mark_sweep.cc revision b0fa5dc7769c1e054032f39de0a3f6d6dd06f8cf
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap-inl.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "mark_sweep-inl.h"
38#include "mirror/art_field-inl.h"
39#include "mirror/object-inl.h"
40#include "runtime.h"
41#include "scoped_thread_state_change.h"
42#include "thread-inl.h"
43#include "thread_list.h"
44
45using ::art::mirror::ArtField;
46using ::art::mirror::Class;
47using ::art::mirror::Object;
48using ::art::mirror::ObjectArray;
49
50namespace art {
51namespace gc {
52namespace collector {
53
54// Performance options.
55static constexpr bool kUseRecursiveMark = false;
56static constexpr bool kUseMarkStackPrefetch = true;
57static constexpr size_t kSweepArrayChunkFreeSize = 1024;
58static constexpr bool kPreCleanCards = true;
59
60// Parallelism options.
61static constexpr bool kParallelCardScan = true;
62static constexpr bool kParallelRecursiveMark = true;
63// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
64// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
65// having this can add overhead in ProcessReferences since we may end up doing many calls of
66// ProcessMarkStack with very small mark stacks.
67static constexpr size_t kMinimumParallelMarkStackSize = 128;
68static constexpr bool kParallelProcessMarkStack = true;
69
70// Profiling and information flags.
71static constexpr bool kProfileLargeObjects = false;
72static constexpr bool kMeasureOverhead = false;
73static constexpr bool kCountTasks = false;
74static constexpr bool kCountJavaLangRefs = false;
75static constexpr bool kCountMarkedObjects = false;
76
77// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
78static constexpr bool kCheckLocks = kDebugLocking;
79static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
80
81// If true, revoke the rosalloc thread-local buffers at the
82// checkpoint, as opposed to during the pause.
83static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
84
85void MarkSweep::BindBitmaps() {
86  timings_.StartSplit("BindBitmaps");
87  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
88  // Mark all of the spaces we never collect as immune.
89  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
90    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
91      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
92    }
93  }
94  timings_.EndSplit();
95}
96
97MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
98    : GarbageCollector(heap,
99                       name_prefix +
100                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
101      gc_barrier_(new Barrier(0)),
102      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
103      is_concurrent_(is_concurrent) {
104}
105
106void MarkSweep::InitializePhase() {
107  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
108  mark_stack_ = heap_->mark_stack_.get();
109  DCHECK(mark_stack_ != nullptr);
110  immune_region_.Reset();
111  class_count_ = 0;
112  array_count_ = 0;
113  other_count_ = 0;
114  large_object_test_ = 0;
115  large_object_mark_ = 0;
116  overhead_time_ = 0;
117  work_chunks_created_ = 0;
118  work_chunks_deleted_ = 0;
119  reference_count_ = 0;
120  mark_null_count_ = 0;
121  mark_immune_count_ = 0;
122  mark_fastpath_count_ = 0;
123  mark_slowpath_count_ = 0;
124  {
125    // TODO: I don't think we should need heap bitmap lock to get the mark bitmap.
126    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
127    mark_bitmap_ = heap_->GetMarkBitmap();
128  }
129  if (!clear_soft_references_) {
130    // Always clear soft references if a non-sticky collection.
131    clear_soft_references_ = GetGcType() != collector::kGcTypeSticky;
132  }
133}
134
135void MarkSweep::RunPhases() {
136  Thread* self = Thread::Current();
137  InitializePhase();
138  Locks::mutator_lock_->AssertNotHeld(self);
139  if (IsConcurrent()) {
140    GetHeap()->PreGcVerification(this);
141    {
142      ReaderMutexLock mu(self, *Locks::mutator_lock_);
143      MarkingPhase();
144    }
145    ScopedPause pause(this);
146    GetHeap()->PrePauseRosAllocVerification(this);
147    PausePhase();
148    RevokeAllThreadLocalBuffers();
149  } else {
150    ScopedPause pause(this);
151    GetHeap()->PreGcVerificationPaused(this);
152    MarkingPhase();
153    GetHeap()->PrePauseRosAllocVerification(this);
154    PausePhase();
155    RevokeAllThreadLocalBuffers();
156  }
157  {
158    // Sweeping always done concurrently, even for non concurrent mark sweep.
159    ReaderMutexLock mu(self, *Locks::mutator_lock_);
160    ReclaimPhase();
161  }
162  GetHeap()->PostGcVerification(this);
163  FinishPhase();
164}
165
166void MarkSweep::ProcessReferences(Thread* self) {
167  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
168  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
169  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
170                               &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
171}
172
173void MarkSweep::PreProcessReferences() {
174  if (IsConcurrent()) {
175    // No reason to do this for non-concurrent GC since pre processing soft references only helps
176    // pauses.
177    timings_.NewSplit("PreProcessReferences");
178    GetHeap()->ProcessSoftReferences(timings_, clear_soft_references_, &IsMarkedCallback,
179                                     &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
180  }
181}
182
183void MarkSweep::PausePhase() {
184  TimingLogger::ScopedSplit split("(Paused)PausePhase", &timings_);
185  Thread* self = Thread::Current();
186  Locks::mutator_lock_->AssertExclusiveHeld(self);
187  if (IsConcurrent()) {
188    // Handle the dirty objects if we are a concurrent GC.
189    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
190    // Re-mark root set.
191    ReMarkRoots();
192    // Scan dirty objects, this is only required if we are not doing concurrent GC.
193    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
194  }
195  ProcessReferences(self);
196  {
197    TimingLogger::ScopedSplit split("SwapStacks", &timings_);
198    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
199    heap_->SwapStacks(self);
200    live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
201    // Need to revoke all the thread local allocation stacks since we just swapped the allocation
202    // stacks and don't want anybody to allocate into the live stack.
203    RevokeAllThreadLocalAllocationStacks(self);
204  }
205  timings_.StartSplit("PreSweepingGcVerification");
206  heap_->PreSweepingGcVerification(this);
207  timings_.EndSplit();
208  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
209  // weak before we sweep them. Since this new system weak may not be marked, the GC may
210  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
211  // reference to a string that is about to be swept.
212  Runtime::Current()->DisallowNewSystemWeaks();
213}
214
215void MarkSweep::PreCleanCards() {
216  // Don't do this for non concurrent GCs since they don't have any dirty cards.
217  if (kPreCleanCards && IsConcurrent()) {
218    Thread* self = Thread::Current();
219    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
220    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
221    heap_->ProcessCards(timings_, false);
222    // The checkpoint root marking is required to avoid a race condition which occurs if the
223    // following happens during a reference write:
224    // 1. mutator dirties the card (write barrier)
225    // 2. GC ages the card (the above ProcessCards call)
226    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
227    // 4. mutator writes the value (corresponding to the write barrier in 1.)
228    // This causes the GC to age the card but not necessarily mark the reference which the mutator
229    // wrote into the object stored in the card.
230    // Having the checkpoint fixes this issue since it ensures that the card mark and the
231    // reference write are visible to the GC before the card is scanned (this is due to locks being
232    // acquired / released in the checkpoint code).
233    // The other roots are also marked to help reduce the pause.
234    MarkRootsCheckpoint(self, false);
235    MarkNonThreadRoots();
236    MarkConcurrentRoots(
237        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
238    // Process the newly aged cards.
239    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
240    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
241    // in the next GC.
242  }
243}
244
245void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
246  if (kUseThreadLocalAllocationStack) {
247    timings_.NewSplit("RevokeAllThreadLocalAllocationStacks");
248    Locks::mutator_lock_->AssertExclusiveHeld(self);
249    heap_->RevokeAllThreadLocalAllocationStacks(self);
250  }
251}
252
253void MarkSweep::MarkingPhase() {
254  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
255  Thread* self = Thread::Current();
256
257  BindBitmaps();
258  FindDefaultSpaceBitmap();
259
260  // Process dirty cards and add dirty cards to mod union tables.
261  heap_->ProcessCards(timings_, false);
262
263  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
264  MarkRoots(self);
265  MarkReachableObjects();
266  // Pre-clean dirtied cards to reduce pauses.
267  PreCleanCards();
268  PreProcessReferences();
269}
270
271void MarkSweep::UpdateAndMarkModUnion() {
272  for (const auto& space : heap_->GetContinuousSpaces()) {
273    if (immune_region_.ContainsSpace(space)) {
274      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
275          "UpdateAndMarkImageModUnionTable";
276      TimingLogger::ScopedSplit split(name, &timings_);
277      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
278      CHECK(mod_union_table != nullptr);
279      mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
280    }
281  }
282}
283
284void MarkSweep::MarkReachableObjects() {
285  UpdateAndMarkModUnion();
286  // Recursively mark all the non-image bits set in the mark bitmap.
287  RecursiveMark();
288}
289
290void MarkSweep::ReclaimPhase() {
291  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
292  Thread* self = Thread::Current();
293  SweepSystemWeaks(self);
294  Runtime::Current()->AllowNewSystemWeaks();
295  {
296    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
297
298    // Reclaim unmarked objects.
299    Sweep(false);
300
301    // Swap the live and mark bitmaps for each space which we modified space. This is an
302    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
303    // bitmaps.
304    timings_.StartSplit("SwapBitmaps");
305    SwapBitmaps();
306    timings_.EndSplit();
307
308    // Unbind the live and mark bitmaps.
309    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
310    GetHeap()->UnBindBitmaps();
311  }
312}
313
314void MarkSweep::FindDefaultSpaceBitmap() {
315  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
316  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
317    accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
318    // We want to have the main space instead of non moving if possible.
319    if (bitmap != nullptr &&
320        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
321      current_space_bitmap_ = bitmap;
322      // If we are not the non moving space exit the loop early since this will be good enough.
323      if (space != heap_->GetNonMovingSpace()) {
324        break;
325      }
326    }
327  }
328  if (current_space_bitmap_ == nullptr) {
329    heap_->DumpSpaces();
330    LOG(FATAL) << "Could not find a default mark bitmap";
331  }
332}
333
334void MarkSweep::ExpandMarkStack() {
335  ResizeMarkStack(mark_stack_->Capacity() * 2);
336}
337
338void MarkSweep::ResizeMarkStack(size_t new_size) {
339  // Rare case, no need to have Thread::Current be a parameter.
340  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
341    // Someone else acquired the lock and expanded the mark stack before us.
342    return;
343  }
344  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
345  CHECK_LE(mark_stack_->Size(), new_size);
346  mark_stack_->Resize(new_size);
347  for (const auto& obj : temp) {
348    mark_stack_->PushBack(obj);
349  }
350}
351
352inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
353  DCHECK(obj != nullptr);
354  if (MarkObjectParallel(obj)) {
355    MutexLock mu(Thread::Current(), mark_stack_lock_);
356    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
357      ExpandMarkStack();
358    }
359    // The object must be pushed on to the mark stack.
360    mark_stack_->PushBack(obj);
361  }
362}
363
364mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
365  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
366  mark_sweep->MarkObject(obj);
367  return obj;
368}
369
370void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
371  reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
372}
373
374class MarkSweepMarkObjectSlowPath {
375 public:
376  explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {
377  }
378
379  void operator()(const Object* obj) const ALWAYS_INLINE {
380    if (kProfileLargeObjects) {
381      // TODO: Differentiate between marking and testing somehow.
382      ++mark_sweep_->large_object_test_;
383      ++mark_sweep_->large_object_mark_;
384    }
385    space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
386    if (UNLIKELY(!IsAligned<kPageSize>(obj) ||
387                 (kIsDebugBuild && !large_object_space->Contains(obj)))) {
388      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
389      LOG(ERROR) << "Attempting see if it's a bad root";
390      mark_sweep_->VerifyRoots();
391      LOG(FATAL) << "Can't mark invalid object";
392    }
393  }
394
395 private:
396  MarkSweep* const mark_sweep_;
397};
398
399inline void MarkSweep::MarkObjectNonNull(Object* obj) {
400  DCHECK(obj != nullptr);
401  if (kUseBakerOrBrooksReadBarrier) {
402    // Verify all the objects have the correct pointer installed.
403    obj->AssertReadBarrierPointer();
404  }
405  if (immune_region_.ContainsObject(obj)) {
406    if (kCountMarkedObjects) {
407      ++mark_immune_count_;
408    }
409    DCHECK(mark_bitmap_->Test(obj));
410  } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
411    if (kCountMarkedObjects) {
412      ++mark_fastpath_count_;
413    }
414    if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
415      PushOnMarkStack(obj);  // This object was not previously marked.
416    }
417  } else {
418    if (kCountMarkedObjects) {
419      ++mark_slowpath_count_;
420    }
421    MarkSweepMarkObjectSlowPath visitor(this);
422    // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
423    // will check again.
424    if (!mark_bitmap_->Set(obj, visitor)) {
425      PushOnMarkStack(obj);  // Was not already marked, push.
426    }
427  }
428}
429
430inline void MarkSweep::PushOnMarkStack(Object* obj) {
431  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
432    // Lock is not needed but is here anyways to please annotalysis.
433    MutexLock mu(Thread::Current(), mark_stack_lock_);
434    ExpandMarkStack();
435  }
436  // The object must be pushed on to the mark stack.
437  mark_stack_->PushBack(obj);
438}
439
440inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
441  DCHECK(obj != nullptr);
442  if (kUseBakerOrBrooksReadBarrier) {
443    // Verify all the objects have the correct pointer installed.
444    obj->AssertReadBarrierPointer();
445  }
446  if (immune_region_.ContainsObject(obj)) {
447    DCHECK(IsMarked(obj));
448    return false;
449  }
450  // Try to take advantage of locality of references within a space, failing this find the space
451  // the hard way.
452  accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
453  if (LIKELY(object_bitmap->HasAddress(obj))) {
454    return !object_bitmap->AtomicTestAndSet(obj);
455  }
456  MarkSweepMarkObjectSlowPath visitor(this);
457  return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
458}
459
460// Used to mark objects when processing the mark stack. If an object is null, it is not marked.
461inline void MarkSweep::MarkObject(Object* obj) {
462  if (obj != nullptr) {
463    MarkObjectNonNull(obj);
464  } else if (kCountMarkedObjects) {
465    ++mark_null_count_;
466  }
467}
468
469void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/,
470                                         RootType /*root_type*/) {
471  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
472}
473
474void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/,
475                                 RootType /*root_type*/) {
476  CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
477}
478
479void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
480                                 RootType /*root_type*/) {
481  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
482}
483
484void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
485                                   const StackVisitor* visitor, RootType root_type) {
486  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor, root_type);
487}
488
489void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor,
490                           RootType root_type) {
491  // See if the root is on any space bitmap.
492  if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
493    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
494    if (!large_object_space->Contains(root)) {
495      LOG(ERROR) << "Found invalid root: " << root << " with type " << root_type;
496      if (visitor != NULL) {
497        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
498      }
499    }
500  }
501}
502
503void MarkSweep::VerifyRoots() {
504  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
505}
506
507void MarkSweep::MarkRoots(Thread* self) {
508  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
509    // If we exclusively hold the mutator lock, all threads must be suspended.
510    timings_.StartSplit("MarkRoots");
511    Runtime::Current()->VisitRoots(MarkRootCallback, this);
512    timings_.EndSplit();
513    RevokeAllThreadLocalAllocationStacks(self);
514  } else {
515    MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
516    // At this point the live stack should no longer have any mutators which push into it.
517    MarkNonThreadRoots();
518    MarkConcurrentRoots(
519        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
520  }
521}
522
523void MarkSweep::MarkNonThreadRoots() {
524  timings_.StartSplit("MarkNonThreadRoots");
525  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
526  timings_.EndSplit();
527}
528
529void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
530  timings_.StartSplit("MarkConcurrentRoots");
531  // Visit all runtime roots and clear dirty flags.
532  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
533  timings_.EndSplit();
534}
535
536class ScanObjectVisitor {
537 public:
538  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
539      : mark_sweep_(mark_sweep) {}
540
541  void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
542      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
543    if (kCheckLocks) {
544      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
545      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
546    }
547    mark_sweep_->ScanObject(obj);
548  }
549
550 private:
551  MarkSweep* const mark_sweep_;
552};
553
554class DelayReferenceReferentVisitor {
555 public:
556  explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
557  }
558
559  void operator()(mirror::Class* klass, mirror::Reference* ref) const
560      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
561      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
562    collector_->DelayReferenceReferent(klass, ref);
563  }
564
565 private:
566  MarkSweep* const collector_;
567};
568
569template <bool kUseFinger = false>
570class MarkStackTask : public Task {
571 public:
572  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
573                Object** mark_stack)
574      : mark_sweep_(mark_sweep),
575        thread_pool_(thread_pool),
576        mark_stack_pos_(mark_stack_size) {
577    // We may have to copy part of an existing mark stack when another mark stack overflows.
578    if (mark_stack_size != 0) {
579      DCHECK(mark_stack != NULL);
580      // TODO: Check performance?
581      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
582    }
583    if (kCountTasks) {
584      ++mark_sweep_->work_chunks_created_;
585    }
586  }
587
588  static const size_t kMaxSize = 1 * KB;
589
590 protected:
591  class MarkObjectParallelVisitor {
592   public:
593    explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
594                                       MarkSweep* mark_sweep) ALWAYS_INLINE
595            : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
596
597    void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
598        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
599      mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
600      if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
601        if (kUseFinger) {
602          android_memory_barrier();
603          if (reinterpret_cast<uintptr_t>(ref) >=
604              static_cast<uintptr_t>(mark_sweep_->atomic_finger_)) {
605            return;
606          }
607        }
608        chunk_task_->MarkStackPush(ref);
609      }
610    }
611
612   private:
613    MarkStackTask<kUseFinger>* const chunk_task_;
614    MarkSweep* const mark_sweep_;
615  };
616
617  class ScanObjectParallelVisitor {
618   public:
619    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
620        : chunk_task_(chunk_task) {}
621
622    // No thread safety analysis since multiple threads will use this visitor.
623    void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
624        EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
625      MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
626      MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
627      DelayReferenceReferentVisitor ref_visitor(mark_sweep);
628      mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
629    }
630
631   private:
632    MarkStackTask<kUseFinger>* const chunk_task_;
633  };
634
635  virtual ~MarkStackTask() {
636    // Make sure that we have cleared our mark stack.
637    DCHECK_EQ(mark_stack_pos_, 0U);
638    if (kCountTasks) {
639      ++mark_sweep_->work_chunks_deleted_;
640    }
641  }
642
643  MarkSweep* const mark_sweep_;
644  ThreadPool* const thread_pool_;
645  // Thread local mark stack for this task.
646  Object* mark_stack_[kMaxSize];
647  // Mark stack position.
648  size_t mark_stack_pos_;
649
650  void MarkStackPush(Object* obj) ALWAYS_INLINE {
651    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
652      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
653      mark_stack_pos_ /= 2;
654      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
655                                     mark_stack_ + mark_stack_pos_);
656      thread_pool_->AddTask(Thread::Current(), task);
657    }
658    DCHECK(obj != nullptr);
659    DCHECK_LT(mark_stack_pos_, kMaxSize);
660    mark_stack_[mark_stack_pos_++] = obj;
661  }
662
663  virtual void Finalize() {
664    delete this;
665  }
666
667  // Scans all of the objects
668  virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
669      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
670    ScanObjectParallelVisitor visitor(this);
671    // TODO: Tune this.
672    static const size_t kFifoSize = 4;
673    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
674    for (;;) {
675      Object* obj = nullptr;
676      if (kUseMarkStackPrefetch) {
677        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
678          Object* obj = mark_stack_[--mark_stack_pos_];
679          DCHECK(obj != nullptr);
680          __builtin_prefetch(obj);
681          prefetch_fifo.push_back(obj);
682        }
683        if (UNLIKELY(prefetch_fifo.empty())) {
684          break;
685        }
686        obj = prefetch_fifo.front();
687        prefetch_fifo.pop_front();
688      } else {
689        if (UNLIKELY(mark_stack_pos_ == 0)) {
690          break;
691        }
692        obj = mark_stack_[--mark_stack_pos_];
693      }
694      DCHECK(obj != nullptr);
695      visitor(obj);
696    }
697  }
698};
699
700class CardScanTask : public MarkStackTask<false> {
701 public:
702  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
703               accounting::ContinuousSpaceBitmap* bitmap,
704               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
705               Object** mark_stack_obj)
706      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
707        bitmap_(bitmap),
708        begin_(begin),
709        end_(end),
710        minimum_age_(minimum_age) {
711  }
712
713 protected:
714  accounting::ContinuousSpaceBitmap* const bitmap_;
715  byte* const begin_;
716  byte* const end_;
717  const byte minimum_age_;
718
719  virtual void Finalize() {
720    delete this;
721  }
722
723  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
724    ScanObjectParallelVisitor visitor(this);
725    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
726    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
727    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
728        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
729    // Finish by emptying our local mark stack.
730    MarkStackTask::Run(self);
731  }
732};
733
734size_t MarkSweep::GetThreadCount(bool paused) const {
735  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
736    return 1;
737  }
738  if (paused) {
739    return heap_->GetParallelGCThreadCount() + 1;
740  } else {
741    return heap_->GetConcGCThreadCount() + 1;
742  }
743}
744
745void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
746  accounting::CardTable* card_table = GetHeap()->GetCardTable();
747  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
748  size_t thread_count = GetThreadCount(paused);
749  // The parallel version with only one thread is faster for card scanning, TODO: fix.
750  if (kParallelCardScan && thread_count > 1) {
751    Thread* self = Thread::Current();
752    // Can't have a different split for each space since multiple spaces can have their cards being
753    // scanned at the same time.
754    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
755    // Try to take some of the mark stack since we can pass this off to the worker tasks.
756    Object** mark_stack_begin = mark_stack_->Begin();
757    Object** mark_stack_end = mark_stack_->End();
758    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
759    // Estimated number of work tasks we will create.
760    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
761    DCHECK_NE(mark_stack_tasks, 0U);
762    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
763                                             mark_stack_size / mark_stack_tasks + 1);
764    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
765      if (space->GetMarkBitmap() == nullptr) {
766        continue;
767      }
768      byte* card_begin = space->Begin();
769      byte* card_end = space->End();
770      // Align up the end address. For example, the image space's end
771      // may not be card-size-aligned.
772      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
773      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
774      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
775      // Calculate how many bytes of heap we will scan,
776      const size_t address_range = card_end - card_begin;
777      // Calculate how much address range each task gets.
778      const size_t card_delta = RoundUp(address_range / thread_count + 1,
779                                        accounting::CardTable::kCardSize);
780      // Create the worker tasks for this space.
781      while (card_begin != card_end) {
782        // Add a range of cards.
783        size_t addr_remaining = card_end - card_begin;
784        size_t card_increment = std::min(card_delta, addr_remaining);
785        // Take from the back of the mark stack.
786        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
787        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
788        mark_stack_end -= mark_stack_increment;
789        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
790        DCHECK_EQ(mark_stack_end, mark_stack_->End());
791        // Add the new task to the thread pool.
792        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
793                                      card_begin + card_increment, minimum_age,
794                                      mark_stack_increment, mark_stack_end);
795        thread_pool->AddTask(self, task);
796        card_begin += card_increment;
797      }
798    }
799
800    // Note: the card scan below may dirty new cards (and scan them)
801    // as a side effect when a Reference object is encountered and
802    // queued during the marking. See b/11465268.
803    thread_pool->SetMaxActiveWorkers(thread_count - 1);
804    thread_pool->StartWorkers(self);
805    thread_pool->Wait(self, true, true);
806    thread_pool->StopWorkers(self);
807    timings_.EndSplit();
808  } else {
809    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
810      if (space->GetMarkBitmap() != nullptr) {
811        // Image spaces are handled properly since live == marked for them.
812        switch (space->GetGcRetentionPolicy()) {
813          case space::kGcRetentionPolicyNeverCollect:
814            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
815                "ScanGrayImageSpaceObjects");
816            break;
817          case space::kGcRetentionPolicyFullCollect:
818            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
819                "ScanGrayZygoteSpaceObjects");
820            break;
821          case space::kGcRetentionPolicyAlwaysCollect:
822            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
823                "ScanGrayAllocSpaceObjects");
824            break;
825          }
826        ScanObjectVisitor visitor(this);
827        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
828        timings_.EndSplit();
829      }
830    }
831  }
832}
833
834class RecursiveMarkTask : public MarkStackTask<false> {
835 public:
836  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
837                    accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
838      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
839        bitmap_(bitmap),
840        begin_(begin),
841        end_(end) {
842  }
843
844 protected:
845  accounting::ContinuousSpaceBitmap* const bitmap_;
846  const uintptr_t begin_;
847  const uintptr_t end_;
848
849  virtual void Finalize() {
850    delete this;
851  }
852
853  // Scans all of the objects
854  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
855    ScanObjectParallelVisitor visitor(this);
856    bitmap_->VisitMarkedRange(begin_, end_, visitor);
857    // Finish by emptying our local mark stack.
858    MarkStackTask::Run(self);
859  }
860};
861
862// Populates the mark stack based on the set of marked objects and
863// recursively marks until the mark stack is emptied.
864void MarkSweep::RecursiveMark() {
865  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
866  // RecursiveMark will build the lists of known instances of the Reference classes. See
867  // DelayReferenceReferent for details.
868  if (kUseRecursiveMark) {
869    const bool partial = GetGcType() == kGcTypePartial;
870    ScanObjectVisitor scan_visitor(this);
871    auto* self = Thread::Current();
872    ThreadPool* thread_pool = heap_->GetThreadPool();
873    size_t thread_count = GetThreadCount(false);
874    const bool parallel = kParallelRecursiveMark && thread_count > 1;
875    mark_stack_->Reset();
876    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
877      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
878          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
879        current_space_bitmap_ = space->GetMarkBitmap();
880        if (current_space_bitmap_ == nullptr) {
881          continue;
882        }
883        if (parallel) {
884          // We will use the mark stack the future.
885          // CHECK(mark_stack_->IsEmpty());
886          // This function does not handle heap end increasing, so we must use the space end.
887          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
888          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
889          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
890
891          // Create a few worker tasks.
892          const size_t n = thread_count * 2;
893          while (begin != end) {
894            uintptr_t start = begin;
895            uintptr_t delta = (end - begin) / n;
896            delta = RoundUp(delta, KB);
897            if (delta < 16 * KB) delta = end - begin;
898            begin += delta;
899            auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
900                                               begin);
901            thread_pool->AddTask(self, task);
902          }
903          thread_pool->SetMaxActiveWorkers(thread_count - 1);
904          thread_pool->StartWorkers(self);
905          thread_pool->Wait(self, true, true);
906          thread_pool->StopWorkers(self);
907        } else {
908          // This function does not handle heap end increasing, so we must use the space end.
909          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
910          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
911          current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
912        }
913      }
914    }
915  }
916  ProcessMarkStack(false);
917}
918
919mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
920  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
921    return object;
922  }
923  return nullptr;
924}
925
926void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
927  ScanGrayObjects(paused, minimum_age);
928  ProcessMarkStack(paused);
929}
930
931void MarkSweep::ReMarkRoots() {
932  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
933  timings_.StartSplit("(Paused)ReMarkRoots");
934  Runtime::Current()->VisitRoots(
935      MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
936                                                          kVisitRootFlagStopLoggingNewRoots |
937                                                          kVisitRootFlagClearRootLog));
938  timings_.EndSplit();
939  if (kVerifyRootsMarked) {
940    timings_.StartSplit("(Paused)VerifyRoots");
941    Runtime::Current()->VisitRoots(VerifyRootMarked, this);
942    timings_.EndSplit();
943  }
944}
945
946void MarkSweep::SweepSystemWeaks(Thread* self) {
947  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
948  timings_.StartSplit("SweepSystemWeaks");
949  Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
950  timings_.EndSplit();
951}
952
953mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
954  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
955  // We don't actually want to sweep the object, so lets return "marked"
956  return obj;
957}
958
959void MarkSweep::VerifyIsLive(const Object* obj) {
960  if (!heap_->GetLiveBitmap()->Test(obj)) {
961    if (std::find(heap_->allocation_stack_->Begin(), heap_->allocation_stack_->End(), obj) ==
962        heap_->allocation_stack_->End()) {
963      // Object not found!
964      heap_->DumpSpaces();
965      LOG(FATAL) << "Found dead object " << obj;
966    }
967  }
968}
969
970void MarkSweep::VerifySystemWeaks() {
971  // Verify system weaks, uses a special object visitor which returns the input object.
972  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
973}
974
975class CheckpointMarkThreadRoots : public Closure {
976 public:
977  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
978                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
979      : mark_sweep_(mark_sweep),
980        revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
981            revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
982  }
983
984  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
985    ATRACE_BEGIN("Marking thread roots");
986    // Note: self is not necessarily equal to thread since thread may be suspended.
987    Thread* self = Thread::Current();
988    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
989        << thread->GetState() << " thread " << thread << " self " << self;
990    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
991    ATRACE_END();
992    if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
993      ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
994      mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
995      ATRACE_END();
996    }
997    mark_sweep_->GetBarrier().Pass(self);
998  }
999
1000 private:
1001  MarkSweep* const mark_sweep_;
1002  const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
1003};
1004
1005void MarkSweep::MarkRootsCheckpoint(Thread* self,
1006                                    bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1007  CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
1008  timings_.StartSplit("MarkRootsCheckpoint");
1009  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1010  // Request the check point is run on all threads returning a count of the threads that must
1011  // run through the barrier including self.
1012  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1013  // Release locks then wait for all mutator threads to pass the barrier.
1014  // TODO: optimize to not release locks when there are no threads to wait for.
1015  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1016  Locks::mutator_lock_->SharedUnlock(self);
1017  {
1018    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1019    gc_barrier_->Increment(self, barrier_count);
1020  }
1021  Locks::mutator_lock_->SharedLock(self);
1022  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1023  timings_.EndSplit();
1024}
1025
1026void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1027  timings_.StartSplit("SweepArray");
1028  Thread* self = Thread::Current();
1029  mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
1030  size_t chunk_free_pos = 0;
1031  size_t freed_bytes = 0;
1032  size_t freed_large_object_bytes = 0;
1033  size_t freed_objects = 0;
1034  size_t freed_large_objects = 0;
1035  // How many objects are left in the array, modified after each space is swept.
1036  Object** objects = allocations->Begin();
1037  size_t count = allocations->Size();
1038  // Change the order to ensure that the non-moving space last swept as an optimization.
1039  std::vector<space::ContinuousSpace*> sweep_spaces;
1040  space::ContinuousSpace* non_moving_space = nullptr;
1041  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1042    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1043        space->GetLiveBitmap() != nullptr) {
1044      if (space == heap_->GetNonMovingSpace()) {
1045        non_moving_space = space;
1046      } else {
1047        sweep_spaces.push_back(space);
1048      }
1049    }
1050  }
1051  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1052  // the other alloc spaces as an optimization.
1053  if (non_moving_space != nullptr) {
1054    sweep_spaces.push_back(non_moving_space);
1055  }
1056  // Start by sweeping the continuous spaces.
1057  for (space::ContinuousSpace* space : sweep_spaces) {
1058    space::AllocSpace* alloc_space = space->AsAllocSpace();
1059    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1060    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1061    if (swap_bitmaps) {
1062      std::swap(live_bitmap, mark_bitmap);
1063    }
1064    Object** out = objects;
1065    for (size_t i = 0; i < count; ++i) {
1066      Object* obj = objects[i];
1067      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1068        continue;
1069      }
1070      if (space->HasAddress(obj)) {
1071        // This object is in the space, remove it from the array and add it to the sweep buffer
1072        // if needed.
1073        if (!mark_bitmap->Test(obj)) {
1074          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1075            timings_.StartSplit("FreeList");
1076            freed_objects += chunk_free_pos;
1077            freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1078            timings_.EndSplit();
1079            chunk_free_pos = 0;
1080          }
1081          chunk_free_buffer[chunk_free_pos++] = obj;
1082        }
1083      } else {
1084        *(out++) = obj;
1085      }
1086    }
1087    if (chunk_free_pos > 0) {
1088      timings_.StartSplit("FreeList");
1089      freed_objects += chunk_free_pos;
1090      freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1091      timings_.EndSplit();
1092      chunk_free_pos = 0;
1093    }
1094    // All of the references which space contained are no longer in the allocation stack, update
1095    // the count.
1096    count = out - objects;
1097  }
1098  // Handle the large object space.
1099  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1100  accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1101  accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1102  if (swap_bitmaps) {
1103    std::swap(large_live_objects, large_mark_objects);
1104  }
1105  for (size_t i = 0; i < count; ++i) {
1106    Object* obj = objects[i];
1107    // Handle large objects.
1108    if (kUseThreadLocalAllocationStack && obj == nullptr) {
1109      continue;
1110    }
1111    if (!large_mark_objects->Test(obj)) {
1112      ++freed_large_objects;
1113      freed_large_object_bytes += large_object_space->Free(self, obj);
1114    }
1115  }
1116  timings_.EndSplit();
1117
1118  timings_.StartSplit("RecordFree");
1119  VLOG(heap) << "Freed " << freed_objects << "/" << count
1120             << " objects with size " << PrettySize(freed_bytes);
1121  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1122  freed_objects_.FetchAndAdd(freed_objects);
1123  freed_large_objects_.FetchAndAdd(freed_large_objects);
1124  freed_bytes_.FetchAndAdd(freed_bytes);
1125  freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes);
1126  timings_.EndSplit();
1127
1128  timings_.StartSplit("ResetStack");
1129  allocations->Reset();
1130  timings_.EndSplit();
1131}
1132
1133void MarkSweep::Sweep(bool swap_bitmaps) {
1134  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1135  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1136  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1137  // knowing that new allocations won't be marked as live.
1138  timings_.StartSplit("MarkStackAsLive");
1139  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1140  heap_->MarkAllocStackAsLive(live_stack);
1141  live_stack->Reset();
1142  timings_.EndSplit();
1143
1144  DCHECK(mark_stack_->IsEmpty());
1145  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1146    if (space->IsContinuousMemMapAllocSpace()) {
1147      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1148      TimingLogger::ScopedSplit split(
1149          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
1150      size_t freed_objects = 0;
1151      size_t freed_bytes = 0;
1152      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1153      heap_->RecordFree(freed_objects, freed_bytes);
1154      freed_objects_.FetchAndAdd(freed_objects);
1155      freed_bytes_.FetchAndAdd(freed_bytes);
1156    }
1157  }
1158  SweepLargeObjects(swap_bitmaps);
1159}
1160
1161void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1162  TimingLogger::ScopedSplit split("SweepLargeObjects", &timings_);
1163  size_t freed_objects = 0;
1164  size_t freed_bytes = 0;
1165  heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1166  freed_large_objects_.FetchAndAdd(freed_objects);
1167  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
1168  heap_->RecordFree(freed_objects, freed_bytes);
1169}
1170
1171// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1172// marked, put it on the appropriate list in the heap for later processing.
1173void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1174  DCHECK(klass != nullptr);
1175  if (kCountJavaLangRefs) {
1176    ++reference_count_;
1177  }
1178  heap_->DelayReferenceReferent(klass, ref, IsMarkedCallback, this);
1179}
1180
1181class MarkObjectVisitor {
1182 public:
1183  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1184  }
1185
1186  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
1187      ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1188      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1189    if (kCheckLocks) {
1190      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1191      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1192    }
1193    mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset));
1194  }
1195
1196 private:
1197  MarkSweep* const mark_sweep_;
1198};
1199
1200// Scans an object reference.  Determines the type of the reference
1201// and dispatches to a specialized scanning routine.
1202void MarkSweep::ScanObject(Object* obj) {
1203  MarkObjectVisitor mark_visitor(this);
1204  DelayReferenceReferentVisitor ref_visitor(this);
1205  ScanObjectVisit(obj, mark_visitor, ref_visitor);
1206}
1207
1208void MarkSweep::ProcessMarkStackPausedCallback(void* arg) {
1209  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(true);
1210}
1211
1212void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1213  Thread* self = Thread::Current();
1214  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1215  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1216                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1217  CHECK_GT(chunk_size, 0U);
1218  // Split the current mark stack up into work tasks.
1219  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1220    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1221    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1222    it += delta;
1223  }
1224  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1225  thread_pool->StartWorkers(self);
1226  thread_pool->Wait(self, true, true);
1227  thread_pool->StopWorkers(self);
1228  mark_stack_->Reset();
1229  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1230}
1231
1232// Scan anything that's on the mark stack.
1233void MarkSweep::ProcessMarkStack(bool paused) {
1234  timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack");
1235  size_t thread_count = GetThreadCount(paused);
1236  if (kParallelProcessMarkStack && thread_count > 1 &&
1237      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1238    ProcessMarkStackParallel(thread_count);
1239  } else {
1240    // TODO: Tune this.
1241    static const size_t kFifoSize = 4;
1242    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1243    for (;;) {
1244      Object* obj = NULL;
1245      if (kUseMarkStackPrefetch) {
1246        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1247          Object* obj = mark_stack_->PopBack();
1248          DCHECK(obj != NULL);
1249          __builtin_prefetch(obj);
1250          prefetch_fifo.push_back(obj);
1251        }
1252        if (prefetch_fifo.empty()) {
1253          break;
1254        }
1255        obj = prefetch_fifo.front();
1256        prefetch_fifo.pop_front();
1257      } else {
1258        if (mark_stack_->IsEmpty()) {
1259          break;
1260        }
1261        obj = mark_stack_->PopBack();
1262      }
1263      DCHECK(obj != nullptr);
1264      ScanObject(obj);
1265    }
1266  }
1267  timings_.EndSplit();
1268}
1269
1270inline bool MarkSweep::IsMarked(const Object* object) const
1271    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1272  if (immune_region_.ContainsObject(object)) {
1273    return true;
1274  }
1275  if (current_space_bitmap_->HasAddress(object)) {
1276    return current_space_bitmap_->Test(object);
1277  }
1278  return mark_bitmap_->Test(object);
1279}
1280
1281void MarkSweep::FinishPhase() {
1282  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1283  if (kCountScannedTypes) {
1284    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1285             << " other=" << other_count_;
1286  }
1287  if (kCountTasks) {
1288    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1289  }
1290  if (kMeasureOverhead) {
1291    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1292  }
1293  if (kProfileLargeObjects) {
1294    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1295  }
1296  if (kCountJavaLangRefs) {
1297    VLOG(gc) << "References scanned " << reference_count_;
1298  }
1299  if (kCountMarkedObjects) {
1300    VLOG(gc) << "Marked: null=" << mark_null_count_ << " immune=" <<  mark_immune_count_
1301        << " fastpath=" << mark_fastpath_count_ << " slowpath=" << mark_slowpath_count_;
1302  }
1303  CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1304  mark_stack_->Reset();
1305  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1306  heap_->ClearMarkedObjects();
1307}
1308
1309void MarkSweep::RevokeAllThreadLocalBuffers() {
1310  if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1311    // If concurrent, rosalloc thread-local buffers are revoked at the
1312    // thread checkpoint. Bump pointer space thread-local buffers must
1313    // not be in use.
1314    GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1315  } else {
1316    timings_.StartSplit("(Paused)RevokeAllThreadLocalBuffers");
1317    GetHeap()->RevokeAllThreadLocalBuffers();
1318    timings_.EndSplit();
1319  }
1320}
1321
1322}  // namespace collector
1323}  // namespace gc
1324}  // namespace art
1325