mark_sweep.cc revision 0941b0423537a6a5d7c1df6dd23e9864ea8f319c
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "indirect_reference_table.h"
38#include "intern_table.h"
39#include "jni_internal.h"
40#include "monitor.h"
41#include "mark_sweep-inl.h"
42#include "mirror/art_field.h"
43#include "mirror/art_field-inl.h"
44#include "mirror/class-inl.h"
45#include "mirror/class_loader.h"
46#include "mirror/dex_cache.h"
47#include "mirror/object-inl.h"
48#include "mirror/object_array.h"
49#include "mirror/object_array-inl.h"
50#include "runtime.h"
51#include "thread-inl.h"
52#include "thread_list.h"
53#include "verifier/method_verifier.h"
54
55using ::art::mirror::ArtField;
56using ::art::mirror::Class;
57using ::art::mirror::Object;
58using ::art::mirror::ObjectArray;
59
60namespace art {
61namespace gc {
62namespace collector {
63
64// Performance options.
65constexpr bool kUseRecursiveMark = false;
66constexpr bool kUseMarkStackPrefetch = true;
67constexpr size_t kSweepArrayChunkFreeSize = 1024;
68
69// Parallelism options.
70constexpr bool kParallelCardScan = true;
71constexpr bool kParallelRecursiveMark = true;
72// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
73// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
74// having this can add overhead in ProcessReferences since we may end up doing many calls of
75// ProcessMarkStack with very small mark stacks.
76constexpr size_t kMinimumParallelMarkStackSize = 128;
77constexpr bool kParallelProcessMarkStack = true;
78
79// Profiling and information flags.
80constexpr bool kCountClassesMarked = false;
81constexpr bool kProfileLargeObjects = false;
82constexpr bool kMeasureOverhead = false;
83constexpr bool kCountTasks = false;
84constexpr bool kCountJavaLangRefs = false;
85
86// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
87constexpr bool kCheckLocks = kDebugLocking;
88
89void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
90  // Bind live to mark bitmap if necessary.
91  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
92    BindLiveToMarkBitmap(space);
93  }
94
95  // Add the space to the immune region.
96  if (immune_begin_ == NULL) {
97    DCHECK(immune_end_ == NULL);
98    SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
99                   reinterpret_cast<Object*>(space->End()));
100  } else {
101    const space::ContinuousSpace* prev_space = nullptr;
102    // Find out if the previous space is immune.
103    for (const space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
104      if (cur_space == space) {
105        break;
106      }
107      prev_space = cur_space;
108    }
109    // If previous space was immune, then extend the immune region. Relies on continuous spaces
110    // being sorted by Heap::AddContinuousSpace.
111    if (prev_space != NULL && IsImmuneSpace(prev_space)) {
112      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
113      immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
114    }
115  }
116}
117
118bool MarkSweep::IsImmuneSpace(const space::ContinuousSpace* space) {
119  return
120      immune_begin_ <= reinterpret_cast<Object*>(space->Begin()) &&
121      immune_end_ >= reinterpret_cast<Object*>(space->End());
122}
123
124void MarkSweep::BindBitmaps() {
125  timings_.StartSplit("BindBitmaps");
126  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
127  // Mark all of the spaces we never collect as immune.
128  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
129    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
130      ImmuneSpace(space);
131    }
132  }
133  timings_.EndSplit();
134}
135
136MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
137    : GarbageCollector(heap,
138                       name_prefix + (name_prefix.empty() ? "" : " ") +
139                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
140      current_mark_bitmap_(NULL),
141      java_lang_Class_(NULL),
142      mark_stack_(NULL),
143      immune_begin_(NULL),
144      immune_end_(NULL),
145      soft_reference_list_(NULL),
146      weak_reference_list_(NULL),
147      finalizer_reference_list_(NULL),
148      phantom_reference_list_(NULL),
149      cleared_reference_list_(NULL),
150      gc_barrier_(new Barrier(0)),
151      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
152      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
153      is_concurrent_(is_concurrent),
154      clear_soft_references_(false) {
155}
156
157void MarkSweep::InitializePhase() {
158  timings_.Reset();
159  base::TimingLogger::ScopedSplit split("InitializePhase", &timings_);
160  mark_stack_ = heap_->mark_stack_.get();
161  DCHECK(mark_stack_ != nullptr);
162  SetImmuneRange(nullptr, nullptr);
163  soft_reference_list_ = nullptr;
164  weak_reference_list_ = nullptr;
165  finalizer_reference_list_ = nullptr;
166  phantom_reference_list_ = nullptr;
167  cleared_reference_list_ = nullptr;
168  freed_bytes_ = 0;
169  freed_large_object_bytes_ = 0;
170  freed_objects_ = 0;
171  freed_large_objects_ = 0;
172  class_count_ = 0;
173  array_count_ = 0;
174  other_count_ = 0;
175  large_object_test_ = 0;
176  large_object_mark_ = 0;
177  classes_marked_ = 0;
178  overhead_time_ = 0;
179  work_chunks_created_ = 0;
180  work_chunks_deleted_ = 0;
181  reference_count_ = 0;
182  java_lang_Class_ = Class::GetJavaLangClass();
183  CHECK(java_lang_Class_ != nullptr);
184
185  FindDefaultMarkBitmap();
186
187  // Do any pre GC verification.
188  timings_.NewSplit("PreGcVerification");
189  heap_->PreGcVerification(this);
190}
191
192void MarkSweep::ProcessReferences(Thread* self) {
193  base::TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
194  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
195  ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_,
196                    &finalizer_reference_list_, &phantom_reference_list_);
197}
198
199bool MarkSweep::HandleDirtyObjectsPhase() {
200  base::TimingLogger::ScopedSplit split("HandleDirtyObjectsPhase", &timings_);
201  Thread* self = Thread::Current();
202  Locks::mutator_lock_->AssertExclusiveHeld(self);
203
204  {
205    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
206
207    // Re-mark root set.
208    ReMarkRoots();
209
210    // Scan dirty objects, this is only required if we are not doing concurrent GC.
211    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
212  }
213
214  ProcessReferences(self);
215
216  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
217  if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
218      GetHeap()->verify_post_gc_heap_) {
219    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
220    // This second sweep makes sure that we don't have any objects in the live stack which point to
221    // freed objects. These cause problems since their references may be previously freed objects.
222    SweepArray(GetHeap()->allocation_stack_.get(), false);
223  }
224
225  timings_.StartSplit("PreSweepingGcVerification");
226  heap_->PreSweepingGcVerification(this);
227  timings_.EndSplit();
228
229  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
230  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
231  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
232
233  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
234  // weak before we sweep them. Since this new system weak may not be marked, the GC may
235  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
236  // reference to a string that is about to be swept.
237  Runtime::Current()->DisallowNewSystemWeaks();
238  return true;
239}
240
241bool MarkSweep::IsConcurrent() const {
242  return is_concurrent_;
243}
244
245void MarkSweep::MarkingPhase() {
246  base::TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
247  Thread* self = Thread::Current();
248
249  BindBitmaps();
250  FindDefaultMarkBitmap();
251
252  // Process dirty cards and add dirty cards to mod union tables.
253  heap_->ProcessCards(timings_);
254
255  // Need to do this before the checkpoint since we don't want any threads to add references to
256  // the live stack during the recursive mark.
257  timings_.NewSplit("SwapStacks");
258  heap_->SwapStacks();
259
260  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
261  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
262    // If we exclusively hold the mutator lock, all threads must be suspended.
263    MarkRoots();
264  } else {
265    MarkThreadRoots(self);
266    // At this point the live stack should no longer have any mutators which push into it.
267    MarkNonThreadRoots();
268  }
269  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
270  MarkConcurrentRoots();
271  UpdateAndMarkModUnion();
272  MarkReachableObjects();
273}
274
275void MarkSweep::UpdateAndMarkModUnion() {
276  for (const auto& space : heap_->GetContinuousSpaces()) {
277    if (IsImmuneSpace(space)) {
278      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
279          "UpdateAndMarkImageModUnionTable";
280      base::TimingLogger::ScopedSplit split(name, &timings_);
281      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
282      CHECK(mod_union_table != nullptr);
283      mod_union_table->UpdateAndMarkReferences(MarkRootCallback, this);
284    }
285  }
286}
287
288void MarkSweep::MarkThreadRoots(Thread* self) {
289  MarkRootsCheckpoint(self);
290}
291
292void MarkSweep::MarkReachableObjects() {
293  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
294  // knowing that new allocations won't be marked as live.
295  timings_.StartSplit("MarkStackAsLive");
296  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
297  heap_->MarkAllocStack(heap_->alloc_space_->GetLiveBitmap(),
298                        heap_->large_object_space_->GetLiveObjects(), live_stack);
299  live_stack->Reset();
300  timings_.EndSplit();
301  // Recursively mark all the non-image bits set in the mark bitmap.
302  RecursiveMark();
303}
304
305void MarkSweep::ReclaimPhase() {
306  base::TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
307  Thread* self = Thread::Current();
308
309  if (!IsConcurrent()) {
310    ProcessReferences(self);
311  }
312
313  {
314    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
315    SweepSystemWeaks();
316  }
317
318  if (IsConcurrent()) {
319    Runtime::Current()->AllowNewSystemWeaks();
320
321    base::TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
322    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
323    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
324    // The allocation stack contains things allocated since the start of the GC. These may have been
325    // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
326    // Remove these objects from the mark bitmaps so that they will be eligible for sticky
327    // collection.
328    // There is a race here which is safely handled. Another thread such as the hprof could
329    // have flushed the alloc stack after we resumed the threads. This is safe however, since
330    // reseting the allocation stack zeros it out with madvise. This means that we will either
331    // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
332    // first place.
333    mirror::Object** end = allocation_stack->End();
334    for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
335      const Object* obj = *it;
336      if (obj != NULL) {
337        UnMarkObjectNonNull(obj);
338      }
339    }
340  }
341
342  // Before freeing anything, lets verify the heap.
343  if (kIsDebugBuild) {
344    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
345    VerifyImageRoots();
346  }
347
348  {
349    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
350
351    // Reclaim unmarked objects.
352    Sweep(false);
353
354    // Swap the live and mark bitmaps for each space which we modified space. This is an
355    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
356    // bitmaps.
357    timings_.StartSplit("SwapBitmaps");
358    SwapBitmaps();
359    timings_.EndSplit();
360
361    // Unbind the live and mark bitmaps.
362    UnBindBitmaps();
363  }
364}
365
366void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
367  immune_begin_ = begin;
368  immune_end_ = end;
369}
370
371void MarkSweep::FindDefaultMarkBitmap() {
372  base::TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
373  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
374    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
375      current_mark_bitmap_ = space->GetMarkBitmap();
376      CHECK(current_mark_bitmap_ != NULL);
377      return;
378    }
379  }
380  GetHeap()->DumpSpaces();
381  LOG(FATAL) << "Could not find a default mark bitmap";
382}
383
384void MarkSweep::ExpandMarkStack() {
385  ResizeMarkStack(mark_stack_->Capacity() * 2);
386}
387
388void MarkSweep::ResizeMarkStack(size_t new_size) {
389  // Rare case, no need to have Thread::Current be a parameter.
390  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
391    // Someone else acquired the lock and expanded the mark stack before us.
392    return;
393  }
394  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
395  CHECK_LE(mark_stack_->Size(), new_size);
396  mark_stack_->Resize(new_size);
397  for (const auto& obj : temp) {
398    mark_stack_->PushBack(obj);
399  }
400}
401
402inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
403  DCHECK(obj != NULL);
404  if (MarkObjectParallel(obj)) {
405    MutexLock mu(Thread::Current(), mark_stack_lock_);
406    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
407      ExpandMarkStack();
408    }
409    // The object must be pushed on to the mark stack.
410    mark_stack_->PushBack(const_cast<Object*>(obj));
411  }
412}
413
414inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
415  DCHECK(!IsImmune(obj));
416  // Try to take advantage of locality of references within a space, failing this find the space
417  // the hard way.
418  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
419  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
420    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
421    if (LIKELY(new_bitmap != NULL)) {
422      object_bitmap = new_bitmap;
423    } else {
424      MarkLargeObject(obj, false);
425      return;
426    }
427  }
428
429  DCHECK(object_bitmap->HasAddress(obj));
430  object_bitmap->Clear(obj);
431}
432
433inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
434  DCHECK(obj != NULL);
435
436  if (IsImmune(obj)) {
437    DCHECK(IsMarked(obj));
438    return;
439  }
440
441  // Try to take advantage of locality of references within a space, failing this find the space
442  // the hard way.
443  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
444  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
445    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
446    if (LIKELY(new_bitmap != NULL)) {
447      object_bitmap = new_bitmap;
448    } else {
449      MarkLargeObject(obj, true);
450      return;
451    }
452  }
453
454  // This object was not previously marked.
455  if (!object_bitmap->Test(obj)) {
456    object_bitmap->Set(obj);
457    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
458      // Lock is not needed but is here anyways to please annotalysis.
459      MutexLock mu(Thread::Current(), mark_stack_lock_);
460      ExpandMarkStack();
461    }
462    // The object must be pushed on to the mark stack.
463    mark_stack_->PushBack(const_cast<Object*>(obj));
464  }
465}
466
467// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
468bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
469  // TODO: support >1 discontinuous space.
470  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
471  accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects();
472  if (kProfileLargeObjects) {
473    ++large_object_test_;
474  }
475  if (UNLIKELY(!large_objects->Test(obj))) {
476    if (!large_object_space->Contains(obj)) {
477      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
478      LOG(ERROR) << "Attempting see if it's a bad root";
479      VerifyRoots();
480      LOG(FATAL) << "Can't mark bad root";
481    }
482    if (kProfileLargeObjects) {
483      ++large_object_mark_;
484    }
485    if (set) {
486      large_objects->Set(obj);
487    } else {
488      large_objects->Clear(obj);
489    }
490    return true;
491  }
492  return false;
493}
494
495inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
496  DCHECK(obj != NULL);
497
498  if (IsImmune(obj)) {
499    DCHECK(IsMarked(obj));
500    return false;
501  }
502
503  // Try to take advantage of locality of references within a space, failing this find the space
504  // the hard way.
505  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
506  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
507    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
508    if (new_bitmap != NULL) {
509      object_bitmap = new_bitmap;
510    } else {
511      // TODO: Remove the Thread::Current here?
512      // TODO: Convert this to some kind of atomic marking?
513      MutexLock mu(Thread::Current(), large_object_lock_);
514      return MarkLargeObject(obj, true);
515    }
516  }
517
518  // Return true if the object was not previously marked.
519  return !object_bitmap->AtomicTestAndSet(obj);
520}
521
522// Used to mark objects when recursing.  Recursion is done by moving
523// the finger across the bitmaps in address order and marking child
524// objects.  Any newly-marked objects whose addresses are lower than
525// the finger won't be visited by the bitmap scan, so those objects
526// need to be added to the mark stack.
527inline void MarkSweep::MarkObject(const Object* obj) {
528  if (obj != NULL) {
529    MarkObjectNonNull(obj);
530  }
531}
532
533void MarkSweep::MarkRoot(const Object* obj) {
534  if (obj != NULL) {
535    MarkObjectNonNull(obj);
536  }
537}
538
539Object* MarkSweep::MarkRootParallelCallback(Object* root, void* arg) {
540  DCHECK(root != NULL);
541  DCHECK(arg != NULL);
542  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(root);
543  return root;
544}
545
546Object* MarkSweep::MarkRootCallback(Object* root, void* arg) {
547  DCHECK(root != nullptr);
548  DCHECK(arg != nullptr);
549  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(root);
550  return root;
551}
552
553void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
554                                   const StackVisitor* visitor) {
555  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
556}
557
558void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
559  // See if the root is on any space bitmap.
560  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
561    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
562    if (!large_object_space->Contains(root)) {
563      LOG(ERROR) << "Found invalid root: " << root;
564      if (visitor != NULL) {
565        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
566      }
567    }
568  }
569}
570
571void MarkSweep::VerifyRoots() {
572  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
573}
574
575// Marks all objects in the root set.
576void MarkSweep::MarkRoots() {
577  timings_.StartSplit("MarkRoots");
578  Runtime::Current()->VisitNonConcurrentRoots(MarkRootCallback, this);
579  timings_.EndSplit();
580}
581
582void MarkSweep::MarkNonThreadRoots() {
583  timings_.StartSplit("MarkNonThreadRoots");
584  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
585  timings_.EndSplit();
586}
587
588void MarkSweep::MarkConcurrentRoots() {
589  timings_.StartSplit("MarkConcurrentRoots");
590  // Visit all runtime roots and clear dirty flags.
591  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, false, true);
592  timings_.EndSplit();
593}
594
595void MarkSweep::CheckObject(const Object* obj) {
596  DCHECK(obj != NULL);
597  VisitObjectReferences(const_cast<Object*>(obj), [this](const Object* obj, const Object* ref,
598      MemberOffset offset, bool is_static) NO_THREAD_SAFETY_ANALYSIS {
599    Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
600    CheckReference(obj, ref, offset, is_static);
601  }, true);
602}
603
604void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) {
605  DCHECK(root != NULL);
606  DCHECK(arg != NULL);
607  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
608  DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root));
609  mark_sweep->CheckObject(root);
610}
611
612void MarkSweep::BindLiveToMarkBitmap(space::ContinuousSpace* space) {
613  CHECK(space->IsDlMallocSpace());
614  space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
615  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
616  accounting::SpaceBitmap* mark_bitmap = alloc_space->mark_bitmap_.release();
617  GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
618  alloc_space->temp_bitmap_.reset(mark_bitmap);
619  alloc_space->mark_bitmap_.reset(live_bitmap);
620}
621
622class ScanObjectVisitor {
623 public:
624  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
625      : mark_sweep_(mark_sweep) {}
626
627  // TODO: Fixme when anotatalysis works with visitors.
628  void operator()(const Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
629    if (kCheckLocks) {
630      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
631      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
632    }
633    mark_sweep_->ScanObject(obj);
634  }
635
636 private:
637  MarkSweep* const mark_sweep_;
638};
639
640template <bool kUseFinger = false>
641class MarkStackTask : public Task {
642 public:
643  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
644                const Object** mark_stack)
645      : mark_sweep_(mark_sweep),
646        thread_pool_(thread_pool),
647        mark_stack_pos_(mark_stack_size) {
648    // We may have to copy part of an existing mark stack when another mark stack overflows.
649    if (mark_stack_size != 0) {
650      DCHECK(mark_stack != NULL);
651      // TODO: Check performance?
652      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
653    }
654    if (kCountTasks) {
655      ++mark_sweep_->work_chunks_created_;
656    }
657  }
658
659  static const size_t kMaxSize = 1 * KB;
660
661 protected:
662  class ScanObjectParallelVisitor {
663   public:
664    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
665        : chunk_task_(chunk_task) {}
666
667    void operator()(Object* obj) const {
668      MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
669      mark_sweep->ScanObjectVisit(obj,
670          [mark_sweep, this](Object* /* obj */, Object* ref, const MemberOffset& /* offset */,
671              bool /* is_static */) ALWAYS_INLINE {
672        if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
673          if (kUseFinger) {
674            android_memory_barrier();
675            if (reinterpret_cast<uintptr_t>(ref) >=
676                static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
677              return;
678            }
679          }
680          chunk_task_->MarkStackPush(ref);
681        }
682      });
683    }
684
685   private:
686    MarkStackTask<kUseFinger>* const chunk_task_;
687  };
688
689  virtual ~MarkStackTask() {
690    // Make sure that we have cleared our mark stack.
691    DCHECK_EQ(mark_stack_pos_, 0U);
692    if (kCountTasks) {
693      ++mark_sweep_->work_chunks_deleted_;
694    }
695  }
696
697  MarkSweep* const mark_sweep_;
698  ThreadPool* const thread_pool_;
699  // Thread local mark stack for this task.
700  const Object* mark_stack_[kMaxSize];
701  // Mark stack position.
702  size_t mark_stack_pos_;
703
704  void MarkStackPush(const Object* obj) ALWAYS_INLINE {
705    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
706      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
707      mark_stack_pos_ /= 2;
708      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
709                                     mark_stack_ + mark_stack_pos_);
710      thread_pool_->AddTask(Thread::Current(), task);
711    }
712    DCHECK(obj != nullptr);
713    DCHECK(mark_stack_pos_ < kMaxSize);
714    mark_stack_[mark_stack_pos_++] = obj;
715  }
716
717  virtual void Finalize() {
718    delete this;
719  }
720
721  // Scans all of the objects
722  virtual void Run(Thread* self) {
723    ScanObjectParallelVisitor visitor(this);
724    // TODO: Tune this.
725    static const size_t kFifoSize = 4;
726    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
727    for (;;) {
728      const Object* obj = nullptr;
729      if (kUseMarkStackPrefetch) {
730        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
731          const Object* obj = mark_stack_[--mark_stack_pos_];
732          DCHECK(obj != nullptr);
733          __builtin_prefetch(obj);
734          prefetch_fifo.push_back(obj);
735        }
736        if (UNLIKELY(prefetch_fifo.empty())) {
737          break;
738        }
739        obj = prefetch_fifo.front();
740        prefetch_fifo.pop_front();
741      } else {
742        if (UNLIKELY(mark_stack_pos_ == 0)) {
743          break;
744        }
745        obj = mark_stack_[--mark_stack_pos_];
746      }
747      DCHECK(obj != nullptr);
748      visitor(const_cast<mirror::Object*>(obj));
749    }
750  }
751};
752
753class CardScanTask : public MarkStackTask<false> {
754 public:
755  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
756               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
757               const Object** mark_stack_obj)
758      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
759        bitmap_(bitmap),
760        begin_(begin),
761        end_(end),
762        minimum_age_(minimum_age) {
763  }
764
765 protected:
766  accounting::SpaceBitmap* const bitmap_;
767  byte* const begin_;
768  byte* const end_;
769  const byte minimum_age_;
770
771  virtual void Finalize() {
772    delete this;
773  }
774
775  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
776    ScanObjectParallelVisitor visitor(this);
777    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
778    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
779    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
780        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
781    // Finish by emptying our local mark stack.
782    MarkStackTask::Run(self);
783  }
784};
785
786size_t MarkSweep::GetThreadCount(bool paused) const {
787  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
788    return 0;
789  }
790  if (paused) {
791    return heap_->GetParallelGCThreadCount() + 1;
792  } else {
793    return heap_->GetConcGCThreadCount() + 1;
794  }
795}
796
797void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
798  accounting::CardTable* card_table = GetHeap()->GetCardTable();
799  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
800  size_t thread_count = GetThreadCount(paused);
801  // The parallel version with only one thread is faster for card scanning, TODO: fix.
802  if (kParallelCardScan && thread_count > 0) {
803    Thread* self = Thread::Current();
804    // Can't have a different split for each space since multiple spaces can have their cards being
805    // scanned at the same time.
806    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
807    // Try to take some of the mark stack since we can pass this off to the worker tasks.
808    const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
809    const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
810    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
811    // Estimated number of work tasks we will create.
812    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
813    DCHECK_NE(mark_stack_tasks, 0U);
814    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
815                                             mark_stack_size / mark_stack_tasks + 1);
816    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
817      byte* card_begin = space->Begin();
818      byte* card_end = space->End();
819      // Align up the end address. For example, the image space's end
820      // may not be card-size-aligned.
821      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
822      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
823      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
824      // Calculate how many bytes of heap we will scan,
825      const size_t address_range = card_end - card_begin;
826      // Calculate how much address range each task gets.
827      const size_t card_delta = RoundUp(address_range / thread_count + 1,
828                                        accounting::CardTable::kCardSize);
829      // Create the worker tasks for this space.
830      while (card_begin != card_end) {
831        // Add a range of cards.
832        size_t addr_remaining = card_end - card_begin;
833        size_t card_increment = std::min(card_delta, addr_remaining);
834        // Take from the back of the mark stack.
835        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
836        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
837        mark_stack_end -= mark_stack_increment;
838        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
839        DCHECK_EQ(mark_stack_end, mark_stack_->End());
840        // Add the new task to the thread pool.
841        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
842                                      card_begin + card_increment, minimum_age,
843                                      mark_stack_increment, mark_stack_end);
844        thread_pool->AddTask(self, task);
845        card_begin += card_increment;
846      }
847    }
848
849    // Note: the card scan below may dirty new cards (and scan them)
850    // as a side effect when a Reference object is encountered and
851    // queued during the marking. See b/11465268.
852    thread_pool->SetMaxActiveWorkers(thread_count - 1);
853    thread_pool->StartWorkers(self);
854    thread_pool->Wait(self, true, true);
855    thread_pool->StopWorkers(self);
856    timings_.EndSplit();
857  } else {
858    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
859      // Image spaces are handled properly since live == marked for them.
860      switch (space->GetGcRetentionPolicy()) {
861        case space::kGcRetentionPolicyNeverCollect:
862          timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
863              "ScanGrayImageSpaceObjects");
864          break;
865        case space::kGcRetentionPolicyFullCollect:
866          timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
867              "ScanGrayZygoteSpaceObjects");
868          break;
869        case space::kGcRetentionPolicyAlwaysCollect:
870          timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
871              "ScanGrayAllocSpaceObjects");
872          break;
873        }
874      ScanObjectVisitor visitor(this);
875      card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
876      timings_.EndSplit();
877    }
878  }
879}
880
881void MarkSweep::VerifyImageRoots() {
882  // Verify roots ensures that all the references inside the image space point
883  // objects which are either in the image space or marked objects in the alloc
884  // space
885  timings_.StartSplit("VerifyImageRoots");
886  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
887    if (space->IsImageSpace()) {
888      space::ImageSpace* image_space = space->AsImageSpace();
889      uintptr_t begin = reinterpret_cast<uintptr_t>(image_space->Begin());
890      uintptr_t end = reinterpret_cast<uintptr_t>(image_space->End());
891      accounting::SpaceBitmap* live_bitmap = image_space->GetLiveBitmap();
892      DCHECK(live_bitmap != NULL);
893      live_bitmap->VisitMarkedRange(begin, end, [this](const Object* obj) {
894        if (kCheckLocks) {
895          Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
896        }
897        DCHECK(obj != NULL);
898        CheckObject(obj);
899      });
900    }
901  }
902  timings_.EndSplit();
903}
904
905class RecursiveMarkTask : public MarkStackTask<false> {
906 public:
907  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
908                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
909      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
910        bitmap_(bitmap),
911        begin_(begin),
912        end_(end) {
913  }
914
915 protected:
916  accounting::SpaceBitmap* const bitmap_;
917  const uintptr_t begin_;
918  const uintptr_t end_;
919
920  virtual void Finalize() {
921    delete this;
922  }
923
924  // Scans all of the objects
925  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
926    ScanObjectParallelVisitor visitor(this);
927    bitmap_->VisitMarkedRange(begin_, end_, visitor);
928    // Finish by emptying our local mark stack.
929    MarkStackTask::Run(self);
930  }
931};
932
933// Populates the mark stack based on the set of marked objects and
934// recursively marks until the mark stack is emptied.
935void MarkSweep::RecursiveMark() {
936  base::TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
937  // RecursiveMark will build the lists of known instances of the Reference classes.
938  // See DelayReferenceReferent for details.
939  CHECK(soft_reference_list_ == NULL);
940  CHECK(weak_reference_list_ == NULL);
941  CHECK(finalizer_reference_list_ == NULL);
942  CHECK(phantom_reference_list_ == NULL);
943  CHECK(cleared_reference_list_ == NULL);
944
945  if (kUseRecursiveMark) {
946    const bool partial = GetGcType() == kGcTypePartial;
947    ScanObjectVisitor scan_visitor(this);
948    auto* self = Thread::Current();
949    ThreadPool* thread_pool = heap_->GetThreadPool();
950    size_t thread_count = GetThreadCount(false);
951    const bool parallel = kParallelRecursiveMark && thread_count > 1;
952    mark_stack_->Reset();
953    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
954      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
955          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
956        current_mark_bitmap_ = space->GetMarkBitmap();
957        if (current_mark_bitmap_ == NULL) {
958          GetHeap()->DumpSpaces();
959          LOG(FATAL) << "invalid bitmap";
960        }
961        if (parallel) {
962          // We will use the mark stack the future.
963          // CHECK(mark_stack_->IsEmpty());
964          // This function does not handle heap end increasing, so we must use the space end.
965          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
966          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
967          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
968
969          // Create a few worker tasks.
970          const size_t n = thread_count * 2;
971          while (begin != end) {
972            uintptr_t start = begin;
973            uintptr_t delta = (end - begin) / n;
974            delta = RoundUp(delta, KB);
975            if (delta < 16 * KB) delta = end - begin;
976            begin += delta;
977            auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
978                                               begin);
979            thread_pool->AddTask(self, task);
980          }
981          thread_pool->SetMaxActiveWorkers(thread_count - 1);
982          thread_pool->StartWorkers(self);
983          thread_pool->Wait(self, true, true);
984          thread_pool->StopWorkers(self);
985        } else {
986          // This function does not handle heap end increasing, so we must use the space end.
987          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
988          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
989          current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
990        }
991      }
992    }
993  }
994  ProcessMarkStack(false);
995}
996
997mirror::Object* MarkSweep::SystemWeakIsMarkedCallback(Object* object, void* arg) {
998  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
999    return object;
1000  }
1001  return nullptr;
1002}
1003
1004void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
1005  ScanGrayObjects(paused, minimum_age);
1006  ProcessMarkStack(paused);
1007}
1008
1009void MarkSweep::ReMarkRoots() {
1010  timings_.StartSplit("ReMarkRoots");
1011  Runtime::Current()->VisitRoots(MarkRootCallback, this, true, true);
1012  timings_.EndSplit();
1013}
1014
1015void MarkSweep::SweepSystemWeaks() {
1016  Runtime* runtime = Runtime::Current();
1017  timings_.StartSplit("SweepSystemWeaks");
1018  runtime->SweepSystemWeaks(SystemWeakIsMarkedCallback, this);
1019  timings_.EndSplit();
1020}
1021
1022mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
1023  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
1024  // We don't actually want to sweep the object, so lets return "marked"
1025  return obj;
1026}
1027
1028void MarkSweep::VerifyIsLive(const Object* obj) {
1029  Heap* heap = GetHeap();
1030  if (!heap->GetLiveBitmap()->Test(obj)) {
1031    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1032    if (!large_object_space->GetLiveObjects()->Test(obj)) {
1033      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
1034          heap->allocation_stack_->End()) {
1035        // Object not found!
1036        heap->DumpSpaces();
1037        LOG(FATAL) << "Found dead object " << obj;
1038      }
1039    }
1040  }
1041}
1042
1043void MarkSweep::VerifySystemWeaks() {
1044  // Verify system weaks, uses a special object visitor which returns the input object.
1045  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
1046}
1047
1048struct SweepCallbackContext {
1049  MarkSweep* mark_sweep;
1050  space::AllocSpace* space;
1051  Thread* self;
1052};
1053
1054class CheckpointMarkThreadRoots : public Closure {
1055 public:
1056  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1057
1058  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1059    ATRACE_BEGIN("Marking thread roots");
1060    // Note: self is not necessarily equal to thread since thread may be suspended.
1061    Thread* self = Thread::Current();
1062    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1063        << thread->GetState() << " thread " << thread << " self " << self;
1064    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1065    ATRACE_END();
1066    mark_sweep_->GetBarrier().Pass(self);
1067  }
1068
1069 private:
1070  MarkSweep* mark_sweep_;
1071};
1072
1073void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1074  CheckpointMarkThreadRoots check_point(this);
1075  timings_.StartSplit("MarkRootsCheckpoint");
1076  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1077  // Request the check point is run on all threads returning a count of the threads that must
1078  // run through the barrier including self.
1079  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1080  // Release locks then wait for all mutator threads to pass the barrier.
1081  // TODO: optimize to not release locks when there are no threads to wait for.
1082  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1083  Locks::mutator_lock_->SharedUnlock(self);
1084  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1085  CHECK_EQ(old_state, kWaitingPerformingGc);
1086  gc_barrier_->Increment(self, barrier_count);
1087  self->SetState(kWaitingPerformingGc);
1088  Locks::mutator_lock_->SharedLock(self);
1089  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1090  timings_.EndSplit();
1091}
1092
1093void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1094  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1095  MarkSweep* mark_sweep = context->mark_sweep;
1096  Heap* heap = mark_sweep->GetHeap();
1097  space::AllocSpace* space = context->space;
1098  Thread* self = context->self;
1099  Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
1100  // Use a bulk free, that merges consecutive objects before freeing or free per object?
1101  // Documentation suggests better free performance with merging, but this may be at the expensive
1102  // of allocation.
1103  size_t freed_objects = num_ptrs;
1104  // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit
1105  size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs);
1106  heap->RecordFree(freed_objects, freed_bytes);
1107  mark_sweep->freed_objects_.fetch_add(freed_objects);
1108  mark_sweep->freed_bytes_.fetch_add(freed_bytes);
1109}
1110
1111void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1112  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1113  Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self);
1114  Heap* heap = context->mark_sweep->GetHeap();
1115  // We don't free any actual memory to avoid dirtying the shared zygote pages.
1116  for (size_t i = 0; i < num_ptrs; ++i) {
1117    Object* obj = static_cast<Object*>(ptrs[i]);
1118    heap->GetLiveBitmap()->Clear(obj);
1119    heap->GetCardTable()->MarkCard(obj);
1120  }
1121}
1122
1123void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1124  space::DlMallocSpace* space = heap_->GetAllocSpace();
1125  timings_.StartSplit("SweepArray");
1126  // Newly allocated objects MUST be in the alloc space and those are the only objects which we are
1127  // going to free.
1128  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1129  accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1130  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1131  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1132  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1133  if (swap_bitmaps) {
1134    std::swap(live_bitmap, mark_bitmap);
1135    std::swap(large_live_objects, large_mark_objects);
1136  }
1137
1138  size_t freed_bytes = 0;
1139  size_t freed_large_object_bytes = 0;
1140  size_t freed_objects = 0;
1141  size_t freed_large_objects = 0;
1142  size_t count = allocations->Size();
1143  Object** objects = const_cast<Object**>(allocations->Begin());
1144  Object** out = objects;
1145  Object** objects_to_chunk_free = out;
1146
1147  // Empty the allocation stack.
1148  Thread* self = Thread::Current();
1149  for (size_t i = 0; i < count; ++i) {
1150    Object* obj = objects[i];
1151    // There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack.
1152    if (LIKELY(mark_bitmap->HasAddress(obj))) {
1153      if (!mark_bitmap->Test(obj)) {
1154        // Don't bother un-marking since we clear the mark bitmap anyways.
1155        *(out++) = obj;
1156        // Free objects in chunks.
1157        DCHECK_GE(out, objects_to_chunk_free);
1158        DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1159        if (static_cast<size_t>(out - objects_to_chunk_free) == kSweepArrayChunkFreeSize) {
1160          timings_.StartSplit("FreeList");
1161          size_t chunk_freed_objects = out - objects_to_chunk_free;
1162          freed_objects += chunk_freed_objects;
1163          freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1164          objects_to_chunk_free = out;
1165          timings_.EndSplit();
1166        }
1167      }
1168    } else if (!large_mark_objects->Test(obj)) {
1169      ++freed_large_objects;
1170      freed_large_object_bytes += large_object_space->Free(self, obj);
1171    }
1172  }
1173  // Free the remaining objects in chunks.
1174  DCHECK_GE(out, objects_to_chunk_free);
1175  DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1176  if (out - objects_to_chunk_free > 0) {
1177    timings_.StartSplit("FreeList");
1178    size_t chunk_freed_objects = out - objects_to_chunk_free;
1179    freed_objects += chunk_freed_objects;
1180    freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1181    timings_.EndSplit();
1182  }
1183  CHECK_EQ(count, allocations->Size());
1184  timings_.EndSplit();
1185
1186  timings_.StartSplit("RecordFree");
1187  VLOG(heap) << "Freed " << freed_objects << "/" << count
1188             << " objects with size " << PrettySize(freed_bytes);
1189  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1190  freed_objects_.fetch_add(freed_objects);
1191  freed_large_objects_.fetch_add(freed_large_objects);
1192  freed_bytes_.fetch_add(freed_bytes);
1193  freed_large_object_bytes_.fetch_add(freed_large_object_bytes);
1194  timings_.EndSplit();
1195
1196  timings_.StartSplit("ResetStack");
1197  allocations->Reset();
1198  timings_.EndSplit();
1199}
1200
1201void MarkSweep::Sweep(bool swap_bitmaps) {
1202  DCHECK(mark_stack_->IsEmpty());
1203  base::TimingLogger::ScopedSplit("Sweep", &timings_);
1204
1205  const bool partial = (GetGcType() == kGcTypePartial);
1206  SweepCallbackContext scc;
1207  scc.mark_sweep = this;
1208  scc.self = Thread::Current();
1209  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1210    // We always sweep always collect spaces.
1211    bool sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect);
1212    if (!partial && !sweep_space) {
1213      // We sweep full collect spaces when the GC isn't a partial GC (ie its full).
1214      sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect);
1215    }
1216    if (sweep_space) {
1217      uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1218      uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1219      scc.space = space->AsDlMallocSpace();
1220      accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1221      accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1222      if (swap_bitmaps) {
1223        std::swap(live_bitmap, mark_bitmap);
1224      }
1225      if (!space->IsZygoteSpace()) {
1226        base::TimingLogger::ScopedSplit split("SweepAllocSpace", &timings_);
1227        // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked.
1228        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1229                                           &SweepCallback, reinterpret_cast<void*>(&scc));
1230      } else {
1231        base::TimingLogger::ScopedSplit split("SweepZygote", &timings_);
1232        // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual
1233        // memory.
1234        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1235                                           &ZygoteSweepCallback, reinterpret_cast<void*>(&scc));
1236      }
1237    }
1238  }
1239
1240  SweepLargeObjects(swap_bitmaps);
1241}
1242
1243void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1244  base::TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1245  // Sweep large objects
1246  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1247  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1248  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1249  if (swap_bitmaps) {
1250    std::swap(large_live_objects, large_mark_objects);
1251  }
1252  // O(n*log(n)) but hopefully there are not too many large objects.
1253  size_t freed_objects = 0;
1254  size_t freed_bytes = 0;
1255  Thread* self = Thread::Current();
1256  for (const Object* obj : large_live_objects->GetObjects()) {
1257    if (!large_mark_objects->Test(obj)) {
1258      freed_bytes += large_object_space->Free(self, const_cast<Object*>(obj));
1259      ++freed_objects;
1260    }
1261  }
1262  freed_large_objects_.fetch_add(freed_objects);
1263  freed_large_object_bytes_.fetch_add(freed_bytes);
1264  GetHeap()->RecordFree(freed_objects, freed_bytes);
1265}
1266
1267void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) {
1268  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1269    if (space->IsDlMallocSpace() && space->Contains(ref)) {
1270      DCHECK(IsMarked(obj));
1271
1272      bool is_marked = IsMarked(ref);
1273      if (!is_marked) {
1274        LOG(INFO) << *space;
1275        LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref)
1276                     << "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj)
1277                     << "' (" << reinterpret_cast<const void*>(obj) << ") at offset "
1278                     << reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked";
1279
1280        const Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1281        DCHECK(klass != NULL);
1282        const ObjectArray<ArtField>* fields = is_static ? klass->GetSFields() : klass->GetIFields();
1283        DCHECK(fields != NULL);
1284        bool found = false;
1285        for (int32_t i = 0; i < fields->GetLength(); ++i) {
1286          const ArtField* cur = fields->Get(i);
1287          if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1288            LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur);
1289            found = true;
1290            break;
1291          }
1292        }
1293        if (!found) {
1294          LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value();
1295        }
1296
1297        bool obj_marked = heap_->GetCardTable()->IsDirty(obj);
1298        if (!obj_marked) {
1299          LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' "
1300                       << "(" << reinterpret_cast<const void*>(obj) << ") contains references to "
1301                       << "the alloc space, but wasn't card marked";
1302        }
1303      }
1304    }
1305    break;
1306  }
1307}
1308
1309// Process the "referent" field in a java.lang.ref.Reference.  If the
1310// referent has not yet been marked, put it on the appropriate list in
1311// the heap for later processing.
1312void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1313  DCHECK(klass != nullptr);
1314  DCHECK(klass->IsReferenceClass());
1315  DCHECK(obj != NULL);
1316  Object* referent = heap_->GetReferenceReferent(obj);
1317  if (referent != NULL && !IsMarked(referent)) {
1318    if (kCountJavaLangRefs) {
1319      ++reference_count_;
1320    }
1321    Thread* self = Thread::Current();
1322    // TODO: Remove these locks, and use atomic stacks for storing references?
1323    // We need to check that the references haven't already been enqueued since we can end up
1324    // scanning the same reference multiple times due to dirty cards.
1325    if (klass->IsSoftReferenceClass()) {
1326      MutexLock mu(self, *heap_->GetSoftRefQueueLock());
1327      if (!heap_->IsEnqueued(obj)) {
1328        heap_->EnqueuePendingReference(obj, &soft_reference_list_);
1329      }
1330    } else if (klass->IsWeakReferenceClass()) {
1331      MutexLock mu(self, *heap_->GetWeakRefQueueLock());
1332      if (!heap_->IsEnqueued(obj)) {
1333        heap_->EnqueuePendingReference(obj, &weak_reference_list_);
1334      }
1335    } else if (klass->IsFinalizerReferenceClass()) {
1336      MutexLock mu(self, *heap_->GetFinalizerRefQueueLock());
1337      if (!heap_->IsEnqueued(obj)) {
1338        heap_->EnqueuePendingReference(obj, &finalizer_reference_list_);
1339      }
1340    } else if (klass->IsPhantomReferenceClass()) {
1341      MutexLock mu(self, *heap_->GetPhantomRefQueueLock());
1342      if (!heap_->IsEnqueued(obj)) {
1343        heap_->EnqueuePendingReference(obj, &phantom_reference_list_);
1344      }
1345    } else {
1346      LOG(FATAL) << "Invalid reference type " << PrettyClass(klass)
1347                 << " " << std::hex << klass->GetAccessFlags();
1348    }
1349  }
1350}
1351
1352class MarkObjectVisitor {
1353 public:
1354  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1355
1356  // TODO: Fixme when anotatalysis works with visitors.
1357  void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
1358                  bool /* is_static */) const ALWAYS_INLINE
1359      NO_THREAD_SAFETY_ANALYSIS {
1360    if (kCheckLocks) {
1361      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1362      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1363    }
1364    mark_sweep_->MarkObject(ref);
1365  }
1366
1367 private:
1368  MarkSweep* const mark_sweep_;
1369};
1370
1371// Scans an object reference.  Determines the type of the reference
1372// and dispatches to a specialized scanning routine.
1373void MarkSweep::ScanObject(const Object* obj) {
1374  MarkObjectVisitor visitor(this);
1375  ScanObjectVisit(const_cast<Object*>(obj), visitor);
1376}
1377
1378void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1379  Thread* self = Thread::Current();
1380  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1381  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1382                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1383  CHECK_GT(chunk_size, 0U);
1384  // Split the current mark stack up into work tasks.
1385  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1386    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1387    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
1388                                                        const_cast<const mirror::Object**>(it)));
1389    it += delta;
1390  }
1391  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1392  thread_pool->StartWorkers(self);
1393  thread_pool->Wait(self, true, true);
1394  thread_pool->StopWorkers(self);
1395  mark_stack_->Reset();
1396  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1397}
1398
1399// Scan anything that's on the mark stack.
1400void MarkSweep::ProcessMarkStack(bool paused) {
1401  timings_.StartSplit("ProcessMarkStack");
1402  size_t thread_count = GetThreadCount(paused);
1403  if (kParallelProcessMarkStack && thread_count > 1 &&
1404      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1405    ProcessMarkStackParallel(thread_count);
1406  } else {
1407    // TODO: Tune this.
1408    static const size_t kFifoSize = 4;
1409    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
1410    for (;;) {
1411      const Object* obj = NULL;
1412      if (kUseMarkStackPrefetch) {
1413        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1414          const Object* obj = mark_stack_->PopBack();
1415          DCHECK(obj != NULL);
1416          __builtin_prefetch(obj);
1417          prefetch_fifo.push_back(obj);
1418        }
1419        if (prefetch_fifo.empty()) {
1420          break;
1421        }
1422        obj = prefetch_fifo.front();
1423        prefetch_fifo.pop_front();
1424      } else {
1425        if (mark_stack_->IsEmpty()) {
1426          break;
1427        }
1428        obj = mark_stack_->PopBack();
1429      }
1430      DCHECK(obj != NULL);
1431      ScanObject(obj);
1432    }
1433  }
1434  timings_.EndSplit();
1435}
1436
1437// Walks the reference list marking any references subject to the
1438// reference clearing policy.  References with a black referent are
1439// removed from the list.  References with white referents biased
1440// toward saving are blackened and also removed from the list.
1441void MarkSweep::PreserveSomeSoftReferences(Object** list) {
1442  DCHECK(list != NULL);
1443  Object* clear = NULL;
1444  size_t counter = 0;
1445
1446  DCHECK(mark_stack_->IsEmpty());
1447
1448  timings_.StartSplit("PreserveSomeSoftReferences");
1449  while (*list != NULL) {
1450    Object* ref = heap_->DequeuePendingReference(list);
1451    Object* referent = heap_->GetReferenceReferent(ref);
1452    if (referent == NULL) {
1453      // Referent was cleared by the user during marking.
1454      continue;
1455    }
1456    bool is_marked = IsMarked(referent);
1457    if (!is_marked && ((++counter) & 1)) {
1458      // Referent is white and biased toward saving, mark it.
1459      MarkObject(referent);
1460      is_marked = true;
1461    }
1462    if (!is_marked) {
1463      // Referent is white, queue it for clearing.
1464      heap_->EnqueuePendingReference(ref, &clear);
1465    }
1466  }
1467  *list = clear;
1468  timings_.EndSplit();
1469
1470  // Restart the mark with the newly black references added to the root set.
1471  ProcessMarkStack(true);
1472}
1473
1474inline bool MarkSweep::IsMarked(const Object* object) const
1475    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1476  if (IsImmune(object)) {
1477    return true;
1478  }
1479  DCHECK(current_mark_bitmap_ != NULL);
1480  if (current_mark_bitmap_->HasAddress(object)) {
1481    return current_mark_bitmap_->Test(object);
1482  }
1483  return heap_->GetMarkBitmap()->Test(object);
1484}
1485
1486// Unlink the reference list clearing references objects with white
1487// referents.  Cleared references registered to a reference queue are
1488// scheduled for appending by the heap worker thread.
1489void MarkSweep::ClearWhiteReferences(Object** list) {
1490  DCHECK(list != NULL);
1491  while (*list != NULL) {
1492    Object* ref = heap_->DequeuePendingReference(list);
1493    Object* referent = heap_->GetReferenceReferent(ref);
1494    if (referent != NULL && !IsMarked(referent)) {
1495      // Referent is white, clear it.
1496      heap_->ClearReferenceReferent(ref);
1497      if (heap_->IsEnqueuable(ref)) {
1498        heap_->EnqueueReference(ref, &cleared_reference_list_);
1499      }
1500    }
1501  }
1502  DCHECK(*list == NULL);
1503}
1504
1505// Enqueues finalizer references with white referents.  White
1506// referents are blackened, moved to the zombie field, and the
1507// referent field is cleared.
1508void MarkSweep::EnqueueFinalizerReferences(Object** list) {
1509  DCHECK(list != NULL);
1510  timings_.StartSplit("EnqueueFinalizerReferences");
1511  MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset();
1512  bool has_enqueued = false;
1513  while (*list != NULL) {
1514    Object* ref = heap_->DequeuePendingReference(list);
1515    Object* referent = heap_->GetReferenceReferent(ref);
1516    if (referent != NULL && !IsMarked(referent)) {
1517      MarkObject(referent);
1518      // If the referent is non-null the reference must queuable.
1519      DCHECK(heap_->IsEnqueuable(ref));
1520      ref->SetFieldObject(zombie_offset, referent, false);
1521      heap_->ClearReferenceReferent(ref);
1522      heap_->EnqueueReference(ref, &cleared_reference_list_);
1523      has_enqueued = true;
1524    }
1525  }
1526  timings_.EndSplit();
1527  if (has_enqueued) {
1528    ProcessMarkStack(true);
1529  }
1530  DCHECK(*list == NULL);
1531}
1532
1533// Process reference class instances and schedule finalizations.
1534void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft,
1535                                  Object** weak_references,
1536                                  Object** finalizer_references,
1537                                  Object** phantom_references) {
1538  CHECK(soft_references != NULL);
1539  CHECK(weak_references != NULL);
1540  CHECK(finalizer_references != NULL);
1541  CHECK(phantom_references != NULL);
1542  CHECK(mark_stack_->IsEmpty());
1543
1544  // Unless we are in the zygote or required to clear soft references
1545  // with white references, preserve some white referents.
1546  if (!clear_soft && !Runtime::Current()->IsZygote()) {
1547    PreserveSomeSoftReferences(soft_references);
1548  }
1549
1550  timings_.StartSplit("ProcessReferences");
1551  // Clear all remaining soft and weak references with white
1552  // referents.
1553  ClearWhiteReferences(soft_references);
1554  ClearWhiteReferences(weak_references);
1555  timings_.EndSplit();
1556
1557  // Preserve all white objects with finalize methods and schedule
1558  // them for finalization.
1559  EnqueueFinalizerReferences(finalizer_references);
1560
1561  timings_.StartSplit("ProcessReferences");
1562  // Clear all f-reachable soft and weak references with white
1563  // referents.
1564  ClearWhiteReferences(soft_references);
1565  ClearWhiteReferences(weak_references);
1566
1567  // Clear all phantom references with white referents.
1568  ClearWhiteReferences(phantom_references);
1569
1570  // At this point all reference lists should be empty.
1571  DCHECK(*soft_references == NULL);
1572  DCHECK(*weak_references == NULL);
1573  DCHECK(*finalizer_references == NULL);
1574  DCHECK(*phantom_references == NULL);
1575  timings_.EndSplit();
1576}
1577
1578void MarkSweep::UnBindBitmaps() {
1579  base::TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
1580  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1581    if (space->IsDlMallocSpace()) {
1582      space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
1583      if (alloc_space->temp_bitmap_.get() != NULL) {
1584        // At this point, the temp_bitmap holds our old mark bitmap.
1585        accounting::SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release();
1586        GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap);
1587        CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get());
1588        alloc_space->mark_bitmap_.reset(new_bitmap);
1589        DCHECK(alloc_space->temp_bitmap_.get() == NULL);
1590      }
1591    }
1592  }
1593}
1594
1595void MarkSweep::FinishPhase() {
1596  base::TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1597  // Can't enqueue references if we hold the mutator lock.
1598  Object* cleared_references = GetClearedReferences();
1599  Heap* heap = GetHeap();
1600  timings_.NewSplit("EnqueueClearedReferences");
1601  heap->EnqueueClearedReferences(&cleared_references);
1602
1603  timings_.NewSplit("PostGcVerification");
1604  heap->PostGcVerification(this);
1605
1606  timings_.NewSplit("GrowForUtilization");
1607  heap->GrowForUtilization(GetGcType(), GetDurationNs());
1608
1609  timings_.NewSplit("RequestHeapTrim");
1610  heap->RequestHeapTrim();
1611
1612  // Update the cumulative statistics
1613  total_time_ns_ += GetDurationNs();
1614  total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0,
1615                                           std::plus<uint64_t>());
1616  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1617  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1618
1619  // Ensure that the mark stack is empty.
1620  CHECK(mark_stack_->IsEmpty());
1621
1622  if (kCountScannedTypes) {
1623    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1624             << " other=" << other_count_;
1625  }
1626
1627  if (kCountTasks) {
1628    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1629  }
1630
1631  if (kMeasureOverhead) {
1632    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1633  }
1634
1635  if (kProfileLargeObjects) {
1636    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1637  }
1638
1639  if (kCountClassesMarked) {
1640    VLOG(gc) << "Classes marked " << classes_marked_;
1641  }
1642
1643  if (kCountJavaLangRefs) {
1644    VLOG(gc) << "References scanned " << reference_count_;
1645  }
1646
1647  // Update the cumulative loggers.
1648  cumulative_timings_.Start();
1649  cumulative_timings_.AddLogger(timings_);
1650  cumulative_timings_.End();
1651
1652  // Clear all of the spaces' mark bitmaps.
1653  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1654    if (space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1655      space->GetMarkBitmap()->Clear();
1656    }
1657  }
1658  mark_stack_->Reset();
1659
1660  // Reset the marked large objects.
1661  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1662  large_objects->GetMarkObjects()->Clear();
1663}
1664
1665}  // namespace collector
1666}  // namespace gc
1667}  // namespace art
1668