mark_sweep.cc revision c22c59ef8513b4cbbfd25073d1afbf58196b522a
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "indirect_reference_table.h"
38#include "intern_table.h"
39#include "jni_internal.h"
40#include "monitor.h"
41#include "mark_sweep-inl.h"
42#include "mirror/art_field.h"
43#include "mirror/art_field-inl.h"
44#include "mirror/class-inl.h"
45#include "mirror/class_loader.h"
46#include "mirror/dex_cache.h"
47#include "mirror/object-inl.h"
48#include "mirror/object_array.h"
49#include "mirror/object_array-inl.h"
50#include "runtime.h"
51#include "thread-inl.h"
52#include "thread_list.h"
53#include "verifier/method_verifier.h"
54
55using ::art::mirror::ArtField;
56using ::art::mirror::Class;
57using ::art::mirror::Object;
58using ::art::mirror::ObjectArray;
59
60namespace art {
61namespace gc {
62namespace collector {
63
64// Performance options.
65constexpr bool kUseRecursiveMark = false;
66constexpr bool kUseMarkStackPrefetch = true;
67constexpr size_t kSweepArrayChunkFreeSize = 1024;
68constexpr bool kPreCleanCards = true;
69
70// Parallelism options.
71constexpr bool kParallelCardScan = true;
72constexpr bool kParallelRecursiveMark = true;
73// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
74// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
75// having this can add overhead in ProcessReferences since we may end up doing many calls of
76// ProcessMarkStack with very small mark stacks.
77constexpr size_t kMinimumParallelMarkStackSize = 128;
78constexpr bool kParallelProcessMarkStack = true;
79
80// Profiling and information flags.
81constexpr bool kCountClassesMarked = false;
82constexpr bool kProfileLargeObjects = false;
83constexpr bool kMeasureOverhead = false;
84constexpr bool kCountTasks = false;
85constexpr bool kCountJavaLangRefs = false;
86
87// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
88constexpr bool kCheckLocks = kDebugLocking;
89
90void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
91  // Bind live to mark bitmap if necessary.
92  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
93    CHECK(space->IsContinuousMemMapAllocSpace());
94    space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
95  }
96
97  // Add the space to the immune region.
98  // TODO: Use space limits instead of current end_ since the end_ can be changed by dlmalloc
99  // callbacks.
100  if (immune_begin_ == NULL) {
101    DCHECK(immune_end_ == NULL);
102    SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
103                   reinterpret_cast<Object*>(space->End()));
104  } else {
105    const space::ContinuousSpace* prev_space = nullptr;
106    // Find out if the previous space is immune.
107    for (const space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
108      if (cur_space == space) {
109        break;
110      }
111      prev_space = cur_space;
112    }
113    // If previous space was immune, then extend the immune region. Relies on continuous spaces
114    // being sorted by Heap::AddContinuousSpace.
115    if (prev_space != nullptr && IsImmuneSpace(prev_space)) {
116      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
117      immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
118    }
119  }
120}
121
122bool MarkSweep::IsImmuneSpace(const space::ContinuousSpace* space) const {
123  return
124      immune_begin_ <= reinterpret_cast<Object*>(space->Begin()) &&
125      immune_end_ >= reinterpret_cast<Object*>(space->End());
126}
127
128void MarkSweep::BindBitmaps() {
129  timings_.StartSplit("BindBitmaps");
130  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
131  // Mark all of the spaces we never collect as immune.
132  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
133    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
134      ImmuneSpace(space);
135    }
136  }
137  timings_.EndSplit();
138}
139
140MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
141    : GarbageCollector(heap,
142                       name_prefix +
143                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
144      current_mark_bitmap_(NULL),
145      mark_stack_(NULL),
146      immune_begin_(NULL),
147      immune_end_(NULL),
148      live_stack_freeze_size_(0),
149      gc_barrier_(new Barrier(0)),
150      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
151      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
152      is_concurrent_(is_concurrent) {
153}
154
155void MarkSweep::InitializePhase() {
156  timings_.Reset();
157  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
158  mark_stack_ = heap_->mark_stack_.get();
159  DCHECK(mark_stack_ != nullptr);
160  SetImmuneRange(nullptr, nullptr);
161  class_count_ = 0;
162  array_count_ = 0;
163  other_count_ = 0;
164  large_object_test_ = 0;
165  large_object_mark_ = 0;
166  classes_marked_ = 0;
167  overhead_time_ = 0;
168  work_chunks_created_ = 0;
169  work_chunks_deleted_ = 0;
170  reference_count_ = 0;
171
172  FindDefaultMarkBitmap();
173
174  // Do any pre GC verification.
175  timings_.NewSplit("PreGcVerification");
176  heap_->PreGcVerification(this);
177}
178
179void MarkSweep::ProcessReferences(Thread* self) {
180  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
181  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
182  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &IsMarkedCallback,
183                               &MarkObjectCallback, &ProcessMarkStackPausedCallback, this);
184}
185
186bool MarkSweep::HandleDirtyObjectsPhase() {
187  TimingLogger::ScopedSplit split("(Paused)HandleDirtyObjectsPhase", &timings_);
188  Thread* self = Thread::Current();
189  Locks::mutator_lock_->AssertExclusiveHeld(self);
190
191  {
192    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
193
194    // Re-mark root set.
195    ReMarkRoots();
196
197    // Scan dirty objects, this is only required if we are not doing concurrent GC.
198    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
199  }
200
201  ProcessReferences(self);
202
203  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
204  if (GetHeap()->verify_missing_card_marks_ || GetHeap()->verify_pre_gc_heap_||
205      GetHeap()->verify_post_gc_heap_) {
206    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
207    // This second sweep makes sure that we don't have any objects in the live stack which point to
208    // freed objects. These cause problems since their references may be previously freed objects.
209    SweepArray(GetHeap()->allocation_stack_.get(), false);
210    // Since SweepArray() above resets the (active) allocation
211    // stack. Need to revoke the thread-local allocation stacks that
212    // point into it.
213    RevokeAllThreadLocalAllocationStacks(self);
214  }
215
216  timings_.StartSplit("PreSweepingGcVerification");
217  heap_->PreSweepingGcVerification(this);
218  timings_.EndSplit();
219
220  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
221  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
222  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
223
224  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
225  // weak before we sweep them. Since this new system weak may not be marked, the GC may
226  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
227  // reference to a string that is about to be swept.
228  Runtime::Current()->DisallowNewSystemWeaks();
229  return true;
230}
231
232bool MarkSweep::IsConcurrent() const {
233  return is_concurrent_;
234}
235
236void MarkSweep::PreCleanCards() {
237  // Don't do this for non concurrent GCs since they don't have any dirty cards.
238  if (kPreCleanCards && IsConcurrent()) {
239    Thread* self = Thread::Current();
240    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
241    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
242    heap_->ProcessCards(timings_);
243    // Required so that we see aged cards before we start scanning the cards.
244    MarkThreadRoots(self);
245    // TODO: Only mark the dirty roots.
246    MarkNonThreadRoots();
247    MarkConcurrentRoots();
248    // Process the newly aged cards.
249    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
250    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
251    // in the next GC.
252  }
253}
254
255void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
256  if (kUseThreadLocalAllocationStack) {
257    Locks::mutator_lock_->AssertExclusiveHeld(self);
258    heap_->RevokeAllThreadLocalAllocationStacks(self);
259  }
260}
261
262void MarkSweep::MarkingPhase() {
263  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
264  Thread* self = Thread::Current();
265
266  BindBitmaps();
267  FindDefaultMarkBitmap();
268
269  // Process dirty cards and add dirty cards to mod union tables.
270  heap_->ProcessCards(timings_);
271
272  // Need to do this before the checkpoint since we don't want any threads to add references to
273  // the live stack during the recursive mark.
274  timings_.NewSplit("SwapStacks");
275  heap_->SwapStacks(self);
276
277  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
278  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
279    // If we exclusively hold the mutator lock, all threads must be suspended.
280    MarkRoots();
281    RevokeAllThreadLocalAllocationStacks(self);
282  } else {
283    MarkThreadRoots(self);
284    // At this point the live stack should no longer have any mutators which push into it.
285    MarkNonThreadRoots();
286  }
287  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
288  MarkConcurrentRoots();
289  UpdateAndMarkModUnion();
290  MarkReachableObjects();
291  // Pre-clean dirtied cards to reduce pauses.
292  PreCleanCards();
293}
294
295void MarkSweep::UpdateAndMarkModUnion() {
296  for (const auto& space : heap_->GetContinuousSpaces()) {
297    if (IsImmuneSpace(space)) {
298      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
299          "UpdateAndMarkImageModUnionTable";
300      TimingLogger::ScopedSplit split(name, &timings_);
301      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
302      CHECK(mod_union_table != nullptr);
303      mod_union_table->UpdateAndMarkReferences(MarkObjectCallback, this);
304    }
305  }
306}
307
308void MarkSweep::MarkThreadRoots(Thread* self) {
309  MarkRootsCheckpoint(self);
310}
311
312void MarkSweep::MarkReachableObjects() {
313  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
314  // knowing that new allocations won't be marked as live.
315  timings_.StartSplit("MarkStackAsLive");
316  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
317  heap_->MarkAllocStackAsLive(live_stack);
318  live_stack->Reset();
319  timings_.EndSplit();
320  // Recursively mark all the non-image bits set in the mark bitmap.
321  RecursiveMark();
322}
323
324void MarkSweep::ReclaimPhase() {
325  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
326  Thread* self = Thread::Current();
327
328  if (!IsConcurrent()) {
329    ProcessReferences(self);
330  }
331
332  {
333    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
334    SweepSystemWeaks();
335  }
336
337  if (IsConcurrent()) {
338    Runtime::Current()->AllowNewSystemWeaks();
339
340    TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
341    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
342    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
343    if (!kPreCleanCards) {
344      // The allocation stack contains things allocated since the start of the GC. These may have
345      // been marked during this GC meaning they won't be eligible for reclaiming in the next
346      // sticky GC. Unmark these objects so that they are eligible for reclaiming in the next
347      // sticky GC.
348      // There is a race here which is safely handled. Another thread such as the hprof could
349      // have flushed the alloc stack after we resumed the threads. This is safe however, since
350      // reseting the allocation stack zeros it out with madvise. This means that we will either
351      // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
352      // first place.
353      // We can't do this if we pre-clean cards since we will unmark objects which are no longer on
354      // a dirty card since we aged cards during the pre-cleaning process.
355      mirror::Object** end = allocation_stack->End();
356      for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
357        const Object* obj = *it;
358        if (obj != nullptr) {
359          UnMarkObjectNonNull(obj);
360        }
361      }
362    }
363  }
364
365  {
366    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
367
368    // Reclaim unmarked objects.
369    Sweep(false);
370
371    // Swap the live and mark bitmaps for each space which we modified space. This is an
372    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
373    // bitmaps.
374    timings_.StartSplit("SwapBitmaps");
375    SwapBitmaps();
376    timings_.EndSplit();
377
378    // Unbind the live and mark bitmaps.
379    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
380    GetHeap()->UnBindBitmaps();
381  }
382}
383
384void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
385  immune_begin_ = begin;
386  immune_end_ = end;
387}
388
389void MarkSweep::FindDefaultMarkBitmap() {
390  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
391  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
392    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
393    if (bitmap != nullptr &&
394        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
395      current_mark_bitmap_ = bitmap;
396      CHECK(current_mark_bitmap_ != NULL);
397      return;
398    }
399  }
400  GetHeap()->DumpSpaces();
401  LOG(FATAL) << "Could not find a default mark bitmap";
402}
403
404void MarkSweep::ExpandMarkStack() {
405  ResizeMarkStack(mark_stack_->Capacity() * 2);
406}
407
408void MarkSweep::ResizeMarkStack(size_t new_size) {
409  // Rare case, no need to have Thread::Current be a parameter.
410  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
411    // Someone else acquired the lock and expanded the mark stack before us.
412    return;
413  }
414  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
415  CHECK_LE(mark_stack_->Size(), new_size);
416  mark_stack_->Resize(new_size);
417  for (const auto& obj : temp) {
418    mark_stack_->PushBack(obj);
419  }
420}
421
422inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
423  DCHECK(obj != NULL);
424  if (MarkObjectParallel(obj)) {
425    MutexLock mu(Thread::Current(), mark_stack_lock_);
426    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
427      ExpandMarkStack();
428    }
429    // The object must be pushed on to the mark stack.
430    mark_stack_->PushBack(const_cast<Object*>(obj));
431  }
432}
433
434mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
435  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
436  mark_sweep->MarkObject(obj);
437  return obj;
438}
439
440inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
441  DCHECK(!IsImmune(obj));
442  // Try to take advantage of locality of references within a space, failing this find the space
443  // the hard way.
444  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
445  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
446    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
447    if (LIKELY(new_bitmap != NULL)) {
448      object_bitmap = new_bitmap;
449    } else {
450      MarkLargeObject(obj, false);
451      return;
452    }
453  }
454
455  DCHECK(object_bitmap->HasAddress(obj));
456  object_bitmap->Clear(obj);
457}
458
459inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
460  DCHECK(obj != NULL);
461
462  if (IsImmune(obj)) {
463    DCHECK(IsMarked(obj));
464    return;
465  }
466
467  // Try to take advantage of locality of references within a space, failing this find the space
468  // the hard way.
469  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
470  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
471    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
472    if (LIKELY(new_bitmap != NULL)) {
473      object_bitmap = new_bitmap;
474    } else {
475      MarkLargeObject(obj, true);
476      return;
477    }
478  }
479
480  // This object was not previously marked.
481  if (!object_bitmap->Test(obj)) {
482    object_bitmap->Set(obj);
483    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
484      // Lock is not needed but is here anyways to please annotalysis.
485      MutexLock mu(Thread::Current(), mark_stack_lock_);
486      ExpandMarkStack();
487    }
488    // The object must be pushed on to the mark stack.
489    mark_stack_->PushBack(const_cast<Object*>(obj));
490  }
491}
492
493// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
494bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
495  // TODO: support >1 discontinuous space.
496  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
497  accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
498  if (kProfileLargeObjects) {
499    ++large_object_test_;
500  }
501  if (UNLIKELY(!large_objects->Test(obj))) {
502    if (!large_object_space->Contains(obj)) {
503      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
504      LOG(ERROR) << "Attempting see if it's a bad root";
505      VerifyRoots();
506      LOG(FATAL) << "Can't mark bad root";
507    }
508    if (kProfileLargeObjects) {
509      ++large_object_mark_;
510    }
511    if (set) {
512      large_objects->Set(obj);
513    } else {
514      large_objects->Clear(obj);
515    }
516    return true;
517  }
518  return false;
519}
520
521inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
522  DCHECK(obj != NULL);
523
524  if (IsImmune(obj)) {
525    DCHECK(IsMarked(obj));
526    return false;
527  }
528
529  // Try to take advantage of locality of references within a space, failing this find the space
530  // the hard way.
531  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
532  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
533    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
534    if (new_bitmap != NULL) {
535      object_bitmap = new_bitmap;
536    } else {
537      // TODO: Remove the Thread::Current here?
538      // TODO: Convert this to some kind of atomic marking?
539      MutexLock mu(Thread::Current(), large_object_lock_);
540      return MarkLargeObject(obj, true);
541    }
542  }
543
544  // Return true if the object was not previously marked.
545  return !object_bitmap->AtomicTestAndSet(obj);
546}
547
548// Used to mark objects when recursing.  Recursion is done by moving
549// the finger across the bitmaps in address order and marking child
550// objects.  Any newly-marked objects whose addresses are lower than
551// the finger won't be visited by the bitmap scan, so those objects
552// need to be added to the mark stack.
553inline void MarkSweep::MarkObject(const Object* obj) {
554  if (obj != NULL) {
555    MarkObjectNonNull(obj);
556  }
557}
558
559void MarkSweep::MarkRoot(const Object* obj) {
560  if (obj != NULL) {
561    MarkObjectNonNull(obj);
562  }
563}
564
565void MarkSweep::MarkRootParallelCallback(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
566                                         RootType /*root_type*/) {
567  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
568}
569
570void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
571                                 RootType /*root_type*/) {
572  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
573}
574
575void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
576                                   const StackVisitor* visitor) {
577  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
578}
579
580void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
581  // See if the root is on any space bitmap.
582  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
583    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
584    if (!large_object_space->Contains(root)) {
585      LOG(ERROR) << "Found invalid root: " << root;
586      if (visitor != NULL) {
587        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
588      }
589    }
590  }
591}
592
593void MarkSweep::VerifyRoots() {
594  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
595}
596
597// Marks all objects in the root set.
598void MarkSweep::MarkRoots() {
599  timings_.StartSplit("MarkRoots");
600  Runtime::Current()->VisitNonConcurrentRoots(MarkRootCallback, this);
601  timings_.EndSplit();
602}
603
604void MarkSweep::MarkNonThreadRoots() {
605  timings_.StartSplit("MarkNonThreadRoots");
606  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
607  timings_.EndSplit();
608}
609
610void MarkSweep::MarkConcurrentRoots() {
611  timings_.StartSplit("MarkConcurrentRoots");
612  // Visit all runtime roots and clear dirty flags.
613  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, false, true);
614  timings_.EndSplit();
615}
616
617class ScanObjectVisitor {
618 public:
619  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
620      : mark_sweep_(mark_sweep) {}
621
622  // TODO: Fixme when anotatalysis works with visitors.
623  void operator()(Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
624    if (kCheckLocks) {
625      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
626      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
627    }
628    mark_sweep_->ScanObject(obj);
629  }
630
631 private:
632  MarkSweep* const mark_sweep_;
633};
634
635template <bool kUseFinger = false>
636class MarkStackTask : public Task {
637 public:
638  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
639                const Object** mark_stack)
640      : mark_sweep_(mark_sweep),
641        thread_pool_(thread_pool),
642        mark_stack_pos_(mark_stack_size) {
643    // We may have to copy part of an existing mark stack when another mark stack overflows.
644    if (mark_stack_size != 0) {
645      DCHECK(mark_stack != NULL);
646      // TODO: Check performance?
647      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
648    }
649    if (kCountTasks) {
650      ++mark_sweep_->work_chunks_created_;
651    }
652  }
653
654  static const size_t kMaxSize = 1 * KB;
655
656 protected:
657  class ScanObjectParallelVisitor {
658   public:
659    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
660        : chunk_task_(chunk_task) {}
661
662    void operator()(Object* obj) const {
663      MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
664      mark_sweep->ScanObjectVisit(obj,
665          [mark_sweep, this](Object* /* obj */, Object* ref, const MemberOffset& /* offset */,
666              bool /* is_static */) ALWAYS_INLINE_LAMBDA {
667        if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
668          if (kUseFinger) {
669            android_memory_barrier();
670            if (reinterpret_cast<uintptr_t>(ref) >=
671                static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
672              return;
673            }
674          }
675          chunk_task_->MarkStackPush(ref);
676        }
677      });
678    }
679
680   private:
681    MarkStackTask<kUseFinger>* const chunk_task_;
682  };
683
684  virtual ~MarkStackTask() {
685    // Make sure that we have cleared our mark stack.
686    DCHECK_EQ(mark_stack_pos_, 0U);
687    if (kCountTasks) {
688      ++mark_sweep_->work_chunks_deleted_;
689    }
690  }
691
692  MarkSweep* const mark_sweep_;
693  ThreadPool* const thread_pool_;
694  // Thread local mark stack for this task.
695  const Object* mark_stack_[kMaxSize];
696  // Mark stack position.
697  size_t mark_stack_pos_;
698
699  void MarkStackPush(const Object* obj) ALWAYS_INLINE {
700    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
701      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
702      mark_stack_pos_ /= 2;
703      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
704                                     mark_stack_ + mark_stack_pos_);
705      thread_pool_->AddTask(Thread::Current(), task);
706    }
707    DCHECK(obj != nullptr);
708    DCHECK(mark_stack_pos_ < kMaxSize);
709    mark_stack_[mark_stack_pos_++] = obj;
710  }
711
712  virtual void Finalize() {
713    delete this;
714  }
715
716  // Scans all of the objects
717  virtual void Run(Thread* self) {
718    ScanObjectParallelVisitor visitor(this);
719    // TODO: Tune this.
720    static const size_t kFifoSize = 4;
721    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
722    for (;;) {
723      const Object* obj = nullptr;
724      if (kUseMarkStackPrefetch) {
725        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
726          const Object* obj = mark_stack_[--mark_stack_pos_];
727          DCHECK(obj != nullptr);
728          __builtin_prefetch(obj);
729          prefetch_fifo.push_back(obj);
730        }
731        if (UNLIKELY(prefetch_fifo.empty())) {
732          break;
733        }
734        obj = prefetch_fifo.front();
735        prefetch_fifo.pop_front();
736      } else {
737        if (UNLIKELY(mark_stack_pos_ == 0)) {
738          break;
739        }
740        obj = mark_stack_[--mark_stack_pos_];
741      }
742      DCHECK(obj != nullptr);
743      visitor(const_cast<mirror::Object*>(obj));
744    }
745  }
746};
747
748class CardScanTask : public MarkStackTask<false> {
749 public:
750  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
751               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
752               const Object** mark_stack_obj)
753      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
754        bitmap_(bitmap),
755        begin_(begin),
756        end_(end),
757        minimum_age_(minimum_age) {
758  }
759
760 protected:
761  accounting::SpaceBitmap* const bitmap_;
762  byte* const begin_;
763  byte* const end_;
764  const byte minimum_age_;
765
766  virtual void Finalize() {
767    delete this;
768  }
769
770  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
771    ScanObjectParallelVisitor visitor(this);
772    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
773    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
774    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
775        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
776    // Finish by emptying our local mark stack.
777    MarkStackTask::Run(self);
778  }
779};
780
781size_t MarkSweep::GetThreadCount(bool paused) const {
782  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
783    return 0;
784  }
785  if (paused) {
786    return heap_->GetParallelGCThreadCount() + 1;
787  } else {
788    return heap_->GetConcGCThreadCount() + 1;
789  }
790}
791
792void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
793  accounting::CardTable* card_table = GetHeap()->GetCardTable();
794  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
795  size_t thread_count = GetThreadCount(paused);
796  // The parallel version with only one thread is faster for card scanning, TODO: fix.
797  if (kParallelCardScan && thread_count > 0) {
798    Thread* self = Thread::Current();
799    // Can't have a different split for each space since multiple spaces can have their cards being
800    // scanned at the same time.
801    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
802    // Try to take some of the mark stack since we can pass this off to the worker tasks.
803    const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
804    const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
805    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
806    // Estimated number of work tasks we will create.
807    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
808    DCHECK_NE(mark_stack_tasks, 0U);
809    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
810                                             mark_stack_size / mark_stack_tasks + 1);
811    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
812      if (space->GetMarkBitmap() == nullptr) {
813        continue;
814      }
815      byte* card_begin = space->Begin();
816      byte* card_end = space->End();
817      // Align up the end address. For example, the image space's end
818      // may not be card-size-aligned.
819      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
820      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
821      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
822      // Calculate how many bytes of heap we will scan,
823      const size_t address_range = card_end - card_begin;
824      // Calculate how much address range each task gets.
825      const size_t card_delta = RoundUp(address_range / thread_count + 1,
826                                        accounting::CardTable::kCardSize);
827      // Create the worker tasks for this space.
828      while (card_begin != card_end) {
829        // Add a range of cards.
830        size_t addr_remaining = card_end - card_begin;
831        size_t card_increment = std::min(card_delta, addr_remaining);
832        // Take from the back of the mark stack.
833        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
834        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
835        mark_stack_end -= mark_stack_increment;
836        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
837        DCHECK_EQ(mark_stack_end, mark_stack_->End());
838        // Add the new task to the thread pool.
839        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
840                                      card_begin + card_increment, minimum_age,
841                                      mark_stack_increment, mark_stack_end);
842        thread_pool->AddTask(self, task);
843        card_begin += card_increment;
844      }
845    }
846
847    // Note: the card scan below may dirty new cards (and scan them)
848    // as a side effect when a Reference object is encountered and
849    // queued during the marking. See b/11465268.
850    thread_pool->SetMaxActiveWorkers(thread_count - 1);
851    thread_pool->StartWorkers(self);
852    thread_pool->Wait(self, true, true);
853    thread_pool->StopWorkers(self);
854    timings_.EndSplit();
855  } else {
856    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
857      if (space->GetMarkBitmap() != nullptr) {
858        // Image spaces are handled properly since live == marked for them.
859        switch (space->GetGcRetentionPolicy()) {
860          case space::kGcRetentionPolicyNeverCollect:
861            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
862                "ScanGrayImageSpaceObjects");
863            break;
864          case space::kGcRetentionPolicyFullCollect:
865            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
866                "ScanGrayZygoteSpaceObjects");
867            break;
868          case space::kGcRetentionPolicyAlwaysCollect:
869            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
870                "ScanGrayAllocSpaceObjects");
871            break;
872          }
873        ScanObjectVisitor visitor(this);
874        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
875        timings_.EndSplit();
876      }
877    }
878  }
879}
880
881class RecursiveMarkTask : public MarkStackTask<false> {
882 public:
883  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
884                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
885      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
886        bitmap_(bitmap),
887        begin_(begin),
888        end_(end) {
889  }
890
891 protected:
892  accounting::SpaceBitmap* const bitmap_;
893  const uintptr_t begin_;
894  const uintptr_t end_;
895
896  virtual void Finalize() {
897    delete this;
898  }
899
900  // Scans all of the objects
901  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
902    ScanObjectParallelVisitor visitor(this);
903    bitmap_->VisitMarkedRange(begin_, end_, visitor);
904    // Finish by emptying our local mark stack.
905    MarkStackTask::Run(self);
906  }
907};
908
909// Populates the mark stack based on the set of marked objects and
910// recursively marks until the mark stack is emptied.
911void MarkSweep::RecursiveMark() {
912  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
913  // RecursiveMark will build the lists of known instances of the Reference classes. See
914  // DelayReferenceReferent for details.
915  if (kUseRecursiveMark) {
916    const bool partial = GetGcType() == kGcTypePartial;
917    ScanObjectVisitor scan_visitor(this);
918    auto* self = Thread::Current();
919    ThreadPool* thread_pool = heap_->GetThreadPool();
920    size_t thread_count = GetThreadCount(false);
921    const bool parallel = kParallelRecursiveMark && thread_count > 1;
922    mark_stack_->Reset();
923    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
924      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
925          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
926        current_mark_bitmap_ = space->GetMarkBitmap();
927        if (current_mark_bitmap_ == nullptr) {
928          continue;
929        }
930        if (parallel) {
931          // We will use the mark stack the future.
932          // CHECK(mark_stack_->IsEmpty());
933          // This function does not handle heap end increasing, so we must use the space end.
934          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
935          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
936          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
937
938          // Create a few worker tasks.
939          const size_t n = thread_count * 2;
940          while (begin != end) {
941            uintptr_t start = begin;
942            uintptr_t delta = (end - begin) / n;
943            delta = RoundUp(delta, KB);
944            if (delta < 16 * KB) delta = end - begin;
945            begin += delta;
946            auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
947                                               begin);
948            thread_pool->AddTask(self, task);
949          }
950          thread_pool->SetMaxActiveWorkers(thread_count - 1);
951          thread_pool->StartWorkers(self);
952          thread_pool->Wait(self, true, true);
953          thread_pool->StopWorkers(self);
954        } else {
955          // This function does not handle heap end increasing, so we must use the space end.
956          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
957          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
958          current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
959        }
960      }
961    }
962  }
963  ProcessMarkStack(false);
964}
965
966mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
967  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
968    return object;
969  }
970  return nullptr;
971}
972
973void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
974  ScanGrayObjects(paused, minimum_age);
975  ProcessMarkStack(paused);
976}
977
978void MarkSweep::ReMarkRoots() {
979  timings_.StartSplit("(Paused)ReMarkRoots");
980  Runtime::Current()->VisitRoots(MarkRootCallback, this, true, true);
981  timings_.EndSplit();
982}
983
984void MarkSweep::SweepSystemWeaks() {
985  Runtime* runtime = Runtime::Current();
986  timings_.StartSplit("SweepSystemWeaks");
987  runtime->SweepSystemWeaks(IsMarkedCallback, this);
988  timings_.EndSplit();
989}
990
991mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
992  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
993  // We don't actually want to sweep the object, so lets return "marked"
994  return obj;
995}
996
997void MarkSweep::VerifyIsLive(const Object* obj) {
998  Heap* heap = GetHeap();
999  if (!heap->GetLiveBitmap()->Test(obj)) {
1000    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1001    if (!large_object_space->GetLiveObjects()->Test(obj)) {
1002      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
1003          heap->allocation_stack_->End()) {
1004        // Object not found!
1005        heap->DumpSpaces();
1006        LOG(FATAL) << "Found dead object " << obj;
1007      }
1008    }
1009  }
1010}
1011
1012void MarkSweep::VerifySystemWeaks() {
1013  // Verify system weaks, uses a special object visitor which returns the input object.
1014  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
1015}
1016
1017class CheckpointMarkThreadRoots : public Closure {
1018 public:
1019  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1020
1021  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1022    ATRACE_BEGIN("Marking thread roots");
1023    // Note: self is not necessarily equal to thread since thread may be suspended.
1024    Thread* self = Thread::Current();
1025    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1026        << thread->GetState() << " thread " << thread << " self " << self;
1027    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1028    ATRACE_END();
1029    if (kUseThreadLocalAllocationStack) {
1030      thread->RevokeThreadLocalAllocationStack();
1031    }
1032    mark_sweep_->GetBarrier().Pass(self);
1033  }
1034
1035 private:
1036  MarkSweep* mark_sweep_;
1037};
1038
1039void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1040  CheckpointMarkThreadRoots check_point(this);
1041  timings_.StartSplit("MarkRootsCheckpoint");
1042  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1043  // Request the check point is run on all threads returning a count of the threads that must
1044  // run through the barrier including self.
1045  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1046  // Release locks then wait for all mutator threads to pass the barrier.
1047  // TODO: optimize to not release locks when there are no threads to wait for.
1048  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1049  Locks::mutator_lock_->SharedUnlock(self);
1050  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1051  CHECK_EQ(old_state, kWaitingPerformingGc);
1052  gc_barrier_->Increment(self, barrier_count);
1053  self->SetState(kWaitingPerformingGc);
1054  Locks::mutator_lock_->SharedLock(self);
1055  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1056  timings_.EndSplit();
1057}
1058
1059void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1060  timings_.StartSplit("SweepArray");
1061  Thread* self = Thread::Current();
1062  mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
1063  size_t chunk_free_pos = 0;
1064  size_t freed_bytes = 0;
1065  size_t freed_large_object_bytes = 0;
1066  size_t freed_objects = 0;
1067  size_t freed_large_objects = 0;
1068  // How many objects are left in the array, modified after each space is swept.
1069  Object** objects = const_cast<Object**>(allocations->Begin());
1070  size_t count = allocations->Size();
1071  // Change the order to ensure that the non-moving space last swept as an optimization.
1072  std::vector<space::ContinuousSpace*> sweep_spaces;
1073  space::ContinuousSpace* non_moving_space = nullptr;
1074  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1075    if (space->IsAllocSpace() && !IsImmuneSpace(space) && space->GetLiveBitmap() != nullptr) {
1076      if (space == heap_->GetNonMovingSpace()) {
1077        non_moving_space = space;
1078      } else {
1079        sweep_spaces.push_back(space);
1080      }
1081    }
1082  }
1083  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1084  // the other alloc spaces as an optimization.
1085  if (non_moving_space != nullptr) {
1086    sweep_spaces.push_back(non_moving_space);
1087  }
1088  // Start by sweeping the continuous spaces.
1089  for (space::ContinuousSpace* space : sweep_spaces) {
1090    space::AllocSpace* alloc_space = space->AsAllocSpace();
1091    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1092    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1093    if (swap_bitmaps) {
1094      std::swap(live_bitmap, mark_bitmap);
1095    }
1096    Object** out = objects;
1097    for (size_t i = 0; i < count; ++i) {
1098      Object* obj = objects[i];
1099      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1100        continue;
1101      }
1102      if (space->HasAddress(obj)) {
1103        // This object is in the space, remove it from the array and add it to the sweep buffer
1104        // if needed.
1105        if (!mark_bitmap->Test(obj)) {
1106          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1107            timings_.StartSplit("FreeList");
1108            freed_objects += chunk_free_pos;
1109            freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1110            timings_.EndSplit();
1111            chunk_free_pos = 0;
1112          }
1113          chunk_free_buffer[chunk_free_pos++] = obj;
1114        }
1115      } else {
1116        *(out++) = obj;
1117      }
1118    }
1119    if (chunk_free_pos > 0) {
1120      timings_.StartSplit("FreeList");
1121      freed_objects += chunk_free_pos;
1122      freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1123      timings_.EndSplit();
1124      chunk_free_pos = 0;
1125    }
1126    // All of the references which space contained are no longer in the allocation stack, update
1127    // the count.
1128    count = out - objects;
1129  }
1130  // Handle the large object space.
1131  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1132  accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
1133  accounting::ObjectSet* large_mark_objects = large_object_space->GetMarkObjects();
1134  if (swap_bitmaps) {
1135    std::swap(large_live_objects, large_mark_objects);
1136  }
1137  for (size_t i = 0; i < count; ++i) {
1138    Object* obj = objects[i];
1139    // Handle large objects.
1140    if (kUseThreadLocalAllocationStack && obj == nullptr) {
1141      continue;
1142    }
1143    if (!large_mark_objects->Test(obj)) {
1144      ++freed_large_objects;
1145      freed_large_object_bytes += large_object_space->Free(self, obj);
1146    }
1147  }
1148  timings_.EndSplit();
1149
1150  timings_.StartSplit("RecordFree");
1151  VLOG(heap) << "Freed " << freed_objects << "/" << count
1152             << " objects with size " << PrettySize(freed_bytes);
1153  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1154  freed_objects_.FetchAndAdd(freed_objects);
1155  freed_large_objects_.FetchAndAdd(freed_large_objects);
1156  freed_bytes_.FetchAndAdd(freed_bytes);
1157  freed_large_object_bytes_.FetchAndAdd(freed_large_object_bytes);
1158  timings_.EndSplit();
1159
1160  timings_.StartSplit("ResetStack");
1161  allocations->Reset();
1162  timings_.EndSplit();
1163}
1164
1165void MarkSweep::Sweep(bool swap_bitmaps) {
1166  DCHECK(mark_stack_->IsEmpty());
1167  TimingLogger::ScopedSplit("Sweep", &timings_);
1168  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1169    if (space->IsContinuousMemMapAllocSpace()) {
1170      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1171      TimingLogger::ScopedSplit split(
1172          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
1173      size_t freed_objects = 0;
1174      size_t freed_bytes = 0;
1175      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1176      heap_->RecordFree(freed_objects, freed_bytes);
1177      freed_objects_.FetchAndAdd(freed_objects);
1178      freed_bytes_.FetchAndAdd(freed_bytes);
1179    }
1180  }
1181  SweepLargeObjects(swap_bitmaps);
1182}
1183
1184void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1185  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1186  size_t freed_objects = 0;
1187  size_t freed_bytes = 0;
1188  GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1189  freed_large_objects_.FetchAndAdd(freed_objects);
1190  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
1191  GetHeap()->RecordFree(freed_objects, freed_bytes);
1192}
1193
1194// Process the "referent" field in a java.lang.ref.Reference.  If the
1195// referent has not yet been marked, put it on the appropriate list in
1196// the heap for later processing.
1197void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1198  DCHECK(klass != nullptr);
1199  DCHECK(klass->IsReferenceClass());
1200  DCHECK(obj != NULL);
1201  heap_->DelayReferenceReferent(klass, obj, IsMarkedCallback, this);
1202}
1203
1204class MarkObjectVisitor {
1205 public:
1206  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1207
1208  // TODO: Fixme when anotatalysis works with visitors.
1209  void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
1210                  bool /* is_static */) const ALWAYS_INLINE
1211      NO_THREAD_SAFETY_ANALYSIS {
1212    if (kCheckLocks) {
1213      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1214      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1215    }
1216    mark_sweep_->MarkObject(ref);
1217  }
1218
1219 private:
1220  MarkSweep* const mark_sweep_;
1221};
1222
1223// Scans an object reference.  Determines the type of the reference
1224// and dispatches to a specialized scanning routine.
1225void MarkSweep::ScanObject(Object* obj) {
1226  MarkObjectVisitor visitor(this);
1227  ScanObjectVisit(obj, visitor);
1228}
1229
1230void MarkSweep::ProcessMarkStackPausedCallback(void* arg) {
1231  DCHECK(arg != nullptr);
1232  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(true);
1233}
1234
1235void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1236  Thread* self = Thread::Current();
1237  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1238  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1239                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1240  CHECK_GT(chunk_size, 0U);
1241  // Split the current mark stack up into work tasks.
1242  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1243    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1244    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
1245                                                        const_cast<const mirror::Object**>(it)));
1246    it += delta;
1247  }
1248  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1249  thread_pool->StartWorkers(self);
1250  thread_pool->Wait(self, true, true);
1251  thread_pool->StopWorkers(self);
1252  mark_stack_->Reset();
1253  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1254}
1255
1256// Scan anything that's on the mark stack.
1257void MarkSweep::ProcessMarkStack(bool paused) {
1258  timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack");
1259  size_t thread_count = GetThreadCount(paused);
1260  if (kParallelProcessMarkStack && thread_count > 1 &&
1261      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1262    ProcessMarkStackParallel(thread_count);
1263  } else {
1264    // TODO: Tune this.
1265    static const size_t kFifoSize = 4;
1266    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1267    for (;;) {
1268      Object* obj = NULL;
1269      if (kUseMarkStackPrefetch) {
1270        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1271          Object* obj = mark_stack_->PopBack();
1272          DCHECK(obj != NULL);
1273          __builtin_prefetch(obj);
1274          prefetch_fifo.push_back(obj);
1275        }
1276        if (prefetch_fifo.empty()) {
1277          break;
1278        }
1279        obj = prefetch_fifo.front();
1280        prefetch_fifo.pop_front();
1281      } else {
1282        if (mark_stack_->IsEmpty()) {
1283          break;
1284        }
1285        obj = mark_stack_->PopBack();
1286      }
1287      DCHECK(obj != NULL);
1288      ScanObject(obj);
1289    }
1290  }
1291  timings_.EndSplit();
1292}
1293
1294inline bool MarkSweep::IsMarked(const Object* object) const
1295    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1296  if (IsImmune(object)) {
1297    return true;
1298  }
1299  DCHECK(current_mark_bitmap_ != NULL);
1300  if (current_mark_bitmap_->HasAddress(object)) {
1301    return current_mark_bitmap_->Test(object);
1302  }
1303  return heap_->GetMarkBitmap()->Test(object);
1304}
1305
1306void MarkSweep::FinishPhase() {
1307  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1308  // Can't enqueue references if we hold the mutator lock.
1309  Heap* heap = GetHeap();
1310  timings_.NewSplit("PostGcVerification");
1311  heap->PostGcVerification(this);
1312
1313  timings_.NewSplit("RequestHeapTrim");
1314  heap->RequestHeapTrim();
1315
1316  // Update the cumulative statistics
1317  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1318  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1319
1320  // Ensure that the mark stack is empty.
1321  CHECK(mark_stack_->IsEmpty());
1322
1323  if (kCountScannedTypes) {
1324    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1325             << " other=" << other_count_;
1326  }
1327
1328  if (kCountTasks) {
1329    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1330  }
1331
1332  if (kMeasureOverhead) {
1333    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1334  }
1335
1336  if (kProfileLargeObjects) {
1337    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1338  }
1339
1340  if (kCountClassesMarked) {
1341    VLOG(gc) << "Classes marked " << classes_marked_;
1342  }
1343
1344  if (kCountJavaLangRefs) {
1345    VLOG(gc) << "References scanned " << reference_count_;
1346  }
1347
1348  // Update the cumulative loggers.
1349  cumulative_timings_.Start();
1350  cumulative_timings_.AddLogger(timings_);
1351  cumulative_timings_.End();
1352
1353  // Clear all of the spaces' mark bitmaps.
1354  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1355    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
1356    if (bitmap != nullptr &&
1357        space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1358      bitmap->Clear();
1359    }
1360  }
1361  mark_stack_->Reset();
1362
1363  // Reset the marked large objects.
1364  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1365  large_objects->GetMarkObjects()->Clear();
1366}
1367
1368}  // namespace collector
1369}  // namespace gc
1370}  // namespace art
1371