mutex.h revision 37f3c968ecd04e77802fe17bb82dabc07de21ca1
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_BASE_MUTEX_H_
18#define ART_RUNTIME_BASE_MUTEX_H_
19
20#include <pthread.h>
21#include <stdint.h>
22
23#include <iosfwd>
24#include <string>
25
26#include "atomic.h"
27#include "base/logging.h"
28#include "base/macros.h"
29#include "globals.h"
30
31#if defined(__APPLE__)
32#define ART_USE_FUTEXES 0
33#else
34#define ART_USE_FUTEXES 1
35#endif
36
37// Currently Darwin doesn't support locks with timeouts.
38#if !defined(__APPLE__)
39#define HAVE_TIMED_RWLOCK 1
40#else
41#define HAVE_TIMED_RWLOCK 0
42#endif
43
44namespace art {
45
46class LOCKABLE ReaderWriterMutex;
47class ScopedContentionRecorder;
48class Thread;
49
50// LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
51// equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
52// partial ordering and thereby cause deadlock situations to fail checks.
53//
54// [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
55enum LockLevel {
56  kLoggingLock = 0,
57  kMemMapsLock,
58  kSwapMutexesLock,
59  kUnexpectedSignalLock,
60  kThreadSuspendCountLock,
61  kAbortLock,
62  kJdwpSocketLock,
63  kRosAllocGlobalLock,
64  kRosAllocBracketLock,
65  kRosAllocBulkFreeLock,
66  kAllocSpaceLock,
67  kReferenceProcessorLock,
68  kDexFileMethodInlinerLock,
69  kDexFileToMethodInlinerMapLock,
70  kMarkSweepMarkStackLock,
71  kTransactionLogLock,
72  kInternTableLock,
73  kDefaultMutexLevel,
74  kMarkSweepLargeObjectLock,
75  kPinTableLock,
76  kLoadLibraryLock,
77  kJdwpObjectRegistryLock,
78  kModifyLdtLock,
79  kAllocatedThreadIdsLock,
80  kMonitorPoolLock,
81  kClassLinkerClassesLock,
82  kBreakpointLock,
83  kMonitorLock,
84  kMonitorListLock,
85  kThreadListLock,
86  kBreakpointInvokeLock,
87  kDeoptimizationLock,
88  kTraceLock,
89  kProfilerLock,
90  kJdwpEventListLock,
91  kJdwpAttachLock,
92  kJdwpStartLock,
93  kRuntimeShutdownLock,
94  kHeapBitmapLock,
95  kMutatorLock,
96  kZygoteCreationLock,
97
98  kLockLevelCount  // Must come last.
99};
100std::ostream& operator<<(std::ostream& os, const LockLevel& rhs);
101
102const bool kDebugLocking = kIsDebugBuild;
103
104// Record Log contention information, dumpable via SIGQUIT.
105#ifdef ART_USE_FUTEXES
106// To enable lock contention logging, set this to true.
107const bool kLogLockContentions = false;
108#else
109// Keep this false as lock contention logging is supported only with
110// futex.
111const bool kLogLockContentions = false;
112#endif
113const size_t kContentionLogSize = 4;
114const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
115const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;
116
117// Base class for all Mutex implementations
118class BaseMutex {
119 public:
120  const char* GetName() const {
121    return name_;
122  }
123
124  virtual bool IsMutex() const { return false; }
125  virtual bool IsReaderWriterMutex() const { return false; }
126
127  virtual void Dump(std::ostream& os) const = 0;
128
129  static void DumpAll(std::ostream& os);
130
131 protected:
132  friend class ConditionVariable;
133
134  BaseMutex(const char* name, LockLevel level);
135  virtual ~BaseMutex();
136  void RegisterAsLocked(Thread* self);
137  void RegisterAsUnlocked(Thread* self);
138  void CheckSafeToWait(Thread* self);
139
140  friend class ScopedContentionRecorder;
141
142  void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
143  void DumpContention(std::ostream& os) const;
144
145  const LockLevel level_;  // Support for lock hierarchy.
146  const char* const name_;
147
148  // A log entry that records contention but makes no guarantee that either tid will be held live.
149  struct ContentionLogEntry {
150    ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
151    uint64_t blocked_tid;
152    uint64_t owner_tid;
153    AtomicInteger count;
154  };
155  struct ContentionLogData {
156    ContentionLogEntry contention_log[kContentionLogSize];
157    // The next entry in the contention log to be updated. Value ranges from 0 to
158    // kContentionLogSize - 1.
159    AtomicInteger cur_content_log_entry;
160    // Number of times the Mutex has been contended.
161    AtomicInteger contention_count;
162    // Sum of time waited by all contenders in ns.
163    Atomic<uint64_t> wait_time;
164    void AddToWaitTime(uint64_t value);
165    ContentionLogData() : wait_time(0) {}
166  };
167  ContentionLogData contention_log_data_[kContentionLogDataSize];
168
169 public:
170  bool HasEverContended() const {
171    if (kLogLockContentions) {
172      return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0;
173    }
174    return false;
175  }
176};
177
178// A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
179// exclusive access to what it guards. A Mutex can be in one of two states:
180// - Free - not owned by any thread,
181// - Exclusive - owned by a single thread.
182//
183// The effect of locking and unlocking operations on the state is:
184// State     | ExclusiveLock | ExclusiveUnlock
185// -------------------------------------------
186// Free      | Exclusive     | error
187// Exclusive | Block*        | Free
188// * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
189//   an error. Being non-reentrant simplifies Waiting on ConditionVariables.
190std::ostream& operator<<(std::ostream& os, const Mutex& mu);
191class LOCKABLE Mutex : public BaseMutex {
192 public:
193  explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
194  ~Mutex();
195
196  virtual bool IsMutex() const { return true; }
197
198  // Block until mutex is free then acquire exclusive access.
199  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
200  void Lock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
201
202  // Returns true if acquires exclusive access, false otherwise.
203  bool ExclusiveTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
204  bool TryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(self); }
205
206  // Release exclusive access.
207  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
208  void Unlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
209
210  // Is the current thread the exclusive holder of the Mutex.
211  bool IsExclusiveHeld(const Thread* self) const;
212
213  // Assert that the Mutex is exclusively held by the current thread.
214  void AssertExclusiveHeld(const Thread* self) {
215    if (kDebugLocking && (gAborting == 0)) {
216      CHECK(IsExclusiveHeld(self)) << *this;
217    }
218  }
219  void AssertHeld(const Thread* self) { AssertExclusiveHeld(self); }
220
221  // Assert that the Mutex is not held by the current thread.
222  void AssertNotHeldExclusive(const Thread* self) {
223    if (kDebugLocking && (gAborting == 0)) {
224      CHECK(!IsExclusiveHeld(self)) << *this;
225    }
226  }
227  void AssertNotHeld(const Thread* self) { AssertNotHeldExclusive(self); }
228
229  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
230  // than the owner.
231  uint64_t GetExclusiveOwnerTid() const;
232
233  // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
234  unsigned int GetDepth() const {
235    return recursion_count_;
236  }
237
238  virtual void Dump(std::ostream& os) const;
239
240 private:
241#if ART_USE_FUTEXES
242  // 0 is unheld, 1 is held.
243  AtomicInteger state_;
244  // Exclusive owner.
245  volatile uint64_t exclusive_owner_;
246  // Number of waiting contenders.
247  AtomicInteger num_contenders_;
248#else
249  pthread_mutex_t mutex_;
250  volatile uint64_t exclusive_owner_;  // Guarded by mutex_.
251#endif
252  const bool recursive_;  // Can the lock be recursively held?
253  unsigned int recursion_count_;
254  friend class ConditionVariable;
255  DISALLOW_COPY_AND_ASSIGN(Mutex);
256};
257
258// A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
259// Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
260// access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
261// condition variable. A ReaderWriterMutex can be in one of three states:
262// - Free - not owned by any thread,
263// - Exclusive - owned by a single thread,
264// - Shared(n) - shared amongst n threads.
265//
266// The effect of locking and unlocking operations on the state is:
267//
268// State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
269// ----------------------------------------------------------------------------
270// Free      | Exclusive     | error           | SharedLock(1)    | error
271// Exclusive | Block         | Free            | Block            | error
272// Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
273// * for large values of n the SharedLock may block.
274std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
275class LOCKABLE ReaderWriterMutex : public BaseMutex {
276 public:
277  explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
278  ~ReaderWriterMutex();
279
280  virtual bool IsReaderWriterMutex() const { return true; }
281
282  // Block until ReaderWriterMutex is free then acquire exclusive access.
283  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
284  void WriterLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
285
286  // Release exclusive access.
287  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
288  void WriterUnlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
289
290  // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
291  // or false if timeout is reached.
292#if HAVE_TIMED_RWLOCK
293  bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
294      EXCLUSIVE_TRYLOCK_FUNCTION(true);
295#endif
296
297  // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
298  void SharedLock(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;
299  void ReaderLock(Thread* self) SHARED_LOCK_FUNCTION() { SharedLock(self); }
300
301  // Try to acquire share of ReaderWriterMutex.
302  bool SharedTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
303
304  // Release a share of the access.
305  void SharedUnlock(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
306  void ReaderUnlock(Thread* self) UNLOCK_FUNCTION() { SharedUnlock(self); }
307
308  // Is the current thread the exclusive holder of the ReaderWriterMutex.
309  bool IsExclusiveHeld(const Thread* self) const;
310
311  // Assert the current thread has exclusive access to the ReaderWriterMutex.
312  void AssertExclusiveHeld(const Thread* self) {
313    if (kDebugLocking && (gAborting == 0)) {
314      CHECK(IsExclusiveHeld(self)) << *this;
315    }
316  }
317  void AssertWriterHeld(const Thread* self) { AssertExclusiveHeld(self); }
318
319  // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
320  void AssertNotExclusiveHeld(const Thread* self) {
321    if (kDebugLocking && (gAborting == 0)) {
322      CHECK(!IsExclusiveHeld(self)) << *this;
323    }
324  }
325  void AssertNotWriterHeld(const Thread* self) { AssertNotExclusiveHeld(self); }
326
327  // Is the current thread a shared holder of the ReaderWriterMutex.
328  bool IsSharedHeld(const Thread* self) const;
329
330  // Assert the current thread has shared access to the ReaderWriterMutex.
331  void AssertSharedHeld(const Thread* self) {
332    if (kDebugLocking && (gAborting == 0)) {
333      // TODO: we can only assert this well when self != NULL.
334      CHECK(IsSharedHeld(self) || self == NULL) << *this;
335    }
336  }
337  void AssertReaderHeld(const Thread* self) { AssertSharedHeld(self); }
338
339  // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
340  // mode.
341  void AssertNotHeld(const Thread* self) {
342    if (kDebugLocking && (gAborting == 0)) {
343      CHECK(!IsSharedHeld(self)) << *this;
344    }
345  }
346
347  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
348  // than the owner.
349  uint64_t GetExclusiveOwnerTid() const;
350
351  virtual void Dump(std::ostream& os) const;
352
353 private:
354#if ART_USE_FUTEXES
355  // -1 implies held exclusive, +ve shared held by state_ many owners.
356  AtomicInteger state_;
357  // Exclusive owner. Modification guarded by this mutex.
358  volatile uint64_t exclusive_owner_;
359  // Number of contenders waiting for a reader share.
360  AtomicInteger num_pending_readers_;
361  // Number of contenders waiting to be the writer.
362  AtomicInteger num_pending_writers_;
363#else
364  pthread_rwlock_t rwlock_;
365  volatile uint64_t exclusive_owner_;  // Guarded by rwlock_.
366#endif
367  DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
368};
369
370// ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
371// (Signal) or all at once (Broadcast).
372class ConditionVariable {
373 public:
374  explicit ConditionVariable(const char* name, Mutex& mutex);
375  ~ConditionVariable();
376
377  void Broadcast(Thread* self);
378  void Signal(Thread* self);
379  // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
380  //       pointer copy, thereby defeating annotalysis.
381  void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
382  void TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
383  // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
384  // when waiting.
385  // TODO: remove this.
386  void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
387
388 private:
389  const char* const name_;
390  // The Mutex being used by waiters. It is an error to mix condition variables between different
391  // Mutexes.
392  Mutex& guard_;
393#if ART_USE_FUTEXES
394  // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
395  // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
396  // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
397  // without guard_ held.
398  AtomicInteger sequence_;
399  // Number of threads that have come into to wait, not the length of the waiters on the futex as
400  // waiters may have been requeued onto guard_. Guarded by guard_.
401  volatile int32_t num_waiters_;
402#else
403  pthread_cond_t cond_;
404#endif
405  DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
406};
407
408// Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
409// upon destruction.
410class SCOPED_LOCKABLE MutexLock {
411 public:
412  explicit MutexLock(Thread* self, Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) {
413    mu_.ExclusiveLock(self_);
414  }
415
416  ~MutexLock() UNLOCK_FUNCTION() {
417    mu_.ExclusiveUnlock(self_);
418  }
419
420 private:
421  Thread* const self_;
422  Mutex& mu_;
423  DISALLOW_COPY_AND_ASSIGN(MutexLock);
424};
425// Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
426#define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_declaration_missing_variable_name)
427
428// Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
429// construction and releases it upon destruction.
430class SCOPED_LOCKABLE ReaderMutexLock {
431 public:
432  explicit ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
433      self_(self), mu_(mu) {
434    mu_.SharedLock(self_);
435  }
436
437  ~ReaderMutexLock() UNLOCK_FUNCTION() {
438    mu_.SharedUnlock(self_);
439  }
440
441 private:
442  Thread* const self_;
443  ReaderWriterMutex& mu_;
444  DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
445};
446// Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
447// "ReaderMutexLock mu(lock)".
448#define ReaderMutexLock(x) COMPILE_ASSERT(0, reader_mutex_lock_declaration_missing_variable_name)
449
450// Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
451// construction and releases it upon destruction.
452class SCOPED_LOCKABLE WriterMutexLock {
453 public:
454  explicit WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
455      self_(self), mu_(mu) {
456    mu_.ExclusiveLock(self_);
457  }
458
459  ~WriterMutexLock() UNLOCK_FUNCTION() {
460    mu_.ExclusiveUnlock(self_);
461  }
462
463 private:
464  Thread* const self_;
465  ReaderWriterMutex& mu_;
466  DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
467};
468// Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
469// "WriterMutexLock mu(lock)".
470#define WriterMutexLock(x) COMPILE_ASSERT(0, writer_mutex_lock_declaration_missing_variable_name)
471
472// Global mutexes corresponding to the levels above.
473class Locks {
474 public:
475  static void Init();
476
477  // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
478  // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
479  // a share on the mutator_lock_. The garbage collector may also execute with shared access but
480  // at times requires exclusive access to the heap (not to be confused with the heap meta-data
481  // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
482  // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
483  // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
484  // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
485  // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
486  // chance to acquire the lock.
487  //
488  // Thread suspension:
489  // Shared users                                  | Exclusive user
490  // (holding mutator lock and in kRunnable state) |   .. running ..
491  //   .. running ..                               | Request thread suspension by:
492  //   .. running ..                               |   - acquiring thread_suspend_count_lock_
493  //   .. running ..                               |   - incrementing Thread::suspend_count_ on
494  //   .. running ..                               |     all mutator threads
495  //   .. running ..                               |   - releasing thread_suspend_count_lock_
496  //   .. running ..                               | Block trying to acquire exclusive mutator lock
497  // Poll Thread::suspend_count_ and enter full    |   .. blocked ..
498  // suspend code.                                 |   .. blocked ..
499  // Change state to kSuspended                    |   .. blocked ..
500  // x: Release share on mutator_lock_             | Carry out exclusive access
501  // Acquire thread_suspend_count_lock_            |   .. exclusive ..
502  // while Thread::suspend_count_ > 0              |   .. exclusive ..
503  //   - wait on Thread::resume_cond_              |   .. exclusive ..
504  //     (releases thread_suspend_count_lock_)     |   .. exclusive ..
505  //   .. waiting ..                               | Release mutator_lock_
506  //   .. waiting ..                               | Request thread resumption by:
507  //   .. waiting ..                               |   - acquiring thread_suspend_count_lock_
508  //   .. waiting ..                               |   - decrementing Thread::suspend_count_ on
509  //   .. waiting ..                               |     all mutator threads
510  //   .. waiting ..                               |   - notifying on Thread::resume_cond_
511  //    - re-acquire thread_suspend_count_lock_    |   - releasing thread_suspend_count_lock_
512  // Release thread_suspend_count_lock_            |  .. running ..
513  // Acquire share on mutator_lock_                |  .. running ..
514  //  - This could block but the thread still      |  .. running ..
515  //    has a state of kSuspended and so this      |  .. running ..
516  //    isn't an issue.                            |  .. running ..
517  // Acquire thread_suspend_count_lock_            |  .. running ..
518  //  - we poll here as we're transitioning into   |  .. running ..
519  //    kRunnable and an individual thread suspend |  .. running ..
520  //    request (e.g for debugging) won't try      |  .. running ..
521  //    to acquire the mutator lock (which would   |  .. running ..
522  //    block as we hold the mutator lock). This   |  .. running ..
523  //    poll ensures that if the suspender thought |  .. running ..
524  //    we were suspended by incrementing our      |  .. running ..
525  //    Thread::suspend_count_ and then reading    |  .. running ..
526  //    our state we go back to waiting on         |  .. running ..
527  //    Thread::resume_cond_.                      |  .. running ..
528  // can_go_runnable = Thread::suspend_count_ == 0 |  .. running ..
529  // Release thread_suspend_count_lock_            |  .. running ..
530  // if can_go_runnable                            |  .. running ..
531  //   Change state to kRunnable                   |  .. running ..
532  // else                                          |  .. running ..
533  //   Goto x                                      |  .. running ..
534  //  .. running ..                                |  .. running ..
535  static ReaderWriterMutex* mutator_lock_;
536
537  // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
538  static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);
539
540  // Guards shutdown of the runtime.
541  static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);
542
543  // Guards background profiler global state.
544  static Mutex* profiler_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_);
545
546  // Guards trace (ie traceview) requests.
547  static Mutex* trace_lock_ ACQUIRED_AFTER(profiler_lock_);
548
549  // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
550  // attaching and detaching.
551  static Mutex* thread_list_lock_ ACQUIRED_AFTER(trace_lock_);
552
553  // Guards breakpoints.
554  static Mutex* breakpoint_lock_ ACQUIRED_AFTER(thread_list_lock_);
555
556  // Guards lists of classes within the class linker.
557  static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(breakpoint_lock_);
558
559  // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
560  // doesn't try to hold a higher level Mutex.
561  #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::classlinker_classes_lock_)
562
563  static Mutex* allocated_monitor_ids_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
564
565  // Guard the allocation/deallocation of thread ids.
566  static Mutex* allocated_thread_ids_lock_ ACQUIRED_AFTER(allocated_monitor_ids_lock_);
567
568  // Guards modification of the LDT on x86.
569  static Mutex* modify_ldt_lock_ ACQUIRED_AFTER(allocated_thread_ids_lock_);
570
571  // Guards intern table.
572  static Mutex* intern_table_lock_ ACQUIRED_AFTER(modify_ldt_lock_);
573
574  // Have an exclusive aborting thread.
575  static Mutex* abort_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
576
577  // Allow mutual exclusion when manipulating Thread::suspend_count_.
578  // TODO: Does the trade-off of a per-thread lock make sense?
579  static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);
580
581  // One unexpected signal at a time lock.
582  static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);
583
584  // Guards the maps in mem_map.
585  static Mutex* mem_maps_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
586
587  // Have an exclusive logging thread.
588  static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
589};
590
591}  // namespace art
592
593#endif  // ART_RUNTIME_BASE_MUTEX_H_
594