mark_sweep.cc revision 62ab87bb3ff4830def25a1716f6785256c7eebca
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap-inl.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "mark_sweep-inl.h"
38#include "mirror/art_field-inl.h"
39#include "mirror/object-inl.h"
40#include "runtime.h"
41#include "scoped_thread_state_change.h"
42#include "thread-inl.h"
43#include "thread_list.h"
44
45using ::art::mirror::ArtField;
46using ::art::mirror::Class;
47using ::art::mirror::Object;
48using ::art::mirror::ObjectArray;
49
50namespace art {
51namespace gc {
52namespace collector {
53
54// Performance options.
55static constexpr bool kUseRecursiveMark = false;
56static constexpr bool kUseMarkStackPrefetch = true;
57static constexpr size_t kSweepArrayChunkFreeSize = 1024;
58static constexpr bool kPreCleanCards = true;
59
60// Parallelism options.
61static constexpr bool kParallelCardScan = true;
62static constexpr bool kParallelRecursiveMark = true;
63// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
64// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
65// having this can add overhead in ProcessReferences since we may end up doing many calls of
66// ProcessMarkStack with very small mark stacks.
67static constexpr size_t kMinimumParallelMarkStackSize = 128;
68static constexpr bool kParallelProcessMarkStack = true;
69
70// Profiling and information flags.
71static constexpr bool kProfileLargeObjects = false;
72static constexpr bool kMeasureOverhead = false;
73static constexpr bool kCountTasks = false;
74static constexpr bool kCountJavaLangRefs = false;
75static constexpr bool kCountMarkedObjects = false;
76
77// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
78static constexpr bool kCheckLocks = kDebugLocking;
79static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
80
81// If true, revoke the rosalloc thread-local buffers at the
82// checkpoint, as opposed to during the pause.
83static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
84
85void MarkSweep::BindBitmaps() {
86  timings_.StartSplit("BindBitmaps");
87  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
88  // Mark all of the spaces we never collect as immune.
89  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
90    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
91      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
92    }
93  }
94  timings_.EndSplit();
95}
96
97MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
98    : GarbageCollector(heap,
99                       name_prefix +
100                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
101      gc_barrier_(new Barrier(0)),
102      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
103      is_concurrent_(is_concurrent) {
104}
105
106void MarkSweep::InitializePhase() {
107  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
108  mark_stack_ = heap_->mark_stack_.get();
109  DCHECK(mark_stack_ != nullptr);
110  immune_region_.Reset();
111  class_count_ = 0;
112  array_count_ = 0;
113  other_count_ = 0;
114  large_object_test_ = 0;
115  large_object_mark_ = 0;
116  overhead_time_ = 0;
117  work_chunks_created_ = 0;
118  work_chunks_deleted_ = 0;
119  reference_count_ = 0;
120  mark_null_count_ = 0;
121  mark_immune_count_ = 0;
122  mark_fastpath_count_ = 0;
123  mark_slowpath_count_ = 0;
124  {
125    // TODO: I don't think we should need heap bitmap lock to get the mark bitmap.
126    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
127    mark_bitmap_ = heap_->GetMarkBitmap();
128  }
129  if (!clear_soft_references_) {
130    // Always clear soft references if a non-sticky collection.
131    clear_soft_references_ = GetGcType() != collector::kGcTypeSticky;
132  }
133  // Do any pre GC verification.
134  timings_.NewSplit("PreGcVerification");
135  heap_->PreGcVerification(this);
136}
137
138void MarkSweep::ProcessReferences(Thread* self) {
139  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
140  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
141  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
142                               &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
143}
144
145void MarkSweep::PreProcessReferences() {
146  if (IsConcurrent()) {
147    // No reason to do this for non-concurrent GC since pre processing soft references only helps
148    // pauses.
149    timings_.NewSplit("PreProcessReferences");
150    GetHeap()->ProcessSoftReferences(timings_, clear_soft_references_, &IsMarkedCallback,
151                                     &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
152  }
153}
154
155void MarkSweep::PausePhase() {
156  TimingLogger::ScopedSplit split("(Paused)PausePhase", &timings_);
157  Thread* self = Thread::Current();
158  Locks::mutator_lock_->AssertExclusiveHeld(self);
159  if (IsConcurrent()) {
160    // Handle the dirty objects if we are a concurrent GC.
161    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
162    // Re-mark root set.
163    ReMarkRoots();
164    // Scan dirty objects, this is only required if we are not doing concurrent GC.
165    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
166  }
167  ProcessReferences(self);
168  {
169    timings_.NewSplit("SwapStacks");
170    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
171    heap_->SwapStacks(self);
172    live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
173    // Need to revoke all the thread local allocation stacks since we just swapped the allocation
174    // stacks and don't want anybody to allocate into the live stack.
175    RevokeAllThreadLocalAllocationStacks(self);
176  }
177  timings_.StartSplit("PreSweepingGcVerification");
178  heap_->PreSweepingGcVerification(this);
179  timings_.EndSplit();
180  if (IsConcurrent()) {
181    // Disallow new system weaks to prevent a race which occurs when someone adds a new system
182    // weak before we sweep them. Since this new system weak may not be marked, the GC may
183    // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
184    // reference to a string that is about to be swept.
185    Runtime::Current()->DisallowNewSystemWeaks();
186  }
187}
188
189void MarkSweep::PreCleanCards() {
190  // Don't do this for non concurrent GCs since they don't have any dirty cards.
191  if (kPreCleanCards && IsConcurrent()) {
192    Thread* self = Thread::Current();
193    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
194    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
195    heap_->ProcessCards(timings_, false);
196    // The checkpoint root marking is required to avoid a race condition which occurs if the
197    // following happens during a reference write:
198    // 1. mutator dirties the card (write barrier)
199    // 2. GC ages the card (the above ProcessCards call)
200    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
201    // 4. mutator writes the value (corresponding to the write barrier in 1.)
202    // This causes the GC to age the card but not necessarily mark the reference which the mutator
203    // wrote into the object stored in the card.
204    // Having the checkpoint fixes this issue since it ensures that the card mark and the
205    // reference write are visible to the GC before the card is scanned (this is due to locks being
206    // acquired / released in the checkpoint code).
207    // The other roots are also marked to help reduce the pause.
208    MarkRootsCheckpoint(self, false);
209    MarkNonThreadRoots();
210    MarkConcurrentRoots(
211        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
212    // Process the newly aged cards.
213    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
214    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
215    // in the next GC.
216  }
217}
218
219void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
220  if (kUseThreadLocalAllocationStack) {
221    timings_.NewSplit("RevokeAllThreadLocalAllocationStacks");
222    Locks::mutator_lock_->AssertExclusiveHeld(self);
223    heap_->RevokeAllThreadLocalAllocationStacks(self);
224  }
225}
226
227void MarkSweep::MarkingPhase() {
228  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
229  Thread* self = Thread::Current();
230
231  BindBitmaps();
232  FindDefaultSpaceBitmap();
233
234  // Process dirty cards and add dirty cards to mod union tables.
235  heap_->ProcessCards(timings_, false);
236
237  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
238  MarkRoots(self);
239  MarkReachableObjects();
240  // Pre-clean dirtied cards to reduce pauses.
241  PreCleanCards();
242  PreProcessReferences();
243}
244
245void MarkSweep::UpdateAndMarkModUnion() {
246  for (const auto& space : heap_->GetContinuousSpaces()) {
247    if (immune_region_.ContainsSpace(space)) {
248      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
249          "UpdateAndMarkImageModUnionTable";
250      TimingLogger::ScopedSplit split(name, &timings_);
251      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
252      CHECK(mod_union_table != nullptr);
253      mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
254    }
255  }
256}
257
258void MarkSweep::MarkReachableObjects() {
259  UpdateAndMarkModUnion();
260  // Recursively mark all the non-image bits set in the mark bitmap.
261  RecursiveMark();
262}
263
264void MarkSweep::ReclaimPhase() {
265  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
266  Thread* self = Thread::Current();
267  SweepSystemWeaks(self);
268  if (IsConcurrent()) {
269    Runtime::Current()->AllowNewSystemWeaks();
270  }
271  {
272    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
273
274    // Reclaim unmarked objects.
275    Sweep(false);
276
277    // Swap the live and mark bitmaps for each space which we modified space. This is an
278    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
279    // bitmaps.
280    timings_.StartSplit("SwapBitmaps");
281    SwapBitmaps();
282    timings_.EndSplit();
283
284    // Unbind the live and mark bitmaps.
285    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
286    GetHeap()->UnBindBitmaps();
287  }
288}
289
290void MarkSweep::FindDefaultSpaceBitmap() {
291  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
292  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
293    accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
294    // We want to have the main space instead of non moving if possible.
295    if (bitmap != nullptr &&
296        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
297      current_space_bitmap_ = bitmap;
298      // If we are not the non moving space exit the loop early since this will be good enough.
299      if (space != heap_->GetNonMovingSpace()) {
300        break;
301      }
302    }
303  }
304  if (current_space_bitmap_ == nullptr) {
305    heap_->DumpSpaces();
306    LOG(FATAL) << "Could not find a default mark bitmap";
307  }
308}
309
310void MarkSweep::ExpandMarkStack() {
311  ResizeMarkStack(mark_stack_->Capacity() * 2);
312}
313
314void MarkSweep::ResizeMarkStack(size_t new_size) {
315  // Rare case, no need to have Thread::Current be a parameter.
316  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
317    // Someone else acquired the lock and expanded the mark stack before us.
318    return;
319  }
320  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
321  CHECK_LE(mark_stack_->Size(), new_size);
322  mark_stack_->Resize(new_size);
323  for (const auto& obj : temp) {
324    mark_stack_->PushBack(obj);
325  }
326}
327
328inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
329  DCHECK(obj != nullptr);
330  if (MarkObjectParallel(obj)) {
331    MutexLock mu(Thread::Current(), mark_stack_lock_);
332    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
333      ExpandMarkStack();
334    }
335    // The object must be pushed on to the mark stack.
336    mark_stack_->PushBack(obj);
337  }
338}
339
340mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
341  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
342  mark_sweep->MarkObject(obj);
343  return obj;
344}
345
346void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
347  reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
348}
349
350class MarkSweepMarkObjectSlowPath {
351 public:
352  explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {
353  }
354
355  void operator()(const Object* obj) const ALWAYS_INLINE {
356    if (kProfileLargeObjects) {
357      // TODO: Differentiate between marking and testing somehow.
358      ++mark_sweep_->large_object_test_;
359      ++mark_sweep_->large_object_mark_;
360    }
361    space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
362    if (UNLIKELY(!IsAligned<kPageSize>(obj) ||
363                 (kIsDebugBuild && !large_object_space->Contains(obj)))) {
364      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
365      LOG(ERROR) << "Attempting see if it's a bad root";
366      mark_sweep_->VerifyRoots();
367      LOG(FATAL) << "Can't mark invalid object";
368    }
369  }
370
371 private:
372  MarkSweep* const mark_sweep_;
373};
374
375inline void MarkSweep::MarkObjectNonNull(Object* obj) {
376  DCHECK(obj != nullptr);
377  if (kUseBakerOrBrooksReadBarrier) {
378    // Verify all the objects have the correct pointer installed.
379    obj->AssertReadBarrierPointer();
380  }
381  if (immune_region_.ContainsObject(obj)) {
382    if (kCountMarkedObjects) {
383      ++mark_immune_count_;
384    }
385    DCHECK(mark_bitmap_->Test(obj));
386  } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
387    if (kCountMarkedObjects) {
388      ++mark_fastpath_count_;
389    }
390    if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
391      PushOnMarkStack(obj);  // This object was not previously marked.
392    }
393  } else {
394    if (kCountMarkedObjects) {
395      ++mark_slowpath_count_;
396    }
397    MarkSweepMarkObjectSlowPath visitor(this);
398    // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
399    // will check again.
400    if (!mark_bitmap_->Set(obj, visitor)) {
401      PushOnMarkStack(obj);  // Was not already marked, push.
402    }
403  }
404}
405
406inline void MarkSweep::PushOnMarkStack(Object* obj) {
407  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
408    // Lock is not needed but is here anyways to please annotalysis.
409    MutexLock mu(Thread::Current(), mark_stack_lock_);
410    ExpandMarkStack();
411  }
412  // The object must be pushed on to the mark stack.
413  mark_stack_->PushBack(obj);
414}
415
416inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
417  DCHECK(obj != nullptr);
418  if (kUseBakerOrBrooksReadBarrier) {
419    // Verify all the objects have the correct pointer installed.
420    obj->AssertReadBarrierPointer();
421  }
422  if (immune_region_.ContainsObject(obj)) {
423    DCHECK(IsMarked(obj));
424    return false;
425  }
426  // Try to take advantage of locality of references within a space, failing this find the space
427  // the hard way.
428  accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
429  if (LIKELY(object_bitmap->HasAddress(obj))) {
430    return !object_bitmap->AtomicTestAndSet(obj);
431  }
432  MarkSweepMarkObjectSlowPath visitor(this);
433  return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
434}
435
436// Used to mark objects when processing the mark stack. If an object is null, it is not marked.
437inline void MarkSweep::MarkObject(Object* obj) {
438  if (obj != nullptr) {
439    MarkObjectNonNull(obj);
440  } else if (kCountMarkedObjects) {
441    ++mark_null_count_;
442  }
443}
444
445void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/,
446                                         RootType /*root_type*/) {
447  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
448}
449
450void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/,
451                                 RootType /*root_type*/) {
452  CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
453}
454
455void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
456                                 RootType /*root_type*/) {
457  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
458}
459
460void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
461                                   const StackVisitor* visitor, RootType root_type) {
462  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor, root_type);
463}
464
465void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor,
466                           RootType root_type) {
467  // See if the root is on any space bitmap.
468  if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
469    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
470    if (!large_object_space->Contains(root)) {
471      LOG(ERROR) << "Found invalid root: " << root << " with type " << root_type;
472      if (visitor != NULL) {
473        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
474      }
475    }
476  }
477}
478
479void MarkSweep::VerifyRoots() {
480  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
481}
482
483void MarkSweep::MarkRoots(Thread* self) {
484  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
485    // If we exclusively hold the mutator lock, all threads must be suspended.
486    timings_.StartSplit("MarkRoots");
487    Runtime::Current()->VisitRoots(MarkRootCallback, this);
488    timings_.EndSplit();
489    RevokeAllThreadLocalAllocationStacks(self);
490  } else {
491    MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
492    // At this point the live stack should no longer have any mutators which push into it.
493    MarkNonThreadRoots();
494    MarkConcurrentRoots(
495        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
496  }
497}
498
499void MarkSweep::MarkNonThreadRoots() {
500  timings_.StartSplit("MarkNonThreadRoots");
501  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
502  timings_.EndSplit();
503}
504
505void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
506  timings_.StartSplit("MarkConcurrentRoots");
507  // Visit all runtime roots and clear dirty flags.
508  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
509  timings_.EndSplit();
510}
511
512class ScanObjectVisitor {
513 public:
514  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
515      : mark_sweep_(mark_sweep) {}
516
517  void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
518      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
519    if (kCheckLocks) {
520      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
521      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
522    }
523    mark_sweep_->ScanObject(obj);
524  }
525
526 private:
527  MarkSweep* const mark_sweep_;
528};
529
530class DelayReferenceReferentVisitor {
531 public:
532  explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
533  }
534
535  void operator()(mirror::Class* klass, mirror::Reference* ref) const
536      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
537      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
538    collector_->DelayReferenceReferent(klass, ref);
539  }
540
541 private:
542  MarkSweep* const collector_;
543};
544
545template <bool kUseFinger = false>
546class MarkStackTask : public Task {
547 public:
548  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
549                Object** mark_stack)
550      : mark_sweep_(mark_sweep),
551        thread_pool_(thread_pool),
552        mark_stack_pos_(mark_stack_size) {
553    // We may have to copy part of an existing mark stack when another mark stack overflows.
554    if (mark_stack_size != 0) {
555      DCHECK(mark_stack != NULL);
556      // TODO: Check performance?
557      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
558    }
559    if (kCountTasks) {
560      ++mark_sweep_->work_chunks_created_;
561    }
562  }
563
564  static const size_t kMaxSize = 1 * KB;
565
566 protected:
567  class MarkObjectParallelVisitor {
568   public:
569    explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
570                                       MarkSweep* mark_sweep) ALWAYS_INLINE
571            : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
572
573    void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
574        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
575      mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset, false);
576      if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
577        if (kUseFinger) {
578          android_memory_barrier();
579          if (reinterpret_cast<uintptr_t>(ref) >=
580              static_cast<uintptr_t>(mark_sweep_->atomic_finger_)) {
581            return;
582          }
583        }
584        chunk_task_->MarkStackPush(ref);
585      }
586    }
587
588   private:
589    MarkStackTask<kUseFinger>* const chunk_task_;
590    MarkSweep* const mark_sweep_;
591  };
592
593  class ScanObjectParallelVisitor {
594   public:
595    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
596        : chunk_task_(chunk_task) {}
597
598    // No thread safety analysis since multiple threads will use this visitor.
599    void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
600        EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
601      MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
602      MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
603      DelayReferenceReferentVisitor ref_visitor(mark_sweep);
604      mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
605    }
606
607   private:
608    MarkStackTask<kUseFinger>* const chunk_task_;
609  };
610
611  virtual ~MarkStackTask() {
612    // Make sure that we have cleared our mark stack.
613    DCHECK_EQ(mark_stack_pos_, 0U);
614    if (kCountTasks) {
615      ++mark_sweep_->work_chunks_deleted_;
616    }
617  }
618
619  MarkSweep* const mark_sweep_;
620  ThreadPool* const thread_pool_;
621  // Thread local mark stack for this task.
622  Object* mark_stack_[kMaxSize];
623  // Mark stack position.
624  size_t mark_stack_pos_;
625
626  void MarkStackPush(Object* obj) ALWAYS_INLINE {
627    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
628      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
629      mark_stack_pos_ /= 2;
630      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
631                                     mark_stack_ + mark_stack_pos_);
632      thread_pool_->AddTask(Thread::Current(), task);
633    }
634    DCHECK(obj != nullptr);
635    DCHECK_LT(mark_stack_pos_, kMaxSize);
636    mark_stack_[mark_stack_pos_++] = obj;
637  }
638
639  virtual void Finalize() {
640    delete this;
641  }
642
643  // Scans all of the objects
644  virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
645      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
646    ScanObjectParallelVisitor visitor(this);
647    // TODO: Tune this.
648    static const size_t kFifoSize = 4;
649    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
650    for (;;) {
651      Object* obj = nullptr;
652      if (kUseMarkStackPrefetch) {
653        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
654          Object* obj = mark_stack_[--mark_stack_pos_];
655          DCHECK(obj != nullptr);
656          __builtin_prefetch(obj);
657          prefetch_fifo.push_back(obj);
658        }
659        if (UNLIKELY(prefetch_fifo.empty())) {
660          break;
661        }
662        obj = prefetch_fifo.front();
663        prefetch_fifo.pop_front();
664      } else {
665        if (UNLIKELY(mark_stack_pos_ == 0)) {
666          break;
667        }
668        obj = mark_stack_[--mark_stack_pos_];
669      }
670      DCHECK(obj != nullptr);
671      visitor(obj);
672    }
673  }
674};
675
676class CardScanTask : public MarkStackTask<false> {
677 public:
678  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
679               accounting::ContinuousSpaceBitmap* bitmap,
680               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
681               Object** mark_stack_obj)
682      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
683        bitmap_(bitmap),
684        begin_(begin),
685        end_(end),
686        minimum_age_(minimum_age) {
687  }
688
689 protected:
690  accounting::ContinuousSpaceBitmap* const bitmap_;
691  byte* const begin_;
692  byte* const end_;
693  const byte minimum_age_;
694
695  virtual void Finalize() {
696    delete this;
697  }
698
699  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
700    ScanObjectParallelVisitor visitor(this);
701    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
702    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
703    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
704        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
705    // Finish by emptying our local mark stack.
706    MarkStackTask::Run(self);
707  }
708};
709
710size_t MarkSweep::GetThreadCount(bool paused) const {
711  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
712    return 1;
713  }
714  if (paused) {
715    return heap_->GetParallelGCThreadCount() + 1;
716  } else {
717    return heap_->GetConcGCThreadCount() + 1;
718  }
719}
720
721void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
722  accounting::CardTable* card_table = GetHeap()->GetCardTable();
723  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
724  size_t thread_count = GetThreadCount(paused);
725  // The parallel version with only one thread is faster for card scanning, TODO: fix.
726  if (kParallelCardScan && thread_count > 1) {
727    Thread* self = Thread::Current();
728    // Can't have a different split for each space since multiple spaces can have their cards being
729    // scanned at the same time.
730    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
731    // Try to take some of the mark stack since we can pass this off to the worker tasks.
732    Object** mark_stack_begin = mark_stack_->Begin();
733    Object** mark_stack_end = mark_stack_->End();
734    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
735    // Estimated number of work tasks we will create.
736    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
737    DCHECK_NE(mark_stack_tasks, 0U);
738    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
739                                             mark_stack_size / mark_stack_tasks + 1);
740    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
741      if (space->GetMarkBitmap() == nullptr) {
742        continue;
743      }
744      byte* card_begin = space->Begin();
745      byte* card_end = space->End();
746      // Align up the end address. For example, the image space's end
747      // may not be card-size-aligned.
748      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
749      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
750      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
751      // Calculate how many bytes of heap we will scan,
752      const size_t address_range = card_end - card_begin;
753      // Calculate how much address range each task gets.
754      const size_t card_delta = RoundUp(address_range / thread_count + 1,
755                                        accounting::CardTable::kCardSize);
756      // Create the worker tasks for this space.
757      while (card_begin != card_end) {
758        // Add a range of cards.
759        size_t addr_remaining = card_end - card_begin;
760        size_t card_increment = std::min(card_delta, addr_remaining);
761        // Take from the back of the mark stack.
762        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
763        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
764        mark_stack_end -= mark_stack_increment;
765        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
766        DCHECK_EQ(mark_stack_end, mark_stack_->End());
767        // Add the new task to the thread pool.
768        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
769                                      card_begin + card_increment, minimum_age,
770                                      mark_stack_increment, mark_stack_end);
771        thread_pool->AddTask(self, task);
772        card_begin += card_increment;
773      }
774    }
775
776    // Note: the card scan below may dirty new cards (and scan them)
777    // as a side effect when a Reference object is encountered and
778    // queued during the marking. See b/11465268.
779    thread_pool->SetMaxActiveWorkers(thread_count - 1);
780    thread_pool->StartWorkers(self);
781    thread_pool->Wait(self, true, true);
782    thread_pool->StopWorkers(self);
783    timings_.EndSplit();
784  } else {
785    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
786      if (space->GetMarkBitmap() != nullptr) {
787        // Image spaces are handled properly since live == marked for them.
788        switch (space->GetGcRetentionPolicy()) {
789          case space::kGcRetentionPolicyNeverCollect:
790            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
791                "ScanGrayImageSpaceObjects");
792            break;
793          case space::kGcRetentionPolicyFullCollect:
794            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
795                "ScanGrayZygoteSpaceObjects");
796            break;
797          case space::kGcRetentionPolicyAlwaysCollect:
798            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
799                "ScanGrayAllocSpaceObjects");
800            break;
801          }
802        ScanObjectVisitor visitor(this);
803        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
804        timings_.EndSplit();
805      }
806    }
807  }
808}
809
810class RecursiveMarkTask : public MarkStackTask<false> {
811 public:
812  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
813                    accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
814      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
815        bitmap_(bitmap),
816        begin_(begin),
817        end_(end) {
818  }
819
820 protected:
821  accounting::ContinuousSpaceBitmap* const bitmap_;
822  const uintptr_t begin_;
823  const uintptr_t end_;
824
825  virtual void Finalize() {
826    delete this;
827  }
828
829  // Scans all of the objects
830  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
831    ScanObjectParallelVisitor visitor(this);
832    bitmap_->VisitMarkedRange(begin_, end_, visitor);
833    // Finish by emptying our local mark stack.
834    MarkStackTask::Run(self);
835  }
836};
837
838// Populates the mark stack based on the set of marked objects and
839// recursively marks until the mark stack is emptied.
840void MarkSweep::RecursiveMark() {
841  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
842  // RecursiveMark will build the lists of known instances of the Reference classes. See
843  // DelayReferenceReferent for details.
844  if (kUseRecursiveMark) {
845    const bool partial = GetGcType() == kGcTypePartial;
846    ScanObjectVisitor scan_visitor(this);
847    auto* self = Thread::Current();
848    ThreadPool* thread_pool = heap_->GetThreadPool();
849    size_t thread_count = GetThreadCount(false);
850    const bool parallel = kParallelRecursiveMark && thread_count > 1;
851    mark_stack_->Reset();
852    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
853      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
854          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
855        current_space_bitmap_ = space->GetMarkBitmap();
856        if (current_space_bitmap_ == nullptr) {
857          continue;
858        }
859        if (parallel) {
860          // We will use the mark stack the future.
861          // CHECK(mark_stack_->IsEmpty());
862          // This function does not handle heap end increasing, so we must use the space end.
863          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
864          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
865          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
866
867          // Create a few worker tasks.
868          const size_t n = thread_count * 2;
869          while (begin != end) {
870            uintptr_t start = begin;
871            uintptr_t delta = (end - begin) / n;
872            delta = RoundUp(delta, KB);
873            if (delta < 16 * KB) delta = end - begin;
874            begin += delta;
875            auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
876                                               begin);
877            thread_pool->AddTask(self, task);
878          }
879          thread_pool->SetMaxActiveWorkers(thread_count - 1);
880          thread_pool->StartWorkers(self);
881          thread_pool->Wait(self, true, true);
882          thread_pool->StopWorkers(self);
883        } else {
884          // This function does not handle heap end increasing, so we must use the space end.
885          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
886          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
887          current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
888        }
889      }
890    }
891  }
892  ProcessMarkStack(false);
893}
894
895mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
896  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
897    return object;
898  }
899  return nullptr;
900}
901
902void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
903  ScanGrayObjects(paused, minimum_age);
904  ProcessMarkStack(paused);
905}
906
907void MarkSweep::ReMarkRoots() {
908  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
909  timings_.StartSplit("(Paused)ReMarkRoots");
910  Runtime::Current()->VisitRoots(
911      MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
912                                                          kVisitRootFlagStopLoggingNewRoots |
913                                                          kVisitRootFlagClearRootLog));
914  timings_.EndSplit();
915  if (kVerifyRootsMarked) {
916    timings_.StartSplit("(Paused)VerifyRoots");
917    Runtime::Current()->VisitRoots(VerifyRootMarked, this);
918    timings_.EndSplit();
919  }
920}
921
922void MarkSweep::SweepSystemWeaks(Thread* self) {
923  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
924  timings_.StartSplit("SweepSystemWeaks");
925  Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
926  timings_.EndSplit();
927}
928
929mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
930  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
931  // We don't actually want to sweep the object, so lets return "marked"
932  return obj;
933}
934
935void MarkSweep::VerifyIsLive(const Object* obj) {
936  if (!heap_->GetLiveBitmap()->Test(obj)) {
937    if (std::find(heap_->allocation_stack_->Begin(), heap_->allocation_stack_->End(), obj) ==
938        heap_->allocation_stack_->End()) {
939      // Object not found!
940      heap_->DumpSpaces();
941      LOG(FATAL) << "Found dead object " << obj;
942    }
943  }
944}
945
946void MarkSweep::VerifySystemWeaks() {
947  // Verify system weaks, uses a special object visitor which returns the input object.
948  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
949}
950
951class CheckpointMarkThreadRoots : public Closure {
952 public:
953  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
954                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
955      : mark_sweep_(mark_sweep),
956        revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
957            revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
958  }
959
960  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
961    ATRACE_BEGIN("Marking thread roots");
962    // Note: self is not necessarily equal to thread since thread may be suspended.
963    Thread* self = Thread::Current();
964    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
965        << thread->GetState() << " thread " << thread << " self " << self;
966    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
967    ATRACE_END();
968    if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
969      ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
970      mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
971      ATRACE_END();
972    }
973    mark_sweep_->GetBarrier().Pass(self);
974  }
975
976 private:
977  MarkSweep* const mark_sweep_;
978  const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
979};
980
981void MarkSweep::MarkRootsCheckpoint(Thread* self,
982                                    bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
983  CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
984  timings_.StartSplit("MarkRootsCheckpoint");
985  ThreadList* thread_list = Runtime::Current()->GetThreadList();
986  // Request the check point is run on all threads returning a count of the threads that must
987  // run through the barrier including self.
988  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
989  // Release locks then wait for all mutator threads to pass the barrier.
990  // TODO: optimize to not release locks when there are no threads to wait for.
991  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
992  Locks::mutator_lock_->SharedUnlock(self);
993  {
994    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
995    gc_barrier_->Increment(self, barrier_count);
996  }
997  Locks::mutator_lock_->SharedLock(self);
998  Locks::heap_bitmap_lock_->ExclusiveLock(self);
999  timings_.EndSplit();
1000}
1001
1002void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1003  timings_.StartSplit("SweepArray");
1004  Thread* self = Thread::Current();
1005  mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
1006  size_t chunk_free_pos = 0;
1007  size_t freed_bytes = 0;
1008  size_t freed_large_object_bytes = 0;
1009  size_t freed_objects = 0;
1010  size_t freed_large_objects = 0;
1011  // How many objects are left in the array, modified after each space is swept.
1012  Object** objects = allocations->Begin();
1013  size_t count = allocations->Size();
1014  // Change the order to ensure that the non-moving space last swept as an optimization.
1015  std::vector<space::ContinuousSpace*> sweep_spaces;
1016  space::ContinuousSpace* non_moving_space = nullptr;
1017  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1018    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1019        space->GetLiveBitmap() != nullptr) {
1020      if (space == heap_->GetNonMovingSpace()) {
1021        non_moving_space = space;
1022      } else {
1023        sweep_spaces.push_back(space);
1024      }
1025    }
1026  }
1027  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1028  // the other alloc spaces as an optimization.
1029  if (non_moving_space != nullptr) {
1030    sweep_spaces.push_back(non_moving_space);
1031  }
1032  // Start by sweeping the continuous spaces.
1033  for (space::ContinuousSpace* space : sweep_spaces) {
1034    space::AllocSpace* alloc_space = space->AsAllocSpace();
1035    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1036    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1037    if (swap_bitmaps) {
1038      std::swap(live_bitmap, mark_bitmap);
1039    }
1040    Object** out = objects;
1041    for (size_t i = 0; i < count; ++i) {
1042      Object* obj = objects[i];
1043      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1044        continue;
1045      }
1046      if (space->HasAddress(obj)) {
1047        // This object is in the space, remove it from the array and add it to the sweep buffer
1048        // if needed.
1049        if (!mark_bitmap->Test(obj)) {
1050          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1051            timings_.StartSplit("FreeList");
1052            freed_objects += chunk_free_pos;
1053            freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1054            timings_.EndSplit();
1055            chunk_free_pos = 0;
1056          }
1057          chunk_free_buffer[chunk_free_pos++] = obj;
1058        }
1059      } else {
1060        *(out++) = obj;
1061      }
1062    }
1063    if (chunk_free_pos > 0) {
1064      timings_.StartSplit("FreeList");
1065      freed_objects += chunk_free_pos;
1066      freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1067      timings_.EndSplit();
1068      chunk_free_pos = 0;
1069    }
1070    // All of the references which space contained are no longer in the allocation stack, update
1071    // the count.
1072    count = out - objects;
1073  }
1074  // Handle the large object space.
1075  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1076  accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1077  accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1078  if (swap_bitmaps) {
1079    std::swap(large_live_objects, large_mark_objects);
1080  }
1081  for (size_t i = 0; i < count; ++i) {
1082    Object* obj = objects[i];
1083    // Handle large objects.
1084    if (kUseThreadLocalAllocationStack && obj == nullptr) {
1085      continue;
1086    }
1087    if (!large_mark_objects->Test(obj)) {
1088      ++freed_large_objects;
1089      freed_large_object_bytes += large_object_space->Free(self, obj);
1090    }
1091  }
1092  timings_.EndSplit();
1093
1094  timings_.StartSplit("RecordFree");
1095  VLOG(heap) << "Freed " << freed_objects << "/" << count
1096             << " objects with size " << PrettySize(freed_bytes);
1097  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1098  freed_objects_.FetchAndAdd(freed_objects);
1099  freed_large_objects_.FetchAndAdd(freed_large_objects);
1100  freed_bytes_.FetchAndAdd(freed_bytes);
1101  freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes);
1102  timings_.EndSplit();
1103
1104  timings_.StartSplit("ResetStack");
1105  allocations->Reset();
1106  timings_.EndSplit();
1107}
1108
1109void MarkSweep::Sweep(bool swap_bitmaps) {
1110  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1111  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1112  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1113  // knowing that new allocations won't be marked as live.
1114  timings_.StartSplit("MarkStackAsLive");
1115  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1116  heap_->MarkAllocStackAsLive(live_stack);
1117  live_stack->Reset();
1118  timings_.EndSplit();
1119
1120  DCHECK(mark_stack_->IsEmpty());
1121  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1122    if (space->IsContinuousMemMapAllocSpace()) {
1123      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1124      TimingLogger::ScopedSplit split(
1125          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
1126      size_t freed_objects = 0;
1127      size_t freed_bytes = 0;
1128      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1129      heap_->RecordFree(freed_objects, freed_bytes);
1130      freed_objects_.FetchAndAdd(freed_objects);
1131      freed_bytes_.FetchAndAdd(freed_bytes);
1132    }
1133  }
1134  SweepLargeObjects(swap_bitmaps);
1135}
1136
1137void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1138  TimingLogger::ScopedSplit split("SweepLargeObjects", &timings_);
1139  size_t freed_objects = 0;
1140  size_t freed_bytes = 0;
1141  heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1142  freed_large_objects_.FetchAndAdd(freed_objects);
1143  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
1144  heap_->RecordFree(freed_objects, freed_bytes);
1145}
1146
1147// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1148// marked, put it on the appropriate list in the heap for later processing.
1149void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1150  DCHECK(klass != nullptr);
1151  if (kCountJavaLangRefs) {
1152    ++reference_count_;
1153  }
1154  heap_->DelayReferenceReferent(klass, ref, IsMarkedCallback, this);
1155}
1156
1157class MarkObjectVisitor {
1158 public:
1159  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1160  }
1161
1162  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
1163      ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1164      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1165    if (kCheckLocks) {
1166      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1167      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1168    }
1169    mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset, false));
1170  }
1171
1172 private:
1173  MarkSweep* const mark_sweep_;
1174};
1175
1176// Scans an object reference.  Determines the type of the reference
1177// and dispatches to a specialized scanning routine.
1178void MarkSweep::ScanObject(Object* obj) {
1179  MarkObjectVisitor mark_visitor(this);
1180  DelayReferenceReferentVisitor ref_visitor(this);
1181  ScanObjectVisit(obj, mark_visitor, ref_visitor);
1182}
1183
1184void MarkSweep::ProcessMarkStackPausedCallback(void* arg) {
1185  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(true);
1186}
1187
1188void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1189  Thread* self = Thread::Current();
1190  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1191  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1192                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1193  CHECK_GT(chunk_size, 0U);
1194  // Split the current mark stack up into work tasks.
1195  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1196    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1197    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1198    it += delta;
1199  }
1200  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1201  thread_pool->StartWorkers(self);
1202  thread_pool->Wait(self, true, true);
1203  thread_pool->StopWorkers(self);
1204  mark_stack_->Reset();
1205  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1206}
1207
1208// Scan anything that's on the mark stack.
1209void MarkSweep::ProcessMarkStack(bool paused) {
1210  timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack");
1211  size_t thread_count = GetThreadCount(paused);
1212  if (kParallelProcessMarkStack && thread_count > 1 &&
1213      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1214    ProcessMarkStackParallel(thread_count);
1215  } else {
1216    // TODO: Tune this.
1217    static const size_t kFifoSize = 4;
1218    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1219    for (;;) {
1220      Object* obj = NULL;
1221      if (kUseMarkStackPrefetch) {
1222        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1223          Object* obj = mark_stack_->PopBack();
1224          DCHECK(obj != NULL);
1225          __builtin_prefetch(obj);
1226          prefetch_fifo.push_back(obj);
1227        }
1228        if (prefetch_fifo.empty()) {
1229          break;
1230        }
1231        obj = prefetch_fifo.front();
1232        prefetch_fifo.pop_front();
1233      } else {
1234        if (mark_stack_->IsEmpty()) {
1235          break;
1236        }
1237        obj = mark_stack_->PopBack();
1238      }
1239      DCHECK(obj != nullptr);
1240      ScanObject(obj);
1241    }
1242  }
1243  timings_.EndSplit();
1244}
1245
1246inline bool MarkSweep::IsMarked(const Object* object) const
1247    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1248  if (immune_region_.ContainsObject(object)) {
1249    return true;
1250  }
1251  if (current_space_bitmap_->HasAddress(object)) {
1252    return current_space_bitmap_->Test(object);
1253  }
1254  return mark_bitmap_->Test(object);
1255}
1256
1257void MarkSweep::FinishPhase() {
1258  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1259  // Can't enqueue references if we hold the mutator lock.
1260  timings_.NewSplit("PostGcVerification");
1261  heap_->PostGcVerification(this);
1262  if (kCountScannedTypes) {
1263    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1264             << " other=" << other_count_;
1265  }
1266  if (kCountTasks) {
1267    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1268  }
1269  if (kMeasureOverhead) {
1270    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1271  }
1272  if (kProfileLargeObjects) {
1273    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1274  }
1275  if (kCountJavaLangRefs) {
1276    VLOG(gc) << "References scanned " << reference_count_;
1277  }
1278  if (kCountMarkedObjects) {
1279    VLOG(gc) << "Marked: null=" << mark_null_count_ << " immune=" <<  mark_immune_count_
1280        << " fastpath=" << mark_fastpath_count_ << " slowpath=" << mark_slowpath_count_;
1281  }
1282  CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1283  mark_stack_->Reset();
1284  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1285  heap_->ClearMarkedObjects();
1286}
1287
1288void MarkSweep::RevokeAllThreadLocalBuffers() {
1289  if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1290    // If concurrent, rosalloc thread-local buffers are revoked at the
1291    // thread checkpoint. Bump pointer space thread-local buffers must
1292    // not be in use.
1293    GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1294  } else {
1295    timings_.StartSplit("(Paused)RevokeAllThreadLocalBuffers");
1296    GetHeap()->RevokeAllThreadLocalBuffers();
1297    timings_.EndSplit();
1298  }
1299}
1300
1301}  // namespace collector
1302}  // namespace gc
1303}  // namespace art
1304