utility_x86.cc revision 69dfe51b684dd9d510dbcb63295fe180f998efde
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "dex/dataflow_iterator-inl.h"
20#include "x86_lir.h"
21#include "dex/quick/dex_file_method_inliner.h"
22#include "dex/quick/dex_file_to_method_inliner_map.h"
23#include "dex/reg_storage_eq.h"
24
25namespace art {
26
27/* This file contains codegen for the X86 ISA */
28
29LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
30  int opcode;
31  /* must be both DOUBLE or both not DOUBLE */
32  DCHECK(r_dest.IsFloat() || r_src.IsFloat());
33  DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
34  if (r_dest.IsDouble()) {
35    opcode = kX86MovsdRR;
36  } else {
37    if (r_dest.IsSingle()) {
38      if (r_src.IsSingle()) {
39        opcode = kX86MovssRR;
40      } else {  // Fpr <- Gpr
41        opcode = kX86MovdxrRR;
42      }
43    } else {  // Gpr <- Fpr
44      DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits();
45      opcode = kX86MovdrxRR;
46    }
47  }
48  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
49  LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
50  if (r_dest == r_src) {
51    res->flags.is_nop = true;
52  }
53  return res;
54}
55
56bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
57  return true;
58}
59
60bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
61  return false;
62}
63
64bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
65  return true;
66}
67
68bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
69  return value == 0;
70}
71
72/*
73 * Load a immediate using a shortcut if possible; otherwise
74 * grab from the per-translation literal pool.  If target is
75 * a high register, build constant into a low register and copy.
76 *
77 * No additional register clobbering operation performed. Use this version when
78 * 1) r_dest is freshly returned from AllocTemp or
79 * 2) The codegen is under fixed register usage
80 */
81LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
82  RegStorage r_dest_save = r_dest;
83  if (r_dest.IsFloat()) {
84    if (value == 0) {
85      return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
86    }
87    r_dest = AllocTemp();
88  }
89
90  LIR *res;
91  if (value == 0) {
92    res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
93  } else {
94    // Note, there is no byte immediate form of a 32 bit immediate move.
95    // 64-bit immediate is not supported by LIR structure
96    res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
97  }
98
99  if (r_dest_save.IsFloat()) {
100    NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
101    FreeTemp(r_dest);
102  }
103
104  return res;
105}
106
107LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
108  LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
109  res->target = target;
110  return res;
111}
112
113LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
114  LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
115                        X86ConditionEncoding(cc));
116  branch->target = target;
117  return branch;
118}
119
120LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
121  X86OpCode opcode = kX86Bkpt;
122  switch (op) {
123    case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break;
124    case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break;
125    case kOpRev: opcode = r_dest_src.Is64Bit() ? kX86Bswap64R : kX86Bswap32R; break;
126    case kOpBlx: opcode = kX86CallR; break;
127    default:
128      LOG(FATAL) << "Bad case in OpReg " << op;
129  }
130  return NewLIR1(opcode, r_dest_src.GetReg());
131}
132
133LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
134  X86OpCode opcode = kX86Bkpt;
135  bool byte_imm = IS_SIMM8(value);
136  DCHECK(!r_dest_src1.IsFloat());
137  if (r_dest_src1.Is64Bit()) {
138    switch (op) {
139      case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break;
140      case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break;
141      case kOpLsl: opcode = kX86Sal64RI; break;
142      case kOpLsr: opcode = kX86Shr64RI; break;
143      case kOpAsr: opcode = kX86Sar64RI; break;
144      case kOpCmp: opcode = byte_imm ? kX86Cmp64RI8 : kX86Cmp64RI; break;
145      default:
146        LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op;
147    }
148  } else {
149    switch (op) {
150      case kOpLsl: opcode = kX86Sal32RI; break;
151      case kOpLsr: opcode = kX86Shr32RI; break;
152      case kOpAsr: opcode = kX86Sar32RI; break;
153      case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
154      case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
155      case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
156      // case kOpSbb: opcode = kX86Sbb32RI; break;
157      case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
158      case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
159      case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
160      case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
161      case kOpMov:
162        /*
163         * Moving the constant zero into register can be specialized as an xor of the register.
164         * However, that sets eflags while the move does not. For that reason here, always do
165         * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
166         */
167        opcode = kX86Mov32RI;
168        break;
169      case kOpMul:
170        opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
171        return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
172      case kOp2Byte:
173        opcode = kX86Mov32RI;
174        value = static_cast<int8_t>(value);
175        break;
176      case kOp2Short:
177        opcode = kX86Mov32RI;
178        value = static_cast<int16_t>(value);
179        break;
180      case kOp2Char:
181        opcode = kX86Mov32RI;
182        value = static_cast<uint16_t>(value);
183        break;
184      case kOpNeg:
185        opcode = kX86Mov32RI;
186        value = -value;
187        break;
188      default:
189        LOG(FATAL) << "Bad case in OpRegImm " << op;
190    }
191  }
192  return NewLIR2(opcode, r_dest_src1.GetReg(), value);
193}
194
195LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
196    bool is64Bit = r_dest_src1.Is64Bit();
197    X86OpCode opcode = kX86Nop;
198    bool src2_must_be_cx = false;
199    switch (op) {
200        // X86 unary opcodes
201      case kOpMvn:
202        OpRegCopy(r_dest_src1, r_src2);
203        return OpReg(kOpNot, r_dest_src1);
204      case kOpNeg:
205        OpRegCopy(r_dest_src1, r_src2);
206        return OpReg(kOpNeg, r_dest_src1);
207      case kOpRev:
208        OpRegCopy(r_dest_src1, r_src2);
209        return OpReg(kOpRev, r_dest_src1);
210      case kOpRevsh:
211        OpRegCopy(r_dest_src1, r_src2);
212        OpReg(kOpRev, r_dest_src1);
213        return OpRegImm(kOpAsr, r_dest_src1, 16);
214        // X86 binary opcodes
215      case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break;
216      case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break;
217      case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break;
218      case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break;
219      case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break;
220      case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break;
221      case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break;
222      case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break;
223      case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break;
224      case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break;
225      case kOpOr:  opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break;
226      case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break;
227      case kOp2Byte:
228        // TODO: there are several instances of this check.  A utility function perhaps?
229        // TODO: Similar to Arm's reg < 8 check.  Perhaps add attribute checks to RegStorage?
230        // Use shifts instead of a byte operand if the source can't be byte accessed.
231        if (r_src2.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
232          NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
233          NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24);
234          return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(),
235                         is64Bit ? 56 : 24);
236        } else {
237          opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR;
238        }
239        break;
240      case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break;
241      case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break;
242      case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break;
243      default:
244        LOG(FATAL) << "Bad case in OpRegReg " << op;
245        break;
246    }
247    CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg());
248    return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
249}
250
251LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
252  DCHECK(!r_base.IsFloat());
253  X86OpCode opcode = kX86Nop;
254  int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
255  switch (move_type) {
256    case kMov8GP:
257      CHECK(!r_dest.IsFloat());
258      opcode = kX86Mov8RM;
259      break;
260    case kMov16GP:
261      CHECK(!r_dest.IsFloat());
262      opcode = kX86Mov16RM;
263      break;
264    case kMov32GP:
265      CHECK(!r_dest.IsFloat());
266      opcode = kX86Mov32RM;
267      break;
268    case kMov32FP:
269      CHECK(r_dest.IsFloat());
270      opcode = kX86MovssRM;
271      break;
272    case kMov64FP:
273      CHECK(r_dest.IsFloat());
274      opcode = kX86MovsdRM;
275      break;
276    case kMovU128FP:
277      CHECK(r_dest.IsFloat());
278      opcode = kX86MovupsRM;
279      break;
280    case kMovA128FP:
281      CHECK(r_dest.IsFloat());
282      opcode = kX86MovapsRM;
283      break;
284    case kMovLo128FP:
285      CHECK(r_dest.IsFloat());
286      opcode = kX86MovlpsRM;
287      break;
288    case kMovHi128FP:
289      CHECK(r_dest.IsFloat());
290      opcode = kX86MovhpsRM;
291      break;
292    case kMov64GP:
293    case kMovLo64FP:
294    case kMovHi64FP:
295    default:
296      LOG(FATAL) << "Bad case in OpMovRegMem";
297      break;
298  }
299
300  return NewLIR3(opcode, dest, r_base.GetReg(), offset);
301}
302
303LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
304  DCHECK(!r_base.IsFloat());
305  int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
306
307  X86OpCode opcode = kX86Nop;
308  switch (move_type) {
309    case kMov8GP:
310      CHECK(!r_src.IsFloat());
311      opcode = kX86Mov8MR;
312      break;
313    case kMov16GP:
314      CHECK(!r_src.IsFloat());
315      opcode = kX86Mov16MR;
316      break;
317    case kMov32GP:
318      CHECK(!r_src.IsFloat());
319      opcode = kX86Mov32MR;
320      break;
321    case kMov32FP:
322      CHECK(r_src.IsFloat());
323      opcode = kX86MovssMR;
324      break;
325    case kMov64FP:
326      CHECK(r_src.IsFloat());
327      opcode = kX86MovsdMR;
328      break;
329    case kMovU128FP:
330      CHECK(r_src.IsFloat());
331      opcode = kX86MovupsMR;
332      break;
333    case kMovA128FP:
334      CHECK(r_src.IsFloat());
335      opcode = kX86MovapsMR;
336      break;
337    case kMovLo128FP:
338      CHECK(r_src.IsFloat());
339      opcode = kX86MovlpsMR;
340      break;
341    case kMovHi128FP:
342      CHECK(r_src.IsFloat());
343      opcode = kX86MovhpsMR;
344      break;
345    case kMov64GP:
346    case kMovLo64FP:
347    case kMovHi64FP:
348    default:
349      LOG(FATAL) << "Bad case in OpMovMemReg";
350      break;
351  }
352
353  return NewLIR3(opcode, r_base.GetReg(), offset, src);
354}
355
356LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
357  // The only conditional reg to reg operation supported is Cmov
358  DCHECK_EQ(op, kOpCmov);
359  DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit());
360  return NewLIR3(r_dest.Is64Bit() ? kX86Cmov64RRC : kX86Cmov32RRC, r_dest.GetReg(),
361                 r_src.GetReg(), X86ConditionEncoding(cc));
362}
363
364LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
365  bool is64Bit = r_dest.Is64Bit();
366  X86OpCode opcode = kX86Nop;
367  switch (op) {
368      // X86 binary opcodes
369    case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
370    case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
371    case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
372    case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
373    case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
374    case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
375    case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
376    case kOp2Byte: opcode = kX86Movsx8RM; break;
377    case kOp2Short: opcode = kX86Movsx16RM; break;
378    case kOp2Char: opcode = kX86Movzx16RM; break;
379    case kOpMul:
380    default:
381      LOG(FATAL) << "Bad case in OpRegMem " << op;
382      break;
383  }
384  LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
385  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
386    DCHECK(r_base == rs_rX86_SP);
387    AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
388  }
389  return l;
390}
391
392LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
393  DCHECK_NE(rl_dest.location, kLocPhysReg);
394  int displacement = SRegOffset(rl_dest.s_reg_low);
395  bool is64Bit = rl_dest.wide != 0;
396  X86OpCode opcode = kX86Nop;
397  switch (op) {
398    case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break;
399    case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break;
400    case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break;
401    case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break;
402    case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break;
403    case kOpOr:  opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break;
404    case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break;
405    case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break;
406    case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break;
407    case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break;
408    default:
409      LOG(FATAL) << "Bad case in OpMemReg " << op;
410      break;
411  }
412  LIR *l = NewLIR3(opcode, rs_rX86_SP.GetReg(), displacement, r_value);
413  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
414    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
415    AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */);
416  }
417  return l;
418}
419
420LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
421  DCHECK_NE(rl_value.location, kLocPhysReg);
422  bool is64Bit = r_dest.Is64Bit();
423  int displacement = SRegOffset(rl_value.s_reg_low);
424  X86OpCode opcode = kX86Nop;
425  switch (op) {
426    case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
427    case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
428    case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
429    case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
430    case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
431    case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
432    case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
433    case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break;
434    default:
435      LOG(FATAL) << "Bad case in OpRegMem " << op;
436      break;
437  }
438  LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP.GetReg(), displacement);
439  if (mem_ref_type_ == ResourceMask::kDalvikReg) {
440    AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
441  }
442  return l;
443}
444
445LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
446                             RegStorage r_src2) {
447  bool is64Bit = r_dest.Is64Bit();
448  if (r_dest != r_src1 && r_dest != r_src2) {
449    if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
450      if (r_src1 == r_src2) {
451        OpRegCopy(r_dest, r_src1);
452        return OpRegImm(kOpLsl, r_dest, 1);
453      } else if (r_src1 != rs_rBP) {
454        return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
455                       r_src1.GetReg() /* base */, r_src2.GetReg() /* index */,
456                       0 /* scale */, 0 /* disp */);
457      } else {
458        return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
459                       r_src2.GetReg() /* base */, r_src1.GetReg() /* index */,
460                       0 /* scale */, 0 /* disp */);
461      }
462    } else {
463      OpRegCopy(r_dest, r_src1);
464      return OpRegReg(op, r_dest, r_src2);
465    }
466  } else if (r_dest == r_src1) {
467    return OpRegReg(op, r_dest, r_src2);
468  } else {  // r_dest == r_src2
469    switch (op) {
470      case kOpSub:  // non-commutative
471        OpReg(kOpNeg, r_dest);
472        op = kOpAdd;
473        break;
474      case kOpSbc:
475      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
476        RegStorage t_reg = AllocTemp();
477        OpRegCopy(t_reg, r_src1);
478        OpRegReg(op, t_reg, r_src2);
479        LIR* res = OpRegCopyNoInsert(r_dest, t_reg);
480        AppendLIR(res);
481        FreeTemp(t_reg);
482        return res;
483      }
484      case kOpAdd:  // commutative
485      case kOpOr:
486      case kOpAdc:
487      case kOpAnd:
488      case kOpXor:
489        break;
490      default:
491        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
492    }
493    return OpRegReg(op, r_dest, r_src1);
494  }
495}
496
497LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
498  if (op == kOpMul && !cu_->target64) {
499    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
500    return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
501  } else if (op == kOpAnd && !cu_->target64) {
502    if (value == 0xFF && r_src.Low4()) {
503      return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
504    } else if (value == 0xFFFF) {
505      return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
506    }
507  }
508  if (r_dest != r_src) {
509    if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
510      // TODO: fix bug in LEA encoding when disp == 0
511      return NewLIR5(kX86Lea32RA, r_dest.GetReg(),  r5sib_no_base /* base */,
512                     r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
513    } else if (op == kOpAdd) {  // lea add special case
514      return NewLIR5(r_dest.Is64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
515                     r_src.GetReg() /* base */, rs_rX86_SP.GetReg()/*r4sib_no_index*/ /* index */,
516                     0 /* scale */, value /* disp */);
517    }
518    OpRegCopy(r_dest, r_src);
519  }
520  return OpRegImm(op, r_dest, value);
521}
522
523LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
524  DCHECK_EQ(kX86, cu_->instruction_set);
525  X86OpCode opcode = kX86Bkpt;
526  switch (op) {
527    case kOpBlx: opcode = kX86CallT;  break;
528    case kOpBx: opcode = kX86JmpT;  break;
529    default:
530      LOG(FATAL) << "Bad opcode: " << op;
531      break;
532  }
533  return NewLIR1(opcode, thread_offset.Int32Value());
534}
535
536LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) {
537  DCHECK_EQ(kX86_64, cu_->instruction_set);
538  X86OpCode opcode = kX86Bkpt;
539  switch (op) {
540    case kOpBlx: opcode = kX86CallT;  break;
541    case kOpBx: opcode = kX86JmpT;  break;
542    default:
543      LOG(FATAL) << "Bad opcode: " << op;
544      break;
545  }
546  return NewLIR1(opcode, thread_offset.Int32Value());
547}
548
549LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
550  X86OpCode opcode = kX86Bkpt;
551  switch (op) {
552    case kOpBlx: opcode = kX86CallM;  break;
553    default:
554      LOG(FATAL) << "Bad opcode: " << op;
555      break;
556  }
557  return NewLIR2(opcode, r_base.GetReg(), disp);
558}
559
560LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
561    int32_t val_lo = Low32Bits(value);
562    int32_t val_hi = High32Bits(value);
563    int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
564    LIR *res;
565    bool is_fp = r_dest.IsFloat();
566    // TODO: clean this up once we fully recognize 64-bit storage containers.
567    if (is_fp) {
568      if (value == 0) {
569        return NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
570      } else if (base_of_code_ != nullptr) {
571        // We will load the value from the literal area.
572        LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
573        if (data_target == NULL) {
574          data_target = AddWideData(&literal_list_, val_lo, val_hi);
575        }
576
577        // Address the start of the method
578        RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
579        if (rl_method.wide) {
580          rl_method = LoadValueWide(rl_method, kCoreReg);
581        } else {
582          rl_method = LoadValue(rl_method, kCoreReg);
583        }
584
585        // Load the proper value from the literal area.
586        // We don't know the proper offset for the value, so pick one that will force
587        // 4 byte offset.  We will fix this up in the assembler later to have the right
588        // value.
589        ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
590        res = LoadBaseDisp(rl_method.reg, 256 /* bogus */, RegStorage::FloatSolo64(low_reg_val),
591                           kDouble, kNotVolatile);
592        res->target = data_target;
593        res->flags.fixup = kFixupLoad;
594        store_method_addr_used_ = true;
595      } else {
596        if (val_lo == 0) {
597          res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
598        } else {
599          res = LoadConstantNoClobber(RegStorage::FloatSolo32(low_reg_val), val_lo);
600        }
601        if (val_hi != 0) {
602          RegStorage r_dest_hi = AllocTempDouble();
603          LoadConstantNoClobber(r_dest_hi, val_hi);
604          NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg());
605          FreeTemp(r_dest_hi);
606        }
607      }
608    } else {
609      if (r_dest.IsPair()) {
610        res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
611        LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
612      } else {
613        if (value == 0) {
614          res = NewLIR2(kX86Xor64RR, r_dest.GetReg(), r_dest.GetReg());
615        } else if (value >= INT_MIN && value <= INT_MAX) {
616          res = NewLIR2(kX86Mov64RI32, r_dest.GetReg(), val_lo);
617        } else {
618          res = NewLIR3(kX86Mov64RI64, r_dest.GetReg(), val_hi, val_lo);
619        }
620      }
621    }
622    return res;
623}
624
625LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
626                                     int displacement, RegStorage r_dest, OpSize size) {
627  LIR *load = NULL;
628  LIR *load2 = NULL;
629  bool is_array = r_index.Valid();
630  bool pair = r_dest.IsPair();
631  bool is64bit = ((size == k64) || (size == kDouble));
632  X86OpCode opcode = kX86Nop;
633  switch (size) {
634    case k64:
635    case kDouble:
636      if (r_dest.IsFloat()) {
637        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
638      } else if (!pair) {
639        opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
640      } else {
641        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
642      }
643      // TODO: double store is to unaligned address
644      DCHECK_EQ((displacement & 0x3), 0);
645      break;
646    case kWord:
647      if (cu_->target64) {
648        opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
649        CHECK_EQ(is_array, false);
650        CHECK_EQ(r_dest.IsFloat(), false);
651        break;
652      }  // else fall-through to k32 case
653    case k32:
654    case kSingle:
655    case kReference:  // TODO: update for reference decompression on 64-bit targets.
656      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
657      if (r_dest.IsFloat()) {
658        opcode = is_array ? kX86MovssRA : kX86MovssRM;
659        DCHECK(r_dest.IsFloat());
660      }
661      DCHECK_EQ((displacement & 0x3), 0);
662      break;
663    case kUnsignedHalf:
664      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
665      DCHECK_EQ((displacement & 0x1), 0);
666      break;
667    case kSignedHalf:
668      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
669      DCHECK_EQ((displacement & 0x1), 0);
670      break;
671    case kUnsignedByte:
672      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
673      break;
674    case kSignedByte:
675      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
676      break;
677    default:
678      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
679  }
680
681  if (!is_array) {
682    if (!pair) {
683      load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
684    } else {
685      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
686      if (r_base == r_dest.GetLow()) {
687        load = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
688                        displacement + HIWORD_OFFSET);
689        load2 = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
690      } else {
691        load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
692        load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
693                        displacement + HIWORD_OFFSET);
694      }
695    }
696    if (mem_ref_type_ == ResourceMask::kDalvikReg) {
697      DCHECK(r_base == rs_rX86_SP);
698      AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
699                              true /* is_load */, is64bit);
700      if (pair) {
701        AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
702                                true /* is_load */, is64bit);
703      }
704    }
705  } else {
706    if (!pair) {
707      load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
708                     displacement + LOWORD_OFFSET);
709    } else {
710      DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
711      if (r_base == r_dest.GetLow()) {
712        if (r_dest.GetHigh() == r_index) {
713          // We can't use either register for the first load.
714          RegStorage temp = AllocTemp();
715          load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
716                          displacement + HIWORD_OFFSET);
717          load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
718                         displacement + LOWORD_OFFSET);
719          OpRegCopy(r_dest.GetHigh(), temp);
720          FreeTemp(temp);
721        } else {
722          load = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
723                          displacement + HIWORD_OFFSET);
724          load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
725                         displacement + LOWORD_OFFSET);
726        }
727      } else {
728        if (r_dest.GetLow() == r_index) {
729          // We can't use either register for the first load.
730          RegStorage temp = AllocTemp();
731          load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
732                         displacement + LOWORD_OFFSET);
733          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
734                          displacement + HIWORD_OFFSET);
735          OpRegCopy(r_dest.GetLow(), temp);
736          FreeTemp(temp);
737        } else {
738          load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
739                         displacement + LOWORD_OFFSET);
740          load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
741                          displacement + HIWORD_OFFSET);
742        }
743      }
744    }
745  }
746
747  // Always return first load generated as this might cause a fault if base is nullptr.
748  return load;
749}
750
751/* Load value from base + scaled index. */
752LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
753                                 int scale, OpSize size) {
754  return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size);
755}
756
757LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
758                              OpSize size, VolatileKind is_volatile) {
759  // LoadBaseDisp() will emit correct insn for atomic load on x86
760  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
761
762  LIR* load = LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest,
763                                  size);
764
765  if (UNLIKELY(is_volatile == kVolatile)) {
766    GenMemBarrier(kLoadAny);  // Only a scheduling barrier.
767  }
768
769  return load;
770}
771
772LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
773                                      int displacement, RegStorage r_src, OpSize size) {
774  LIR *store = NULL;
775  LIR *store2 = NULL;
776  bool is_array = r_index.Valid();
777  bool pair = r_src.IsPair();
778  bool is64bit = (size == k64) || (size == kDouble);
779  X86OpCode opcode = kX86Nop;
780  switch (size) {
781    case k64:
782    case kDouble:
783      if (r_src.IsFloat()) {
784        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
785      } else if (!pair) {
786        opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
787      } else {
788        opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
789      }
790      // TODO: double store is to unaligned address
791      DCHECK_EQ((displacement & 0x3), 0);
792      break;
793    case kWord:
794      if (cu_->target64) {
795        opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
796        CHECK_EQ(is_array, false);
797        CHECK_EQ(r_src.IsFloat(), false);
798        break;
799      }  // else fall-through to k32 case
800    case k32:
801    case kSingle:
802    case kReference:
803      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
804      if (r_src.IsFloat()) {
805        opcode = is_array ? kX86MovssAR : kX86MovssMR;
806        DCHECK(r_src.IsSingle());
807      }
808      DCHECK_EQ((displacement & 0x3), 0);
809      break;
810    case kUnsignedHalf:
811    case kSignedHalf:
812      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
813      DCHECK_EQ((displacement & 0x1), 0);
814      break;
815    case kUnsignedByte:
816    case kSignedByte:
817      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
818      break;
819    default:
820      LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
821  }
822
823  if (!is_array) {
824    if (!pair) {
825      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
826    } else {
827      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
828      store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg());
829      store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg());
830    }
831    if (mem_ref_type_ == ResourceMask::kDalvikReg) {
832      DCHECK(r_base == rs_rX86_SP);
833      AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
834                              false /* is_load */, is64bit);
835      if (pair) {
836        AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
837                                false /* is_load */, is64bit);
838      }
839    }
840  } else {
841    if (!pair) {
842      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
843                      displacement + LOWORD_OFFSET, r_src.GetReg());
844    } else {
845      DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
846      store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
847                      displacement + LOWORD_OFFSET, r_src.GetLowReg());
848      store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
849                       displacement + HIWORD_OFFSET, r_src.GetHighReg());
850    }
851  }
852  return store;
853}
854
855/* store value base base + scaled index. */
856LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
857                                  int scale, OpSize size) {
858  return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size);
859}
860
861LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size,
862                               VolatileKind is_volatile) {
863  if (UNLIKELY(is_volatile == kVolatile)) {
864    GenMemBarrier(kAnyStore);  // Only a scheduling barrier.
865  }
866
867  // StoreBaseDisp() will emit correct insn for atomic store on x86
868  // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
869
870  LIR* store = StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size);
871
872  if (UNLIKELY(is_volatile == kVolatile)) {
873    // A volatile load might follow the volatile store so insert a StoreLoad barrier.
874    // This does require a fence, even on x86.
875    GenMemBarrier(kAnyAny);
876  }
877
878  return store;
879}
880
881LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
882                                   int offset, int check_value, LIR* target, LIR** compare) {
883    LIR* inst = NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(),
884            offset, check_value);
885    if (compare != nullptr) {
886        *compare = inst;
887    }
888    LIR* branch = OpCondBranch(cond, target);
889    return branch;
890}
891
892void X86Mir2Lir::AnalyzeMIR() {
893  // Assume we don't need a pointer to the base of the code.
894  cu_->NewTimingSplit("X86 MIR Analysis");
895  store_method_addr_ = false;
896
897  // Walk the MIR looking for interesting items.
898  PreOrderDfsIterator iter(mir_graph_);
899  BasicBlock* curr_bb = iter.Next();
900  while (curr_bb != NULL) {
901    AnalyzeBB(curr_bb);
902    curr_bb = iter.Next();
903  }
904
905  // Did we need a pointer to the method code?
906  if (store_method_addr_) {
907    base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, cu_->target64 == true);
908  } else {
909    base_of_code_ = nullptr;
910  }
911}
912
913void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
914  if (bb->block_type == kDead) {
915    // Ignore dead blocks
916    return;
917  }
918
919  for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
920    int opcode = mir->dalvikInsn.opcode;
921    if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
922      AnalyzeExtendedMIR(opcode, bb, mir);
923    } else {
924      AnalyzeMIR(opcode, bb, mir);
925    }
926  }
927}
928
929
930void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
931  switch (opcode) {
932    // Instructions referencing doubles.
933    case kMirOpFusedCmplDouble:
934    case kMirOpFusedCmpgDouble:
935      AnalyzeFPInstruction(opcode, bb, mir);
936      break;
937    case kMirOpConstVector:
938      store_method_addr_ = true;
939      break;
940    default:
941      // Ignore the rest.
942      break;
943  }
944}
945
946void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
947  // Looking for
948  // - Do we need a pointer to the code (used for packed switches and double lits)?
949
950  switch (opcode) {
951    // Instructions referencing doubles.
952    case Instruction::CMPL_DOUBLE:
953    case Instruction::CMPG_DOUBLE:
954    case Instruction::NEG_DOUBLE:
955    case Instruction::ADD_DOUBLE:
956    case Instruction::SUB_DOUBLE:
957    case Instruction::MUL_DOUBLE:
958    case Instruction::DIV_DOUBLE:
959    case Instruction::REM_DOUBLE:
960    case Instruction::ADD_DOUBLE_2ADDR:
961    case Instruction::SUB_DOUBLE_2ADDR:
962    case Instruction::MUL_DOUBLE_2ADDR:
963    case Instruction::DIV_DOUBLE_2ADDR:
964    case Instruction::REM_DOUBLE_2ADDR:
965      AnalyzeFPInstruction(opcode, bb, mir);
966      break;
967
968    // Packed switches and array fills need a pointer to the base of the method.
969    case Instruction::FILL_ARRAY_DATA:
970    case Instruction::PACKED_SWITCH:
971      store_method_addr_ = true;
972      break;
973    case Instruction::INVOKE_STATIC:
974      AnalyzeInvokeStatic(opcode, bb, mir);
975      break;
976    default:
977      // Other instructions are not interesting yet.
978      break;
979  }
980}
981
982void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
983  // Look at all the uses, and see if they are double constants.
984  uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode));
985  int next_sreg = 0;
986  if (attrs & DF_UA) {
987    if (attrs & DF_A_WIDE) {
988      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
989      next_sreg += 2;
990    } else {
991      next_sreg++;
992    }
993  }
994  if (attrs & DF_UB) {
995    if (attrs & DF_B_WIDE) {
996      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
997      next_sreg += 2;
998    } else {
999      next_sreg++;
1000    }
1001  }
1002  if (attrs & DF_UC) {
1003    if (attrs & DF_C_WIDE) {
1004      AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
1005    }
1006  }
1007}
1008
1009void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
1010  // If this is a double literal, we will want it in the literal pool.
1011  if (use.is_const) {
1012    store_method_addr_ = true;
1013  }
1014}
1015
1016RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc, int reg_class) {
1017  loc = UpdateLoc(loc);
1018  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1019    if (GetRegInfo(loc.reg)->IsTemp()) {
1020      Clobber(loc.reg);
1021      FreeTemp(loc.reg);
1022      loc.reg = RegStorage::InvalidReg();
1023      loc.location = kLocDalvikFrame;
1024    }
1025  }
1026  DCHECK(CheckCorePoolSanity());
1027  return loc;
1028}
1029
1030RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc, int reg_class) {
1031  loc = UpdateLocWide(loc);
1032  if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1033    if (GetRegInfo(loc.reg)->IsTemp()) {
1034      Clobber(loc.reg);
1035      FreeTemp(loc.reg);
1036      loc.reg = RegStorage::InvalidReg();
1037      loc.location = kLocDalvikFrame;
1038    }
1039  }
1040  DCHECK(CheckCorePoolSanity());
1041  return loc;
1042}
1043
1044void X86Mir2Lir::AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir) {
1045  uint32_t index = mir->dalvikInsn.vB;
1046  if (!(mir->optimization_flags & MIR_INLINED)) {
1047    DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1048    InlineMethod method;
1049    if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
1050        ->IsIntrinsic(index, &method)) {
1051      switch (method.opcode) {
1052        case kIntrinsicAbsDouble:
1053          store_method_addr_ = true;
1054          break;
1055        default:
1056          break;
1057      }
1058    }
1059  }
1060}
1061}  // namespace art
1062