
1945      break;
1946    case kSignedHalf:
1947    case kUnsignedHalf:
1948      opcode = kX86PsubwRR;
1949      break;
1950    case kUnsignedByte:
1951    case kSignedByte:
1952      opcode = kX86PsubbRR;
1953      break;
1954    case kSingle:
1955      opcode = kX86SubpsRR;
1956      break;
1957    case kDouble:
1958      opcode = kX86SubpdRR;
1959      break;
1960    default:
1961      LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1962      break;
1963  }
1964  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1965}
1966
1967void X86Mir2Lir::GenShiftByteVector(BasicBlock *bb, MIR *mir) {
1968  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1969  RegStorage rs_tmp = Get128BitRegister(AllocTempWide());
1970
1971  int opcode = 0;
1972  int imm = mir->dalvikInsn.vB;
1973
1974  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1975    case kMirOpPackedShiftLeft:
1976      opcode = kX86PsllwRI;
1977      break;
1978    case kMirOpPackedSignedShiftRight:
1979      opcode = kX86PsrawRI;
1980      break;
1981    case kMirOpPackedUnsignedShiftRight:
1982      opcode = kX86PsrlwRI;
1983      break;
1984    default:
1985      LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode;
1986      break;
1987  }
1988
1989  /*
1990   * xmm1 will have low bits
1991   * xmm2 will have high bits
1992   *
1993   * xmm2 = xmm1
1994   * xmm1 = xmm1 .<< N
1995   * xmm2 = xmm2 && 0xFF00FF00FF00FF00FF00FF00FF00FF00
1996   * xmm2 = xmm2 .<< N
1997   * xmm1 = xmm1 | xmm2
1998   */
1999
2000  // Copy xmm1.
2001  NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_dest_src1.GetReg());
2002
2003  // Shift lower values.
2004  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2005
2006  // Mask bottom bits.
2007  AndMaskVectorRegister(rs_tmp, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
2008
2009  // Shift higher values.
2010  NewLIR2(opcode, rs_tmp.GetReg(), imm);
2011
2012  // Combine back into dest XMM register.
2013  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_tmp.GetReg());
2014}
2015
2016void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
2017  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2018  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2019  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2020  int imm = mir->dalvikInsn.vB;
2021  int opcode = 0;
2022  switch (opsize) {
2023    case k32:
2024      opcode = kX86PslldRI;
2025      break;
2026    case k64:
2027      opcode = kX86PsllqRI;
2028      break;
2029    case kSignedHalf:
2030    case kUnsignedHalf:
2031      opcode = kX86PsllwRI;
2032      break;
2033    case kSignedByte:
2034    case kUnsignedByte:
2035      GenShiftByteVector(bb, mir);
2036      return;
2037    default:
2038      LOG(FATAL) << "Unsupported vector shift left " << opsize;
2039      break;
2040  }
2041  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2042}
2043
2044void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
2045  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2046  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2047  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2048  int imm = mir->dalvikInsn.vB;
2049  int opcode = 0;
2050  switch (opsize) {
2051    case k32:
2052      opcode = kX86PsradRI;
2053      break;
2054    case kSignedHalf:
2055    case kUnsignedHalf:
2056      opcode = kX86PsrawRI;
2057      break;
2058    case kSignedByte:
2059    case kUnsignedByte:
2060      GenShiftByteVector(bb, mir);
2061      return;
2062    default:
2063      LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
2064      break;
2065  }
2066  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2067}
2068
2069void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
2070  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2071  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2072  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2073  int imm = mir->dalvikInsn.vB;
2074  int opcode = 0;
2075  switch (opsize) {
2076    case k32:
2077      opcode = kX86PsrldRI;
2078      break;
2079    case k64:
2080      opcode = kX86PsrlqRI;
2081      break;
2082    case kSignedHalf:
2083    case kUnsignedHalf:
2084      opcode = kX86PsrlwRI;
2085      break;
2086    case kSignedByte:
2087    case kUnsignedByte:
2088      GenShiftByteVector(bb, mir);
2089      return;
2090    default:
2091      LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
2092      break;
2093  }
2094  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
2095}
2096
2097void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
2098  // We only support 128 bit registers.
2099  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2100  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2101  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2102  NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2103}
2104
2105void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
2106  // We only support 128 bit registers.
2107  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2108  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2109  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2110  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2111}
2112
2113void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
2114  // We only support 128 bit registers.
2115  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2116  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
2117  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
2118  NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
2119}
2120
2121void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) {
2122  MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4);
2123}
2124
2125void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) {
2126  // Create temporary MIR as container for 128-bit binary mask.
2127  MIR const_mir;
2128  MIR* const_mirp = &const_mir;
2129  const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector);
2130  const_mirp->dalvikInsn.arg[0] = m0;
2131  const_mirp->dalvikInsn.arg[1] = m1;
2132  const_mirp->dalvikInsn.arg[2] = m2;
2133  const_mirp->dalvikInsn.arg[3] = m3;
2134
2135  // Mask vector with const from literal pool.
2136  AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp);
2137}
2138
2139void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
2140  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2141  RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2142  RegLocation rl_dest = mir_graph_->GetDest(mir);
2143  RegStorage rs_tmp;
2144
2145  int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8;
2146  int vec_unit_size = 0;
2147  int opcode = 0;
2148  int extr_opcode = 0;
2149  RegLocation rl_result;
2150
2151  switch (opsize) {
2152    case k32:
2153      extr_opcode = kX86PextrdRRI;
2154      opcode = kX86PhadddRR;
2155      vec_unit_size = 4;
2156      break;
2157    case kSignedByte:
2158    case kUnsignedByte:
2159      extr_opcode = kX86PextrbRRI;
2160      opcode = kX86PhaddwRR;
2161      vec_unit_size = 2;
2162      break;
2163    case kSignedHalf:
2164    case kUnsignedHalf:
2165      extr_opcode = kX86PextrwRRI;
2166      opcode = kX86PhaddwRR;
2167      vec_unit_size = 2;
2168      break;
2169    case kSingle:
2170      rl_result = EvalLoc(rl_dest, kFPReg, true);
2171      vec_unit_size = 4;
2172      for (int i = 0; i < 3; i++) {
2173        NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2174        NewLIR3(kX86ShufpsRRI, rs_src1.GetReg(), rs_src1.GetReg(), 0x39);
2175      }
2176      NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), rs_src1.GetReg());
2177      StoreValue(rl_dest, rl_result);
2178
2179      // For single-precision floats, we are done here
2180      return;
2181    default:
2182      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2183      break;
2184  }
2185
2186  int elems = vec_bytes / vec_unit_size;
2187
2188  // Emulate horizontal add instruction by reducing 2 vectors with 8 values before adding them again
2189  // TODO is overflow handled correctly?
2190  if (opsize == kSignedByte || opsize == kUnsignedByte) {
2191    rs_tmp = Get128BitRegister(AllocTempWide());
2192
2193    // tmp = xmm1 .>> 8.
2194    NewLIR2(kX86Mova128RR, rs_tmp.GetReg(), rs_src1.GetReg());
2195    NewLIR2(kX86PsrlwRI, rs_tmp.GetReg(), 8);
2196
2197    // Zero extend low bits in xmm1.
2198    AndMaskVectorRegister(rs_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
2199  }
2200
2201  while (elems > 1) {
2202    if (opsize == kSignedByte || opsize == kUnsignedByte) {
2203      NewLIR2(opcode, rs_tmp.GetReg(), rs_tmp.GetReg());
2204    }
2205    NewLIR2(opcode, rs_src1.GetReg(), rs_src1.GetReg());
2206    elems >>= 1;
2207  }
2208
2209  // Combine the results if we separated them.
2210  if (opsize == kSignedByte || opsize == kUnsignedByte) {
2211    NewLIR2(kX86PaddbRR, rs_src1.GetReg(), rs_tmp.GetReg());
2212  }
2213
2214  // We need to extract to a GPR.
2215  RegStorage temp = AllocTemp();
2216  NewLIR3(extr_opcode, temp.GetReg(), rs_src1.GetReg(), 0);
2217
2218  // Can we do this directly into memory?
2219  rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2220  if (rl_result.location == kLocPhysReg) {
2221    // Ensure res is in a core reg
2222    rl_result = EvalLoc(rl_dest, kCoreReg, true);
2223    OpRegReg(kOpAdd, rl_result.reg, temp);
2224    StoreFinalValue(rl_dest, rl_result);
2225  } else {
2226    OpMemReg(kOpAdd, rl_result, temp.GetReg());
2227  }
2228
2229  FreeTemp(temp);
2230}
2231
2232void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
2233  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2234  RegLocation rl_dest = mir_graph_->GetDest(mir);
2235  RegStorage rs_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
2236  int extract_index = mir->dalvikInsn.arg[0];
2237  int extr_opcode = 0;
2238  RegLocation rl_result;
2239  bool is_wide = false;
2240
2241  switch (opsize) {
2242    case k32:
2243      rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2244      extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdMRI : kX86PextrdRRI;
2245      break;
2246    case kSignedHalf:
2247    case kUnsignedHalf:
2248      rl_result= UpdateLocTyped(rl_dest, kCoreReg);
2249      extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwMRI : kX86PextrwRRI;
2250      break;
2251    default:
2252      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2253      return;
2254      break;
2255  }
2256
2257  if (rl_result.location == kLocPhysReg) {
2258    NewLIR3(extr_opcode, rl_result.reg.GetReg(), rs_src1.GetReg(), extract_index);
2259    if (is_wide == true) {
2260      StoreFinalValue(rl_dest, rl_result);
2261    } else {
2262      StoreFinalValueWide(rl_dest, rl_result);
2263    }
2264  } else {
2265    int displacement = SRegOffset(rl_result.s_reg_low);
2266    LIR *l = NewLIR3(extr_opcode, rs_rX86_SP.GetReg(), displacement, rs_src1.GetReg());
2267    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is_wide /* is_64bit */);
2268    AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */);
2269  }
2270}
2271
2272void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
2273  DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2274  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2275  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
2276  int op_low = 0, op_high = 0, imm = 0, op_mov = kX86MovdxrRR;
2277  RegisterClass reg_type = kCoreReg;
2278
2279  switch (opsize) {
2280    case k32:
2281      op_low = kX86PshufdRRI;
2282      break;
2283    case kSingle:
2284      op_low = kX86PshufdRRI;
2285      op_mov = kX86Mova128RR;
2286      reg_type = kFPReg;
2287      break;
2288    case k64:
2289      op_low = kX86PshufdRRI;
2290      imm = 0x44;
2291      break;
2292    case kDouble:
2293      op_low = kX86PshufdRRI;
2294      op_mov = kX86Mova128RR;
2295      reg_type = kFPReg;
2296      imm = 0x44;
2297      break;
2298    case kSignedByte:
2299    case kUnsignedByte:
2300      // Shuffle 8 bit value into 16 bit word.
2301      // We set val = val + (val << 8) below and use 16 bit shuffle.
2302    case kSignedHalf:
2303    case kUnsignedHalf:
2304      // Handles low quadword.
2305      op_low = kX86PshuflwRRI;
2306      // Handles upper quadword.
2307      op_high = kX86PshufdRRI;
2308      break;
2309    default:
2310      LOG(FATAL) << "Unsupported vector set " << opsize;
2311      break;
2312  }
2313
2314  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
2315
2316  // Load the value from the VR into the reg.
2317  if (rl_src.wide == 0) {
2318    rl_src = LoadValue(rl_src, reg_type);
2319  } else {
2320    rl_src = LoadValueWide(rl_src, reg_type);
2321  }
2322
2323  // If opsize is 8 bits wide then double value and use 16 bit shuffle instead.
2324  if (opsize == kSignedByte || opsize == kUnsignedByte) {
2325    RegStorage temp = AllocTemp();
2326    // val = val + (val << 8).
2327    NewLIR2(kX86Mov32RR, temp.GetReg(), rl_src.reg.GetReg());
2328    NewLIR2(kX86Sal32RI, temp.GetReg(), 8);
2329    NewLIR2(kX86Or32RR, rl_src.reg.GetReg(), temp.GetReg());
2330    FreeTemp(temp);
2331  }
2332
2333  // Load the value into the XMM register.
2334  NewLIR2(op_mov, rs_dest.GetReg(), rl_src.reg.GetReg());
2335
2336  // Now shuffle the value across the destination.
2337  NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2338
2339  // And then repeat as needed.
2340  if (op_high != 0) {
2341    NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), imm);
2342  }
2343}
2344
2345LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
2346  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2347  for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
2348    if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
2349        args[2] == p->operands[2] && args[3] == p->operands[3]) {
2350      return p;
2351    }
2352  }
2353  return nullptr;
2354}
2355
2356LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
2357  LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
2358  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
2359  new_value->operands[0] = args[0];
2360  new_value->operands[1] = args[1];
2361  new_value->operands[2] = args[2];
2362  new_value->operands[3] = args[3];
2363  new_value->next = const_vectors_;
2364  if (const_vectors_ == nullptr) {
2365    estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
2366  }
2367  estimated_native_code_size_ += 16;  // Space for one vector.
2368  const_vectors_ = new_value;
2369  return new_value;
2370}
2371
2372// ------------ ABI support: mapping of args to physical registers -------------
2373RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide,
2374                                                              bool is_ref) {
2375  const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
2376  const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) /
2377      sizeof(SpecialTargetRegister);
2378  const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
2379                                                             kFArg4, kFArg5, kFArg6, kFArg7};
2380  const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) /
2381      sizeof(SpecialTargetRegister);
2382
2383  if (is_double_or_float) {
2384    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
2385      return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide ? kWide : kNotWide);
2386    }
2387  } else {
2388    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
2389      return ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
2390                            is_ref ? kRef : (is_wide ? kWide : kNotWide));
2391    }
2392  }
2393  return RegStorage::InvalidReg();
2394}
2395
2396RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
2397  DCHECK(IsInitialized());
2398  auto res = mapping_.find(in_position);
2399  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
2400}
2401
2402void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count,
2403                                                   InToRegStorageMapper* mapper) {
2404  DCHECK(mapper != nullptr);
2405  max_mapped_in_ = -1;
2406  is_there_stack_mapped_ = false;
2407  for (int in_position = 0; in_position < count; in_position++) {
2408     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
2409             arg_locs[in_position].wide, arg_locs[in_position].ref);
2410     if (reg.Valid()) {
2411       mapping_[in_position] = reg;
2412       max_mapped_in_ = std::max(max_mapped_in_, in_position);
2413       if (arg_locs[in_position].wide) {
2414         // We covered 2 args, so skip the next one
2415         in_position++;
2416       }
2417     } else {
2418       is_there_stack_mapped_ = true;
2419     }
2420  }
2421  initialized_ = true;
2422}
2423
2424RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
2425  if (!cu_->target64) {
2426    return GetCoreArgMappingToPhysicalReg(arg_num);
2427  }
2428
2429  if (!in_to_reg_storage_mapping_.IsInitialized()) {
2430    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2431    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
2432
2433    InToRegStorageX86_64Mapper mapper(this);
2434    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
2435  }
2436  return in_to_reg_storage_mapping_.Get(arg_num);
2437}
2438
2439RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
2440  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
2441  // Not used for 64-bit, TODO: Move X86_32 to the same framework
2442  switch (core_arg_num) {
2443    case 0:
2444      return rs_rX86_ARG1;
2445    case 1:
2446      return rs_rX86_ARG2;
2447    case 2:
2448      return rs_rX86_ARG3;
2449    default:
2450      return RegStorage::InvalidReg();
2451  }
2452}
2453
2454// ---------End of ABI support: mapping of args to physical registers -------------
2455
2456/*
2457 * If there are any ins passed in registers that have not been promoted
2458 * to a callee-save register, flush them to the frame.  Perform initial
2459 * assignment of promoted arguments.
2460 *
2461 * ArgLocs is an array of location records describing the incoming arguments
2462 * with one location record per word of argument.
2463 */
2464void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
2465  if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
2466  /*
2467   * Dummy up a RegLocation for the incoming Method*
2468   * It will attempt to keep kArg0 live (or copy it to home location
2469   * if promoted).
2470   */
2471
2472  RegLocation rl_src = rl_method;
2473  rl_src.location = kLocPhysReg;
2474  rl_src.reg = TargetReg(kArg0, kRef);
2475  rl_src.home = false;
2476  MarkLive(rl_src);
2477  StoreValue(rl_method, rl_src);
2478  // If Method* has been promoted, explicitly flush
2479  if (rl_method.location == kLocPhysReg) {
2480    StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetReg(kArg0, kRef)), kNotVolatile);
2481  }
2482
2483  if (cu_->num_ins == 0) {
2484    return;
2485  }
2486
2487  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
2488  /*
2489   * Copy incoming arguments to their proper home locations.
2490   * NOTE: an older version of dx had an issue in which
2491   * it would reuse static method argument registers.
2492   * This could result in the same Dalvik virtual register
2493   * being promoted to both core and fp regs. To account for this,
2494   * we only copy to the corresponding promoted physical register
2495   * if it matches the type of the SSA name for the incoming
2496   * argument.  It is also possible that long and double arguments
2497   * end up half-promoted.  In those cases, we must flush the promoted
2498   * half to memory as well.
2499   */
2500  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2501  for (int i = 0; i < cu_->num_ins; i++) {
2502    // get reg corresponding to input
2503    RegStorage reg = GetArgMappingToPhysicalReg(i);
2504
2505    RegLocation* t_loc = &ArgLocs[i];
2506    if (reg.Valid()) {
2507      // If arriving in register.
2508
2509      // We have already updated the arg location with promoted info
2510      // so we can be based on it.
2511      if (t_loc->location == kLocPhysReg) {
2512        // Just copy it.
2513        OpRegCopy(t_loc->reg, reg);
2514      } else {
2515        // Needs flush.
2516        if (t_loc->ref) {
2517          StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile);
2518        } else {
2519          StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
2520                        kNotVolatile);
2521        }
2522      }
2523    } else {
2524      // If arriving in frame & promoted.
2525      if (t_loc->location == kLocPhysReg) {
2526        if (t_loc->ref) {
2527          LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
2528        } else {
2529          LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg,
2530                       t_loc->wide ? k64 : k32, kNotVolatile);
2531        }
2532      }
2533    }
2534    if (t_loc->wide) {
2535      // Increment i to skip the next one.
2536      i++;
2537    }
2538  }
2539}
2540
2541/*
2542 * Load up to 5 arguments, the first three of which will be in
2543 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
2544 * and as part of the load sequence, it must be replaced with
2545 * the target method pointer.  Note, this may also be called
2546 * for "range" variants if the number of arguments is 5 or fewer.
2547 */
2548int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
2549                                  int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
2550                                  const MethodReference& target_method,
2551                                  uint32_t vtable_idx, uintptr_t direct_code,
2552                                  uintptr_t direct_method, InvokeType type, bool skip_this) {
2553  if (!cu_->target64) {
2554    return Mir2Lir::GenDalvikArgsNoRange(info,
2555                                  call_state, pcrLabel, next_call_insn,
2556                                  target_method,
2557                                  vtable_idx, direct_code,
2558                                  direct_method, type, skip_this);
2559  }
2560  return GenDalvikArgsRange(info,
2561                       call_state, pcrLabel, next_call_insn,
2562                       target_method,
2563                       vtable_idx, direct_code,
2564                       direct_method, type, skip_this);
2565}
2566
2567/*
2568 * May have 0+ arguments (also used for jumbo).  Note that
2569 * source virtual registers may be in physical registers, so may
2570 * need to be flushed to home location before copying.  This
2571 * applies to arg3 and above (see below).
2572 *
2573 * Two general strategies:
2574 *    If < 20 arguments
2575 *       Pass args 3-18 using vldm/vstm block copy
2576 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2577 *    If 20+ arguments
2578 *       Pass args arg19+ using memcpy block copy
2579 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2580 *
2581 */
2582int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
2583                                LIR** pcrLabel, NextCallInsn next_call_insn,
2584                                const MethodReference& target_method,
2585                                uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
2586                                InvokeType type, bool skip_this) {
2587  if (!cu_->target64) {
2588    return Mir2Lir::GenDalvikArgsRange(info, call_state,
2589                                pcrLabel, next_call_insn,
2590                                target_method,
2591                                vtable_idx, direct_code, direct_method,
2592                                type, skip_this);
2593  }
2594
2595  /* If no arguments, just return */
2596  if (info->num_arg_words == 0)
2597    return call_state;
2598
2599  const int start_index = skip_this ? 1 : 0;
2600
2601  InToRegStorageX86_64Mapper mapper(this);
2602  InToRegStorageMapping in_to_reg_storage_mapping;
2603  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
2604  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
2605  const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2606          info->args[last_mapped_in].wide ? 2 : 1;
2607  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2608
2609  // Fisrt of all, check whether it make sense to use bulk copying
2610  // Optimization is aplicable only for range case
2611  // TODO: make a constant instead of 2
2612  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2613    // Scan the rest of the args - if in phys_reg flush to memory
2614    for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2615      RegLocation loc = info->args[next_arg];
2616      if (loc.wide) {
2617        loc = UpdateLocWide(loc);
2618        if (loc.location == kLocPhysReg) {
2619          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2620          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
2621        }
2622        next_arg += 2;
2623      } else {
2624        loc = UpdateLoc(loc);
2625        if (loc.location == kLocPhysReg) {
2626          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2627          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
2628        }
2629        next_arg++;
2630      }
2631    }
2632
2633    // Logic below assumes that Method pointer is at offset zero from SP.
2634    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2635
2636    // The rest can be copied together
2637    int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2638    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped,
2639                                                   cu_->instruction_set);
2640
2641    int current_src_offset = start_offset;
2642    int current_dest_offset = outs_offset;
2643
2644    // Only davik regs are accessed in this loop; no next_call_insn() calls.
2645    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2646    while (regs_left_to_pass_via_stack > 0) {
2647      // This is based on the knowledge that the stack itself is 16-byte aligned.
2648      bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2649      bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2650      size_t bytes_to_move;
2651
2652      /*
2653       * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2654       * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2655       * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2656       * We do this because we could potentially do a smaller move to align.
2657       */
2658      if (regs_left_to_pass_via_stack == 4 ||
2659          (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2660        // Moving 128-bits via xmm register.
2661        bytes_to_move = sizeof(uint32_t) * 4;
2662
2663        // Allocate a free xmm temp. Since we are working through the calling sequence,
2664        // we expect to have an xmm temporary available.  AllocTempDouble will abort if
2665        // there are no free registers.
2666        RegStorage temp = AllocTempDouble();
2667
2668        LIR* ld1 = nullptr;
2669        LIR* ld2 = nullptr;
2670        LIR* st1 = nullptr;
2671        LIR* st2 = nullptr;
2672
2673        /*
2674         * The logic is similar for both loads and stores. If we have 16-byte alignment,
2675         * do an aligned move. If we have 8-byte alignment, then do the move in two
2676         * parts. This approach prevents possible cache line splits. Finally, fall back
2677         * to doing an unaligned move. In most cases we likely won't split the cache
2678         * line but we cannot prove it and thus take a conservative approach.
2679         */
2680        bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2681        bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2682
2683        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2684        if (src_is_16b_aligned) {
2685          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP);
2686        } else if (src_is_8b_aligned) {
2687          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP);
2688          ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1),
2689                            kMovHi128FP);
2690        } else {
2691          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP);
2692        }
2693
2694        if (dest_is_16b_aligned) {
2695          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP);
2696        } else if (dest_is_8b_aligned) {
2697          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP);
2698          st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1),
2699                            temp, kMovHi128FP);
2700        } else {
2701          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP);
2702        }
2703
2704        // TODO If we could keep track of aliasing information for memory accesses that are wider
2705        // than 64-bit, we wouldn't need to set up a barrier.
2706        if (ld1 != nullptr) {
2707          if (ld2 != nullptr) {
2708            // For 64-bit load we can actually set up the aliasing information.
2709            AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2710            AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2711          } else {
2712            // Set barrier for 128-bit load.
2713            ld1->u.m.def_mask = &kEncodeAll;
2714          }
2715        }
2716        if (st1 != nullptr) {
2717          if (st2 != nullptr) {
2718            // For 64-bit store we can actually set up the aliasing information.
2719            AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2720            AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2721          } else {
2722            // Set barrier for 128-bit store.
2723            st1->u.m.def_mask = &kEncodeAll;
2724          }
2725        }
2726
2727        // Free the temporary used for the data movement.
2728        FreeTemp(temp);
2729      } else {
2730        // Moving 32-bits via general purpose register.
2731        bytes_to_move = sizeof(uint32_t);
2732
2733        // Instead of allocating a new temp, simply reuse one of the registers being used
2734        // for argument passing.
2735        RegStorage temp = TargetReg(kArg3, kNotWide);
2736
2737        // Now load the argument VR and store to the outs.
2738        Load32Disp(rs_rX86_SP, current_src_offset, temp);
2739        Store32Disp(rs_rX86_SP, current_dest_offset, temp);
2740      }
2741
2742      current_src_offset += bytes_to_move;
2743      current_dest_offset += bytes_to_move;
2744      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2745    }
2746    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2747  }
2748
2749  // Now handle rest not registers if they are
2750  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2751    RegStorage regSingle = TargetReg(kArg2, kNotWide);
2752    RegStorage regWide = TargetReg(kArg3, kWide);
2753    for (int i = start_index;
2754         i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2755      RegLocation rl_arg = info->args[i];
2756      rl_arg = UpdateRawLoc(rl_arg);
2757      RegStorage reg = in_to_reg_storage_mapping.Get(i);
2758      if (!reg.Valid()) {
2759        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2760
2761        {
2762          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2763          if (rl_arg.wide) {
2764            if (rl_arg.location == kLocPhysReg) {
2765              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile);
2766            } else {
2767              LoadValueDirectWideFixed(rl_arg, regWide);
2768              StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile);
2769            }
2770          } else {
2771            if (rl_arg.location == kLocPhysReg) {
2772              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile);
2773            } else {
2774              LoadValueDirectFixed(rl_arg, regSingle);
2775              StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile);
2776            }
2777          }
2778        }
2779        call_state = next_call_insn(cu_, info, call_state, target_method,
2780                                    vtable_idx, direct_code, direct_method, type);
2781      }
2782      if (rl_arg.wide) {
2783        i++;
2784      }
2785    }
2786  }
2787
2788  // Finish with mapped registers
2789  for (int i = start_index; i <= last_mapped_in; i++) {
2790    RegLocation rl_arg = info->args[i];
2791    rl_arg = UpdateRawLoc(rl_arg);
2792    RegStorage reg = in_to_reg_storage_mapping.Get(i);
2793    if (reg.Valid()) {
2794      if (rl_arg.wide) {
2795        LoadValueDirectWideFixed(rl_arg, reg);
2796      } else {
2797        LoadValueDirectFixed(rl_arg, reg);
2798      }
2799      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2800                               direct_code, direct_method, type);
2801    }
2802    if (rl_arg.wide) {
2803      i++;
2804    }
2805  }
2806
2807  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2808                           direct_code, direct_method, type);
2809  if (pcrLabel) {
2810    if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
2811      *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
2812    } else {
2813      *pcrLabel = nullptr;
2814      // In lieu of generating a check for kArg1 being null, we need to
2815      // perform a load when doing implicit checks.
2816      RegStorage tmp = AllocTemp();
2817      Load32Disp(TargetReg(kArg1, kRef), 0, tmp);
2818      MarkPossibleNullPointerException(info->opt_flags);
2819      FreeTemp(tmp);
2820    }
2821  }
2822  return call_state;
2823}
2824
2825bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) {
2826  // Location of reference to data array
2827  int value_offset = mirror::String::ValueOffset().Int32Value();
2828  // Location of count
2829  int count_offset = mirror::String::CountOffset().Int32Value();
2830  // Starting offset within data array
2831  int offset_offset = mirror::String::OffsetOffset().Int32Value();
2832  // Start of char data with array_
2833  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
2834
2835  RegLocation rl_obj = info->args[0];
2836  RegLocation rl_idx = info->args[1];
2837  rl_obj = LoadValue(rl_obj, kRefReg);
2838  // X86 wants to avoid putting a constant index into a register.
2839  if (!rl_idx.is_const) {
2840    rl_idx = LoadValue(rl_idx, kCoreReg);
2841  }
2842  RegStorage reg_max;
2843  GenNullCheck(rl_obj.reg, info->opt_flags);
2844  bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
2845  LIR* range_check_branch = nullptr;
2846  RegStorage reg_off;
2847  RegStorage reg_ptr;
2848  if (range_check) {
2849    // On x86, we can compare to memory directly
2850    // Set up a launch pad to allow retry in case of bounds violation */
2851    if (rl_idx.is_const) {
2852      LIR* comparison;
2853      range_check_branch = OpCmpMemImmBranch(
2854          kCondUlt, RegStorage::InvalidReg(), rl_obj.reg, count_offset,
2855          mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison);
2856      MarkPossibleNullPointerExceptionAfter(0, comparison);
2857    } else {
2858      OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset);
2859      MarkPossibleNullPointerException(0);
2860      range_check_branch = OpCondBranch(kCondUge, nullptr);
2861    }
2862  }
2863  reg_off = AllocTemp();
2864  reg_ptr = AllocTempRef();
2865  Load32Disp(rl_obj.reg, offset_offset, reg_off);
2866  LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile);
2867  if (rl_idx.is_const) {
2868    OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
2869  } else {
2870    OpRegReg(kOpAdd, reg_off, rl_idx.reg);
2871  }
2872  FreeTemp(rl_obj.reg);
2873  if (rl_idx.location == kLocPhysReg) {
2874    FreeTemp(rl_idx.reg);
2875  }
2876  RegLocation rl_dest = InlineTarget(info);
2877  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2878  LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.reg, kUnsignedHalf);
2879  FreeTemp(reg_off);
2880  FreeTemp(reg_ptr);
2881  StoreValue(rl_dest, rl_result);
2882  if (range_check) {
2883    DCHECK(range_check_branch != nullptr);
2884    info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've already null checked.
2885    AddIntrinsicSlowPath(info, range_check_branch);
2886  }
2887  return true;
2888}
2889
2890bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
2891  RegLocation rl_dest = InlineTarget(info);
2892
2893  // Early exit if the result is unused.
2894  if (rl_dest.orig_sreg < 0) {
2895    return true;
2896  }
2897
2898  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
2899
2900  if (cu_->target64) {
2901    OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>());
2902  } else {
2903    OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>());
2904  }
2905
2906  StoreValue(rl_dest, rl_result);
2907  return true;
2908}
2909
2910}  // namespace art
2911