mark_sweep.cc revision a1602f28c0e3127ad511712d4b08db89737ae901
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "indirect_reference_table.h"
38#include "intern_table.h"
39#include "jni_internal.h"
40#include "monitor.h"
41#include "mark_sweep-inl.h"
42#include "mirror/art_field.h"
43#include "mirror/art_field-inl.h"
44#include "mirror/class-inl.h"
45#include "mirror/class_loader.h"
46#include "mirror/dex_cache.h"
47#include "mirror/object-inl.h"
48#include "mirror/object_array.h"
49#include "mirror/object_array-inl.h"
50#include "runtime.h"
51#include "thread-inl.h"
52#include "thread_list.h"
53#include "verifier/method_verifier.h"
54
55using ::art::mirror::ArtField;
56using ::art::mirror::Class;
57using ::art::mirror::Object;
58using ::art::mirror::ObjectArray;
59
60namespace art {
61namespace gc {
62namespace collector {
63
64// Performance options.
65constexpr bool kUseRecursiveMark = false;
66constexpr bool kUseMarkStackPrefetch = true;
67constexpr size_t kSweepArrayChunkFreeSize = 1024;
68
69// Parallelism options.
70constexpr bool kParallelCardScan = true;
71constexpr bool kParallelRecursiveMark = true;
72// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
73// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
74// having this can add overhead in ProcessReferences since we may end up doing many calls of
75// ProcessMarkStack with very small mark stacks.
76constexpr size_t kMinimumParallelMarkStackSize = 128;
77constexpr bool kParallelProcessMarkStack = true;
78
79// Profiling and information flags.
80constexpr bool kCountClassesMarked = false;
81constexpr bool kProfileLargeObjects = false;
82constexpr bool kMeasureOverhead = false;
83constexpr bool kCountTasks = false;
84constexpr bool kCountJavaLangRefs = false;
85
86// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
87constexpr bool kCheckLocks = kDebugLocking;
88
89void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
90  // Bind live to mark bitmap if necessary.
91  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
92    CHECK(space->IsContinuousMemMapAllocSpace());
93    space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
94  }
95
96  // Add the space to the immune region.
97  // TODO: Use space limits instead of current end_ since the end_ can be changed by dlmalloc
98  // callbacks.
99  if (immune_begin_ == NULL) {
100    DCHECK(immune_end_ == NULL);
101    SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
102                   reinterpret_cast<Object*>(space->End()));
103  } else {
104    const space::ContinuousSpace* prev_space = nullptr;
105    // Find out if the previous space is immune.
106    for (const space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
107      if (cur_space == space) {
108        break;
109      }
110      prev_space = cur_space;
111    }
112    // If previous space was immune, then extend the immune region. Relies on continuous spaces
113    // being sorted by Heap::AddContinuousSpace.
114    if (prev_space != nullptr && IsImmuneSpace(prev_space)) {
115      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
116      immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
117    }
118  }
119}
120
121bool MarkSweep::IsImmuneSpace(const space::ContinuousSpace* space) const {
122  return
123      immune_begin_ <= reinterpret_cast<Object*>(space->Begin()) &&
124      immune_end_ >= reinterpret_cast<Object*>(space->End());
125}
126
127void MarkSweep::BindBitmaps() {
128  timings_.StartSplit("BindBitmaps");
129  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
130  // Mark all of the spaces we never collect as immune.
131  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
132    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
133      ImmuneSpace(space);
134    }
135  }
136  timings_.EndSplit();
137}
138
139MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
140    : GarbageCollector(heap,
141                       name_prefix +
142                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
143      current_mark_bitmap_(NULL),
144      mark_stack_(NULL),
145      immune_begin_(NULL),
146      immune_end_(NULL),
147      live_stack_freeze_size_(0),
148      gc_barrier_(new Barrier(0)),
149      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
150      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
151      is_concurrent_(is_concurrent) {
152}
153
154void MarkSweep::InitializePhase() {
155  timings_.Reset();
156  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
157  mark_stack_ = heap_->mark_stack_.get();
158  DCHECK(mark_stack_ != nullptr);
159  SetImmuneRange(nullptr, nullptr);
160  class_count_ = 0;
161  array_count_ = 0;
162  other_count_ = 0;
163  large_object_test_ = 0;
164  large_object_mark_ = 0;
165  classes_marked_ = 0;
166  overhead_time_ = 0;
167  work_chunks_created_ = 0;
168  work_chunks_deleted_ = 0;
169  reference_count_ = 0;
170
171  FindDefaultMarkBitmap();
172
173  // Do any pre GC verification.
174  timings_.NewSplit("PreGcVerification");
175  heap_->PreGcVerification(this);
176}
177
178void MarkSweep::ProcessReferences(Thread* self) {
179  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
180  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
181  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
182                               &RecursiveMarkObjectCallback, this);
183}
184
185bool MarkSweep::HandleDirtyObjectsPhase() {
186  TimingLogger::ScopedSplit split("HandleDirtyObjectsPhase", &timings_);
187  Thread* self = Thread::Current();
188  Locks::mutator_lock_->AssertExclusiveHeld(self);
189
190  {
191    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
192
193    // Re-mark root set.
194    ReMarkRoots();
195
196    // Scan dirty objects, this is only required if we are not doing concurrent GC.
197    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
198  }
199
200  ProcessReferences(self);
201
202  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
203  if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
204      GetHeap()->verify_post_gc_heap_) {
205    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
206    // This second sweep makes sure that we don't have any objects in the live stack which point to
207    // freed objects. These cause problems since their references may be previously freed objects.
208    SweepArray(GetHeap()->allocation_stack_.get(), false);
209  }
210
211  timings_.StartSplit("PreSweepingGcVerification");
212  heap_->PreSweepingGcVerification(this);
213  timings_.EndSplit();
214
215  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
216  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
217  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
218
219  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
220  // weak before we sweep them. Since this new system weak may not be marked, the GC may
221  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
222  // reference to a string that is about to be swept.
223  Runtime::Current()->DisallowNewSystemWeaks();
224  return true;
225}
226
227bool MarkSweep::IsConcurrent() const {
228  return is_concurrent_;
229}
230
231void MarkSweep::MarkingPhase() {
232  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
233  Thread* self = Thread::Current();
234
235  BindBitmaps();
236  FindDefaultMarkBitmap();
237
238  // Process dirty cards and add dirty cards to mod union tables.
239  heap_->ProcessCards(timings_);
240
241  // Need to do this before the checkpoint since we don't want any threads to add references to
242  // the live stack during the recursive mark.
243  timings_.NewSplit("SwapStacks");
244  heap_->SwapStacks();
245
246  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
247  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
248    // If we exclusively hold the mutator lock, all threads must be suspended.
249    MarkRoots();
250  } else {
251    MarkThreadRoots(self);
252    // At this point the live stack should no longer have any mutators which push into it.
253    MarkNonThreadRoots();
254  }
255  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
256  MarkConcurrentRoots();
257  UpdateAndMarkModUnion();
258  MarkReachableObjects();
259}
260
261void MarkSweep::UpdateAndMarkModUnion() {
262  for (const auto& space : heap_->GetContinuousSpaces()) {
263    if (IsImmuneSpace(space)) {
264      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
265          "UpdateAndMarkImageModUnionTable";
266      TimingLogger::ScopedSplit split(name, &timings_);
267      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
268      CHECK(mod_union_table != nullptr);
269      mod_union_table->UpdateAndMarkReferences(MarkRootCallback, this);
270    }
271  }
272}
273
274void MarkSweep::MarkThreadRoots(Thread* self) {
275  MarkRootsCheckpoint(self);
276}
277
278void MarkSweep::MarkReachableObjects() {
279  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
280  // knowing that new allocations won't be marked as live.
281  timings_.StartSplit("MarkStackAsLive");
282  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
283  heap_->MarkAllocStackAsLive(live_stack);
284  live_stack->Reset();
285  timings_.EndSplit();
286  // Recursively mark all the non-image bits set in the mark bitmap.
287  RecursiveMark();
288}
289
290void MarkSweep::ReclaimPhase() {
291  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
292  Thread* self = Thread::Current();
293
294  if (!IsConcurrent()) {
295    ProcessReferences(self);
296  }
297
298  {
299    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
300    SweepSystemWeaks();
301  }
302
303  if (IsConcurrent()) {
304    Runtime::Current()->AllowNewSystemWeaks();
305
306    TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
307    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
308    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
309    // The allocation stack contains things allocated since the start of the GC. These may have been
310    // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
311    // Remove these objects from the mark bitmaps so that they will be eligible for sticky
312    // collection.
313    // There is a race here which is safely handled. Another thread such as the hprof could
314    // have flushed the alloc stack after we resumed the threads. This is safe however, since
315    // reseting the allocation stack zeros it out with madvise. This means that we will either
316    // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
317    // first place.
318    mirror::Object** end = allocation_stack->End();
319    for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
320      const Object* obj = *it;
321      if (obj != NULL) {
322        UnMarkObjectNonNull(obj);
323      }
324    }
325  }
326
327  {
328    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
329
330    // Reclaim unmarked objects.
331    Sweep(false);
332
333    // Swap the live and mark bitmaps for each space which we modified space. This is an
334    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
335    // bitmaps.
336    timings_.StartSplit("SwapBitmaps");
337    SwapBitmaps();
338    timings_.EndSplit();
339
340    // Unbind the live and mark bitmaps.
341    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
342    GetHeap()->UnBindBitmaps();
343  }
344}
345
346void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
347  immune_begin_ = begin;
348  immune_end_ = end;
349}
350
351void MarkSweep::FindDefaultMarkBitmap() {
352  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
353  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
354    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
355    if (bitmap != nullptr &&
356        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
357      current_mark_bitmap_ = bitmap;
358      CHECK(current_mark_bitmap_ != NULL);
359      return;
360    }
361  }
362  GetHeap()->DumpSpaces();
363  LOG(FATAL) << "Could not find a default mark bitmap";
364}
365
366void MarkSweep::ExpandMarkStack() {
367  ResizeMarkStack(mark_stack_->Capacity() * 2);
368}
369
370void MarkSweep::ResizeMarkStack(size_t new_size) {
371  // Rare case, no need to have Thread::Current be a parameter.
372  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
373    // Someone else acquired the lock and expanded the mark stack before us.
374    return;
375  }
376  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
377  CHECK_LE(mark_stack_->Size(), new_size);
378  mark_stack_->Resize(new_size);
379  for (const auto& obj : temp) {
380    mark_stack_->PushBack(obj);
381  }
382}
383
384inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
385  DCHECK(obj != NULL);
386  if (MarkObjectParallel(obj)) {
387    MutexLock mu(Thread::Current(), mark_stack_lock_);
388    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
389      ExpandMarkStack();
390    }
391    // The object must be pushed on to the mark stack.
392    mark_stack_->PushBack(const_cast<Object*>(obj));
393  }
394}
395
396mirror::Object* MarkSweep::RecursiveMarkObjectCallback(mirror::Object* obj, void* arg) {
397  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
398  mark_sweep->MarkObject(obj);
399  mark_sweep->ProcessMarkStack(true);
400  return obj;
401}
402
403inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
404  DCHECK(!IsImmune(obj));
405  // Try to take advantage of locality of references within a space, failing this find the space
406  // the hard way.
407  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
408  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
409    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
410    if (LIKELY(new_bitmap != NULL)) {
411      object_bitmap = new_bitmap;
412    } else {
413      MarkLargeObject(obj, false);
414      return;
415    }
416  }
417
418  DCHECK(object_bitmap->HasAddress(obj));
419  object_bitmap->Clear(obj);
420}
421
422inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
423  DCHECK(obj != NULL);
424
425  if (IsImmune(obj)) {
426    DCHECK(IsMarked(obj));
427    return;
428  }
429
430  // Try to take advantage of locality of references within a space, failing this find the space
431  // the hard way.
432  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
433  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
434    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
435    if (LIKELY(new_bitmap != NULL)) {
436      object_bitmap = new_bitmap;
437    } else {
438      MarkLargeObject(obj, true);
439      return;
440    }
441  }
442
443  // This object was not previously marked.
444  if (!object_bitmap->Test(obj)) {
445    object_bitmap->Set(obj);
446    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
447      // Lock is not needed but is here anyways to please annotalysis.
448      MutexLock mu(Thread::Current(), mark_stack_lock_);
449      ExpandMarkStack();
450    }
451    // The object must be pushed on to the mark stack.
452    mark_stack_->PushBack(const_cast<Object*>(obj));
453  }
454}
455
456// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
457bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
458  // TODO: support >1 discontinuous space.
459  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
460  accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
461  if (kProfileLargeObjects) {
462    ++large_object_test_;
463  }
464  if (UNLIKELY(!large_objects->Test(obj))) {
465    if (!large_object_space->Contains(obj)) {
466      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
467      LOG(ERROR) << "Attempting see if it's a bad root";
468      VerifyRoots();
469      LOG(FATAL) << "Can't mark bad root";
470    }
471    if (kProfileLargeObjects) {
472      ++large_object_mark_;
473    }
474    if (set) {
475      large_objects->Set(obj);
476    } else {
477      large_objects->Clear(obj);
478    }
479    return true;
480  }
481  return false;
482}
483
484inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
485  DCHECK(obj != NULL);
486
487  if (IsImmune(obj)) {
488    DCHECK(IsMarked(obj));
489    return false;
490  }
491
492  // Try to take advantage of locality of references within a space, failing this find the space
493  // the hard way.
494  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
495  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
496    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
497    if (new_bitmap != NULL) {
498      object_bitmap = new_bitmap;
499    } else {
500      // TODO: Remove the Thread::Current here?
501      // TODO: Convert this to some kind of atomic marking?
502      MutexLock mu(Thread::Current(), large_object_lock_);
503      return MarkLargeObject(obj, true);
504    }
505  }
506
507  // Return true if the object was not previously marked.
508  return !object_bitmap->AtomicTestAndSet(obj);
509}
510
511// Used to mark objects when recursing.  Recursion is done by moving
512// the finger across the bitmaps in address order and marking child
513// objects.  Any newly-marked objects whose addresses are lower than
514// the finger won't be visited by the bitmap scan, so those objects
515// need to be added to the mark stack.
516inline void MarkSweep::MarkObject(const Object* obj) {
517  if (obj != NULL) {
518    MarkObjectNonNull(obj);
519  }
520}
521
522void MarkSweep::MarkRoot(const Object* obj) {
523  if (obj != NULL) {
524    MarkObjectNonNull(obj);
525  }
526}
527
528Object* MarkSweep::MarkRootParallelCallback(Object* root, void* arg) {
529  DCHECK(root != NULL);
530  DCHECK(arg != NULL);
531  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(root);
532  return root;
533}
534
535Object* MarkSweep::MarkRootCallback(Object* root, void* arg) {
536  DCHECK(root != nullptr);
537  DCHECK(arg != nullptr);
538  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(root);
539  return root;
540}
541
542void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
543                                   const StackVisitor* visitor) {
544  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
545}
546
547void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
548  // See if the root is on any space bitmap.
549  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
550    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
551    if (!large_object_space->Contains(root)) {
552      LOG(ERROR) << "Found invalid root: " << root;
553      if (visitor != NULL) {
554        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
555      }
556    }
557  }
558}
559
560void MarkSweep::VerifyRoots() {
561  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
562}
563
564// Marks all objects in the root set.
565void MarkSweep::MarkRoots() {
566  timings_.StartSplit("MarkRoots");
567  Runtime::Current()->VisitNonConcurrentRoots(MarkRootCallback, this);
568  timings_.EndSplit();
569}
570
571void MarkSweep::MarkNonThreadRoots() {
572  timings_.StartSplit("MarkNonThreadRoots");
573  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
574  timings_.EndSplit();
575}
576
577void MarkSweep::MarkConcurrentRoots() {
578  timings_.StartSplit("MarkConcurrentRoots");
579  // Visit all runtime roots and clear dirty flags.
580  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, false, true);
581  timings_.EndSplit();
582}
583
584class ScanObjectVisitor {
585 public:
586  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
587      : mark_sweep_(mark_sweep) {}
588
589  // TODO: Fixme when anotatalysis works with visitors.
590  void operator()(Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
591    if (kCheckLocks) {
592      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
593      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
594    }
595    mark_sweep_->ScanObject(obj);
596  }
597
598 private:
599  MarkSweep* const mark_sweep_;
600};
601
602template <bool kUseFinger = false>
603class MarkStackTask : public Task {
604 public:
605  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
606                const Object** mark_stack)
607      : mark_sweep_(mark_sweep),
608        thread_pool_(thread_pool),
609        mark_stack_pos_(mark_stack_size) {
610    // We may have to copy part of an existing mark stack when another mark stack overflows.
611    if (mark_stack_size != 0) {
612      DCHECK(mark_stack != NULL);
613      // TODO: Check performance?
614      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
615    }
616    if (kCountTasks) {
617      ++mark_sweep_->work_chunks_created_;
618    }
619  }
620
621  static const size_t kMaxSize = 1 * KB;
622
623 protected:
624  class ScanObjectParallelVisitor {
625   public:
626    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
627        : chunk_task_(chunk_task) {}
628
629    void operator()(Object* obj) const {
630      MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
631      mark_sweep->ScanObjectVisit(obj,
632          [mark_sweep, this](Object* /* obj */, Object* ref, const MemberOffset& /* offset */,
633              bool /* is_static */) ALWAYS_INLINE_LAMBDA {
634        if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
635          if (kUseFinger) {
636            android_memory_barrier();
637            if (reinterpret_cast<uintptr_t>(ref) >=
638                static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
639              return;
640            }
641          }
642          chunk_task_->MarkStackPush(ref);
643        }
644      });
645    }
646
647   private:
648    MarkStackTask<kUseFinger>* const chunk_task_;
649  };
650
651  virtual ~MarkStackTask() {
652    // Make sure that we have cleared our mark stack.
653    DCHECK_EQ(mark_stack_pos_, 0U);
654    if (kCountTasks) {
655      ++mark_sweep_->work_chunks_deleted_;
656    }
657  }
658
659  MarkSweep* const mark_sweep_;
660  ThreadPool* const thread_pool_;
661  // Thread local mark stack for this task.
662  const Object* mark_stack_[kMaxSize];
663  // Mark stack position.
664  size_t mark_stack_pos_;
665
666  void MarkStackPush(const Object* obj) ALWAYS_INLINE {
667    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
668      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
669      mark_stack_pos_ /= 2;
670      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
671                                     mark_stack_ + mark_stack_pos_);
672      thread_pool_->AddTask(Thread::Current(), task);
673    }
674    DCHECK(obj != nullptr);
675    DCHECK(mark_stack_pos_ < kMaxSize);
676    mark_stack_[mark_stack_pos_++] = obj;
677  }
678
679  virtual void Finalize() {
680    delete this;
681  }
682
683  // Scans all of the objects
684  virtual void Run(Thread* self) {
685    ScanObjectParallelVisitor visitor(this);
686    // TODO: Tune this.
687    static const size_t kFifoSize = 4;
688    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
689    for (;;) {
690      const Object* obj = nullptr;
691      if (kUseMarkStackPrefetch) {
692        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
693          const Object* obj = mark_stack_[--mark_stack_pos_];
694          DCHECK(obj != nullptr);
695          __builtin_prefetch(obj);
696          prefetch_fifo.push_back(obj);
697        }
698        if (UNLIKELY(prefetch_fifo.empty())) {
699          break;
700        }
701        obj = prefetch_fifo.front();
702        prefetch_fifo.pop_front();
703      } else {
704        if (UNLIKELY(mark_stack_pos_ == 0)) {
705          break;
706        }
707        obj = mark_stack_[--mark_stack_pos_];
708      }
709      DCHECK(obj != nullptr);
710      visitor(const_cast<mirror::Object*>(obj));
711    }
712  }
713};
714
715class CardScanTask : public MarkStackTask<false> {
716 public:
717  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
718               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
719               const Object** mark_stack_obj)
720      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
721        bitmap_(bitmap),
722        begin_(begin),
723        end_(end),
724        minimum_age_(minimum_age) {
725  }
726
727 protected:
728  accounting::SpaceBitmap* const bitmap_;
729  byte* const begin_;
730  byte* const end_;
731  const byte minimum_age_;
732
733  virtual void Finalize() {
734    delete this;
735  }
736
737  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
738    ScanObjectParallelVisitor visitor(this);
739    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
740    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
741    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
742        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
743    // Finish by emptying our local mark stack.
744    MarkStackTask::Run(self);
745  }
746};
747
748size_t MarkSweep::GetThreadCount(bool paused) const {
749  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
750    return 0;
751  }
752  if (paused) {
753    return heap_->GetParallelGCThreadCount() + 1;
754  } else {
755    return heap_->GetConcGCThreadCount() + 1;
756  }
757}
758
759void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
760  accounting::CardTable* card_table = GetHeap()->GetCardTable();
761  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
762  size_t thread_count = GetThreadCount(paused);
763  // The parallel version with only one thread is faster for card scanning, TODO: fix.
764  if (kParallelCardScan && thread_count > 0) {
765    Thread* self = Thread::Current();
766    // Can't have a different split for each space since multiple spaces can have their cards being
767    // scanned at the same time.
768    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
769    // Try to take some of the mark stack since we can pass this off to the worker tasks.
770    const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
771    const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
772    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
773    // Estimated number of work tasks we will create.
774    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
775    DCHECK_NE(mark_stack_tasks, 0U);
776    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
777                                             mark_stack_size / mark_stack_tasks + 1);
778    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
779      if (space->GetMarkBitmap() == nullptr) {
780        continue;
781      }
782      byte* card_begin = space->Begin();
783      byte* card_end = space->End();
784      // Align up the end address. For example, the image space's end
785      // may not be card-size-aligned.
786      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
787      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
788      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
789      // Calculate how many bytes of heap we will scan,
790      const size_t address_range = card_end - card_begin;
791      // Calculate how much address range each task gets.
792      const size_t card_delta = RoundUp(address_range / thread_count + 1,
793                                        accounting::CardTable::kCardSize);
794      // Create the worker tasks for this space.
795      while (card_begin != card_end) {
796        // Add a range of cards.
797        size_t addr_remaining = card_end - card_begin;
798        size_t card_increment = std::min(card_delta, addr_remaining);
799        // Take from the back of the mark stack.
800        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
801        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
802        mark_stack_end -= mark_stack_increment;
803        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
804        DCHECK_EQ(mark_stack_end, mark_stack_->End());
805        // Add the new task to the thread pool.
806        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
807                                      card_begin + card_increment, minimum_age,
808                                      mark_stack_increment, mark_stack_end);
809        thread_pool->AddTask(self, task);
810        card_begin += card_increment;
811      }
812    }
813
814    // Note: the card scan below may dirty new cards (and scan them)
815    // as a side effect when a Reference object is encountered and
816    // queued during the marking. See b/11465268.
817    thread_pool->SetMaxActiveWorkers(thread_count - 1);
818    thread_pool->StartWorkers(self);
819    thread_pool->Wait(self, true, true);
820    thread_pool->StopWorkers(self);
821    timings_.EndSplit();
822  } else {
823    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
824      if (space->GetMarkBitmap() != nullptr) {
825        // Image spaces are handled properly since live == marked for them.
826        switch (space->GetGcRetentionPolicy()) {
827          case space::kGcRetentionPolicyNeverCollect:
828            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
829                "ScanGrayImageSpaceObjects");
830            break;
831          case space::kGcRetentionPolicyFullCollect:
832            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
833                "ScanGrayZygoteSpaceObjects");
834            break;
835          case space::kGcRetentionPolicyAlwaysCollect:
836            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
837                "ScanGrayAllocSpaceObjects");
838            break;
839          }
840        ScanObjectVisitor visitor(this);
841        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
842        timings_.EndSplit();
843      }
844    }
845  }
846}
847
848class RecursiveMarkTask : public MarkStackTask<false> {
849 public:
850  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
851                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
852      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
853        bitmap_(bitmap),
854        begin_(begin),
855        end_(end) {
856  }
857
858 protected:
859  accounting::SpaceBitmap* const bitmap_;
860  const uintptr_t begin_;
861  const uintptr_t end_;
862
863  virtual void Finalize() {
864    delete this;
865  }
866
867  // Scans all of the objects
868  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
869    ScanObjectParallelVisitor visitor(this);
870    bitmap_->VisitMarkedRange(begin_, end_, visitor);
871    // Finish by emptying our local mark stack.
872    MarkStackTask::Run(self);
873  }
874};
875
876// Populates the mark stack based on the set of marked objects and
877// recursively marks until the mark stack is emptied.
878void MarkSweep::RecursiveMark() {
879  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
880  // RecursiveMark will build the lists of known instances of the Reference classes. See
881  // DelayReferenceReferent for details.
882  if (kUseRecursiveMark) {
883    const bool partial = GetGcType() == kGcTypePartial;
884    ScanObjectVisitor scan_visitor(this);
885    auto* self = Thread::Current();
886    ThreadPool* thread_pool = heap_->GetThreadPool();
887    size_t thread_count = GetThreadCount(false);
888    const bool parallel = kParallelRecursiveMark && thread_count > 1;
889    mark_stack_->Reset();
890    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
891      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
892          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
893        current_mark_bitmap_ = space->GetMarkBitmap();
894        if (current_mark_bitmap_ == nullptr) {
895          continue;
896        }
897        if (parallel) {
898          // We will use the mark stack the future.
899          // CHECK(mark_stack_->IsEmpty());
900          // This function does not handle heap end increasing, so we must use the space end.
901          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
902          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
903          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
904
905          // Create a few worker tasks.
906          const size_t n = thread_count * 2;
907          while (begin != end) {
908            uintptr_t start = begin;
909            uintptr_t delta = (end - begin) / n;
910            delta = RoundUp(delta, KB);
911            if (delta < 16 * KB) delta = end - begin;
912            begin += delta;
913            auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
914                                               begin);
915            thread_pool->AddTask(self, task);
916          }
917          thread_pool->SetMaxActiveWorkers(thread_count - 1);
918          thread_pool->StartWorkers(self);
919          thread_pool->Wait(self, true, true);
920          thread_pool->StopWorkers(self);
921        } else {
922          // This function does not handle heap end increasing, so we must use the space end.
923          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
924          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
925          current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
926        }
927      }
928    }
929  }
930  ProcessMarkStack(false);
931}
932
933mirror::Object* MarkSweep::IsMarkedCallback(Object* object, void* arg) {
934  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
935    return object;
936  }
937  return nullptr;
938}
939
940void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
941  ScanGrayObjects(paused, minimum_age);
942  ProcessMarkStack(paused);
943}
944
945void MarkSweep::ReMarkRoots() {
946  timings_.StartSplit("ReMarkRoots");
947  Runtime::Current()->VisitRoots(MarkRootCallback, this, true, true);
948  timings_.EndSplit();
949}
950
951void MarkSweep::SweepSystemWeaks() {
952  Runtime* runtime = Runtime::Current();
953  timings_.StartSplit("SweepSystemWeaks");
954  runtime->SweepSystemWeaks(IsMarkedCallback, this);
955  timings_.EndSplit();
956}
957
958mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
959  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
960  // We don't actually want to sweep the object, so lets return "marked"
961  return obj;
962}
963
964void MarkSweep::VerifyIsLive(const Object* obj) {
965  Heap* heap = GetHeap();
966  if (!heap->GetLiveBitmap()->Test(obj)) {
967    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
968    if (!large_object_space->GetLiveObjects()->Test(obj)) {
969      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
970          heap->allocation_stack_->End()) {
971        // Object not found!
972        heap->DumpSpaces();
973        LOG(FATAL) << "Found dead object " << obj;
974      }
975    }
976  }
977}
978
979void MarkSweep::VerifySystemWeaks() {
980  // Verify system weaks, uses a special object visitor which returns the input object.
981  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
982}
983
984class CheckpointMarkThreadRoots : public Closure {
985 public:
986  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
987
988  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
989    ATRACE_BEGIN("Marking thread roots");
990    // Note: self is not necessarily equal to thread since thread may be suspended.
991    Thread* self = Thread::Current();
992    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
993        << thread->GetState() << " thread " << thread << " self " << self;
994    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
995    ATRACE_END();
996    mark_sweep_->GetBarrier().Pass(self);
997  }
998
999 private:
1000  MarkSweep* mark_sweep_;
1001};
1002
1003void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1004  CheckpointMarkThreadRoots check_point(this);
1005  timings_.StartSplit("MarkRootsCheckpoint");
1006  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1007  // Request the check point is run on all threads returning a count of the threads that must
1008  // run through the barrier including self.
1009  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1010  // Release locks then wait for all mutator threads to pass the barrier.
1011  // TODO: optimize to not release locks when there are no threads to wait for.
1012  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1013  Locks::mutator_lock_->SharedUnlock(self);
1014  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1015  CHECK_EQ(old_state, kWaitingPerformingGc);
1016  gc_barrier_->Increment(self, barrier_count);
1017  self->SetState(kWaitingPerformingGc);
1018  Locks::mutator_lock_->SharedLock(self);
1019  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1020  timings_.EndSplit();
1021}
1022
1023void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1024  timings_.StartSplit("SweepArray");
1025  Thread* self = Thread::Current();
1026  mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
1027  size_t chunk_free_pos = 0;
1028  size_t freed_bytes = 0;
1029  size_t freed_large_object_bytes = 0;
1030  size_t freed_objects = 0;
1031  size_t freed_large_objects = 0;
1032  // How many objects are left in the array, modified after each space is swept.
1033  Object** objects = const_cast<Object**>(allocations->Begin());
1034  size_t count = allocations->Size();
1035  // Change the order to ensure that the non-moving space last swept as an optimization.
1036  std::vector<space::ContinuousSpace*> sweep_spaces;
1037  space::ContinuousSpace* non_moving_space = nullptr;
1038  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1039    if (space->IsAllocSpace() && !IsImmuneSpace(space) && space->GetLiveBitmap() != nullptr) {
1040      if (space == heap_->GetNonMovingSpace()) {
1041        non_moving_space = space;
1042      } else {
1043        sweep_spaces.push_back(space);
1044      }
1045    }
1046  }
1047  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1048  // the other alloc spaces as an optimization.
1049  if (non_moving_space != nullptr) {
1050    sweep_spaces.push_back(non_moving_space);
1051  }
1052  // Start by sweeping the continuous spaces.
1053  for (space::ContinuousSpace* space : sweep_spaces) {
1054    space::AllocSpace* alloc_space = space->AsAllocSpace();
1055    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1056    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1057    if (swap_bitmaps) {
1058      std::swap(live_bitmap, mark_bitmap);
1059    }
1060    Object** out = objects;
1061    for (size_t i = 0; i < count; ++i) {
1062      Object* obj = objects[i];
1063      if (space->HasAddress(obj)) {
1064        // This object is in the space, remove it from the array and add it to the sweep buffer
1065        // if needed.
1066        if (!mark_bitmap->Test(obj)) {
1067          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1068            timings_.StartSplit("FreeList");
1069            freed_objects += chunk_free_pos;
1070            freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1071            timings_.EndSplit();
1072            chunk_free_pos = 0;
1073          }
1074          chunk_free_buffer[chunk_free_pos++] = obj;
1075        }
1076      } else {
1077        *(out++) = obj;
1078      }
1079    }
1080    if (chunk_free_pos > 0) {
1081      timings_.StartSplit("FreeList");
1082      freed_objects += chunk_free_pos;
1083      freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1084      timings_.EndSplit();
1085      chunk_free_pos = 0;
1086    }
1087    // All of the references which space contained are no longer in the allocation stack, update
1088    // the count.
1089    count = out - objects;
1090  }
1091  // Handle the large object space.
1092  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1093  accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
1094  accounting::ObjectSet* large_mark_objects = large_object_space->GetMarkObjects();
1095  if (swap_bitmaps) {
1096    std::swap(large_live_objects, large_mark_objects);
1097  }
1098  for (size_t i = 0; i < count; ++i) {
1099    Object* obj = objects[i];
1100    // Handle large objects.
1101    if (!large_mark_objects->Test(obj)) {
1102      ++freed_large_objects;
1103      freed_large_object_bytes += large_object_space->Free(self, obj);
1104    }
1105  }
1106  timings_.EndSplit();
1107
1108  timings_.StartSplit("RecordFree");
1109  VLOG(heap) << "Freed " << freed_objects << "/" << count
1110             << " objects with size " << PrettySize(freed_bytes);
1111  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1112  freed_objects_.FetchAndAdd(freed_objects);
1113  freed_large_objects_.FetchAndAdd(freed_large_objects);
1114  freed_bytes_.FetchAndAdd(freed_bytes);
1115  freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes);
1116  timings_.EndSplit();
1117
1118  timings_.StartSplit("ResetStack");
1119  allocations->Reset();
1120  timings_.EndSplit();
1121}
1122
1123void MarkSweep::Sweep(bool swap_bitmaps) {
1124  DCHECK(mark_stack_->IsEmpty());
1125  TimingLogger::ScopedSplit("Sweep", &timings_);
1126  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1127    if (space->IsContinuousMemMapAllocSpace()) {
1128      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1129      TimingLogger::ScopedSplit split(
1130          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
1131      size_t freed_objects = 0;
1132      size_t freed_bytes = 0;
1133      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1134      heap_->RecordFree(freed_objects, freed_bytes);
1135      freed_objects_.FetchAndAdd(freed_objects);
1136      freed_bytes_.FetchAndAdd(freed_bytes);
1137    }
1138  }
1139  SweepLargeObjects(swap_bitmaps);
1140}
1141
1142void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1143  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1144  size_t freed_objects = 0;
1145  size_t freed_bytes = 0;
1146  GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1147  freed_large_objects_.FetchAndAdd(freed_objects);
1148  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
1149  GetHeap()->RecordFree(freed_objects, freed_bytes);
1150}
1151
1152// Process the "referent" field in a java.lang.ref.Reference.  If the
1153// referent has not yet been marked, put it on the appropriate list in
1154// the heap for later processing.
1155void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1156  DCHECK(klass != nullptr);
1157  DCHECK(klass->IsReferenceClass());
1158  DCHECK(obj != NULL);
1159  heap_->DelayReferenceReferent(klass, obj, IsMarkedCallback, this);
1160}
1161
1162class MarkObjectVisitor {
1163 public:
1164  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1165
1166  // TODO: Fixme when anotatalysis works with visitors.
1167  void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
1168                  bool /* is_static */) const ALWAYS_INLINE
1169      NO_THREAD_SAFETY_ANALYSIS {
1170    if (kCheckLocks) {
1171      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1172      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1173    }
1174    mark_sweep_->MarkObject(ref);
1175  }
1176
1177 private:
1178  MarkSweep* const mark_sweep_;
1179};
1180
1181// Scans an object reference.  Determines the type of the reference
1182// and dispatches to a specialized scanning routine.
1183void MarkSweep::ScanObject(Object* obj) {
1184  MarkObjectVisitor visitor(this);
1185  ScanObjectVisit(obj, visitor);
1186}
1187
1188void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1189  Thread* self = Thread::Current();
1190  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1191  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1192                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1193  CHECK_GT(chunk_size, 0U);
1194  // Split the current mark stack up into work tasks.
1195  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1196    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1197    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
1198                                                        const_cast<const mirror::Object**>(it)));
1199    it += delta;
1200  }
1201  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1202  thread_pool->StartWorkers(self);
1203  thread_pool->Wait(self, true, true);
1204  thread_pool->StopWorkers(self);
1205  mark_stack_->Reset();
1206  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1207}
1208
1209// Scan anything that's on the mark stack.
1210void MarkSweep::ProcessMarkStack(bool paused) {
1211  timings_.StartSplit("ProcessMarkStack");
1212  size_t thread_count = GetThreadCount(paused);
1213  if (kParallelProcessMarkStack && thread_count > 1 &&
1214      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1215    ProcessMarkStackParallel(thread_count);
1216  } else {
1217    // TODO: Tune this.
1218    static const size_t kFifoSize = 4;
1219    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1220    for (;;) {
1221      Object* obj = NULL;
1222      if (kUseMarkStackPrefetch) {
1223        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1224          Object* obj = mark_stack_->PopBack();
1225          DCHECK(obj != NULL);
1226          __builtin_prefetch(obj);
1227          prefetch_fifo.push_back(obj);
1228        }
1229        if (prefetch_fifo.empty()) {
1230          break;
1231        }
1232        obj = prefetch_fifo.front();
1233        prefetch_fifo.pop_front();
1234      } else {
1235        if (mark_stack_->IsEmpty()) {
1236          break;
1237        }
1238        obj = mark_stack_->PopBack();
1239      }
1240      DCHECK(obj != NULL);
1241      ScanObject(obj);
1242    }
1243  }
1244  timings_.EndSplit();
1245}
1246
1247inline bool MarkSweep::IsMarked(const Object* object) const
1248    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1249  if (IsImmune(object)) {
1250    return true;
1251  }
1252  DCHECK(current_mark_bitmap_ != NULL);
1253  if (current_mark_bitmap_->HasAddress(object)) {
1254    return current_mark_bitmap_->Test(object);
1255  }
1256  return heap_->GetMarkBitmap()->Test(object);
1257}
1258
1259void MarkSweep::FinishPhase() {
1260  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1261  // Can't enqueue references if we hold the mutator lock.
1262  Heap* heap = GetHeap();
1263  timings_.NewSplit("PostGcVerification");
1264  heap->PostGcVerification(this);
1265
1266  timings_.NewSplit("RequestHeapTrim");
1267  heap->RequestHeapTrim();
1268
1269  // Update the cumulative statistics
1270  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1271  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1272
1273  // Ensure that the mark stack is empty.
1274  CHECK(mark_stack_->IsEmpty());
1275
1276  if (kCountScannedTypes) {
1277    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1278             << " other=" << other_count_;
1279  }
1280
1281  if (kCountTasks) {
1282    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1283  }
1284
1285  if (kMeasureOverhead) {
1286    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1287  }
1288
1289  if (kProfileLargeObjects) {
1290    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1291  }
1292
1293  if (kCountClassesMarked) {
1294    VLOG(gc) << "Classes marked " << classes_marked_;
1295  }
1296
1297  if (kCountJavaLangRefs) {
1298    VLOG(gc) << "References scanned " << reference_count_;
1299  }
1300
1301  // Update the cumulative loggers.
1302  cumulative_timings_.Start();
1303  cumulative_timings_.AddLogger(timings_);
1304  cumulative_timings_.End();
1305
1306  // Clear all of the spaces' mark bitmaps.
1307  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1308    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
1309    if (bitmap != nullptr &&
1310        space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1311      bitmap->Clear();
1312    }
1313  }
1314  mark_stack_->Reset();
1315
1316  // Reset the marked large objects.
1317  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1318  large_objects->GetMarkObjects()->Clear();
1319}
1320
1321}  // namespace collector
1322}  // namespace gc
1323}  // namespace art
1324