mark_sweep.cc revision 1ad2784ad9f311ebf9fe0677d33818648f423f9c
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "indirect_reference_table.h"
38#include "intern_table.h"
39#include "jni_internal.h"
40#include "monitor.h"
41#include "mark_sweep-inl.h"
42#include "mirror/art_field.h"
43#include "mirror/art_field-inl.h"
44#include "mirror/class-inl.h"
45#include "mirror/class_loader.h"
46#include "mirror/dex_cache.h"
47#include "mirror/reference-inl.h"
48#include "mirror/object-inl.h"
49#include "mirror/object_array.h"
50#include "mirror/object_array-inl.h"
51#include "runtime.h"
52#include "thread-inl.h"
53#include "thread_list.h"
54#include "verifier/method_verifier.h"
55
56using ::art::mirror::ArtField;
57using ::art::mirror::Class;
58using ::art::mirror::Object;
59using ::art::mirror::ObjectArray;
60
61namespace art {
62namespace gc {
63namespace collector {
64
65// Performance options.
66static constexpr bool kUseRecursiveMark = false;
67static constexpr bool kUseMarkStackPrefetch = true;
68static constexpr size_t kSweepArrayChunkFreeSize = 1024;
69static constexpr bool kPreCleanCards = true;
70
71// Parallelism options.
72static constexpr bool kParallelCardScan = true;
73static constexpr bool kParallelRecursiveMark = true;
74// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
75// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
76// having this can add overhead in ProcessReferences since we may end up doing many calls of
77// ProcessMarkStack with very small mark stacks.
78static constexpr size_t kMinimumParallelMarkStackSize = 128;
79static constexpr bool kParallelProcessMarkStack = true;
80
81// Profiling and information flags.
82static constexpr bool kCountClassesMarked = false;
83static constexpr bool kProfileLargeObjects = false;
84static constexpr bool kMeasureOverhead = false;
85static constexpr bool kCountTasks = false;
86static constexpr bool kCountJavaLangRefs = false;
87
88// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
89static constexpr bool kCheckLocks = kDebugLocking;
90static constexpr bool kVerifyRoots = kIsDebugBuild;
91
92void MarkSweep::BindBitmaps() {
93  timings_.StartSplit("BindBitmaps");
94  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
95  // Mark all of the spaces we never collect as immune.
96  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
97    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
98      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
99    }
100  }
101  timings_.EndSplit();
102}
103
104MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
105    : GarbageCollector(heap,
106                       name_prefix +
107                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
108      current_mark_bitmap_(NULL),
109      mark_stack_(NULL),
110      live_stack_freeze_size_(0),
111      gc_barrier_(new Barrier(0)),
112      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
113      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
114      is_concurrent_(is_concurrent) {
115}
116
117void MarkSweep::InitializePhase() {
118  timings_.Reset();
119  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
120  mark_stack_ = heap_->mark_stack_.get();
121  DCHECK(mark_stack_ != nullptr);
122  immune_region_.Reset();
123  class_count_ = 0;
124  array_count_ = 0;
125  other_count_ = 0;
126  large_object_test_ = 0;
127  large_object_mark_ = 0;
128  classes_marked_ = 0;
129  overhead_time_ = 0;
130  work_chunks_created_ = 0;
131  work_chunks_deleted_ = 0;
132  reference_count_ = 0;
133
134  FindDefaultMarkBitmap();
135
136  // Do any pre GC verification.
137  timings_.NewSplit("PreGcVerification");
138  heap_->PreGcVerification(this);
139}
140
141void MarkSweep::ProcessReferences(Thread* self) {
142  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
143  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
144  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
145                               &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
146}
147
148void MarkSweep::PreProcessReferences(Thread* self) {
149  timings_.NewSplit("PreProcessReferences");
150  GetHeap()->ProcessSoftReferences(timings_, clear_soft_references_, &IsMarkedCallback,
151                                   &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
152}
153
154bool MarkSweep::HandleDirtyObjectsPhase() {
155  TimingLogger::ScopedSplit split("(Paused)HandleDirtyObjectsPhase", &timings_);
156  Thread* self = Thread::Current();
157  Locks::mutator_lock_->AssertExclusiveHeld(self);
158
159  {
160    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
161
162    // Re-mark root set.
163    ReMarkRoots();
164
165    // Scan dirty objects, this is only required if we are not doing concurrent GC.
166    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
167  }
168
169  ProcessReferences(self);
170
171  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
172  if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
173      GetHeap()->verify_post_gc_heap_) {
174    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
175    // This second sweep makes sure that we don't have any objects in the live stack which point to
176    // freed objects. These cause problems since their references may be previously freed objects.
177    SweepArray(GetHeap()->allocation_stack_.get(), false);
178    // Since SweepArray() above resets the (active) allocation
179    // stack. Need to revoke the thread-local allocation stacks that
180    // point into it.
181    RevokeAllThreadLocalAllocationStacks(self);
182  }
183
184  timings_.StartSplit("PreSweepingGcVerification");
185  heap_->PreSweepingGcVerification(this);
186  timings_.EndSplit();
187
188  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
189  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
190  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
191
192  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
193  // weak before we sweep them. Since this new system weak may not be marked, the GC may
194  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
195  // reference to a string that is about to be swept.
196  Runtime::Current()->DisallowNewSystemWeaks();
197  return true;
198}
199
200bool MarkSweep::IsConcurrent() const {
201  return is_concurrent_;
202}
203
204void MarkSweep::PreCleanCards() {
205  // Don't do this for non concurrent GCs since they don't have any dirty cards.
206  if (kPreCleanCards && IsConcurrent()) {
207    Thread* self = Thread::Current();
208    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
209    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
210    heap_->ProcessCards(timings_, false);
211    // The checkpoint root marking is required to avoid a race condition which occurs if the
212    // following happens during a reference write:
213    // 1. mutator dirties the card (write barrier)
214    // 2. GC ages the card (the above ProcessCards call)
215    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
216    // 4. mutator writes the value (corresponding to the write barrier in 1.)
217    // This causes the GC to age the card but not necessarily mark the reference which the mutator
218    // wrote into the object stored in the card.
219    // Having the checkpoint fixes this issue since it ensures that the card mark and the
220    // reference write are visible to the GC before the card is scanned (this is due to locks being
221    // acquired / released in the checkpoint code).
222    // The other roots are also marked to help reduce the pause.
223    MarkThreadRoots(self);
224    // TODO: Only mark the dirty roots.
225    MarkNonThreadRoots();
226    MarkConcurrentRoots(
227        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
228    // Process the newly aged cards.
229    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
230    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
231    // in the next GC.
232  }
233}
234
235void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
236  if (kUseThreadLocalAllocationStack) {
237    Locks::mutator_lock_->AssertExclusiveHeld(self);
238    heap_->RevokeAllThreadLocalAllocationStacks(self);
239  }
240}
241
242void MarkSweep::MarkingPhase() {
243  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
244  Thread* self = Thread::Current();
245
246  BindBitmaps();
247  FindDefaultMarkBitmap();
248
249  // Process dirty cards and add dirty cards to mod union tables.
250  heap_->ProcessCards(timings_, false);
251
252  // Need to do this before the checkpoint since we don't want any threads to add references to
253  // the live stack during the recursive mark.
254  timings_.NewSplit("SwapStacks");
255  heap_->SwapStacks(self);
256
257  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
258  MarkRoots(self);
259  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
260  UpdateAndMarkModUnion();
261  MarkReachableObjects();
262  // Pre-clean dirtied cards to reduce pauses.
263  PreCleanCards();
264  if (IsConcurrent()) {
265    // No reason to do this for non-concurrent GC since pre processing soft references only helps
266    // pauses.
267    PreProcessReferences(self);
268  }
269}
270
271void MarkSweep::UpdateAndMarkModUnion() {
272  for (const auto& space : heap_->GetContinuousSpaces()) {
273    if (immune_region_.ContainsSpace(space)) {
274      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
275          "UpdateAndMarkImageModUnionTable";
276      TimingLogger::ScopedSplit split(name, &timings_);
277      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
278      CHECK(mod_union_table != nullptr);
279      mod_union_table->UpdateAndMarkReferences(MarkObjectCallback, this);
280    }
281  }
282}
283
284void MarkSweep::MarkThreadRoots(Thread* self) {
285  MarkRootsCheckpoint(self);
286}
287
288void MarkSweep::MarkReachableObjects() {
289  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
290  // knowing that new allocations won't be marked as live.
291  timings_.StartSplit("MarkStackAsLive");
292  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
293  heap_->MarkAllocStackAsLive(live_stack);
294  live_stack->Reset();
295  timings_.EndSplit();
296  // Recursively mark all the non-image bits set in the mark bitmap.
297  RecursiveMark();
298}
299
300void MarkSweep::ReclaimPhase() {
301  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
302  Thread* self = Thread::Current();
303
304  if (!IsConcurrent()) {
305    ProcessReferences(self);
306  }
307
308  {
309    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
310    SweepSystemWeaks();
311  }
312
313  if (IsConcurrent()) {
314    Runtime::Current()->AllowNewSystemWeaks();
315
316    TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
317    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
318    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
319    if (!kPreCleanCards) {
320      // The allocation stack contains things allocated since the start of the GC. These may have
321      // been marked during this GC meaning they won't be eligible for reclaiming in the next
322      // sticky GC. Unmark these objects so that they are eligible for reclaiming in the next
323      // sticky GC.
324      // There is a race here which is safely handled. Another thread such as the hprof could
325      // have flushed the alloc stack after we resumed the threads. This is safe however, since
326      // reseting the allocation stack zeros it out with madvise. This means that we will either
327      // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
328      // first place.
329      // We can't do this if we pre-clean cards since we will unmark objects which are no longer on
330      // a dirty card since we aged cards during the pre-cleaning process.
331      mirror::Object** end = allocation_stack->End();
332      for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
333        const Object* obj = *it;
334        if (obj != nullptr) {
335          UnMarkObjectNonNull(obj);
336        }
337      }
338    }
339  }
340
341  {
342    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
343
344    // Reclaim unmarked objects.
345    Sweep(false);
346
347    // Swap the live and mark bitmaps for each space which we modified space. This is an
348    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
349    // bitmaps.
350    timings_.StartSplit("SwapBitmaps");
351    SwapBitmaps();
352    timings_.EndSplit();
353
354    // Unbind the live and mark bitmaps.
355    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
356    GetHeap()->UnBindBitmaps();
357  }
358}
359
360void MarkSweep::FindDefaultMarkBitmap() {
361  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
362  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
363    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
364    if (bitmap != nullptr &&
365        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
366      current_mark_bitmap_ = bitmap;
367      CHECK(current_mark_bitmap_ != NULL);
368      return;
369    }
370  }
371  GetHeap()->DumpSpaces();
372  LOG(FATAL) << "Could not find a default mark bitmap";
373}
374
375void MarkSweep::ExpandMarkStack() {
376  ResizeMarkStack(mark_stack_->Capacity() * 2);
377}
378
379void MarkSweep::ResizeMarkStack(size_t new_size) {
380  // Rare case, no need to have Thread::Current be a parameter.
381  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
382    // Someone else acquired the lock and expanded the mark stack before us.
383    return;
384  }
385  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
386  CHECK_LE(mark_stack_->Size(), new_size);
387  mark_stack_->Resize(new_size);
388  for (const auto& obj : temp) {
389    mark_stack_->PushBack(obj);
390  }
391}
392
393inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
394  DCHECK(obj != NULL);
395  if (MarkObjectParallel(obj)) {
396    MutexLock mu(Thread::Current(), mark_stack_lock_);
397    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
398      ExpandMarkStack();
399    }
400    // The object must be pushed on to the mark stack.
401    mark_stack_->PushBack(const_cast<Object*>(obj));
402  }
403}
404
405mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
406  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
407  mark_sweep->MarkObject(obj);
408  return obj;
409}
410
411inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
412  DCHECK(!immune_region_.ContainsObject(obj));
413
414  if (kUseBrooksPointer) {
415    // Verify all the objects have the correct Brooks pointer installed.
416    obj->AssertSelfBrooksPointer();
417  }
418
419  // Try to take advantage of locality of references within a space, failing this find the space
420  // the hard way.
421  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
422  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
423    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
424    if (LIKELY(new_bitmap != NULL)) {
425      object_bitmap = new_bitmap;
426    } else {
427      MarkLargeObject(obj, false);
428      return;
429    }
430  }
431
432  DCHECK(object_bitmap->HasAddress(obj));
433  object_bitmap->Clear(obj);
434}
435
436inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
437  DCHECK(obj != NULL);
438
439  if (kUseBrooksPointer) {
440    // Verify all the objects have the correct Brooks pointer installed.
441    obj->AssertSelfBrooksPointer();
442  }
443
444  if (immune_region_.ContainsObject(obj)) {
445    DCHECK(IsMarked(obj));
446    return;
447  }
448
449  // Try to take advantage of locality of references within a space, failing this find the space
450  // the hard way.
451  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
452  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
453    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
454    if (LIKELY(new_bitmap != NULL)) {
455      object_bitmap = new_bitmap;
456    } else {
457      MarkLargeObject(obj, true);
458      return;
459    }
460  }
461
462  // This object was not previously marked.
463  if (!object_bitmap->Test(obj)) {
464    object_bitmap->Set(obj);
465    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
466      // Lock is not needed but is here anyways to please annotalysis.
467      MutexLock mu(Thread::Current(), mark_stack_lock_);
468      ExpandMarkStack();
469    }
470    // The object must be pushed on to the mark stack.
471    mark_stack_->PushBack(const_cast<Object*>(obj));
472  }
473}
474
475// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
476bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
477  // TODO: support >1 discontinuous space.
478  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
479  accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
480  if (kProfileLargeObjects) {
481    ++large_object_test_;
482  }
483  if (UNLIKELY(!large_objects->Test(obj))) {
484    if (!large_object_space->Contains(obj)) {
485      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
486      LOG(ERROR) << "Attempting see if it's a bad root";
487      VerifyRoots();
488      LOG(FATAL) << "Can't mark bad root";
489    }
490    if (kProfileLargeObjects) {
491      ++large_object_mark_;
492    }
493    if (set) {
494      large_objects->Set(obj);
495    } else {
496      large_objects->Clear(obj);
497    }
498    return true;
499  }
500  return false;
501}
502
503inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
504  DCHECK(obj != NULL);
505
506  if (kUseBrooksPointer) {
507    // Verify all the objects have the correct Brooks pointer installed.
508    obj->AssertSelfBrooksPointer();
509  }
510
511  if (immune_region_.ContainsObject(obj)) {
512    DCHECK(IsMarked(obj));
513    return false;
514  }
515
516  // Try to take advantage of locality of references within a space, failing this find the space
517  // the hard way.
518  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
519  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
520    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
521    if (new_bitmap != NULL) {
522      object_bitmap = new_bitmap;
523    } else {
524      // TODO: Remove the Thread::Current here?
525      // TODO: Convert this to some kind of atomic marking?
526      MutexLock mu(Thread::Current(), large_object_lock_);
527      return MarkLargeObject(obj, true);
528    }
529  }
530
531  // Return true if the object was not previously marked.
532  return !object_bitmap->AtomicTestAndSet(obj);
533}
534
535// Used to mark objects when recursing.  Recursion is done by moving
536// the finger across the bitmaps in address order and marking child
537// objects.  Any newly-marked objects whose addresses are lower than
538// the finger won't be visited by the bitmap scan, so those objects
539// need to be added to the mark stack.
540inline void MarkSweep::MarkObject(const Object* obj) {
541  if (obj != NULL) {
542    MarkObjectNonNull(obj);
543  }
544}
545
546void MarkSweep::MarkRootParallelCallback(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
547                                         RootType /*root_type*/) {
548  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
549}
550
551void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/,
552                                 RootType /*root_type*/) {
553  CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
554}
555
556void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
557                                 RootType /*root_type*/) {
558  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
559}
560
561void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
562                                   const StackVisitor* visitor) {
563  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
564}
565
566void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
567  // See if the root is on any space bitmap.
568  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
569    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
570    if (!large_object_space->Contains(root)) {
571      LOG(ERROR) << "Found invalid root: " << root;
572      if (visitor != NULL) {
573        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
574      }
575    }
576  }
577}
578
579void MarkSweep::VerifyRoots() {
580  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
581}
582
583void MarkSweep::MarkRoots(Thread* self) {
584  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
585    // If we exclusively hold the mutator lock, all threads must be suspended.
586    timings_.StartSplit("MarkRoots");
587    Runtime::Current()->VisitRoots(MarkRootCallback, this);
588    timings_.EndSplit();
589    RevokeAllThreadLocalAllocationStacks(self);
590  } else {
591    MarkThreadRoots(self);
592    // At this point the live stack should no longer have any mutators which push into it.
593    MarkNonThreadRoots();
594    MarkConcurrentRoots(
595        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
596  }
597}
598
599void MarkSweep::MarkNonThreadRoots() {
600  timings_.StartSplit("MarkNonThreadRoots");
601  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
602  timings_.EndSplit();
603}
604
605void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
606  timings_.StartSplit("MarkConcurrentRoots");
607  // Visit all runtime roots and clear dirty flags.
608  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
609  timings_.EndSplit();
610}
611
612class ScanObjectVisitor {
613 public:
614  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
615      : mark_sweep_(mark_sweep) {}
616
617  // TODO: Fixme when anotatalysis works with visitors.
618  void operator()(Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
619    if (kCheckLocks) {
620      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
621      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
622    }
623    mark_sweep_->ScanObject(obj);
624  }
625
626 private:
627  MarkSweep* const mark_sweep_;
628};
629
630template <bool kUseFinger = false>
631class MarkStackTask : public Task {
632 public:
633  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
634                const Object** mark_stack)
635      : mark_sweep_(mark_sweep),
636        thread_pool_(thread_pool),
637        mark_stack_pos_(mark_stack_size) {
638    // We may have to copy part of an existing mark stack when another mark stack overflows.
639    if (mark_stack_size != 0) {
640      DCHECK(mark_stack != NULL);
641      // TODO: Check performance?
642      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
643    }
644    if (kCountTasks) {
645      ++mark_sweep_->work_chunks_created_;
646    }
647  }
648
649  static const size_t kMaxSize = 1 * KB;
650
651 protected:
652  class ScanObjectParallelVisitor {
653   public:
654    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
655        : chunk_task_(chunk_task) {}
656
657    void operator()(Object* obj) const {
658      MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
659      mark_sweep->ScanObjectVisit(obj,
660          [mark_sweep, this](Object* /* obj */, Object* ref, const MemberOffset& /* offset */,
661              bool /* is_static */) ALWAYS_INLINE_LAMBDA {
662        if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
663          if (kUseFinger) {
664            android_memory_barrier();
665            if (reinterpret_cast<uintptr_t>(ref) >=
666                static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
667              return;
668            }
669          }
670          chunk_task_->MarkStackPush(ref);
671        }
672      });
673    }
674
675   private:
676    MarkStackTask<kUseFinger>* const chunk_task_;
677  };
678
679  virtual ~MarkStackTask() {
680    // Make sure that we have cleared our mark stack.
681    DCHECK_EQ(mark_stack_pos_, 0U);
682    if (kCountTasks) {
683      ++mark_sweep_->work_chunks_deleted_;
684    }
685  }
686
687  MarkSweep* const mark_sweep_;
688  ThreadPool* const thread_pool_;
689  // Thread local mark stack for this task.
690  const Object* mark_stack_[kMaxSize];
691  // Mark stack position.
692  size_t mark_stack_pos_;
693
694  void MarkStackPush(const Object* obj) ALWAYS_INLINE {
695    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
696      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
697      mark_stack_pos_ /= 2;
698      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
699                                     mark_stack_ + mark_stack_pos_);
700      thread_pool_->AddTask(Thread::Current(), task);
701    }
702    DCHECK(obj != nullptr);
703    DCHECK(mark_stack_pos_ < kMaxSize);
704    mark_stack_[mark_stack_pos_++] = obj;
705  }
706
707  virtual void Finalize() {
708    delete this;
709  }
710
711  // Scans all of the objects
712  virtual void Run(Thread* self) {
713    ScanObjectParallelVisitor visitor(this);
714    // TODO: Tune this.
715    static const size_t kFifoSize = 4;
716    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
717    for (;;) {
718      const Object* obj = nullptr;
719      if (kUseMarkStackPrefetch) {
720        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
721          const Object* obj = mark_stack_[--mark_stack_pos_];
722          DCHECK(obj != nullptr);
723          __builtin_prefetch(obj);
724          prefetch_fifo.push_back(obj);
725        }
726        if (UNLIKELY(prefetch_fifo.empty())) {
727          break;
728        }
729        obj = prefetch_fifo.front();
730        prefetch_fifo.pop_front();
731      } else {
732        if (UNLIKELY(mark_stack_pos_ == 0)) {
733          break;
734        }
735        obj = mark_stack_[--mark_stack_pos_];
736      }
737      DCHECK(obj != nullptr);
738      visitor(const_cast<mirror::Object*>(obj));
739    }
740  }
741};
742
743class CardScanTask : public MarkStackTask<false> {
744 public:
745  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
746               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
747               const Object** mark_stack_obj)
748      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
749        bitmap_(bitmap),
750        begin_(begin),
751        end_(end),
752        minimum_age_(minimum_age) {
753  }
754
755 protected:
756  accounting::SpaceBitmap* const bitmap_;
757  byte* const begin_;
758  byte* const end_;
759  const byte minimum_age_;
760
761  virtual void Finalize() {
762    delete this;
763  }
764
765  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
766    ScanObjectParallelVisitor visitor(this);
767    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
768    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
769    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
770        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
771    // Finish by emptying our local mark stack.
772    MarkStackTask::Run(self);
773  }
774};
775
776size_t MarkSweep::GetThreadCount(bool paused) const {
777  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
778    return 0;
779  }
780  if (paused) {
781    return heap_->GetParallelGCThreadCount() + 1;
782  } else {
783    return heap_->GetConcGCThreadCount() + 1;
784  }
785}
786
787void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
788  accounting::CardTable* card_table = GetHeap()->GetCardTable();
789  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
790  size_t thread_count = GetThreadCount(paused);
791  // The parallel version with only one thread is faster for card scanning, TODO: fix.
792  if (kParallelCardScan && thread_count > 0) {
793    Thread* self = Thread::Current();
794    // Can't have a different split for each space since multiple spaces can have their cards being
795    // scanned at the same time.
796    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
797    // Try to take some of the mark stack since we can pass this off to the worker tasks.
798    const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
799    const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
800    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
801    // Estimated number of work tasks we will create.
802    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
803    DCHECK_NE(mark_stack_tasks, 0U);
804    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
805                                             mark_stack_size / mark_stack_tasks + 1);
806    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
807      if (space->GetMarkBitmap() == nullptr) {
808        continue;
809      }
810      byte* card_begin = space->Begin();
811      byte* card_end = space->End();
812      // Align up the end address. For example, the image space's end
813      // may not be card-size-aligned.
814      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
815      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
816      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
817      // Calculate how many bytes of heap we will scan,
818      const size_t address_range = card_end - card_begin;
819      // Calculate how much address range each task gets.
820      const size_t card_delta = RoundUp(address_range / thread_count + 1,
821                                        accounting::CardTable::kCardSize);
822      // Create the worker tasks for this space.
823      while (card_begin != card_end) {
824        // Add a range of cards.
825        size_t addr_remaining = card_end - card_begin;
826        size_t card_increment = std::min(card_delta, addr_remaining);
827        // Take from the back of the mark stack.
828        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
829        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
830        mark_stack_end -= mark_stack_increment;
831        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
832        DCHECK_EQ(mark_stack_end, const_cast<const art::mirror::Object **>(mark_stack_->End()));
833        // Add the new task to the thread pool.
834        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
835                                      card_begin + card_increment, minimum_age,
836                                      mark_stack_increment, mark_stack_end);
837        thread_pool->AddTask(self, task);
838        card_begin += card_increment;
839      }
840    }
841
842    // Note: the card scan below may dirty new cards (and scan them)
843    // as a side effect when a Reference object is encountered and
844    // queued during the marking. See b/11465268.
845    thread_pool->SetMaxActiveWorkers(thread_count - 1);
846    thread_pool->StartWorkers(self);
847    thread_pool->Wait(self, true, true);
848    thread_pool->StopWorkers(self);
849    timings_.EndSplit();
850  } else {
851    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
852      if (space->GetMarkBitmap() != nullptr) {
853        // Image spaces are handled properly since live == marked for them.
854        switch (space->GetGcRetentionPolicy()) {
855          case space::kGcRetentionPolicyNeverCollect:
856            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
857                "ScanGrayImageSpaceObjects");
858            break;
859          case space::kGcRetentionPolicyFullCollect:
860            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
861                "ScanGrayZygoteSpaceObjects");
862            break;
863          case space::kGcRetentionPolicyAlwaysCollect:
864            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
865                "ScanGrayAllocSpaceObjects");
866            break;
867          }
868        ScanObjectVisitor visitor(this);
869        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
870        timings_.EndSplit();
871      }
872    }
873  }
874}
875
876class RecursiveMarkTask : public MarkStackTask<false> {
877 public:
878  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
879                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
880      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
881        bitmap_(bitmap),
882        begin_(begin),
883        end_(end) {
884  }
885
886 protected:
887  accounting::SpaceBitmap* const bitmap_;
888  const uintptr_t begin_;
889  const uintptr_t end_;
890
891  virtual void Finalize() {
892    delete this;
893  }
894
895  // Scans all of the objects
896  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
897    ScanObjectParallelVisitor visitor(this);
898    bitmap_->VisitMarkedRange(begin_, end_, visitor);
899    // Finish by emptying our local mark stack.
900    MarkStackTask::Run(self);
901  }
902};
903
904// Populates the mark stack based on the set of marked objects and
905// recursively marks until the mark stack is emptied.
906void MarkSweep::RecursiveMark() {
907  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
908  // RecursiveMark will build the lists of known instances of the Reference classes. See
909  // DelayReferenceReferent for details.
910  if (kUseRecursiveMark) {
911    const bool partial = GetGcType() == kGcTypePartial;
912    ScanObjectVisitor scan_visitor(this);
913    auto* self = Thread::Current();
914    ThreadPool* thread_pool = heap_->GetThreadPool();
915    size_t thread_count = GetThreadCount(false);
916    const bool parallel = kParallelRecursiveMark && thread_count > 1;
917    mark_stack_->Reset();
918    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
919      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
920          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
921        current_mark_bitmap_ = space->GetMarkBitmap();
922        if (current_mark_bitmap_ == nullptr) {
923          continue;
924        }
925        if (parallel) {
926          // We will use the mark stack the future.
927          // CHECK(mark_stack_->IsEmpty());
928          // This function does not handle heap end increasing, so we must use the space end.
929          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
930          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
931          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
932
933          // Create a few worker tasks.
934          const size_t n = thread_count * 2;
935          while (begin != end) {
936            uintptr_t start = begin;
937            uintptr_t delta = (end - begin) / n;
938            delta = RoundUp(delta, KB);
939            if (delta < 16 * KB) delta = end - begin;
940            begin += delta;
941            auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
942                                               begin);
943            thread_pool->AddTask(self, task);
944          }
945          thread_pool->SetMaxActiveWorkers(thread_count - 1);
946          thread_pool->StartWorkers(self);
947          thread_pool->Wait(self, true, true);
948          thread_pool->StopWorkers(self);
949        } else {
950          // This function does not handle heap end increasing, so we must use the space end.
951          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
952          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
953          current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
954        }
955      }
956    }
957  }
958  ProcessMarkStack(false);
959}
960
961mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
962  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
963    return object;
964  }
965  return nullptr;
966}
967
968void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
969  ScanGrayObjects(paused, minimum_age);
970  ProcessMarkStack(paused);
971}
972
973void MarkSweep::ReMarkRoots() {
974  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
975  timings_.StartSplit("(Paused)ReMarkRoots");
976  Runtime::Current()->VisitRoots(
977      MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
978                                                          kVisitRootFlagStopLoggingNewRoots |
979                                                          kVisitRootFlagClearRootLog));
980  timings_.EndSplit();
981  if (kVerifyRoots) {
982    timings_.StartSplit("(Paused)VerifyRoots");
983    Runtime::Current()->VisitRoots(VerifyRootMarked, this);
984    timings_.EndSplit();
985  }
986}
987
988void MarkSweep::SweepSystemWeaks() {
989  Runtime* runtime = Runtime::Current();
990  timings_.StartSplit("SweepSystemWeaks");
991  runtime->SweepSystemWeaks(IsMarkedCallback, this);
992  timings_.EndSplit();
993}
994
995mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
996  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
997  // We don't actually want to sweep the object, so lets return "marked"
998  return obj;
999}
1000
1001void MarkSweep::VerifyIsLive(const Object* obj) {
1002  Heap* heap = GetHeap();
1003  if (!heap->GetLiveBitmap()->Test(obj)) {
1004    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1005    if (!large_object_space->GetLiveObjects()->Test(obj)) {
1006      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
1007          heap->allocation_stack_->End()) {
1008        // Object not found!
1009        heap->DumpSpaces();
1010        LOG(FATAL) << "Found dead object " << obj;
1011      }
1012    }
1013  }
1014}
1015
1016void MarkSweep::VerifySystemWeaks() {
1017  // Verify system weaks, uses a special object visitor which returns the input object.
1018  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
1019}
1020
1021class CheckpointMarkThreadRoots : public Closure {
1022 public:
1023  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1024
1025  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1026    ATRACE_BEGIN("Marking thread roots");
1027    // Note: self is not necessarily equal to thread since thread may be suspended.
1028    Thread* self = Thread::Current();
1029    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1030        << thread->GetState() << " thread " << thread << " self " << self;
1031    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1032    ATRACE_END();
1033    if (kUseThreadLocalAllocationStack) {
1034      thread->RevokeThreadLocalAllocationStack();
1035    }
1036    mark_sweep_->GetBarrier().Pass(self);
1037  }
1038
1039 private:
1040  MarkSweep* mark_sweep_;
1041};
1042
1043void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1044  CheckpointMarkThreadRoots check_point(this);
1045  timings_.StartSplit("MarkRootsCheckpoint");
1046  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1047  // Request the check point is run on all threads returning a count of the threads that must
1048  // run through the barrier including self.
1049  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1050  // Release locks then wait for all mutator threads to pass the barrier.
1051  // TODO: optimize to not release locks when there are no threads to wait for.
1052  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1053  Locks::mutator_lock_->SharedUnlock(self);
1054  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1055  CHECK_EQ(old_state, kWaitingPerformingGc);
1056  gc_barrier_->Increment(self, barrier_count);
1057  self->SetState(kWaitingPerformingGc);
1058  Locks::mutator_lock_->SharedLock(self);
1059  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1060  timings_.EndSplit();
1061}
1062
1063void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1064  timings_.StartSplit("SweepArray");
1065  Thread* self = Thread::Current();
1066  mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
1067  size_t chunk_free_pos = 0;
1068  size_t freed_bytes = 0;
1069  size_t freed_large_object_bytes = 0;
1070  size_t freed_objects = 0;
1071  size_t freed_large_objects = 0;
1072  // How many objects are left in the array, modified after each space is swept.
1073  Object** objects = const_cast<Object**>(allocations->Begin());
1074  size_t count = allocations->Size();
1075  // Change the order to ensure that the non-moving space last swept as an optimization.
1076  std::vector<space::ContinuousSpace*> sweep_spaces;
1077  space::ContinuousSpace* non_moving_space = nullptr;
1078  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1079    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1080        space->GetLiveBitmap() != nullptr) {
1081      if (space == heap_->GetNonMovingSpace()) {
1082        non_moving_space = space;
1083      } else {
1084        sweep_spaces.push_back(space);
1085      }
1086    }
1087  }
1088  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1089  // the other alloc spaces as an optimization.
1090  if (non_moving_space != nullptr) {
1091    sweep_spaces.push_back(non_moving_space);
1092  }
1093  // Start by sweeping the continuous spaces.
1094  for (space::ContinuousSpace* space : sweep_spaces) {
1095    space::AllocSpace* alloc_space = space->AsAllocSpace();
1096    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1097    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1098    if (swap_bitmaps) {
1099      std::swap(live_bitmap, mark_bitmap);
1100    }
1101    Object** out = objects;
1102    for (size_t i = 0; i < count; ++i) {
1103      Object* obj = objects[i];
1104      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1105        continue;
1106      }
1107      if (space->HasAddress(obj)) {
1108        // This object is in the space, remove it from the array and add it to the sweep buffer
1109        // if needed.
1110        if (!mark_bitmap->Test(obj)) {
1111          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1112            timings_.StartSplit("FreeList");
1113            freed_objects += chunk_free_pos;
1114            freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1115            timings_.EndSplit();
1116            chunk_free_pos = 0;
1117          }
1118          chunk_free_buffer[chunk_free_pos++] = obj;
1119        }
1120      } else {
1121        *(out++) = obj;
1122      }
1123    }
1124    if (chunk_free_pos > 0) {
1125      timings_.StartSplit("FreeList");
1126      freed_objects += chunk_free_pos;
1127      freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1128      timings_.EndSplit();
1129      chunk_free_pos = 0;
1130    }
1131    // All of the references which space contained are no longer in the allocation stack, update
1132    // the count.
1133    count = out - objects;
1134  }
1135  // Handle the large object space.
1136  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1137  accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
1138  accounting::ObjectSet* large_mark_objects = large_object_space->GetMarkObjects();
1139  if (swap_bitmaps) {
1140    std::swap(large_live_objects, large_mark_objects);
1141  }
1142  for (size_t i = 0; i < count; ++i) {
1143    Object* obj = objects[i];
1144    // Handle large objects.
1145    if (kUseThreadLocalAllocationStack && obj == nullptr) {
1146      continue;
1147    }
1148    if (!large_mark_objects->Test(obj)) {
1149      ++freed_large_objects;
1150      freed_large_object_bytes += large_object_space->Free(self, obj);
1151    }
1152  }
1153  timings_.EndSplit();
1154
1155  timings_.StartSplit("RecordFree");
1156  VLOG(heap) << "Freed " << freed_objects << "/" << count
1157             << " objects with size " << PrettySize(freed_bytes);
1158  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1159  freed_objects_.FetchAndAdd(freed_objects);
1160  freed_large_objects_.FetchAndAdd(freed_large_objects);
1161  freed_bytes_.FetchAndAdd(freed_bytes);
1162  freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes);
1163  timings_.EndSplit();
1164
1165  timings_.StartSplit("ResetStack");
1166  allocations->Reset();
1167  timings_.EndSplit();
1168}
1169
1170void MarkSweep::Sweep(bool swap_bitmaps) {
1171  DCHECK(mark_stack_->IsEmpty());
1172  TimingLogger::ScopedSplit("Sweep", &timings_);
1173  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1174    if (space->IsContinuousMemMapAllocSpace()) {
1175      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1176      TimingLogger::ScopedSplit split(
1177          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
1178      size_t freed_objects = 0;
1179      size_t freed_bytes = 0;
1180      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1181      heap_->RecordFree(freed_objects, freed_bytes);
1182      freed_objects_.FetchAndAdd(freed_objects);
1183      freed_bytes_.FetchAndAdd(freed_bytes);
1184    }
1185  }
1186  SweepLargeObjects(swap_bitmaps);
1187}
1188
1189void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1190  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1191  size_t freed_objects = 0;
1192  size_t freed_bytes = 0;
1193  GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1194  freed_large_objects_.FetchAndAdd(freed_objects);
1195  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
1196  GetHeap()->RecordFree(freed_objects, freed_bytes);
1197}
1198
1199// Process the "referent" field in a java.lang.ref.Reference.  If the
1200// referent has not yet been marked, put it on the appropriate list in
1201// the heap for later processing.
1202void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1203  DCHECK(klass != nullptr);
1204  heap_->DelayReferenceReferent(klass, obj->AsReference(), IsMarkedCallback, this);
1205}
1206
1207class MarkObjectVisitor {
1208 public:
1209  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1210
1211  // TODO: Fixme when anotatalysis works with visitors.
1212  void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
1213                  bool /* is_static */) const ALWAYS_INLINE
1214      NO_THREAD_SAFETY_ANALYSIS {
1215    if (kCheckLocks) {
1216      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1217      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1218    }
1219    mark_sweep_->MarkObject(ref);
1220  }
1221
1222 private:
1223  MarkSweep* const mark_sweep_;
1224};
1225
1226// Scans an object reference.  Determines the type of the reference
1227// and dispatches to a specialized scanning routine.
1228void MarkSweep::ScanObject(Object* obj) {
1229  MarkObjectVisitor visitor(this);
1230  ScanObjectVisit(obj, visitor);
1231}
1232
1233void MarkSweep::ProcessMarkStackPausedCallback(void* arg) {
1234  DCHECK(arg != nullptr);
1235  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(true);
1236}
1237
1238void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1239  Thread* self = Thread::Current();
1240  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1241  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1242                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1243  CHECK_GT(chunk_size, 0U);
1244  // Split the current mark stack up into work tasks.
1245  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1246    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1247    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
1248                                                        const_cast<const mirror::Object**>(it)));
1249    it += delta;
1250  }
1251  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1252  thread_pool->StartWorkers(self);
1253  thread_pool->Wait(self, true, true);
1254  thread_pool->StopWorkers(self);
1255  mark_stack_->Reset();
1256  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1257}
1258
1259// Scan anything that's on the mark stack.
1260void MarkSweep::ProcessMarkStack(bool paused) {
1261  timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack");
1262  size_t thread_count = GetThreadCount(paused);
1263  if (kParallelProcessMarkStack && thread_count > 1 &&
1264      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1265    ProcessMarkStackParallel(thread_count);
1266  } else {
1267    // TODO: Tune this.
1268    static const size_t kFifoSize = 4;
1269    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1270    for (;;) {
1271      Object* obj = NULL;
1272      if (kUseMarkStackPrefetch) {
1273        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1274          Object* obj = mark_stack_->PopBack();
1275          DCHECK(obj != NULL);
1276          __builtin_prefetch(obj);
1277          prefetch_fifo.push_back(obj);
1278        }
1279        if (prefetch_fifo.empty()) {
1280          break;
1281        }
1282        obj = prefetch_fifo.front();
1283        prefetch_fifo.pop_front();
1284      } else {
1285        if (mark_stack_->IsEmpty()) {
1286          break;
1287        }
1288        obj = mark_stack_->PopBack();
1289      }
1290      DCHECK(obj != NULL);
1291      ScanObject(obj);
1292    }
1293  }
1294  timings_.EndSplit();
1295}
1296
1297inline bool MarkSweep::IsMarked(const Object* object) const
1298    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1299  if (immune_region_.ContainsObject(object)) {
1300    return true;
1301  }
1302  DCHECK(current_mark_bitmap_ != NULL);
1303  if (current_mark_bitmap_->HasAddress(object)) {
1304    return current_mark_bitmap_->Test(object);
1305  }
1306  return heap_->GetMarkBitmap()->Test(object);
1307}
1308
1309void MarkSweep::FinishPhase() {
1310  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1311  // Can't enqueue references if we hold the mutator lock.
1312  Heap* heap = GetHeap();
1313  timings_.NewSplit("PostGcVerification");
1314  heap->PostGcVerification(this);
1315
1316  // Update the cumulative statistics
1317  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1318  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1319
1320  // Ensure that the mark stack is empty.
1321  CHECK(mark_stack_->IsEmpty());
1322
1323  if (kCountScannedTypes) {
1324    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1325             << " other=" << other_count_;
1326  }
1327
1328  if (kCountTasks) {
1329    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1330  }
1331
1332  if (kMeasureOverhead) {
1333    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1334  }
1335
1336  if (kProfileLargeObjects) {
1337    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1338  }
1339
1340  if (kCountClassesMarked) {
1341    VLOG(gc) << "Classes marked " << classes_marked_;
1342  }
1343
1344  if (kCountJavaLangRefs) {
1345    VLOG(gc) << "References scanned " << reference_count_;
1346  }
1347
1348  // Update the cumulative loggers.
1349  cumulative_timings_.Start();
1350  cumulative_timings_.AddLogger(timings_);
1351  cumulative_timings_.End();
1352
1353  // Clear all of the spaces' mark bitmaps.
1354  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1355    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
1356    if (bitmap != nullptr &&
1357        space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1358      bitmap->Clear();
1359    }
1360  }
1361  mark_stack_->Reset();
1362
1363  // Reset the marked large objects.
1364  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1365  large_objects->GetMarkObjects()->Clear();
1366}
1367
1368}  // namespace collector
1369}  // namespace gc
1370}  // namespace art
1371