target_x86.cc revision e90501da0222717d75c126ebf89569db3976927e
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "mirror/array.h"
24#include "mirror/string.h"
25#include "x86_lir.h"
26
27namespace art {
28
29// FIXME: restore "static" when usage uncovered
30/*static*/ int core_regs[] = {
31  rAX, rCX, rDX, rBX, rX86_SP, rBP, rSI, rDI
32#ifdef TARGET_REX_SUPPORT
33  r8, r9, r10, r11, r12, r13, r14, 15
34#endif
35};
36/*static*/ int ReservedRegs[] = {rX86_SP};
37/*static*/ int core_temps[] = {rAX, rCX, rDX, rBX};
38/*static*/ int FpRegs[] = {
39  fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
40#ifdef TARGET_REX_SUPPORT
41  fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
42#endif
43};
44/*static*/ int fp_temps[] = {
45  fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
46#ifdef TARGET_REX_SUPPORT
47  fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15
48#endif
49};
50
51RegLocation X86Mir2Lir::LocCReturn() {
52  return x86_loc_c_return;
53}
54
55RegLocation X86Mir2Lir::LocCReturnWide() {
56  return x86_loc_c_return_wide;
57}
58
59RegLocation X86Mir2Lir::LocCReturnFloat() {
60  return x86_loc_c_return_float;
61}
62
63RegLocation X86Mir2Lir::LocCReturnDouble() {
64  return x86_loc_c_return_double;
65}
66
67// Return a target-dependent special register.
68int X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
69  int res = INVALID_REG;
70  switch (reg) {
71    case kSelf: res = rX86_SELF; break;
72    case kSuspend: res =  rX86_SUSPEND; break;
73    case kLr: res =  rX86_LR; break;
74    case kPc: res =  rX86_PC; break;
75    case kSp: res =  rX86_SP; break;
76    case kArg0: res = rX86_ARG0; break;
77    case kArg1: res = rX86_ARG1; break;
78    case kArg2: res = rX86_ARG2; break;
79    case kArg3: res = rX86_ARG3; break;
80    case kFArg0: res = rX86_FARG0; break;
81    case kFArg1: res = rX86_FARG1; break;
82    case kFArg2: res = rX86_FARG2; break;
83    case kFArg3: res = rX86_FARG3; break;
84    case kRet0: res = rX86_RET0; break;
85    case kRet1: res = rX86_RET1; break;
86    case kInvokeTgt: res = rX86_INVOKE_TGT; break;
87    case kHiddenArg: res = rAX; break;
88    case kHiddenFpArg: res = fr0; break;
89    case kCount: res = rX86_COUNT; break;
90  }
91  return res;
92}
93
94int X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
95  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
96  // TODO: This is not 64-bit compliant and depends on new internal ABI.
97  switch (arg_num) {
98    case 0:
99      return rX86_ARG1;
100    case 1:
101      return rX86_ARG2;
102    case 2:
103      return rX86_ARG3;
104    default:
105      return INVALID_REG;
106  }
107}
108
109// Create a double from a pair of singles.
110int X86Mir2Lir::S2d(int low_reg, int high_reg) {
111  return X86_S2D(low_reg, high_reg);
112}
113
114// Return mask to strip off fp reg flags and bias.
115uint32_t X86Mir2Lir::FpRegMask() {
116  return X86_FP_REG_MASK;
117}
118
119// True if both regs single, both core or both double.
120bool X86Mir2Lir::SameRegType(int reg1, int reg2) {
121  return (X86_REGTYPE(reg1) == X86_REGTYPE(reg2));
122}
123
124/*
125 * Decode the register id.
126 */
127uint64_t X86Mir2Lir::GetRegMaskCommon(int reg) {
128  uint64_t seed;
129  int shift;
130  int reg_id;
131
132  reg_id = reg & 0xf;
133  /* Double registers in x86 are just a single FP register */
134  seed = 1;
135  /* FP register starts at bit position 16 */
136  shift = X86_FPREG(reg) ? kX86FPReg0 : 0;
137  /* Expand the double register id into single offset */
138  shift += reg_id;
139  return (seed << shift);
140}
141
142uint64_t X86Mir2Lir::GetPCUseDefEncoding() {
143  /*
144   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
145   * able to clean up some of the x86/Arm_Mips differences
146   */
147  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
148  return 0ULL;
149}
150
151void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
152  DCHECK_EQ(cu_->instruction_set, kX86);
153  DCHECK(!lir->flags.use_def_invalid);
154
155  // X86-specific resource map setup here.
156  if (flags & REG_USE_SP) {
157    lir->u.m.use_mask |= ENCODE_X86_REG_SP;
158  }
159
160  if (flags & REG_DEF_SP) {
161    lir->u.m.def_mask |= ENCODE_X86_REG_SP;
162  }
163
164  if (flags & REG_DEFA) {
165    SetupRegMask(&lir->u.m.def_mask, rAX);
166  }
167
168  if (flags & REG_DEFD) {
169    SetupRegMask(&lir->u.m.def_mask, rDX);
170  }
171  if (flags & REG_USEA) {
172    SetupRegMask(&lir->u.m.use_mask, rAX);
173  }
174
175  if (flags & REG_USEC) {
176    SetupRegMask(&lir->u.m.use_mask, rCX);
177  }
178
179  if (flags & REG_USED) {
180    SetupRegMask(&lir->u.m.use_mask, rDX);
181  }
182
183  if (flags & REG_USEB) {
184    SetupRegMask(&lir->u.m.use_mask, rBX);
185  }
186
187  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
188  if (lir->opcode == kX86RepneScasw) {
189    SetupRegMask(&lir->u.m.use_mask, rAX);
190    SetupRegMask(&lir->u.m.use_mask, rCX);
191    SetupRegMask(&lir->u.m.use_mask, rDI);
192    SetupRegMask(&lir->u.m.def_mask, rDI);
193  }
194
195  if (flags & USE_FP_STACK) {
196    lir->u.m.use_mask |= ENCODE_X86_FP_STACK;
197    lir->u.m.def_mask |= ENCODE_X86_FP_STACK;
198  }
199}
200
201/* For dumping instructions */
202static const char* x86RegName[] = {
203  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
204  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
205};
206
207static const char* x86CondName[] = {
208  "O",
209  "NO",
210  "B/NAE/C",
211  "NB/AE/NC",
212  "Z/EQ",
213  "NZ/NE",
214  "BE/NA",
215  "NBE/A",
216  "S",
217  "NS",
218  "P/PE",
219  "NP/PO",
220  "L/NGE",
221  "NL/GE",
222  "LE/NG",
223  "NLE/G"
224};
225
226/*
227 * Interpret a format string and build a string no longer than size
228 * See format key in Assemble.cc.
229 */
230std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
231  std::string buf;
232  size_t i = 0;
233  size_t fmt_len = strlen(fmt);
234  while (i < fmt_len) {
235    if (fmt[i] != '!') {
236      buf += fmt[i];
237      i++;
238    } else {
239      i++;
240      DCHECK_LT(i, fmt_len);
241      char operand_number_ch = fmt[i];
242      i++;
243      if (operand_number_ch == '!') {
244        buf += "!";
245      } else {
246        int operand_number = operand_number_ch - '0';
247        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
248        DCHECK_LT(i, fmt_len);
249        int operand = lir->operands[operand_number];
250        switch (fmt[i]) {
251          case 'c':
252            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
253            buf += x86CondName[operand];
254            break;
255          case 'd':
256            buf += StringPrintf("%d", operand);
257            break;
258          case 'p': {
259            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
260            buf += StringPrintf("0x%08x", tab_rec->offset);
261            break;
262          }
263          case 'r':
264            if (X86_FPREG(operand) || X86_DOUBLEREG(operand)) {
265              int fp_reg = operand & X86_FP_REG_MASK;
266              buf += StringPrintf("xmm%d", fp_reg);
267            } else {
268              DCHECK_LT(static_cast<size_t>(operand), sizeof(x86RegName));
269              buf += x86RegName[operand];
270            }
271            break;
272          case 't':
273            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
274                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
275                                lir->target);
276            break;
277          default:
278            buf += StringPrintf("DecodeError '%c'", fmt[i]);
279            break;
280        }
281        i++;
282      }
283    }
284  }
285  return buf;
286}
287
288void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) {
289  char buf[256];
290  buf[0] = 0;
291
292  if (mask == ENCODE_ALL) {
293    strcpy(buf, "all");
294  } else {
295    char num[8];
296    int i;
297
298    for (i = 0; i < kX86RegEnd; i++) {
299      if (mask & (1ULL << i)) {
300        snprintf(num, arraysize(num), "%d ", i);
301        strcat(buf, num);
302      }
303    }
304
305    if (mask & ENCODE_CCODE) {
306      strcat(buf, "cc ");
307    }
308    /* Memory bits */
309    if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
310      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
311               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
312               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
313    }
314    if (mask & ENCODE_LITERAL) {
315      strcat(buf, "lit ");
316    }
317
318    if (mask & ENCODE_HEAP_REF) {
319      strcat(buf, "heap ");
320    }
321    if (mask & ENCODE_MUST_NOT_ALIAS) {
322      strcat(buf, "noalias ");
323    }
324  }
325  if (buf[0]) {
326    LOG(INFO) << prefix << ": " <<  buf;
327  }
328}
329
330void X86Mir2Lir::AdjustSpillMask() {
331  // Adjustment for LR spilling, x86 has no LR so nothing to do here
332  core_spill_mask_ |= (1 << rRET);
333  num_core_spills_++;
334}
335
336/*
337 * Mark a callee-save fp register as promoted.  Note that
338 * vpush/vpop uses contiguous register lists so we must
339 * include any holes in the mask.  Associate holes with
340 * Dalvik register INVALID_VREG (0xFFFFU).
341 */
342void X86Mir2Lir::MarkPreservedSingle(int v_reg, int reg) {
343  UNIMPLEMENTED(WARNING) << "MarkPreservedSingle";
344#if 0
345  LOG(FATAL) << "No support yet for promoted FP regs";
346#endif
347}
348
349void X86Mir2Lir::FlushRegWide(int reg1, int reg2) {
350  RegisterInfo* info1 = GetRegInfo(reg1);
351  RegisterInfo* info2 = GetRegInfo(reg2);
352  DCHECK(info1 && info2 && info1->pair && info2->pair &&
353         (info1->partner == info2->reg) &&
354         (info2->partner == info1->reg));
355  if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
356    if (!(info1->is_temp && info2->is_temp)) {
357      /* Should not happen.  If it does, there's a problem in eval_loc */
358      LOG(FATAL) << "Long half-temp, half-promoted";
359    }
360
361    info1->dirty = false;
362    info2->dirty = false;
363    if (mir_graph_->SRegToVReg(info2->s_reg) < mir_graph_->SRegToVReg(info1->s_reg))
364      info1 = info2;
365    int v_reg = mir_graph_->SRegToVReg(info1->s_reg);
366    StoreBaseDispWide(rX86_SP, VRegOffset(v_reg), info1->reg, info1->partner);
367  }
368}
369
370void X86Mir2Lir::FlushReg(int reg) {
371  RegisterInfo* info = GetRegInfo(reg);
372  if (info->live && info->dirty) {
373    info->dirty = false;
374    int v_reg = mir_graph_->SRegToVReg(info->s_reg);
375    StoreBaseDisp(rX86_SP, VRegOffset(v_reg), reg, kWord);
376  }
377}
378
379/* Give access to the target-dependent FP register encoding to common code */
380bool X86Mir2Lir::IsFpReg(int reg) {
381  return X86_FPREG(reg);
382}
383
384/* Clobber all regs that might be used by an external C call */
385void X86Mir2Lir::ClobberCallerSave() {
386  Clobber(rAX);
387  Clobber(rCX);
388  Clobber(rDX);
389  Clobber(rBX);
390}
391
392RegLocation X86Mir2Lir::GetReturnWideAlt() {
393  RegLocation res = LocCReturnWide();
394  CHECK(res.reg.GetReg() == rAX);
395  CHECK(res.reg.GetHighReg() == rDX);
396  Clobber(rAX);
397  Clobber(rDX);
398  MarkInUse(rAX);
399  MarkInUse(rDX);
400  MarkPair(res.reg.GetReg(), res.reg.GetHighReg());
401  return res;
402}
403
404RegLocation X86Mir2Lir::GetReturnAlt() {
405  RegLocation res = LocCReturn();
406  res.reg.SetReg(rDX);
407  Clobber(rDX);
408  MarkInUse(rDX);
409  return res;
410}
411
412/* To be used when explicitly managing register use */
413void X86Mir2Lir::LockCallTemps() {
414  LockTemp(rX86_ARG0);
415  LockTemp(rX86_ARG1);
416  LockTemp(rX86_ARG2);
417  LockTemp(rX86_ARG3);
418}
419
420/* To be used when explicitly managing register use */
421void X86Mir2Lir::FreeCallTemps() {
422  FreeTemp(rX86_ARG0);
423  FreeTemp(rX86_ARG1);
424  FreeTemp(rX86_ARG2);
425  FreeTemp(rX86_ARG3);
426}
427
428void X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
429#if ANDROID_SMP != 0
430  // TODO: optimize fences
431  NewLIR0(kX86Mfence);
432#endif
433}
434
435// Alloc a pair of core registers, or a double.
436RegStorage X86Mir2Lir::AllocTypedTempWide(bool fp_hint, int reg_class) {
437  int high_reg;
438  int low_reg;
439
440  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
441    low_reg = AllocTempDouble();
442    high_reg = low_reg;  // only one allocated!
443    // TODO: take advantage of 64-bit notation.
444    return RegStorage(RegStorage::k64BitPair, low_reg, high_reg);
445  }
446  low_reg = AllocTemp();
447  high_reg = AllocTemp();
448  return RegStorage(RegStorage::k64BitPair, low_reg, high_reg);
449}
450
451int X86Mir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) {
452  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
453    return AllocTempFloat();
454  }
455  return AllocTemp();
456}
457
458void X86Mir2Lir::CompilerInitializeRegAlloc() {
459  int num_regs = sizeof(core_regs)/sizeof(*core_regs);
460  int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
461  int num_temps = sizeof(core_temps)/sizeof(*core_temps);
462  int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs);
463  int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps);
464  reg_pool_ = static_cast<RegisterPool*>(arena_->Alloc(sizeof(*reg_pool_),
465                                                       kArenaAllocRegAlloc));
466  reg_pool_->num_core_regs = num_regs;
467  reg_pool_->core_regs =
468      static_cast<RegisterInfo*>(arena_->Alloc(num_regs * sizeof(*reg_pool_->core_regs),
469                                               kArenaAllocRegAlloc));
470  reg_pool_->num_fp_regs = num_fp_regs;
471  reg_pool_->FPRegs =
472      static_cast<RegisterInfo *>(arena_->Alloc(num_fp_regs * sizeof(*reg_pool_->FPRegs),
473                                                kArenaAllocRegAlloc));
474  CompilerInitPool(reg_pool_->core_regs, core_regs, reg_pool_->num_core_regs);
475  CompilerInitPool(reg_pool_->FPRegs, FpRegs, reg_pool_->num_fp_regs);
476  // Keep special registers from being allocated
477  for (int i = 0; i < num_reserved; i++) {
478    MarkInUse(ReservedRegs[i]);
479  }
480  // Mark temp regs - all others not in use can be used for promotion
481  for (int i = 0; i < num_temps; i++) {
482    MarkTemp(core_temps[i]);
483  }
484  for (int i = 0; i < num_fp_temps; i++) {
485    MarkTemp(fp_temps[i]);
486  }
487}
488
489void X86Mir2Lir::FreeRegLocTemps(RegLocation rl_keep,
490                     RegLocation rl_free) {
491  if ((rl_free.reg.GetReg() != rl_keep.reg.GetReg()) && (rl_free.reg.GetReg() != rl_keep.reg.GetHighReg()) &&
492      (rl_free.reg.GetHighReg() != rl_keep.reg.GetReg()) && (rl_free.reg.GetHighReg() != rl_keep.reg.GetHighReg())) {
493    // No overlap, free both
494    FreeTemp(rl_free.reg.GetReg());
495    FreeTemp(rl_free.reg.GetHighReg());
496  }
497}
498
499void X86Mir2Lir::SpillCoreRegs() {
500  if (num_core_spills_ == 0) {
501    return;
502  }
503  // Spill mask not including fake return address register
504  uint32_t mask = core_spill_mask_ & ~(1 << rRET);
505  int offset = frame_size_ - (4 * num_core_spills_);
506  for (int reg = 0; mask; mask >>= 1, reg++) {
507    if (mask & 0x1) {
508      StoreWordDisp(rX86_SP, offset, reg);
509      offset += 4;
510    }
511  }
512}
513
514void X86Mir2Lir::UnSpillCoreRegs() {
515  if (num_core_spills_ == 0) {
516    return;
517  }
518  // Spill mask not including fake return address register
519  uint32_t mask = core_spill_mask_ & ~(1 << rRET);
520  int offset = frame_size_ - (4 * num_core_spills_);
521  for (int reg = 0; mask; mask >>= 1, reg++) {
522    if (mask & 0x1) {
523      LoadWordDisp(rX86_SP, offset, reg);
524      offset += 4;
525    }
526  }
527}
528
529bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
530  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
531}
532
533X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
534    : Mir2Lir(cu, mir_graph, arena),
535      method_address_insns_(arena, 100, kGrowableArrayMisc),
536      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
537      call_method_insns_(arena, 100, kGrowableArrayMisc),
538      stack_decrement_(nullptr), stack_increment_(nullptr) {
539  store_method_addr_used_ = false;
540  for (int i = 0; i < kX86Last; i++) {
541    if (X86Mir2Lir::EncodingMap[i].opcode != i) {
542      LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
543                 << " is wrong: expecting " << i << ", seeing "
544                 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
545    }
546  }
547}
548
549Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
550                          ArenaAllocator* const arena) {
551  return new X86Mir2Lir(cu, mir_graph, arena);
552}
553
554// Not used in x86
555int X86Mir2Lir::LoadHelper(ThreadOffset offset) {
556  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
557  return INVALID_REG;
558}
559
560LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
561  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
562  return nullptr;
563}
564
565uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
566  DCHECK(!IsPseudoLirOp(opcode));
567  return X86Mir2Lir::EncodingMap[opcode].flags;
568}
569
570const char* X86Mir2Lir::GetTargetInstName(int opcode) {
571  DCHECK(!IsPseudoLirOp(opcode));
572  return X86Mir2Lir::EncodingMap[opcode].name;
573}
574
575const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
576  DCHECK(!IsPseudoLirOp(opcode));
577  return X86Mir2Lir::EncodingMap[opcode].fmt;
578}
579
580/*
581 * Return an updated location record with current in-register status.
582 * If the value lives in live temps, reflect that fact.  No code
583 * is generated.  If the live value is part of an older pair,
584 * clobber both low and high.
585 */
586// TODO: Reunify with common code after 'pair mess' has been fixed
587RegLocation X86Mir2Lir::UpdateLocWide(RegLocation loc) {
588  DCHECK(loc.wide);
589  DCHECK(CheckCorePoolSanity());
590  if (loc.location != kLocPhysReg) {
591    DCHECK((loc.location == kLocDalvikFrame) ||
592         (loc.location == kLocCompilerTemp));
593    // Are the dalvik regs already live in physical registers?
594    RegisterInfo* info_lo = AllocLive(loc.s_reg_low, kAnyReg);
595
596    // Handle FP registers specially on x86.
597    if (info_lo && IsFpReg(info_lo->reg)) {
598      bool match = true;
599
600      // We can't match a FP register with a pair of Core registers.
601      match = match && (info_lo->pair == 0);
602
603      if (match) {
604        // We can reuse;update the register usage info.
605        loc.location = kLocPhysReg;
606        loc.vec_len = kVectorLength8;
607        // TODO: use k64BitVector
608        loc.reg = RegStorage(RegStorage::k64BitPair, info_lo->reg, info_lo->reg);
609        DCHECK(IsFpReg(loc.reg.GetReg()));
610        return loc;
611      }
612      // We can't easily reuse; clobber and free any overlaps.
613      if (info_lo) {
614        Clobber(info_lo->reg);
615        FreeTemp(info_lo->reg);
616        if (info_lo->pair)
617          Clobber(info_lo->partner);
618      }
619    } else {
620      RegisterInfo* info_hi = AllocLive(GetSRegHi(loc.s_reg_low), kAnyReg);
621      bool match = true;
622      match = match && (info_lo != NULL);
623      match = match && (info_hi != NULL);
624      // Are they both core or both FP?
625      match = match && (IsFpReg(info_lo->reg) == IsFpReg(info_hi->reg));
626      // If a pair of floating point singles, are they properly aligned?
627      if (match && IsFpReg(info_lo->reg)) {
628        match &= ((info_lo->reg & 0x1) == 0);
629        match &= ((info_hi->reg - info_lo->reg) == 1);
630      }
631      // If previously used as a pair, it is the same pair?
632      if (match && (info_lo->pair || info_hi->pair)) {
633        match = (info_lo->pair == info_hi->pair);
634        match &= ((info_lo->reg == info_hi->partner) &&
635              (info_hi->reg == info_lo->partner));
636      }
637      if (match) {
638        // Can reuse - update the register usage info
639        loc.reg = RegStorage(RegStorage::k64BitPair, info_lo->reg, info_hi->reg);
640        loc.location = kLocPhysReg;
641        MarkPair(loc.reg.GetReg(), loc.reg.GetHighReg());
642        DCHECK(!IsFpReg(loc.reg.GetReg()) || ((loc.reg.GetReg() & 0x1) == 0));
643        return loc;
644      }
645      // Can't easily reuse - clobber and free any overlaps
646      if (info_lo) {
647        Clobber(info_lo->reg);
648        FreeTemp(info_lo->reg);
649        if (info_lo->pair)
650          Clobber(info_lo->partner);
651      }
652      if (info_hi) {
653        Clobber(info_hi->reg);
654        FreeTemp(info_hi->reg);
655        if (info_hi->pair)
656          Clobber(info_hi->partner);
657      }
658    }
659  }
660  return loc;
661}
662
663// TODO: Reunify with common code after 'pair mess' has been fixed
664RegLocation X86Mir2Lir::EvalLocWide(RegLocation loc, int reg_class, bool update) {
665  DCHECK(loc.wide);
666  int32_t low_reg;
667  int32_t high_reg;
668
669  loc = UpdateLocWide(loc);
670
671  /* If it is already in a register, we can assume proper form.  Is it the right reg class? */
672  if (loc.location == kLocPhysReg) {
673    DCHECK_EQ(IsFpReg(loc.reg.GetReg()), loc.IsVectorScalar());
674    if (!RegClassMatches(reg_class, loc.reg.GetReg())) {
675      /* It is the wrong register class.  Reallocate and copy. */
676      if (!IsFpReg(loc.reg.GetReg())) {
677        // We want this in a FP reg, and it is in core registers.
678        DCHECK(reg_class != kCoreReg);
679        // Allocate this into any FP reg, and mark it with the right size.
680        low_reg = AllocTypedTemp(true, reg_class);
681        OpVectorRegCopyWide(low_reg, loc.reg.GetReg(), loc.reg.GetHighReg());
682        CopyRegInfo(low_reg, loc.reg.GetReg());
683        Clobber(loc.reg.GetReg());
684        Clobber(loc.reg.GetHighReg());
685        loc.reg.SetReg(low_reg);
686        loc.reg.SetHighReg(low_reg);  // Play nice with existing code.
687        loc.vec_len = kVectorLength8;
688      } else {
689        // The value is in a FP register, and we want it in a pair of core registers.
690        DCHECK_EQ(reg_class, kCoreReg);
691        DCHECK_EQ(loc.reg.GetReg(), loc.reg.GetHighReg());
692        RegStorage new_regs = AllocTypedTempWide(false, kCoreReg);  // Force to core registers.
693        low_reg = new_regs.GetReg();
694        high_reg = new_regs.GetHighReg();
695        DCHECK_NE(low_reg, high_reg);
696        OpRegCopyWide(low_reg, high_reg, loc.reg.GetReg(), loc.reg.GetHighReg());
697        CopyRegInfo(low_reg, loc.reg.GetReg());
698        CopyRegInfo(high_reg, loc.reg.GetHighReg());
699        Clobber(loc.reg.GetReg());
700        Clobber(loc.reg.GetHighReg());
701        loc.reg = new_regs;
702        MarkPair(loc.reg.GetReg(), loc.reg.GetHighReg());
703        DCHECK(!IsFpReg(loc.reg.GetReg()) || ((loc.reg.GetReg() & 0x1) == 0));
704      }
705    }
706    return loc;
707  }
708
709  DCHECK_NE(loc.s_reg_low, INVALID_SREG);
710  DCHECK_NE(GetSRegHi(loc.s_reg_low), INVALID_SREG);
711
712  loc.reg = AllocTypedTempWide(loc.fp, reg_class);
713
714  // FIXME: take advantage of RegStorage notation.
715  if (loc.reg.GetReg() == loc.reg.GetHighReg()) {
716    DCHECK(IsFpReg(loc.reg.GetReg()));
717    loc.vec_len = kVectorLength8;
718  } else {
719    MarkPair(loc.reg.GetReg(), loc.reg.GetHighReg());
720  }
721  if (update) {
722    loc.location = kLocPhysReg;
723    MarkLive(loc.reg.GetReg(), loc.s_reg_low);
724    if (loc.reg.GetReg() != loc.reg.GetHighReg()) {
725      MarkLive(loc.reg.GetHighReg(), GetSRegHi(loc.s_reg_low));
726    }
727  }
728  return loc;
729}
730
731// TODO: Reunify with common code after 'pair mess' has been fixed
732RegLocation X86Mir2Lir::EvalLoc(RegLocation loc, int reg_class, bool update) {
733  int new_reg;
734
735  if (loc.wide)
736    return EvalLocWide(loc, reg_class, update);
737
738  loc = UpdateLoc(loc);
739
740  if (loc.location == kLocPhysReg) {
741    if (!RegClassMatches(reg_class, loc.reg.GetReg())) {
742      /* Wrong register class.  Realloc, copy and transfer ownership. */
743      new_reg = AllocTypedTemp(loc.fp, reg_class);
744      OpRegCopy(new_reg, loc.reg.GetReg());
745      CopyRegInfo(new_reg, loc.reg.GetReg());
746      Clobber(loc.reg.GetReg());
747      loc.reg.SetReg(new_reg);
748      if (IsFpReg(loc.reg.GetReg()) && reg_class != kCoreReg)
749        loc.vec_len = kVectorLength4;
750    }
751    return loc;
752  }
753
754  DCHECK_NE(loc.s_reg_low, INVALID_SREG);
755
756  loc.reg = RegStorage(RegStorage::k32BitSolo, AllocTypedTemp(loc.fp, reg_class));
757  if (IsFpReg(loc.reg.GetReg()) && reg_class != kCoreReg)
758    loc.vec_len = kVectorLength4;
759
760  if (update) {
761    loc.location = kLocPhysReg;
762    MarkLive(loc.reg.GetReg(), loc.s_reg_low);
763  }
764  return loc;
765}
766
767int X86Mir2Lir::AllocTempDouble() {
768  // We really don't need a pair of registers.
769  return AllocTempFloat();
770}
771
772// TODO: Reunify with common code after 'pair mess' has been fixed
773void X86Mir2Lir::ResetDefLocWide(RegLocation rl) {
774  DCHECK(rl.wide);
775  RegisterInfo* p_low = IsTemp(rl.reg.GetReg());
776  if (IsFpReg(rl.reg.GetReg())) {
777    // We are using only the low register.
778    if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
779      NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
780    }
781    ResetDef(rl.reg.GetReg());
782  } else {
783    RegisterInfo* p_high = IsTemp(rl.reg.GetHighReg());
784    if (p_low && !(cu_->disable_opt & (1 << kSuppressLoads))) {
785      DCHECK(p_low->pair);
786      NullifyRange(p_low->def_start, p_low->def_end, p_low->s_reg, rl.s_reg_low);
787    }
788    if (p_high && !(cu_->disable_opt & (1 << kSuppressLoads))) {
789      DCHECK(p_high->pair);
790    }
791    ResetDef(rl.reg.GetReg());
792    ResetDef(rl.reg.GetHighReg());
793  }
794}
795
796void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
797  // Can we do this directly to memory?
798  rl_dest = UpdateLocWide(rl_dest);
799  if ((rl_dest.location == kLocDalvikFrame) ||
800      (rl_dest.location == kLocCompilerTemp)) {
801    int32_t val_lo = Low32Bits(value);
802    int32_t val_hi = High32Bits(value);
803    int rBase = TargetReg(kSp);
804    int displacement = SRegOffset(rl_dest.s_reg_low);
805
806    LIR * store = NewLIR3(kX86Mov32MI, rBase, displacement + LOWORD_OFFSET, val_lo);
807    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
808                              false /* is_load */, true /* is64bit */);
809    store = NewLIR3(kX86Mov32MI, rBase, displacement + HIWORD_OFFSET, val_hi);
810    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
811                              false /* is_load */, true /* is64bit */);
812    return;
813  }
814
815  // Just use the standard code to do the generation.
816  Mir2Lir::GenConstWide(rl_dest, value);
817}
818
819// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
820void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
821  LOG(INFO)  << "location: " << loc.location << ','
822             << (loc.wide ? " w" : "  ")
823             << (loc.defined ? " D" : "  ")
824             << (loc.is_const ? " c" : "  ")
825             << (loc.fp ? " F" : "  ")
826             << (loc.core ? " C" : "  ")
827             << (loc.ref ? " r" : "  ")
828             << (loc.high_word ? " h" : "  ")
829             << (loc.home ? " H" : "  ")
830             << " vec_len: " << loc.vec_len
831             << ", low: " << static_cast<int>(loc.reg.GetReg())
832             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
833             << ", s_reg: " << loc.s_reg_low
834             << ", orig: " << loc.orig_sreg;
835}
836
837void X86Mir2Lir::Materialize() {
838  // A good place to put the analysis before starting.
839  AnalyzeMIR();
840
841  // Now continue with regular code generation.
842  Mir2Lir::Materialize();
843}
844
845void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
846                                   SpecialTargetRegister symbolic_reg) {
847  /*
848   * For x86, just generate a 32 bit move immediate instruction, that will be filled
849   * in at 'link time'.  For now, put a unique value based on target to ensure that
850   * code deduplication works.
851   */
852  int target_method_idx = target_method.dex_method_index;
853  const DexFile* target_dex_file = target_method.dex_file;
854  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
855  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
856
857  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
858  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg),
859                     static_cast<int>(target_method_id_ptr), target_method_idx,
860                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
861  AppendLIR(move);
862  method_address_insns_.Insert(move);
863}
864
865void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
866  /*
867   * For x86, just generate a 32 bit move immediate instruction, that will be filled
868   * in at 'link time'.  For now, put a unique value based on target to ensure that
869   * code deduplication works.
870   */
871  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
872  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
873
874  // Generate the move instruction with the unique pointer and save index and type.
875  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg),
876                     static_cast<int>(ptr), type_idx);
877  AppendLIR(move);
878  class_type_address_insns_.Insert(move);
879}
880
881LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
882  /*
883   * For x86, just generate a 32 bit call relative instruction, that will be filled
884   * in at 'link time'.  For now, put a unique value based on target to ensure that
885   * code deduplication works.
886   */
887  int target_method_idx = target_method.dex_method_index;
888  const DexFile* target_dex_file = target_method.dex_file;
889  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
890  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
891
892  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
893  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
894                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
895  AppendLIR(call);
896  call_method_insns_.Insert(call);
897  return call;
898}
899
900void X86Mir2Lir::InstallLiteralPools() {
901  // These are handled differently for x86.
902  DCHECK(code_literal_list_ == nullptr);
903  DCHECK(method_literal_list_ == nullptr);
904  DCHECK(class_literal_list_ == nullptr);
905
906  // Handle the fixups for methods.
907  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
908      LIR* p = method_address_insns_.Get(i);
909      DCHECK_EQ(p->opcode, kX86Mov32RI);
910      uint32_t target_method_idx = p->operands[2];
911      const DexFile* target_dex_file =
912          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
913
914      // The offset to patch is the last 4 bytes of the instruction.
915      int patch_offset = p->offset + p->flags.size - 4;
916      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
917                                           cu_->method_idx, cu_->invoke_type,
918                                           target_method_idx, target_dex_file,
919                                           static_cast<InvokeType>(p->operands[4]),
920                                           patch_offset);
921  }
922
923  // Handle the fixups for class types.
924  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
925      LIR* p = class_type_address_insns_.Get(i);
926      DCHECK_EQ(p->opcode, kX86Mov32RI);
927      uint32_t target_method_idx = p->operands[2];
928
929      // The offset to patch is the last 4 bytes of the instruction.
930      int patch_offset = p->offset + p->flags.size - 4;
931      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
932                                          cu_->method_idx, target_method_idx, patch_offset);
933  }
934
935  // And now the PC-relative calls to methods.
936  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
937      LIR* p = call_method_insns_.Get(i);
938      DCHECK_EQ(p->opcode, kX86CallI);
939      uint32_t target_method_idx = p->operands[1];
940      const DexFile* target_dex_file =
941          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
942
943      // The offset to patch is the last 4 bytes of the instruction.
944      int patch_offset = p->offset + p->flags.size - 4;
945      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
946                                                 cu_->method_idx, cu_->invoke_type,
947                                                 target_method_idx, target_dex_file,
948                                                 static_cast<InvokeType>(p->operands[3]),
949                                                 patch_offset, -4 /* offset */);
950  }
951
952  // And do the normal processing.
953  Mir2Lir::InstallLiteralPools();
954}
955
956/*
957 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
958 * otherwise bails to standard library code.
959 */
960bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
961  ClobberCallerSave();
962  LockCallTemps();  // Using fixed registers
963
964  // EAX: 16 bit character being searched.
965  // ECX: count: number of words to be searched.
966  // EDI: String being searched.
967  // EDX: temporary during execution.
968  // EBX: temporary during execution.
969
970  RegLocation rl_obj = info->args[0];
971  RegLocation rl_char = info->args[1];
972  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
973
974  uint32_t char_value =
975    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
976
977  if (char_value > 0xFFFF) {
978    // We have to punt to the real String.indexOf.
979    return false;
980  }
981
982  // Okay, we are commited to inlining this.
983  RegLocation rl_return = GetReturn(false);
984  RegLocation rl_dest = InlineTarget(info);
985
986  // Is the string non-NULL?
987  LoadValueDirectFixed(rl_obj, rDX);
988  GenNullCheck(rDX, info->opt_flags);
989  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
990
991  // Does the character fit in 16 bits?
992  LIR* launchpad_branch = nullptr;
993  if (rl_char.is_const) {
994    // We need the value in EAX.
995    LoadConstantNoClobber(rAX, char_value);
996  } else {
997    // Character is not a constant; compare at runtime.
998    LoadValueDirectFixed(rl_char, rAX);
999    launchpad_branch = OpCmpImmBranch(kCondGt, rAX, 0xFFFF, nullptr);
1000  }
1001
1002  // From here down, we know that we are looking for a char that fits in 16 bits.
1003  // Location of reference to data array within the String object.
1004  int value_offset = mirror::String::ValueOffset().Int32Value();
1005  // Location of count within the String object.
1006  int count_offset = mirror::String::CountOffset().Int32Value();
1007  // Starting offset within data array.
1008  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1009  // Start of char data with array_.
1010  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1011
1012  // Character is in EAX.
1013  // Object pointer is in EDX.
1014
1015  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1016  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1017  NewLIR1(kX86Push32R, rDI);
1018
1019  // Compute the number of words to search in to rCX.
1020  LoadWordDisp(rDX, count_offset, rCX);
1021  LIR *length_compare = nullptr;
1022  int start_value = 0;
1023  if (zero_based) {
1024    // We have to handle an empty string.  Use special instruction JECXZ.
1025    length_compare = NewLIR0(kX86Jecxz8);
1026  } else {
1027    rl_start = info->args[2];
1028    // We have to offset by the start index.
1029    if (rl_start.is_const) {
1030      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1031      start_value = std::max(start_value, 0);
1032
1033      // Is the start > count?
1034      length_compare = OpCmpImmBranch(kCondLe, rCX, start_value, nullptr);
1035
1036      if (start_value != 0) {
1037        OpRegImm(kOpSub, rCX, start_value);
1038      }
1039    } else {
1040      // Runtime start index.
1041      rl_start = UpdateLoc(rl_start);
1042      if (rl_start.location == kLocPhysReg) {
1043        length_compare = OpCmpBranch(kCondLe, rCX, rl_start.reg.GetReg(), nullptr);
1044        OpRegReg(kOpSub, rCX, rl_start.reg.GetReg());
1045      } else {
1046        // Compare to memory to avoid a register load.  Handle pushed EDI.
1047        int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1048        OpRegMem(kOpCmp, rCX, rX86_SP, displacement);
1049        length_compare = NewLIR2(kX86Jcc8, 0, kX86CondLe);
1050        OpRegMem(kOpSub, rCX, rX86_SP, displacement);
1051      }
1052    }
1053  }
1054  DCHECK(length_compare != nullptr);
1055
1056  // ECX now contains the count in words to be searched.
1057
1058  // Load the address of the string into EBX.
1059  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1060  LoadWordDisp(rDX, value_offset, rDI);
1061  LoadWordDisp(rDX, offset_offset, rBX);
1062  OpLea(rBX, rDI, rBX, 1, data_offset);
1063
1064  // Now compute into EDI where the search will start.
1065  if (zero_based || rl_start.is_const) {
1066    if (start_value == 0) {
1067      OpRegCopy(rDI, rBX);
1068    } else {
1069      NewLIR3(kX86Lea32RM, rDI, rBX, 2 * start_value);
1070    }
1071  } else {
1072    if (rl_start.location == kLocPhysReg) {
1073      if (rl_start.reg.GetReg() == rDI) {
1074        // We have a slight problem here.  We are already using RDI!
1075        // Grab the value from the stack.
1076        LoadWordDisp(rX86_SP, 0, rDX);
1077        OpLea(rDI, rBX, rDX, 1, 0);
1078      } else {
1079        OpLea(rDI, rBX, rl_start.reg.GetReg(), 1, 0);
1080      }
1081    } else {
1082      OpRegCopy(rDI, rBX);
1083      // Load the start index from stack, remembering that we pushed EDI.
1084      int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1085      LoadWordDisp(rX86_SP, displacement, rDX);
1086      OpLea(rDI, rBX, rDX, 1, 0);
1087    }
1088  }
1089
1090  // EDI now contains the start of the string to be searched.
1091  // We are all prepared to do the search for the character.
1092  NewLIR0(kX86RepneScasw);
1093
1094  // Did we find a match?
1095  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1096
1097  // yes, we matched.  Compute the index of the result.
1098  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1099  OpRegReg(kOpSub, rDI, rBX);
1100  OpRegImm(kOpAsr, rDI, 1);
1101  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rDI, -1);
1102  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1103
1104  // Failed to match; return -1.
1105  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1106  length_compare->target = not_found;
1107  failed_branch->target = not_found;
1108  LoadConstantNoClobber(rl_return.reg.GetReg(), -1);
1109
1110  // And join up at the end.
1111  all_done->target = NewLIR0(kPseudoTargetLabel);
1112  // Restore EDI from the stack.
1113  NewLIR1(kX86Pop32R, rDI);
1114
1115  // Out of line code returns here.
1116  if (launchpad_branch != nullptr) {
1117    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1118    AddIntrinsicLaunchpad(info, launchpad_branch, return_point);
1119  }
1120
1121  StoreValue(rl_dest, rl_return);
1122  return true;
1123}
1124
1125/*
1126 * @brief Enter a 32 bit quantity into the FDE buffer
1127 * @param buf FDE buffer.
1128 * @param data Data value.
1129 */
1130static void PushWord(std::vector<uint8_t>&buf, int data) {
1131  buf.push_back(data & 0xff);
1132  buf.push_back((data >> 8) & 0xff);
1133  buf.push_back((data >> 16) & 0xff);
1134  buf.push_back((data >> 24) & 0xff);
1135}
1136
1137/*
1138 * @brief Enter an 'advance LOC' into the FDE buffer
1139 * @param buf FDE buffer.
1140 * @param increment Amount by which to increase the current location.
1141 */
1142static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1143  if (increment < 64) {
1144    // Encoding in opcode.
1145    buf.push_back(0x1 << 6 | increment);
1146  } else if (increment < 256) {
1147    // Single byte delta.
1148    buf.push_back(0x02);
1149    buf.push_back(increment);
1150  } else if (increment < 256 * 256) {
1151    // Two byte delta.
1152    buf.push_back(0x03);
1153    buf.push_back(increment & 0xff);
1154    buf.push_back((increment >> 8) & 0xff);
1155  } else {
1156    // Four byte delta.
1157    buf.push_back(0x04);
1158    PushWord(buf, increment);
1159  }
1160}
1161
1162
1163std::vector<uint8_t>* X86CFIInitialization() {
1164  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1165}
1166
1167std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1168  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1169
1170  // Length of the CIE (except for this field).
1171  PushWord(*cfi_info, 16);
1172
1173  // CIE id.
1174  PushWord(*cfi_info, 0xFFFFFFFFU);
1175
1176  // Version: 3.
1177  cfi_info->push_back(0x03);
1178
1179  // Augmentation: empty string.
1180  cfi_info->push_back(0x0);
1181
1182  // Code alignment: 1.
1183  cfi_info->push_back(0x01);
1184
1185  // Data alignment: -4.
1186  cfi_info->push_back(0x7C);
1187
1188  // Return address register (R8).
1189  cfi_info->push_back(0x08);
1190
1191  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1192  cfi_info->push_back(0x0C);
1193  cfi_info->push_back(0x04);
1194  cfi_info->push_back(0x04);
1195
1196  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1197  cfi_info->push_back(0x2 << 6 | 0x08);
1198  cfi_info->push_back(0x01);
1199
1200  // And 2 Noops to align to 4 byte boundary.
1201  cfi_info->push_back(0x0);
1202  cfi_info->push_back(0x0);
1203
1204  DCHECK_EQ(cfi_info->size() & 3, 0U);
1205  return cfi_info;
1206}
1207
1208static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1209  uint8_t buffer[12];
1210  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1211  for (uint8_t *p = buffer; p < ptr; p++) {
1212    buf.push_back(*p);
1213  }
1214}
1215
1216std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1217  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1218
1219  // Generate the FDE for the method.
1220  DCHECK_NE(data_offset_, 0U);
1221
1222  // Length (will be filled in later in this routine).
1223  PushWord(*cfi_info, 0);
1224
1225  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1226  // one CIE for the whole debug_frame section.
1227  PushWord(*cfi_info, 0);
1228
1229  // 'initial_location' (filled in by linker).
1230  PushWord(*cfi_info, 0);
1231
1232  // 'address_range' (number of bytes in the method).
1233  PushWord(*cfi_info, data_offset_);
1234
1235  // The instructions in the FDE.
1236  if (stack_decrement_ != nullptr) {
1237    // Advance LOC to just past the stack decrement.
1238    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1239    AdvanceLoc(*cfi_info, pc);
1240
1241    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1242    cfi_info->push_back(0x0e);
1243    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1244
1245    // We continue with that stack until the epilogue.
1246    if (stack_increment_ != nullptr) {
1247      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1248      AdvanceLoc(*cfi_info, new_pc - pc);
1249
1250      // We probably have code snippets after the epilogue, so save the
1251      // current state: DW_CFA_remember_state.
1252      cfi_info->push_back(0x0a);
1253
1254      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1255      // PC on the stack now.
1256      cfi_info->push_back(0x0e);
1257      EncodeUnsignedLeb128(*cfi_info, 4);
1258
1259      // Everything after that is the same as before the epilogue.
1260      // Stack bump was followed by RET instruction.
1261      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1262      if (post_ret_insn != nullptr) {
1263        pc = new_pc;
1264        new_pc = post_ret_insn->offset;
1265        AdvanceLoc(*cfi_info, new_pc - pc);
1266        // Restore the state: DW_CFA_restore_state.
1267        cfi_info->push_back(0x0b);
1268      }
1269    }
1270  }
1271
1272  // Padding to a multiple of 4
1273  while ((cfi_info->size() & 3) != 0) {
1274    // DW_CFA_nop is encoded as 0.
1275    cfi_info->push_back(0);
1276  }
1277
1278  // Set the length of the FDE inside the generated bytes.
1279  uint32_t length = cfi_info->size() - 4;
1280  (*cfi_info)[0] = length;
1281  (*cfi_info)[1] = length >> 8;
1282  (*cfi_info)[2] = length >> 16;
1283  (*cfi_info)[3] = length >> 24;
1284  return cfi_info;
1285}
1286
1287}  // namespace art
1288