mark_sweep.cc revision 720ef7680573c1afd12f99f02eee3045daee5168
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/space_bitmap-inl.h"
32#include "gc/heap.h"
33#include "gc/space/image_space.h"
34#include "gc/space/large_object_space.h"
35#include "gc/space/space-inl.h"
36#include "indirect_reference_table.h"
37#include "intern_table.h"
38#include "jni_internal.h"
39#include "monitor.h"
40#include "mark_sweep-inl.h"
41#include "mirror/art_field.h"
42#include "mirror/art_field-inl.h"
43#include "mirror/class-inl.h"
44#include "mirror/class_loader.h"
45#include "mirror/dex_cache.h"
46#include "mirror/object-inl.h"
47#include "mirror/object_array.h"
48#include "mirror/object_array-inl.h"
49#include "runtime.h"
50#include "thread-inl.h"
51#include "thread_list.h"
52#include "verifier/method_verifier.h"
53
54using ::art::mirror::ArtField;
55using ::art::mirror::Class;
56using ::art::mirror::Object;
57using ::art::mirror::ObjectArray;
58
59namespace art {
60namespace gc {
61namespace collector {
62
63// Performance options.
64constexpr bool kUseRecursiveMark = false;
65constexpr bool kUseMarkStackPrefetch = true;
66constexpr size_t kSweepArrayChunkFreeSize = 1024;
67
68// Parallelism options.
69constexpr bool kParallelCardScan = true;
70constexpr bool kParallelRecursiveMark = true;
71// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
72// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
73// having this can add overhead in ProcessReferences since we may end up doing many calls of
74// ProcessMarkStack with very small mark stacks.
75constexpr size_t kMinimumParallelMarkStackSize = 128;
76constexpr bool kParallelProcessMarkStack = true;
77
78// Profiling and information flags.
79constexpr bool kCountClassesMarked = false;
80constexpr bool kProfileLargeObjects = false;
81constexpr bool kMeasureOverhead = false;
82constexpr bool kCountTasks = false;
83constexpr bool kCountJavaLangRefs = false;
84
85// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
86constexpr bool kCheckLocks = kDebugLocking;
87
88void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
89  // Bind live to mark bitmap if necessary.
90  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
91    BindLiveToMarkBitmap(space);
92  }
93
94  // Add the space to the immune region.
95  if (immune_begin_ == NULL) {
96    DCHECK(immune_end_ == NULL);
97    SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
98                   reinterpret_cast<Object*>(space->End()));
99  } else {
100    const space::ContinuousSpace* prev_space = nullptr;
101    // Find out if the previous space is immune.
102    for (space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
103      if (cur_space == space) {
104        break;
105      }
106      prev_space = cur_space;
107    }
108    // If previous space was immune, then extend the immune region. Relies on continuous spaces
109    // being sorted by Heap::AddContinuousSpace.
110    if (prev_space != NULL &&
111        immune_begin_ <= reinterpret_cast<Object*>(prev_space->Begin()) &&
112        immune_end_ >= reinterpret_cast<Object*>(prev_space->End())) {
113      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
114      immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
115    }
116  }
117}
118
119void MarkSweep::BindBitmaps() {
120  timings_.StartSplit("BindBitmaps");
121  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
122  // Mark all of the spaces we never collect as immune.
123  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
124    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
125      ImmuneSpace(space);
126    }
127  }
128  timings_.EndSplit();
129}
130
131MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
132    : GarbageCollector(heap,
133                       name_prefix + (name_prefix.empty() ? "" : " ") +
134                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
135      current_mark_bitmap_(NULL),
136      java_lang_Class_(NULL),
137      mark_stack_(NULL),
138      immune_begin_(NULL),
139      immune_end_(NULL),
140      soft_reference_list_(NULL),
141      weak_reference_list_(NULL),
142      finalizer_reference_list_(NULL),
143      phantom_reference_list_(NULL),
144      cleared_reference_list_(NULL),
145      gc_barrier_(new Barrier(0)),
146      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
147      mark_stack_expand_lock_("mark sweep mark stack expand lock"),
148      is_concurrent_(is_concurrent),
149      clear_soft_references_(false) {
150}
151
152void MarkSweep::InitializePhase() {
153  timings_.Reset();
154  base::TimingLogger::ScopedSplit split("InitializePhase", &timings_);
155  mark_stack_ = GetHeap()->mark_stack_.get();
156  DCHECK(mark_stack_ != NULL);
157  SetImmuneRange(NULL, NULL);
158  soft_reference_list_ = NULL;
159  weak_reference_list_ = NULL;
160  finalizer_reference_list_ = NULL;
161  phantom_reference_list_ = NULL;
162  cleared_reference_list_ = NULL;
163  freed_bytes_ = 0;
164  freed_objects_ = 0;
165  class_count_ = 0;
166  array_count_ = 0;
167  other_count_ = 0;
168  large_object_test_ = 0;
169  large_object_mark_ = 0;
170  classes_marked_ = 0;
171  overhead_time_ = 0;
172  work_chunks_created_ = 0;
173  work_chunks_deleted_ = 0;
174  reference_count_ = 0;
175  java_lang_Class_ = Class::GetJavaLangClass();
176  CHECK(java_lang_Class_ != NULL);
177
178  FindDefaultMarkBitmap();
179
180  // Do any pre GC verification.
181  timings_.NewSplit("PreGcVerification");
182  heap_->PreGcVerification(this);
183}
184
185void MarkSweep::ProcessReferences(Thread* self) {
186  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
187  ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_,
188                    &finalizer_reference_list_, &phantom_reference_list_);
189}
190
191bool MarkSweep::HandleDirtyObjectsPhase() {
192  base::TimingLogger::ScopedSplit split("HandleDirtyObjectsPhase", &timings_);
193  Thread* self = Thread::Current();
194  Locks::mutator_lock_->AssertExclusiveHeld(self);
195
196  {
197    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
198
199    // Re-mark root set.
200    ReMarkRoots();
201
202    // Scan dirty objects, this is only required if we are not doing concurrent GC.
203    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
204  }
205
206  ProcessReferences(self);
207
208  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
209  if (GetHeap()->verify_missing_card_marks_) {
210    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
211    // This second sweep makes sure that we don't have any objects in the live stack which point to
212    // freed objects. These cause problems since their references may be previously freed objects.
213    SweepArray(GetHeap()->allocation_stack_.get(), false);
214  }
215  return true;
216}
217
218bool MarkSweep::IsConcurrent() const {
219  return is_concurrent_;
220}
221
222void MarkSweep::MarkingPhase() {
223  base::TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
224  Heap* heap = GetHeap();
225  Thread* self = Thread::Current();
226
227  BindBitmaps();
228  FindDefaultMarkBitmap();
229
230  // Process dirty cards and add dirty cards to mod union tables.
231  heap->ProcessCards(timings_);
232
233  // Need to do this before the checkpoint since we don't want any threads to add references to
234  // the live stack during the recursive mark.
235  timings_.NewSplit("SwapStacks");
236  heap->SwapStacks();
237
238  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
239  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
240    // If we exclusively hold the mutator lock, all threads must be suspended.
241    MarkRoots();
242  } else {
243    MarkThreadRoots(self);
244    MarkNonThreadRoots();
245  }
246  MarkConcurrentRoots();
247
248  heap->UpdateAndMarkModUnion(this, timings_, GetGcType());
249  MarkReachableObjects();
250}
251
252void MarkSweep::MarkThreadRoots(Thread* self) {
253  MarkRootsCheckpoint(self);
254}
255
256void MarkSweep::MarkReachableObjects() {
257  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
258  // knowing that new allocations won't be marked as live.
259  timings_.StartSplit("MarkStackAsLive");
260  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
261  heap_->MarkAllocStack(heap_->alloc_space_->GetLiveBitmap(),
262                        heap_->large_object_space_->GetLiveObjects(), live_stack);
263  live_stack->Reset();
264  timings_.EndSplit();
265  // Recursively mark all the non-image bits set in the mark bitmap.
266  RecursiveMark();
267}
268
269void MarkSweep::ReclaimPhase() {
270  base::TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
271  Thread* self = Thread::Current();
272
273  if (!IsConcurrent()) {
274    base::TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
275    ProcessReferences(self);
276  } else {
277    base::TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
278    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
279    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
280    // The allocation stack contains things allocated since the start of the GC. These may have been
281    // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
282    // Remove these objects from the mark bitmaps so that they will be eligible for sticky
283    // collection.
284    // There is a race here which is safely handled. Another thread such as the hprof could
285    // have flushed the alloc stack after we resumed the threads. This is safe however, since
286    // reseting the allocation stack zeros it out with madvise. This means that we will either
287    // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
288    // first place.
289    mirror::Object** end = allocation_stack->End();
290    for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
291      const Object* obj = *it;
292      if (obj != NULL) {
293        UnMarkObjectNonNull(obj);
294      }
295    }
296  }
297
298  // Before freeing anything, lets verify the heap.
299  if (kIsDebugBuild) {
300    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
301    VerifyImageRoots();
302  }
303  timings_.StartSplit("PreSweepingGcVerification");
304  heap_->PreSweepingGcVerification(this);
305  timings_.EndSplit();
306
307  {
308    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
309
310    // Reclaim unmarked objects.
311    Sweep(false);
312
313    // Swap the live and mark bitmaps for each space which we modified space. This is an
314    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
315    // bitmaps.
316    timings_.StartSplit("SwapBitmaps");
317    SwapBitmaps();
318    timings_.EndSplit();
319
320    // Unbind the live and mark bitmaps.
321    UnBindBitmaps();
322  }
323}
324
325void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
326  immune_begin_ = begin;
327  immune_end_ = end;
328}
329
330void MarkSweep::FindDefaultMarkBitmap() {
331  base::TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
332  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
333    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
334      current_mark_bitmap_ = space->GetMarkBitmap();
335      CHECK(current_mark_bitmap_ != NULL);
336      return;
337    }
338  }
339  GetHeap()->DumpSpaces();
340  LOG(FATAL) << "Could not find a default mark bitmap";
341}
342
343void MarkSweep::ExpandMarkStack() {
344  // Rare case, no need to have Thread::Current be a parameter.
345  MutexLock mu(Thread::Current(), mark_stack_expand_lock_);
346  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
347    // Someone else acquired the lock and expanded the mark stack before us.
348    return;
349  }
350  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
351  mark_stack_->Resize(mark_stack_->Capacity() * 2);
352  for (const auto& obj : temp) {
353    mark_stack_->PushBack(obj);
354  }
355}
356
357inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
358  DCHECK(obj != NULL);
359  if (MarkObjectParallel(obj)) {
360    while (UNLIKELY(!mark_stack_->AtomicPushBack(const_cast<Object*>(obj)))) {
361      // Only reason a push can fail is that the mark stack is full.
362      ExpandMarkStack();
363    }
364  }
365}
366
367inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
368  DCHECK(!IsImmune(obj));
369  // Try to take advantage of locality of references within a space, failing this find the space
370  // the hard way.
371  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
372  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
373    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
374    if (LIKELY(new_bitmap != NULL)) {
375      object_bitmap = new_bitmap;
376    } else {
377      MarkLargeObject(obj, false);
378      return;
379    }
380  }
381
382  DCHECK(object_bitmap->HasAddress(obj));
383  object_bitmap->Clear(obj);
384}
385
386inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
387  DCHECK(obj != NULL);
388
389  if (IsImmune(obj)) {
390    DCHECK(IsMarked(obj));
391    return;
392  }
393
394  // Try to take advantage of locality of references within a space, failing this find the space
395  // the hard way.
396  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
397  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
398    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
399    if (LIKELY(new_bitmap != NULL)) {
400      object_bitmap = new_bitmap;
401    } else {
402      MarkLargeObject(obj, true);
403      return;
404    }
405  }
406
407  // This object was not previously marked.
408  if (!object_bitmap->Test(obj)) {
409    object_bitmap->Set(obj);
410    // Do we need to expand the mark stack?
411    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
412      ExpandMarkStack();
413    }
414    // The object must be pushed on to the mark stack.
415    mark_stack_->PushBack(const_cast<Object*>(obj));
416  }
417}
418
419// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
420bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
421  // TODO: support >1 discontinuous space.
422  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
423  accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects();
424  if (kProfileLargeObjects) {
425    ++large_object_test_;
426  }
427  if (UNLIKELY(!large_objects->Test(obj))) {
428    if (!large_object_space->Contains(obj)) {
429      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
430      LOG(ERROR) << "Attempting see if it's a bad root";
431      VerifyRoots();
432      LOG(FATAL) << "Can't mark bad root";
433    }
434    if (kProfileLargeObjects) {
435      ++large_object_mark_;
436    }
437    if (set) {
438      large_objects->Set(obj);
439    } else {
440      large_objects->Clear(obj);
441    }
442    return true;
443  }
444  return false;
445}
446
447inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
448  DCHECK(obj != NULL);
449
450  if (IsImmune(obj)) {
451    DCHECK(IsMarked(obj));
452    return false;
453  }
454
455  // Try to take advantage of locality of references within a space, failing this find the space
456  // the hard way.
457  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
458  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
459    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
460    if (new_bitmap != NULL) {
461      object_bitmap = new_bitmap;
462    } else {
463      // TODO: Remove the Thread::Current here?
464      // TODO: Convert this to some kind of atomic marking?
465      MutexLock mu(Thread::Current(), large_object_lock_);
466      return MarkLargeObject(obj, true);
467    }
468  }
469
470  // Return true if the object was not previously marked.
471  return !object_bitmap->AtomicTestAndSet(obj);
472}
473
474// Used to mark objects when recursing.  Recursion is done by moving
475// the finger across the bitmaps in address order and marking child
476// objects.  Any newly-marked objects whose addresses are lower than
477// the finger won't be visited by the bitmap scan, so those objects
478// need to be added to the mark stack.
479inline void MarkSweep::MarkObject(const Object* obj) {
480  if (obj != NULL) {
481    MarkObjectNonNull(obj);
482  }
483}
484
485void MarkSweep::MarkRoot(const Object* obj) {
486  if (obj != NULL) {
487    MarkObjectNonNull(obj);
488  }
489}
490
491void MarkSweep::MarkRootParallelCallback(const Object* root, void* arg) {
492  DCHECK(root != NULL);
493  DCHECK(arg != NULL);
494  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
495  mark_sweep->MarkObjectNonNullParallel(root);
496}
497
498void MarkSweep::MarkObjectCallback(const Object* root, void* arg) {
499  DCHECK(root != NULL);
500  DCHECK(arg != NULL);
501  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
502  mark_sweep->MarkObjectNonNull(root);
503}
504
505void MarkSweep::ReMarkObjectVisitor(const Object* root, void* arg) {
506  DCHECK(root != NULL);
507  DCHECK(arg != NULL);
508  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
509  mark_sweep->MarkObjectNonNull(root);
510}
511
512void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
513                                   const StackVisitor* visitor) {
514  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
515}
516
517void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
518  // See if the root is on any space bitmap.
519  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
520    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
521    if (!large_object_space->Contains(root)) {
522      LOG(ERROR) << "Found invalid root: " << root;
523      if (visitor != NULL) {
524        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
525      }
526    }
527  }
528}
529
530void MarkSweep::VerifyRoots() {
531  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
532}
533
534// Marks all objects in the root set.
535void MarkSweep::MarkRoots() {
536  timings_.StartSplit("MarkRoots");
537  Runtime::Current()->VisitNonConcurrentRoots(MarkObjectCallback, this);
538  timings_.EndSplit();
539}
540
541void MarkSweep::MarkNonThreadRoots() {
542  timings_.StartSplit("MarkNonThreadRoots");
543  Runtime::Current()->VisitNonThreadRoots(MarkObjectCallback, this);
544  timings_.EndSplit();
545}
546
547void MarkSweep::MarkConcurrentRoots() {
548  timings_.StartSplit("MarkConcurrentRoots");
549  // Visit all runtime roots and clear dirty flags.
550  Runtime::Current()->VisitConcurrentRoots(MarkObjectCallback, this, false, true);
551  timings_.EndSplit();
552}
553
554void MarkSweep::CheckObject(const Object* obj) {
555  DCHECK(obj != NULL);
556  VisitObjectReferences(obj, [this](const Object* obj, const Object* ref, MemberOffset offset,
557      bool is_static) NO_THREAD_SAFETY_ANALYSIS {
558    Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
559    CheckReference(obj, ref, offset, is_static);
560  });
561}
562
563void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) {
564  DCHECK(root != NULL);
565  DCHECK(arg != NULL);
566  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
567  DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root));
568  mark_sweep->CheckObject(root);
569}
570
571void MarkSweep::BindLiveToMarkBitmap(space::ContinuousSpace* space) {
572  CHECK(space->IsDlMallocSpace());
573  space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
574  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
575  accounting::SpaceBitmap* mark_bitmap = alloc_space->mark_bitmap_.release();
576  GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
577  alloc_space->temp_bitmap_.reset(mark_bitmap);
578  alloc_space->mark_bitmap_.reset(live_bitmap);
579}
580
581class ScanObjectVisitor {
582 public:
583  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
584      : mark_sweep_(mark_sweep) {}
585
586  // TODO: Fixme when anotatalysis works with visitors.
587  void operator()(const Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
588    if (kCheckLocks) {
589      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
590      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
591    }
592    mark_sweep_->ScanObject(obj);
593  }
594
595 private:
596  MarkSweep* const mark_sweep_;
597};
598
599template <bool kUseFinger = false>
600class MarkStackTask : public Task {
601 public:
602  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
603                const Object** mark_stack)
604      : mark_sweep_(mark_sweep),
605        thread_pool_(thread_pool),
606        mark_stack_pos_(mark_stack_size) {
607    // We may have to copy part of an existing mark stack when another mark stack overflows.
608    if (mark_stack_size != 0) {
609      DCHECK(mark_stack != NULL);
610      // TODO: Check performance?
611      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
612    }
613    if (kCountTasks) {
614      ++mark_sweep_->work_chunks_created_;
615    }
616  }
617
618  static const size_t kMaxSize = 1 * KB;
619
620 protected:
621  class ScanObjectParallelVisitor {
622   public:
623    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
624        : chunk_task_(chunk_task) {}
625
626    void operator()(const Object* obj) const {
627      MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
628      mark_sweep->ScanObjectVisit(obj,
629          [mark_sweep, this](const Object* /* obj */, const Object* ref,
630              const MemberOffset& /* offset */, bool /* is_static */) ALWAYS_INLINE {
631        if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
632          if (kUseFinger) {
633            android_memory_barrier();
634            if (reinterpret_cast<uintptr_t>(ref) >=
635                static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
636              return;
637            }
638          }
639          chunk_task_->MarkStackPush(ref);
640        }
641      });
642    }
643
644   private:
645    MarkStackTask<kUseFinger>* const chunk_task_;
646  };
647
648  virtual ~MarkStackTask() {
649    // Make sure that we have cleared our mark stack.
650    DCHECK_EQ(mark_stack_pos_, 0U);
651    if (kCountTasks) {
652      ++mark_sweep_->work_chunks_deleted_;
653    }
654  }
655
656  MarkSweep* const mark_sweep_;
657  ThreadPool* const thread_pool_;
658  // Thread local mark stack for this task.
659  const Object* mark_stack_[kMaxSize];
660  // Mark stack position.
661  size_t mark_stack_pos_;
662
663  void MarkStackPush(const Object* obj) ALWAYS_INLINE {
664    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
665      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
666      mark_stack_pos_ /= 2;
667      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
668                                     mark_stack_ + mark_stack_pos_);
669      thread_pool_->AddTask(Thread::Current(), task);
670    }
671    DCHECK(obj != nullptr);
672    DCHECK(mark_stack_pos_ < kMaxSize);
673    mark_stack_[mark_stack_pos_++] = obj;
674  }
675
676  virtual void Finalize() {
677    delete this;
678  }
679
680  // Scans all of the objects
681  virtual void Run(Thread* self) {
682    ScanObjectParallelVisitor visitor(this);
683    // TODO: Tune this.
684    static const size_t kFifoSize = 4;
685    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
686    for (;;) {
687      const Object* obj = NULL;
688      if (kUseMarkStackPrefetch) {
689        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
690          const Object* obj = mark_stack_[--mark_stack_pos_];
691          DCHECK(obj != NULL);
692          __builtin_prefetch(obj);
693          prefetch_fifo.push_back(obj);
694        }
695        if (UNLIKELY(prefetch_fifo.empty())) {
696          break;
697        }
698        obj = prefetch_fifo.front();
699        prefetch_fifo.pop_front();
700      } else {
701        if (UNLIKELY(mark_stack_pos_ == 0)) {
702          break;
703        }
704        obj = mark_stack_[--mark_stack_pos_];
705      }
706      DCHECK(obj != NULL);
707      visitor(obj);
708    }
709  }
710};
711
712class CardScanTask : public MarkStackTask<false> {
713 public:
714  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
715               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
716               const Object** mark_stack_obj)
717      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
718        bitmap_(bitmap),
719        begin_(begin),
720        end_(end),
721        minimum_age_(minimum_age) {
722  }
723
724 protected:
725  accounting::SpaceBitmap* const bitmap_;
726  byte* const begin_;
727  byte* const end_;
728  const byte minimum_age_;
729
730  virtual void Finalize() {
731    delete this;
732  }
733
734  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
735    ScanObjectParallelVisitor visitor(this);
736    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
737    card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
738    // Finish by emptying our local mark stack.
739    MarkStackTask::Run(self);
740  }
741};
742
743void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
744  accounting::CardTable* card_table = GetHeap()->GetCardTable();
745  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
746  const bool parallel = kParallelCardScan && thread_pool != nullptr;
747  if (parallel) {
748    Thread* self = Thread::Current();
749    // Can't have a different split for each space since multiple spaces can have their cards being
750    // scanned at the same time.
751    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
752    // Try to take some of the mark stack since we can pass this off to the worker tasks.
753    const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
754    const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
755    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
756    const size_t thread_count = thread_pool->GetThreadCount() + 1;
757    // Estimated number of work tasks we will create.
758    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
759    DCHECK_NE(mark_stack_tasks, 0U);
760    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
761                                             mark_stack_size / mark_stack_tasks + 1);
762    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
763      byte* card_begin = space->Begin();
764      byte* card_end = space->End();
765      // Calculate how many bytes of heap we will scan,
766      const size_t address_range = card_end - card_begin;
767      // Calculate how much address range each task gets.
768      const size_t card_delta = RoundUp(address_range / thread_count + 1,
769                                        accounting::CardTable::kCardSize);
770      // Create the worker tasks for this space.
771      while (card_begin != card_end) {
772        // Add a range of cards.
773        size_t addr_remaining = card_end - card_begin;
774        size_t card_increment = std::min(card_delta, addr_remaining);
775        // Take from the back of the mark stack.
776        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
777        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
778        mark_stack_end -= mark_stack_increment;
779        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
780        DCHECK_EQ(mark_stack_end, mark_stack_->End());
781        // Add the new task to the thread pool.
782        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
783                                      card_begin + card_increment, minimum_age,
784                                      mark_stack_increment, mark_stack_end);
785        thread_pool->AddTask(self, task);
786        card_begin += card_increment;
787      }
788    }
789    thread_pool->StartWorkers(self);
790    thread_pool->Wait(self, paused, true);  // Only do work in the main thread if we are paused.
791    thread_pool->StopWorkers(self);
792    timings_.EndSplit();
793  } else {
794    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
795      // Image spaces are handled properly since live == marked for them.
796      switch (space->GetGcRetentionPolicy()) {
797        case space::kGcRetentionPolicyNeverCollect:
798          timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
799              "ScanGrayImageSpaceObjects");
800          break;
801        case space::kGcRetentionPolicyFullCollect:
802          timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
803              "ScanGrayZygoteSpaceObjects");
804          break;
805        case space::kGcRetentionPolicyAlwaysCollect:
806          timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
807              "ScanGrayAllocSpaceObjects");
808          break;
809        }
810      ScanObjectVisitor visitor(this);
811      card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
812      timings_.EndSplit();
813    }
814  }
815}
816
817void MarkSweep::VerifyImageRoots() {
818  // Verify roots ensures that all the references inside the image space point
819  // objects which are either in the image space or marked objects in the alloc
820  // space
821  timings_.StartSplit("VerifyImageRoots");
822  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
823    if (space->IsImageSpace()) {
824      space::ImageSpace* image_space = space->AsImageSpace();
825      uintptr_t begin = reinterpret_cast<uintptr_t>(image_space->Begin());
826      uintptr_t end = reinterpret_cast<uintptr_t>(image_space->End());
827      accounting::SpaceBitmap* live_bitmap = image_space->GetLiveBitmap();
828      DCHECK(live_bitmap != NULL);
829      live_bitmap->VisitMarkedRange(begin, end, [this](const Object* obj) {
830        if (kCheckLocks) {
831          Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
832        }
833        DCHECK(obj != NULL);
834        CheckObject(obj);
835      });
836    }
837  }
838  timings_.EndSplit();
839}
840
841class RecursiveMarkTask : public MarkStackTask<false> {
842 public:
843  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
844                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
845      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
846        bitmap_(bitmap),
847        begin_(begin),
848        end_(end) {
849  }
850
851 protected:
852  accounting::SpaceBitmap* const bitmap_;
853  const uintptr_t begin_;
854  const uintptr_t end_;
855
856  virtual void Finalize() {
857    delete this;
858  }
859
860  // Scans all of the objects
861  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
862    ScanObjectParallelVisitor visitor(this);
863    bitmap_->VisitMarkedRange(begin_, end_, visitor);
864    // Finish by emptying our local mark stack.
865    MarkStackTask::Run(self);
866  }
867};
868
869// Populates the mark stack based on the set of marked objects and
870// recursively marks until the mark stack is emptied.
871void MarkSweep::RecursiveMark() {
872  base::TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
873  // RecursiveMark will build the lists of known instances of the Reference classes.
874  // See DelayReferenceReferent for details.
875  CHECK(soft_reference_list_ == NULL);
876  CHECK(weak_reference_list_ == NULL);
877  CHECK(finalizer_reference_list_ == NULL);
878  CHECK(phantom_reference_list_ == NULL);
879  CHECK(cleared_reference_list_ == NULL);
880
881  if (kUseRecursiveMark) {
882    const bool partial = GetGcType() == kGcTypePartial;
883    ScanObjectVisitor scan_visitor(this);
884    auto* self = Thread::Current();
885    ThreadPool* thread_pool = heap_->GetThreadPool();
886    const bool parallel = kParallelRecursiveMark && thread_pool != NULL;
887    mark_stack_->Reset();
888    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
889      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
890          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
891        current_mark_bitmap_ = space->GetMarkBitmap();
892        if (current_mark_bitmap_ == NULL) {
893          GetHeap()->DumpSpaces();
894          LOG(FATAL) << "invalid bitmap";
895        }
896        if (parallel) {
897          // We will use the mark stack the future.
898          // CHECK(mark_stack_->IsEmpty());
899          // This function does not handle heap end increasing, so we must use the space end.
900          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
901          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
902          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
903
904          // Create a few worker tasks.
905          size_t n = (thread_pool->GetThreadCount() + 1) * 2;
906          while (begin != end) {
907            uintptr_t start = begin;
908            uintptr_t delta = (end - begin) / n;
909            delta = RoundUp(delta, KB);
910            if (delta < 16 * KB) delta = end - begin;
911            begin += delta;
912            auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
913                                               begin);
914            thread_pool->AddTask(self, task);
915          }
916          thread_pool->StartWorkers(self);
917          thread_pool->Wait(self, false, true);
918          thread_pool->StopWorkers(self);
919        } else {
920          // This function does not handle heap end increasing, so we must use the space end.
921          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
922          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
923          current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
924        }
925      }
926    }
927  }
928  ProcessMarkStack(false);
929}
930
931bool MarkSweep::IsMarkedCallback(const Object* object, void* arg) {
932  return
933      reinterpret_cast<MarkSweep*>(arg)->IsMarked(object) ||
934      !reinterpret_cast<MarkSweep*>(arg)->GetHeap()->GetLiveBitmap()->Test(object);
935}
936
937void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
938  ScanGrayObjects(paused, minimum_age);
939  ProcessMarkStack(paused);
940}
941
942void MarkSweep::ReMarkRoots() {
943  timings_.StartSplit("ReMarkRoots");
944  Runtime::Current()->VisitRoots(ReMarkObjectVisitor, this, true, true);
945  timings_.EndSplit();
946}
947
948void MarkSweep::SweepJniWeakGlobals(IsMarkedTester is_marked, void* arg) {
949  JavaVMExt* vm = Runtime::Current()->GetJavaVM();
950  MutexLock mu(Thread::Current(), vm->weak_globals_lock);
951  for (const Object** entry : vm->weak_globals) {
952    if (!is_marked(*entry, arg)) {
953      *entry = kClearedJniWeakGlobal;
954    }
955  }
956}
957
958struct ArrayMarkedCheck {
959  accounting::ObjectStack* live_stack;
960  MarkSweep* mark_sweep;
961};
962
963// Either marked or not live.
964bool MarkSweep::IsMarkedArrayCallback(const Object* object, void* arg) {
965  ArrayMarkedCheck* array_check = reinterpret_cast<ArrayMarkedCheck*>(arg);
966  if (array_check->mark_sweep->IsMarked(object)) {
967    return true;
968  }
969  accounting::ObjectStack* live_stack = array_check->live_stack;
970  return std::find(live_stack->Begin(), live_stack->End(), object) == live_stack->End();
971}
972
973void MarkSweep::SweepSystemWeaksArray(accounting::ObjectStack* allocations) {
974  Runtime* runtime = Runtime::Current();
975  // The callbacks check
976  // !is_marked where is_marked is the callback but we want
977  // !IsMarked && IsLive
978  // So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive).
979  // Or for swapped (IsLive || !IsMarked).
980
981  timings_.StartSplit("SweepSystemWeaksArray");
982  ArrayMarkedCheck visitor;
983  visitor.live_stack = allocations;
984  visitor.mark_sweep = this;
985  runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedArrayCallback, &visitor);
986  runtime->GetMonitorList()->SweepMonitorList(IsMarkedArrayCallback, &visitor);
987  SweepJniWeakGlobals(IsMarkedArrayCallback, &visitor);
988  timings_.EndSplit();
989}
990
991void MarkSweep::SweepSystemWeaks() {
992  Runtime* runtime = Runtime::Current();
993  // The callbacks check
994  // !is_marked where is_marked is the callback but we want
995  // !IsMarked && IsLive
996  // So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive).
997  // Or for swapped (IsLive || !IsMarked).
998  timings_.StartSplit("SweepSystemWeaks");
999  runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedCallback, this);
1000  runtime->GetMonitorList()->SweepMonitorList(IsMarkedCallback, this);
1001  SweepJniWeakGlobals(IsMarkedCallback, this);
1002  timings_.EndSplit();
1003}
1004
1005bool MarkSweep::VerifyIsLiveCallback(const Object* obj, void* arg) {
1006  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
1007  // We don't actually want to sweep the object, so lets return "marked"
1008  return true;
1009}
1010
1011void MarkSweep::VerifyIsLive(const Object* obj) {
1012  Heap* heap = GetHeap();
1013  if (!heap->GetLiveBitmap()->Test(obj)) {
1014    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1015    if (!large_object_space->GetLiveObjects()->Test(obj)) {
1016      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
1017          heap->allocation_stack_->End()) {
1018        // Object not found!
1019        heap->DumpSpaces();
1020        LOG(FATAL) << "Found dead object " << obj;
1021      }
1022    }
1023  }
1024}
1025
1026void MarkSweep::VerifySystemWeaks() {
1027  Runtime* runtime = Runtime::Current();
1028  // Verify system weaks, uses a special IsMarked callback which always returns true.
1029  runtime->GetInternTable()->SweepInternTableWeaks(VerifyIsLiveCallback, this);
1030  runtime->GetMonitorList()->SweepMonitorList(VerifyIsLiveCallback, this);
1031
1032  JavaVMExt* vm = runtime->GetJavaVM();
1033  MutexLock mu(Thread::Current(), vm->weak_globals_lock);
1034  for (const Object** entry : vm->weak_globals) {
1035    VerifyIsLive(*entry);
1036  }
1037}
1038
1039struct SweepCallbackContext {
1040  MarkSweep* mark_sweep;
1041  space::AllocSpace* space;
1042  Thread* self;
1043};
1044
1045class CheckpointMarkThreadRoots : public Closure {
1046 public:
1047  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1048
1049  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1050    // Note: self is not necessarily equal to thread since thread may be suspended.
1051    Thread* self = Thread::Current();
1052    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1053        << thread->GetState() << " thread " << thread << " self " << self;
1054    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1055    mark_sweep_->GetBarrier().Pass(self);
1056  }
1057
1058 private:
1059  MarkSweep* mark_sweep_;
1060};
1061
1062void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1063  CheckpointMarkThreadRoots check_point(this);
1064  timings_.StartSplit("MarkRootsCheckpoint");
1065  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1066  // Request the check point is run on all threads returning a count of the threads that must
1067  // run through the barrier including self.
1068  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1069  // Release locks then wait for all mutator threads to pass the barrier.
1070  // TODO: optimize to not release locks when there are no threads to wait for.
1071  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1072  Locks::mutator_lock_->SharedUnlock(self);
1073  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1074  CHECK_EQ(old_state, kWaitingPerformingGc);
1075  gc_barrier_->Increment(self, barrier_count);
1076  self->SetState(kWaitingPerformingGc);
1077  Locks::mutator_lock_->SharedLock(self);
1078  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1079  timings_.EndSplit();
1080}
1081
1082void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1083  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1084  MarkSweep* mark_sweep = context->mark_sweep;
1085  Heap* heap = mark_sweep->GetHeap();
1086  space::AllocSpace* space = context->space;
1087  Thread* self = context->self;
1088  Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
1089  // Use a bulk free, that merges consecutive objects before freeing or free per object?
1090  // Documentation suggests better free performance with merging, but this may be at the expensive
1091  // of allocation.
1092  size_t freed_objects = num_ptrs;
1093  // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit
1094  size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs);
1095  heap->RecordFree(freed_objects, freed_bytes);
1096  mark_sweep->freed_objects_.fetch_add(freed_objects);
1097  mark_sweep->freed_bytes_.fetch_add(freed_bytes);
1098}
1099
1100void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1101  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1102  Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self);
1103  Heap* heap = context->mark_sweep->GetHeap();
1104  // We don't free any actual memory to avoid dirtying the shared zygote pages.
1105  for (size_t i = 0; i < num_ptrs; ++i) {
1106    Object* obj = static_cast<Object*>(ptrs[i]);
1107    heap->GetLiveBitmap()->Clear(obj);
1108    heap->GetCardTable()->MarkCard(obj);
1109  }
1110}
1111
1112void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1113  size_t freed_bytes = 0;
1114  space::DlMallocSpace* space = heap_->GetAllocSpace();
1115
1116  // If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark
1117  // bitmap, resulting in occasional frees of Weaks which are still in use.
1118  SweepSystemWeaksArray(allocations);
1119
1120  timings_.StartSplit("SweepArray");
1121  // Newly allocated objects MUST be in the alloc space and those are the only objects which we are
1122  // going to free.
1123  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1124  accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1125  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1126  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1127  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1128  if (swap_bitmaps) {
1129    std::swap(live_bitmap, mark_bitmap);
1130    std::swap(large_live_objects, large_mark_objects);
1131  }
1132
1133  size_t freed_objects = 0;
1134  size_t freed_large_objects = 0;
1135  size_t count = allocations->Size();
1136  Object** objects = const_cast<Object**>(allocations->Begin());
1137  Object** out = objects;
1138  Object** objects_to_chunk_free = out;
1139
1140  // Empty the allocation stack.
1141  Thread* self = Thread::Current();
1142  for (size_t i = 0; i < count; ++i) {
1143    Object* obj = objects[i];
1144    // There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack.
1145    if (LIKELY(mark_bitmap->HasAddress(obj))) {
1146      if (!mark_bitmap->Test(obj)) {
1147        // Don't bother un-marking since we clear the mark bitmap anyways.
1148        *(out++) = obj;
1149        // Free objects in chunks.
1150        DCHECK_GE(out, objects_to_chunk_free);
1151        DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1152        if (static_cast<size_t>(out - objects_to_chunk_free) == kSweepArrayChunkFreeSize) {
1153          // timings_.StartSplit("FreeList");
1154          size_t chunk_freed_objects = out - objects_to_chunk_free;
1155          freed_objects += chunk_freed_objects;
1156          freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1157          objects_to_chunk_free = out;
1158          // timings_.EndSplit();
1159        }
1160      }
1161    } else if (!large_mark_objects->Test(obj)) {
1162      ++freed_large_objects;
1163      freed_bytes += large_object_space->Free(self, obj);
1164    }
1165  }
1166  // Free the remaining objects in chunks.
1167  DCHECK_GE(out, objects_to_chunk_free);
1168  DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1169  if (out - objects_to_chunk_free > 0) {
1170    // timings_.StartSplit("FreeList");
1171    size_t chunk_freed_objects = out - objects_to_chunk_free;
1172    freed_objects += chunk_freed_objects;
1173    freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1174    // timings_.EndSplit();
1175  }
1176  CHECK_EQ(count, allocations->Size());
1177  timings_.EndSplit();
1178
1179  timings_.StartSplit("RecordFree");
1180  VLOG(heap) << "Freed " << freed_objects << "/" << count
1181             << " objects with size " << PrettySize(freed_bytes);
1182  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes);
1183  freed_objects_.fetch_add(freed_objects);
1184  freed_bytes_.fetch_add(freed_bytes);
1185  timings_.EndSplit();
1186
1187  timings_.StartSplit("ResetStack");
1188  allocations->Reset();
1189  timings_.EndSplit();
1190}
1191
1192void MarkSweep::Sweep(bool swap_bitmaps) {
1193  DCHECK(mark_stack_->IsEmpty());
1194  base::TimingLogger::ScopedSplit("Sweep", &timings_);
1195
1196  // If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark
1197  // bitmap, resulting in occasional frees of Weaks which are still in use.
1198  SweepSystemWeaks();
1199
1200  const bool partial = (GetGcType() == kGcTypePartial);
1201  SweepCallbackContext scc;
1202  scc.mark_sweep = this;
1203  scc.self = Thread::Current();
1204  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1205    // We always sweep always collect spaces.
1206    bool sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect);
1207    if (!partial && !sweep_space) {
1208      // We sweep full collect spaces when the GC isn't a partial GC (ie its full).
1209      sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect);
1210    }
1211    if (sweep_space) {
1212      uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1213      uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1214      scc.space = space->AsDlMallocSpace();
1215      accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1216      accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1217      if (swap_bitmaps) {
1218        std::swap(live_bitmap, mark_bitmap);
1219      }
1220      if (!space->IsZygoteSpace()) {
1221        base::TimingLogger::ScopedSplit split("SweepAllocSpace", &timings_);
1222        // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked.
1223        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1224                                           &SweepCallback, reinterpret_cast<void*>(&scc));
1225      } else {
1226        base::TimingLogger::ScopedSplit split("SweepZygote", &timings_);
1227        // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual
1228        // memory.
1229        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1230                                           &ZygoteSweepCallback, reinterpret_cast<void*>(&scc));
1231      }
1232    }
1233  }
1234
1235  SweepLargeObjects(swap_bitmaps);
1236}
1237
1238void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1239  base::TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1240  // Sweep large objects
1241  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1242  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1243  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1244  if (swap_bitmaps) {
1245    std::swap(large_live_objects, large_mark_objects);
1246  }
1247  accounting::SpaceSetMap::Objects& live_objects = large_live_objects->GetObjects();
1248  // O(n*log(n)) but hopefully there are not too many large objects.
1249  size_t freed_objects = 0;
1250  size_t freed_bytes = 0;
1251  Thread* self = Thread::Current();
1252  for (const Object* obj : live_objects) {
1253    if (!large_mark_objects->Test(obj)) {
1254      freed_bytes += large_object_space->Free(self, const_cast<Object*>(obj));
1255      ++freed_objects;
1256    }
1257  }
1258  freed_objects_.fetch_add(freed_objects);
1259  freed_bytes_.fetch_add(freed_bytes);
1260  GetHeap()->RecordFree(freed_objects, freed_bytes);
1261}
1262
1263void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) {
1264  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1265    if (space->IsDlMallocSpace() && space->Contains(ref)) {
1266      DCHECK(IsMarked(obj));
1267
1268      bool is_marked = IsMarked(ref);
1269      if (!is_marked) {
1270        LOG(INFO) << *space;
1271        LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref)
1272                     << "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj)
1273                     << "' (" << reinterpret_cast<const void*>(obj) << ") at offset "
1274                     << reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked";
1275
1276        const Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1277        DCHECK(klass != NULL);
1278        const ObjectArray<ArtField>* fields = is_static ? klass->GetSFields() : klass->GetIFields();
1279        DCHECK(fields != NULL);
1280        bool found = false;
1281        for (int32_t i = 0; i < fields->GetLength(); ++i) {
1282          const ArtField* cur = fields->Get(i);
1283          if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1284            LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur);
1285            found = true;
1286            break;
1287          }
1288        }
1289        if (!found) {
1290          LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value();
1291        }
1292
1293        bool obj_marked = heap_->GetCardTable()->IsDirty(obj);
1294        if (!obj_marked) {
1295          LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' "
1296                       << "(" << reinterpret_cast<const void*>(obj) << ") contains references to "
1297                       << "the alloc space, but wasn't card marked";
1298        }
1299      }
1300    }
1301    break;
1302  }
1303}
1304
1305// Process the "referent" field in a java.lang.ref.Reference.  If the
1306// referent has not yet been marked, put it on the appropriate list in
1307// the heap for later processing.
1308void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1309  DCHECK(klass != nullptr);
1310  DCHECK(klass->IsReferenceClass());
1311  DCHECK(obj != NULL);
1312  Object* referent = heap_->GetReferenceReferent(obj);
1313  if (referent != NULL && !IsMarked(referent)) {
1314    if (kCountJavaLangRefs) {
1315      ++reference_count_;
1316    }
1317    Thread* self = Thread::Current();
1318    // TODO: Remove these locks, and use atomic stacks for storing references?
1319    if (klass->IsSoftReferenceClass()) {
1320      MutexLock mu(self, *heap_->GetSoftRefQueueLock());
1321      heap_->EnqueuePendingReference(obj, &soft_reference_list_);
1322    } else if (klass->IsWeakReferenceClass()) {
1323      MutexLock mu(self, *heap_->GetWeakRefQueueLock());
1324      heap_->EnqueuePendingReference(obj, &weak_reference_list_);
1325    } else if (klass->IsFinalizerReferenceClass()) {
1326      MutexLock mu(self, *heap_->GetFinalizerRefQueueLock());
1327      heap_->EnqueuePendingReference(obj, &finalizer_reference_list_);
1328    } else if (klass->IsPhantomReferenceClass()) {
1329      MutexLock mu(self, *heap_->GetPhantomRefQueueLock());
1330      heap_->EnqueuePendingReference(obj, &phantom_reference_list_);
1331    } else {
1332      LOG(FATAL) << "Invalid reference type " << PrettyClass(klass)
1333                 << " " << std::hex << klass->GetAccessFlags();
1334    }
1335  }
1336}
1337
1338void MarkSweep::ScanRoot(const Object* obj) {
1339  ScanObject(obj);
1340}
1341
1342class MarkObjectVisitor {
1343 public:
1344  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1345
1346  // TODO: Fixme when anotatalysis works with visitors.
1347  void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
1348                  bool /* is_static */) const ALWAYS_INLINE
1349      NO_THREAD_SAFETY_ANALYSIS {
1350    if (kCheckLocks) {
1351      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1352      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1353    }
1354    mark_sweep_->MarkObject(ref);
1355  }
1356
1357 private:
1358  MarkSweep* const mark_sweep_;
1359};
1360
1361// Scans an object reference.  Determines the type of the reference
1362// and dispatches to a specialized scanning routine.
1363void MarkSweep::ScanObject(const Object* obj) {
1364  MarkObjectVisitor visitor(this);
1365  ScanObjectVisit(obj, visitor);
1366}
1367
1368void MarkSweep::ProcessMarkStackParallel(bool paused) {
1369  Thread* self = Thread::Current();
1370  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1371  const size_t num_threads = thread_pool->GetThreadCount();
1372  const size_t chunk_size =
1373      std::min(mark_stack_->Size() / num_threads + 1,
1374               static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1375  CHECK_GT(chunk_size, 0U);
1376  // Split the current mark stack up into work tasks.
1377  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1378    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1379    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
1380                                                        const_cast<const mirror::Object**>(it)));
1381    it += delta;
1382  }
1383  thread_pool->StartWorkers(self);
1384  // Don't do work in the main thread since it assumed at least one other thread will require CPU
1385  // time during the GC.
1386  thread_pool->Wait(self, paused, true);
1387  thread_pool->StopWorkers(self);
1388  mark_stack_->Reset();
1389  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1390}
1391
1392// Scan anything that's on the mark stack.
1393void MarkSweep::ProcessMarkStack(bool paused) {
1394  timings_.StartSplit("ProcessMarkStack");
1395  const bool parallel = kParallelProcessMarkStack && GetHeap()->GetThreadPool() &&
1396      mark_stack_->Size() >= kMinimumParallelMarkStackSize;
1397  if (parallel) {
1398    ProcessMarkStackParallel(paused);
1399  } else {
1400    // TODO: Tune this.
1401    static const size_t kFifoSize = 4;
1402    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
1403    for (;;) {
1404      const Object* obj = NULL;
1405      if (kUseMarkStackPrefetch) {
1406        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1407          const Object* obj = mark_stack_->PopBack();
1408          DCHECK(obj != NULL);
1409          __builtin_prefetch(obj);
1410          prefetch_fifo.push_back(obj);
1411        }
1412        if (prefetch_fifo.empty()) {
1413          break;
1414        }
1415        obj = prefetch_fifo.front();
1416        prefetch_fifo.pop_front();
1417      } else {
1418        if (mark_stack_->IsEmpty()) {
1419          break;
1420        }
1421        obj = mark_stack_->PopBack();
1422      }
1423      DCHECK(obj != NULL);
1424      ScanObject(obj);
1425    }
1426  }
1427  timings_.EndSplit();
1428}
1429
1430// Walks the reference list marking any references subject to the
1431// reference clearing policy.  References with a black referent are
1432// removed from the list.  References with white referents biased
1433// toward saving are blackened and also removed from the list.
1434void MarkSweep::PreserveSomeSoftReferences(Object** list) {
1435  DCHECK(list != NULL);
1436  Object* clear = NULL;
1437  size_t counter = 0;
1438
1439  DCHECK(mark_stack_->IsEmpty());
1440
1441  timings_.StartSplit("PreserveSomeSoftReferences");
1442  while (*list != NULL) {
1443    Object* ref = heap_->DequeuePendingReference(list);
1444    Object* referent = heap_->GetReferenceReferent(ref);
1445    if (referent == NULL) {
1446      // Referent was cleared by the user during marking.
1447      continue;
1448    }
1449    bool is_marked = IsMarked(referent);
1450    if (!is_marked && ((++counter) & 1)) {
1451      // Referent is white and biased toward saving, mark it.
1452      MarkObject(referent);
1453      is_marked = true;
1454    }
1455    if (!is_marked) {
1456      // Referent is white, queue it for clearing.
1457      heap_->EnqueuePendingReference(ref, &clear);
1458    }
1459  }
1460  *list = clear;
1461  timings_.EndSplit();
1462
1463  // Restart the mark with the newly black references added to the root set.
1464  ProcessMarkStack(true);
1465}
1466
1467inline bool MarkSweep::IsMarked(const Object* object) const
1468    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1469  if (IsImmune(object)) {
1470    return true;
1471  }
1472  DCHECK(current_mark_bitmap_ != NULL);
1473  if (current_mark_bitmap_->HasAddress(object)) {
1474    return current_mark_bitmap_->Test(object);
1475  }
1476  return heap_->GetMarkBitmap()->Test(object);
1477}
1478
1479
1480// Unlink the reference list clearing references objects with white
1481// referents.  Cleared references registered to a reference queue are
1482// scheduled for appending by the heap worker thread.
1483void MarkSweep::ClearWhiteReferences(Object** list) {
1484  DCHECK(list != NULL);
1485  while (*list != NULL) {
1486    Object* ref = heap_->DequeuePendingReference(list);
1487    Object* referent = heap_->GetReferenceReferent(ref);
1488    if (referent != NULL && !IsMarked(referent)) {
1489      // Referent is white, clear it.
1490      heap_->ClearReferenceReferent(ref);
1491      if (heap_->IsEnqueuable(ref)) {
1492        heap_->EnqueueReference(ref, &cleared_reference_list_);
1493      }
1494    }
1495  }
1496  DCHECK(*list == NULL);
1497}
1498
1499// Enqueues finalizer references with white referents.  White
1500// referents are blackened, moved to the zombie field, and the
1501// referent field is cleared.
1502void MarkSweep::EnqueueFinalizerReferences(Object** list) {
1503  DCHECK(list != NULL);
1504  timings_.StartSplit("EnqueueFinalizerReferences");
1505  MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset();
1506  bool has_enqueued = false;
1507  while (*list != NULL) {
1508    Object* ref = heap_->DequeuePendingReference(list);
1509    Object* referent = heap_->GetReferenceReferent(ref);
1510    if (referent != NULL && !IsMarked(referent)) {
1511      MarkObject(referent);
1512      // If the referent is non-null the reference must queuable.
1513      DCHECK(heap_->IsEnqueuable(ref));
1514      ref->SetFieldObject(zombie_offset, referent, false);
1515      heap_->ClearReferenceReferent(ref);
1516      heap_->EnqueueReference(ref, &cleared_reference_list_);
1517      has_enqueued = true;
1518    }
1519  }
1520  timings_.EndSplit();
1521  if (has_enqueued) {
1522    ProcessMarkStack(true);
1523  }
1524  DCHECK(*list == NULL);
1525}
1526
1527// Process reference class instances and schedule finalizations.
1528void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft,
1529                                  Object** weak_references,
1530                                  Object** finalizer_references,
1531                                  Object** phantom_references) {
1532  DCHECK(soft_references != NULL);
1533  DCHECK(weak_references != NULL);
1534  DCHECK(finalizer_references != NULL);
1535  DCHECK(phantom_references != NULL);
1536
1537  // Unless we are in the zygote or required to clear soft references
1538  // with white references, preserve some white referents.
1539  if (!clear_soft && !Runtime::Current()->IsZygote()) {
1540    PreserveSomeSoftReferences(soft_references);
1541  }
1542
1543  timings_.StartSplit("ProcessReferences");
1544  // Clear all remaining soft and weak references with white
1545  // referents.
1546  ClearWhiteReferences(soft_references);
1547  ClearWhiteReferences(weak_references);
1548  timings_.EndSplit();
1549
1550  // Preserve all white objects with finalize methods and schedule
1551  // them for finalization.
1552  EnqueueFinalizerReferences(finalizer_references);
1553
1554  timings_.StartSplit("ProcessReferences");
1555  // Clear all f-reachable soft and weak references with white
1556  // referents.
1557  ClearWhiteReferences(soft_references);
1558  ClearWhiteReferences(weak_references);
1559
1560  // Clear all phantom references with white referents.
1561  ClearWhiteReferences(phantom_references);
1562
1563  // At this point all reference lists should be empty.
1564  DCHECK(*soft_references == NULL);
1565  DCHECK(*weak_references == NULL);
1566  DCHECK(*finalizer_references == NULL);
1567  DCHECK(*phantom_references == NULL);
1568  timings_.EndSplit();
1569}
1570
1571void MarkSweep::UnBindBitmaps() {
1572  base::TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
1573  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1574    if (space->IsDlMallocSpace()) {
1575      space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
1576      if (alloc_space->temp_bitmap_.get() != NULL) {
1577        // At this point, the temp_bitmap holds our old mark bitmap.
1578        accounting::SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release();
1579        GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap);
1580        CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get());
1581        alloc_space->mark_bitmap_.reset(new_bitmap);
1582        DCHECK(alloc_space->temp_bitmap_.get() == NULL);
1583      }
1584    }
1585  }
1586}
1587
1588void MarkSweep::FinishPhase() {
1589  base::TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1590  // Can't enqueue references if we hold the mutator lock.
1591  Object* cleared_references = GetClearedReferences();
1592  Heap* heap = GetHeap();
1593  timings_.NewSplit("EnqueueClearedReferences");
1594  heap->EnqueueClearedReferences(&cleared_references);
1595
1596  timings_.NewSplit("PostGcVerification");
1597  heap->PostGcVerification(this);
1598
1599  timings_.NewSplit("GrowForUtilization");
1600  heap->GrowForUtilization(GetGcType(), GetDurationNs());
1601
1602  timings_.NewSplit("RequestHeapTrim");
1603  heap->RequestHeapTrim();
1604
1605  // Update the cumulative statistics
1606  total_time_ns_ += GetDurationNs();
1607  total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0,
1608                                           std::plus<uint64_t>());
1609  total_freed_objects_ += GetFreedObjects();
1610  total_freed_bytes_ += GetFreedBytes();
1611
1612  // Ensure that the mark stack is empty.
1613  CHECK(mark_stack_->IsEmpty());
1614
1615  if (kCountScannedTypes) {
1616    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1617             << " other=" << other_count_;
1618  }
1619
1620  if (kCountTasks) {
1621    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1622  }
1623
1624  if (kMeasureOverhead) {
1625    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1626  }
1627
1628  if (kProfileLargeObjects) {
1629    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1630  }
1631
1632  if (kCountClassesMarked) {
1633    VLOG(gc) << "Classes marked " << classes_marked_;
1634  }
1635
1636  if (kCountJavaLangRefs) {
1637    VLOG(gc) << "References scanned " << reference_count_;
1638  }
1639
1640  // Update the cumulative loggers.
1641  cumulative_timings_.Start();
1642  cumulative_timings_.AddLogger(timings_);
1643  cumulative_timings_.End();
1644
1645  // Clear all of the spaces' mark bitmaps.
1646  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1647    if (space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1648      space->GetMarkBitmap()->Clear();
1649    }
1650  }
1651  mark_stack_->Reset();
1652
1653  // Reset the marked large objects.
1654  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1655  large_objects->GetMarkObjects()->Clear();
1656}
1657
1658}  // namespace collector
1659}  // namespace gc
1660}  // namespace art
1661