reg_storage.h revision fcc36ba2a2b8fd10e6eebd21ecb6329606443ded
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_REG_STORAGE_H_
18#define ART_COMPILER_DEX_REG_STORAGE_H_
19
20#include "base/logging.h"
21#include "compiler_enums.h"  // For WideKind
22
23namespace art {
24
25/*
26 * 16-bit representation of the physical register container holding a Dalvik value.
27 * The encoding allows up to 64 physical elements per storage class, and supports eight
28 * register container shapes.
29 *
30 * [V] [HHHHH] [SSS] [F] [LLLLLL]
31 *
32 * [LLLLLL]
33 *  Physical register number for the low or solo register.
34 *    0..63
35 *
36 * [F]
37 *  Describes type of the [LLLLL] register.
38 *    0: Core
39 *    1: Floating point
40 *
41 * [SSS]
42 *  Shape of the register container.
43 *    000: Invalid
44 *    001: 32-bit solo register
45 *    010: 64-bit solo register
46 *    011: 64-bit pair consisting of two 32-bit solo registers
47 *    100: 128-bit solo register
48 *    101: 256-bit solo register
49 *    110: 512-bit solo register
50 *    111: 1024-bit solo register
51 *
52 * [HHHHH]
53 *  Physical register number of the high register (valid only for register pair).
54 *    0..31
55 *
56 * [V]
57 *    0 -> Invalid
58 *    1 -> Valid
59 *
60 * Note that in all non-invalid cases, we can determine if the storage is floating point
61 * by testing bit 7.  Note also that a register pair is effectively limited to a pair of
62 * physical register numbers in the 0..31 range.
63 *
64 * On some target architectures, the same underlying physical register container can be given
65 * different views.  For example, Arm's 32-bit single-precision floating point registers
66 * s2 and s3 map to the low and high halves of double-precision d1.  Similarly, X86's xmm3
67 * vector register can be viewed as 32-bit, 64-bit, 128-bit, etc.  In these cases the use of
68 * one view will affect the other views.  The RegStorage class does not concern itself
69 * with potential aliasing.  That will be done using the associated RegisterInfo struct.
70 * Distinct RegStorage elements should be created for each view of a physical register
71 * container.  The management of the aliased physical elements will be handled via RegisterInfo
72 * records.
73 */
74
75class RegStorage {
76 public:
77  enum RegStorageKind {
78    kValidMask     = 0x8000,
79    kValid         = 0x8000,
80    kInvalid       = 0x0000,
81    kShapeMask     = 0x0380,
82    k32BitSolo     = 0x0080,
83    k64BitSolo     = 0x0100,
84    k64BitPair     = 0x0180,
85    k128BitSolo    = 0x0200,
86    k256BitSolo    = 0x0280,
87    k512BitSolo    = 0x0300,
88    k1024BitSolo   = 0x0380,
89    k64BitMask     = 0x0300,
90    k64Bits        = 0x0100,
91    kShapeTypeMask = 0x03c0,
92    kFloatingPoint = 0x0040,
93    kCoreRegister  = 0x0000,
94  };
95
96  static const uint16_t kRegValMask  = 0x03ff;     // Num, type and shape.
97  static const uint16_t kRegTypeMask = 0x007f;     // Num and type.
98  static const uint16_t kRegNumMask  = 0x003f;     // Num only.
99  static const uint16_t kHighRegNumMask = 0x001f;  // 0..31 for high reg
100  static const uint16_t kMaxRegs     = kRegValMask + 1;
101  // TODO: deprecate use of kInvalidRegVal and speed up GetReg().  Rely on valid bit instead.
102  static const uint16_t kInvalidRegVal = 0x03ff;
103  static const uint16_t kHighRegShift = 10;
104  static const uint16_t kHighRegMask = (kHighRegNumMask << kHighRegShift);
105
106  // Reg is [F][LLLLL], will override any existing shape and use rs_kind.
107  constexpr RegStorage(RegStorageKind rs_kind, int reg)
108      : reg_(
109          DCHECK_CONSTEXPR(rs_kind != k64BitPair, , 0u)
110          DCHECK_CONSTEXPR((rs_kind & ~kShapeMask) == 0, , 0u)
111          kValid | rs_kind | (reg & kRegTypeMask)) {
112  }
113  constexpr RegStorage(RegStorageKind rs_kind, int low_reg, int high_reg)
114      : reg_(
115          DCHECK_CONSTEXPR(rs_kind == k64BitPair, << rs_kind, 0u)
116          DCHECK_CONSTEXPR((low_reg & kFloatingPoint) == (high_reg & kFloatingPoint),
117                           << low_reg << ", " << high_reg, 0u)
118          DCHECK_CONSTEXPR((high_reg & kRegNumMask) <= kHighRegNumMask,
119                           << "High reg must be in 0..31: " << high_reg, false)
120          kValid | rs_kind | ((high_reg & kHighRegNumMask) << kHighRegShift) |
121                  (low_reg & kRegTypeMask)) {
122  }
123  constexpr explicit RegStorage(uint16_t val) : reg_(val) {}
124  RegStorage() : reg_(kInvalid) {}
125
126  // We do not provide a general operator overload for equality of reg storage, as this is
127  // dangerous in the case of architectures with multiple views, and the naming ExactEquals
128  // expresses the exact match expressed here. It is more likely that a comparison between the views
129  // is intended in most cases. Such code can be found in, for example, Mir2Lir::IsSameReg.
130  //
131  // If you know what you are doing, include reg_storage_eq.h, which defines == and != for brevity.
132
133  bool ExactlyEquals(const RegStorage& rhs) const {
134    return (reg_ == rhs.GetRawBits());
135  }
136
137  bool NotExactlyEquals(const RegStorage& rhs) const {
138    return (reg_ != rhs.GetRawBits());
139  }
140
141  constexpr bool Valid() const {
142    return ((reg_ & kValidMask) == kValid);
143  }
144
145  constexpr bool Is32Bit() const {
146    return ((reg_ & kShapeMask) == k32BitSolo);
147  }
148
149  constexpr bool Is64Bit() const {
150    return ((reg_ & k64BitMask) == k64Bits);
151  }
152
153  constexpr WideKind GetWideKind() const {
154    return Is64Bit() ? kWide : kNotWide;
155  }
156
157  constexpr bool Is64BitSolo() const {
158    return ((reg_ & kShapeMask) == k64BitSolo);
159  }
160
161  constexpr bool IsPair() const {
162    return ((reg_ & kShapeMask) == k64BitPair);
163  }
164
165  constexpr bool IsFloat() const {
166    return
167        DCHECK_CONSTEXPR(Valid(), , false)
168        ((reg_ & kFloatingPoint) == kFloatingPoint);
169  }
170
171  constexpr bool IsDouble() const {
172    return
173        DCHECK_CONSTEXPR(Valid(), , false)
174        (reg_ & (kFloatingPoint | k64BitMask)) == (kFloatingPoint | k64Bits);
175  }
176
177  constexpr bool IsSingle() const {
178    return
179        DCHECK_CONSTEXPR(Valid(), , false)
180        (reg_ & (kFloatingPoint | k64BitMask)) == kFloatingPoint;
181  }
182
183  static constexpr bool IsFloat(uint16_t reg) {
184    return ((reg & kFloatingPoint) == kFloatingPoint);
185  }
186
187  static constexpr bool IsDouble(uint16_t reg) {
188    return (reg & (kFloatingPoint | k64BitMask)) == (kFloatingPoint | k64Bits);
189  }
190
191  static constexpr bool IsSingle(uint16_t reg) {
192    return (reg & (kFloatingPoint | k64BitMask)) == kFloatingPoint;
193  }
194
195  static constexpr bool Is32Bit(uint16_t reg) {
196    return ((reg & kShapeMask) == k32BitSolo);
197  }
198
199  static constexpr bool Is64Bit(uint16_t reg) {
200    return ((reg & k64BitMask) == k64Bits);
201  }
202
203  static constexpr bool Is64BitSolo(uint16_t reg) {
204    return ((reg & kShapeMask) == k64BitSolo);
205  }
206
207  // Used to retrieve either the low register of a pair, or the only register.
208  int GetReg() const {
209    DCHECK(!IsPair()) << "reg_ = 0x" << std::hex << reg_;
210    return Valid() ? (reg_ & kRegValMask) : kInvalidRegVal;
211  }
212
213  // Sets shape, type and num of solo.
214  void SetReg(int reg) {
215    DCHECK(Valid());
216    DCHECK(!IsPair());
217    reg_ = (reg_ & ~kRegValMask) | reg;
218  }
219
220  // Set the reg number and type only, target remain 64-bit pair.
221  void SetLowReg(int reg) {
222    DCHECK(IsPair());
223    reg_ = (reg_ & ~kRegTypeMask) | (reg & kRegTypeMask);
224  }
225
226  // Retrieve the least significant register of a pair and return as 32-bit solo.
227  int GetLowReg() const {
228    DCHECK(IsPair());
229    return ((reg_ & kRegTypeMask) | k32BitSolo);
230  }
231
232  // Create a stand-alone RegStorage from the low reg of a pair.
233  RegStorage GetLow() const {
234    DCHECK(IsPair());
235    return RegStorage(k32BitSolo, reg_ & kRegTypeMask);
236  }
237
238  // Retrieve the most significant register of a pair.
239  int GetHighReg() const {
240    DCHECK(IsPair());
241    return k32BitSolo | ((reg_ & kHighRegMask) >> kHighRegShift) | (reg_ & kFloatingPoint);
242  }
243
244  // Create a stand-alone RegStorage from the high reg of a pair.
245  RegStorage GetHigh() const {
246    DCHECK(IsPair());
247    return RegStorage(kValid | GetHighReg());
248  }
249
250  void SetHighReg(int reg) {
251    DCHECK(IsPair());
252    reg_ = (reg_ & ~kHighRegMask) | ((reg & kHighRegNumMask) << kHighRegShift);
253  }
254
255  // Return the register number of low or solo.
256  constexpr int GetRegNum() const {
257    return reg_ & kRegNumMask;
258  }
259
260  // Is register number in 0..7?
261  constexpr bool Low8() const {
262    return GetRegNum() < 8;
263  }
264
265  // Is register number in 0..3?
266  constexpr bool Low4() const {
267    return GetRegNum() < 4;
268  }
269
270  // Combine 2 32-bit solo regs into a pair.
271  static RegStorage MakeRegPair(RegStorage low, RegStorage high) {
272    DCHECK(!low.IsPair());
273    DCHECK(low.Is32Bit());
274    DCHECK(!high.IsPair());
275    DCHECK(high.Is32Bit());
276    return RegStorage(k64BitPair, low.GetReg(), high.GetReg());
277  }
278
279  static constexpr bool SameRegType(RegStorage reg1, RegStorage reg2) {
280    return ((reg1.reg_ & kShapeTypeMask) == (reg2.reg_ & kShapeTypeMask));
281  }
282
283  static constexpr bool SameRegType(int reg1, int reg2) {
284    return ((reg1 & kShapeTypeMask) == (reg2 & kShapeTypeMask));
285  }
286
287  // Create a 32-bit solo.
288  static RegStorage Solo32(int reg_num) {
289    return RegStorage(k32BitSolo, reg_num & kRegTypeMask);
290  }
291
292  // Create a floating point 32-bit solo.
293  static constexpr RegStorage FloatSolo32(int reg_num) {
294    return RegStorage(k32BitSolo, (reg_num & kRegNumMask) | kFloatingPoint);
295  }
296
297  // Create a 128-bit solo.
298  static constexpr RegStorage Solo128(int reg_num) {
299    return RegStorage(k128BitSolo, reg_num & kRegTypeMask);
300  }
301
302  // Create a 64-bit solo.
303  static constexpr RegStorage Solo64(int reg_num) {
304    return RegStorage(k64BitSolo, reg_num & kRegTypeMask);
305  }
306
307  // Create a floating point 64-bit solo.
308  static RegStorage FloatSolo64(int reg_num) {
309    return RegStorage(k64BitSolo, (reg_num & kRegNumMask) | kFloatingPoint);
310  }
311
312  static constexpr RegStorage InvalidReg() {
313    return RegStorage(kInvalid);
314  }
315
316  static constexpr uint16_t RegNum(int raw_reg_bits) {
317    return raw_reg_bits & kRegNumMask;
318  }
319
320  constexpr int GetRawBits() const {
321    return reg_;
322  }
323
324  size_t StorageSize() const {
325    switch (reg_ & kShapeMask) {
326      case kInvalid: return 0;
327      case k32BitSolo: return 4;
328      case k64BitSolo: return 8;
329      case k64BitPair: return 8;  // Is this useful?  Might want to disallow taking size of pair.
330      case k128BitSolo: return 16;
331      case k256BitSolo: return 32;
332      case k512BitSolo: return 64;
333      case k1024BitSolo: return 128;
334      default: LOG(FATAL) << "Unexpected shape";
335    }
336    return 0;
337  }
338
339 private:
340  uint16_t reg_;
341};
342
343}  // namespace art
344
345#endif  // ART_COMPILER_DEX_REG_STORAGE_H_
346