semi_space.cc revision 407f702da4f867c074fc3c8c688b8f8c32279eff
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "semi_space.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/logging.h"
25#include "base/macros.h"
26#include "base/mutex-inl.h"
27#include "base/timing_logger.h"
28#include "gc/accounting/heap_bitmap.h"
29#include "gc/accounting/mod_union_table.h"
30#include "gc/accounting/remembered_set.h"
31#include "gc/accounting/space_bitmap-inl.h"
32#include "gc/heap.h"
33#include "gc/space/bump_pointer_space.h"
34#include "gc/space/bump_pointer_space-inl.h"
35#include "gc/space/image_space.h"
36#include "gc/space/large_object_space.h"
37#include "gc/space/space-inl.h"
38#include "indirect_reference_table.h"
39#include "intern_table.h"
40#include "jni_internal.h"
41#include "mark_sweep-inl.h"
42#include "monitor.h"
43#include "mirror/art_field.h"
44#include "mirror/art_field-inl.h"
45#include "mirror/class-inl.h"
46#include "mirror/class_loader.h"
47#include "mirror/dex_cache.h"
48#include "mirror/reference-inl.h"
49#include "mirror/object-inl.h"
50#include "mirror/object_array.h"
51#include "mirror/object_array-inl.h"
52#include "runtime.h"
53#include "semi_space-inl.h"
54#include "thread-inl.h"
55#include "thread_list.h"
56#include "verifier/method_verifier.h"
57
58using ::art::mirror::Class;
59using ::art::mirror::Object;
60
61namespace art {
62namespace gc {
63namespace collector {
64
65static constexpr bool kProtectFromSpace = true;
66static constexpr bool kClearFromSpace = true;
67static constexpr bool kStoreStackTraces = false;
68
69void SemiSpace::BindBitmaps() {
70  timings_.StartSplit("BindBitmaps");
71  WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
72  // Mark all of the spaces we never collect as immune.
73  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
74    if (space->GetLiveBitmap() != nullptr) {
75      if (space == to_space_) {
76        CHECK(to_space_->IsContinuousMemMapAllocSpace());
77        to_space_->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
78      } else if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
79                 || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect
80                 // Add the main free list space and the non-moving
81                 // space to the immune space if a bump pointer space
82                 // only collection.
83                 || (generational_ && !whole_heap_collection_ &&
84                     (space == GetHeap()->GetNonMovingSpace() ||
85                      space == GetHeap()->GetPrimaryFreeListSpace()))) {
86        CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
87      }
88    }
89  }
90  if (generational_ && !whole_heap_collection_) {
91    // We won't collect the large object space if a bump pointer space only collection.
92    is_large_object_space_immune_ = true;
93  }
94  timings_.EndSplit();
95}
96
97SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
98    : GarbageCollector(heap,
99                       name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
100      to_space_(nullptr),
101      from_space_(nullptr),
102      generational_(generational),
103      last_gc_to_space_end_(nullptr),
104      bytes_promoted_(0),
105      whole_heap_collection_(true),
106      whole_heap_collection_interval_counter_(0) {
107}
108
109void SemiSpace::InitializePhase() {
110  timings_.Reset();
111  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
112  mark_stack_ = heap_->mark_stack_.get();
113  DCHECK(mark_stack_ != nullptr);
114  immune_region_.Reset();
115  is_large_object_space_immune_ = false;
116  saved_bytes_ = 0;
117  self_ = Thread::Current();
118  // Do any pre GC verification.
119  timings_.NewSplit("PreGcVerification");
120  heap_->PreGcVerification(this);
121  // Set the initial bitmap.
122  to_space_live_bitmap_ = to_space_->GetLiveBitmap();
123}
124
125void SemiSpace::ProcessReferences(Thread* self) {
126  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
127  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
128  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &MarkedForwardingAddressCallback,
129                               &MarkObjectCallback, &ProcessMarkStackCallback, this);
130}
131
132void SemiSpace::MarkingPhase() {
133  if (kStoreStackTraces) {
134    Locks::mutator_lock_->AssertExclusiveHeld(self_);
135    // Store the stack traces into the runtime fault string in case we get a heap corruption
136    // related crash later.
137    ThreadState old_state = self_->SetStateUnsafe(kRunnable);
138    std::ostringstream oss;
139    Runtime* runtime = Runtime::Current();
140    runtime->GetThreadList()->DumpForSigQuit(oss);
141    runtime->GetThreadList()->DumpNativeStacks(oss);
142    runtime->SetFaultMessage(oss.str());
143    CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
144  }
145
146  if (generational_) {
147    if (gc_cause_ == kGcCauseExplicit || gc_cause_ == kGcCauseForNativeAlloc ||
148        clear_soft_references_) {
149      // If an explicit, native allocation-triggered, or last attempt
150      // collection, collect the whole heap (and reset the interval
151      // counter to be consistent.)
152      whole_heap_collection_ = true;
153      whole_heap_collection_interval_counter_ = 0;
154    }
155    if (whole_heap_collection_) {
156      VLOG(heap) << "Whole heap collection";
157    } else {
158      VLOG(heap) << "Bump pointer space only collection";
159    }
160  }
161  Locks::mutator_lock_->AssertExclusiveHeld(self_);
162
163  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
164  // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
165  // wrong space.
166  heap_->SwapSemiSpaces();
167  if (generational_) {
168    // If last_gc_to_space_end_ is out of the bounds of the from-space
169    // (the to-space from last GC), then point it to the beginning of
170    // the from-space. For example, the very first GC or the
171    // pre-zygote compaction.
172    if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
173      last_gc_to_space_end_ = from_space_->Begin();
174    }
175    // Reset this before the marking starts below.
176    bytes_promoted_ = 0;
177  }
178  // Assume the cleared space is already empty.
179  BindBitmaps();
180  // Process dirty cards and add dirty cards to mod-union tables.
181  heap_->ProcessCards(timings_, kUseRememberedSet && generational_);
182  // Clear the whole card table since we can not get any additional dirty cards during the
183  // paused GC. This saves memory but only works for pause the world collectors.
184  timings_.NewSplit("ClearCardTable");
185  heap_->GetCardTable()->ClearCardTable();
186  // Need to do this before the checkpoint since we don't want any threads to add references to
187  // the live stack during the recursive mark.
188  timings_.NewSplit("SwapStacks");
189  if (kUseThreadLocalAllocationStack) {
190    heap_->RevokeAllThreadLocalAllocationStacks(self_);
191  }
192  heap_->SwapStacks(self_);
193  WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
194  MarkRoots();
195  // Mark roots of immune spaces.
196  UpdateAndMarkModUnion();
197  // Recursively mark remaining objects.
198  MarkReachableObjects();
199}
200
201void SemiSpace::UpdateAndMarkModUnion() {
202  for (auto& space : heap_->GetContinuousSpaces()) {
203    // If the space is immune then we need to mark the references to other spaces.
204    if (immune_region_.ContainsSpace(space)) {
205      accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
206      if (table != nullptr) {
207        // TODO: Improve naming.
208        TimingLogger::ScopedSplit split(
209            space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
210                                     "UpdateAndMarkImageModUnionTable",
211                                     &timings_);
212        table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
213      } else if (heap_->FindRememberedSetFromSpace(space) != nullptr) {
214        DCHECK(kUseRememberedSet);
215        // If a bump pointer space only collection, the non-moving
216        // space is added to the immune space. The non-moving space
217        // doesn't have a mod union table, but has a remembered
218        // set. Its dirty cards will be scanned later in
219        // MarkReachableObjects().
220        DCHECK(generational_ && !whole_heap_collection_ &&
221               (space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()))
222            << "Space " << space->GetName() << " "
223            << "generational_=" << generational_ << " "
224            << "whole_heap_collection_=" << whole_heap_collection_ << " ";
225      } else {
226        DCHECK(!kUseRememberedSet);
227        // If a bump pointer space only collection, the non-moving
228        // space is added to the immune space. But the non-moving
229        // space doesn't have a mod union table. Instead, its live
230        // bitmap will be scanned later in MarkReachableObjects().
231        DCHECK(generational_ && !whole_heap_collection_ &&
232               (space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()))
233            << "Space " << space->GetName() << " "
234            << "generational_=" << generational_ << " "
235            << "whole_heap_collection_=" << whole_heap_collection_ << " ";
236      }
237    }
238  }
239}
240
241class SemiSpaceScanObjectVisitor {
242 public:
243  explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
244  void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
245      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
246    // TODO: fix NO_THREAD_SAFETY_ANALYSIS. ScanObject() requires an
247    // exclusive lock on the mutator lock, but
248    // SpaceBitmap::VisitMarkedRange() only requires the shared lock.
249    DCHECK(obj != nullptr);
250    semi_space_->ScanObject(obj);
251  }
252 private:
253  SemiSpace* const semi_space_;
254};
255
256// Used to verify that there's no references to the from-space.
257class SemiSpaceVerifyNoFromSpaceReferencesVisitor {
258 public:
259  explicit SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space) :
260      from_space_(from_space) {}
261
262  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
263      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
264    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset, false);
265    if (from_space_->HasAddress(ref)) {
266      Runtime::Current()->GetHeap()->DumpObject(LOG(INFO), obj);
267    }
268  }
269 private:
270  space::ContinuousMemMapAllocSpace* from_space_;
271};
272
273void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
274  DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
275  SemiSpaceVerifyNoFromSpaceReferencesVisitor visitor(from_space_);
276  obj->VisitReferences<kMovingClasses>(visitor);
277}
278
279class SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor {
280 public:
281  explicit SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
282  void operator()(Object* obj) const
283      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
284    DCHECK(obj != nullptr);
285    semi_space_->VerifyNoFromSpaceReferences(obj);
286  }
287 private:
288  SemiSpace* const semi_space_;
289};
290
291void SemiSpace::MarkReachableObjects() {
292  timings_.StartSplit("MarkStackAsLive");
293  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
294  heap_->MarkAllocStackAsLive(live_stack);
295  live_stack->Reset();
296  timings_.EndSplit();
297
298  for (auto& space : heap_->GetContinuousSpaces()) {
299    // If the space is immune and has no mod union table (the
300    // non-moving space when the bump pointer space only collection is
301    // enabled,) then we need to scan its live bitmap or dirty cards as roots
302    // (including the objects on the live stack which have just marked
303    // in the live bitmap above in MarkAllocStackAsLive().)
304    if (immune_region_.ContainsSpace(space) &&
305        heap_->FindModUnionTableFromSpace(space) == nullptr) {
306      DCHECK(generational_ && !whole_heap_collection_ &&
307             (space == GetHeap()->GetNonMovingSpace() || space == GetHeap()->GetPrimaryFreeListSpace()));
308      accounting::RememberedSet* rem_set = heap_->FindRememberedSetFromSpace(space);
309      if (kUseRememberedSet) {
310        DCHECK(rem_set != nullptr);
311        rem_set->UpdateAndMarkReferences(MarkHeapReferenceCallback, from_space_, this);
312        if (kIsDebugBuild) {
313          // Verify that there are no from-space references that
314          // remain in the space, that is, the remembered set (and the
315          // card table) didn't miss any from-space references in the
316          // space.
317          accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
318          SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor visitor(this);
319          live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
320                                        reinterpret_cast<uintptr_t>(space->End()),
321                                        visitor);
322        }
323      } else {
324        DCHECK(rem_set == nullptr);
325        accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
326        SemiSpaceScanObjectVisitor visitor(this);
327        live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
328                                      reinterpret_cast<uintptr_t>(space->End()),
329                                      visitor);
330      }
331    }
332  }
333
334  if (is_large_object_space_immune_) {
335    DCHECK(generational_ && !whole_heap_collection_);
336    // Delay copying the live set to the marked set until here from
337    // BindBitmaps() as the large objects on the allocation stack may
338    // be newly added to the live set above in MarkAllocStackAsLive().
339    GetHeap()->GetLargeObjectsSpace()->CopyLiveToMarked();
340
341    // When the large object space is immune, we need to scan the
342    // large object space as roots as they contain references to their
343    // classes (primitive array classes) that could move though they
344    // don't contain any other references.
345    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
346    accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
347    SemiSpaceScanObjectVisitor visitor(this);
348    for (const Object* obj : large_live_objects->GetObjects()) {
349      visitor(const_cast<Object*>(obj));
350    }
351  }
352
353  // Recursively process the mark stack.
354  ProcessMarkStack();
355}
356
357void SemiSpace::ReclaimPhase() {
358  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
359  ProcessReferences(self_);
360  {
361    ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
362    SweepSystemWeaks();
363  }
364  // Record freed memory.
365  uint64_t from_bytes = from_space_->GetBytesAllocated();
366  uint64_t to_bytes = to_space_->GetBytesAllocated();
367  uint64_t from_objects = from_space_->GetObjectsAllocated();
368  uint64_t to_objects = to_space_->GetObjectsAllocated();
369  CHECK_LE(to_objects, from_objects);
370  int64_t freed_bytes = from_bytes - to_bytes;
371  int64_t freed_objects = from_objects - to_objects;
372  freed_bytes_.FetchAndAdd(freed_bytes);
373  freed_objects_.FetchAndAdd(freed_objects);
374  // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
375  // space.
376  heap_->RecordFree(freed_objects, freed_bytes);
377  timings_.StartSplit("PreSweepingGcVerification");
378  heap_->PreSweepingGcVerification(this);
379  timings_.EndSplit();
380
381  {
382    WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
383    // Reclaim unmarked objects.
384    Sweep(false);
385    // Swap the live and mark bitmaps for each space which we modified space. This is an
386    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
387    // bitmaps.
388    timings_.StartSplit("SwapBitmaps");
389    SwapBitmaps();
390    timings_.EndSplit();
391    // Unbind the live and mark bitmaps.
392    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
393    GetHeap()->UnBindBitmaps();
394  }
395  if (kClearFromSpace) {
396    // Release the memory used by the from space.
397    from_space_->Clear();
398  }
399  from_space_->Reset();
400  // Protect the from space.
401  VLOG(heap) << "Protecting space " << *from_space_;
402  if (kProtectFromSpace) {
403    from_space_->GetMemMap()->Protect(PROT_NONE);
404  } else {
405    from_space_->GetMemMap()->Protect(PROT_READ);
406  }
407  if (saved_bytes_ > 0) {
408    VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
409  }
410
411  if (generational_) {
412    // Record the end (top) of the to space so we can distinguish
413    // between objects that were allocated since the last GC and the
414    // older objects.
415    last_gc_to_space_end_ = to_space_->End();
416  }
417}
418
419void SemiSpace::ResizeMarkStack(size_t new_size) {
420  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
421  CHECK_LE(mark_stack_->Size(), new_size);
422  mark_stack_->Resize(new_size);
423  for (const auto& obj : temp) {
424    mark_stack_->PushBack(obj);
425  }
426}
427
428inline void SemiSpace::MarkStackPush(Object* obj) {
429  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
430    ResizeMarkStack(mark_stack_->Capacity() * 2);
431  }
432  // The object must be pushed on to the mark stack.
433  mark_stack_->PushBack(obj);
434}
435
436// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
437bool SemiSpace::MarkLargeObject(const Object* obj) {
438  // TODO: support >1 discontinuous space.
439  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
440  DCHECK(large_object_space->Contains(obj));
441  accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
442  if (UNLIKELY(!large_objects->Test(obj))) {
443    large_objects->Set(obj);
444    return true;
445  }
446  return false;
447}
448
449static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
450  if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
451    // We will dirty the current page and somewhere in the middle of the next page. This means
452    // that the next object copied will also dirty that page.
453    // TODO: Worth considering the last object copied? We may end up dirtying one page which is
454    // not necessary per GC.
455    memcpy(dest, src, size);
456    return 0;
457  }
458  size_t saved_bytes = 0;
459  byte* byte_dest = reinterpret_cast<byte*>(dest);
460  if (kIsDebugBuild) {
461    for (size_t i = 0; i < size; ++i) {
462      CHECK_EQ(byte_dest[i], 0U);
463    }
464  }
465  // Process the start of the page. The page must already be dirty, don't bother with checking.
466  const byte* byte_src = reinterpret_cast<const byte*>(src);
467  const byte* limit = byte_src + size;
468  size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
469  // Copy the bytes until the start of the next page.
470  memcpy(dest, src, page_remain);
471  byte_src += page_remain;
472  byte_dest += page_remain;
473  DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
474  DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
475  DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
476  while (byte_src + kPageSize < limit) {
477    bool all_zero = true;
478    uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
479    const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
480    for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
481      // Assumes the destination of the copy is all zeros.
482      if (word_src[i] != 0) {
483        all_zero = false;
484        word_dest[i] = word_src[i];
485      }
486    }
487    if (all_zero) {
488      // Avoided copying into the page since it was all zeros.
489      saved_bytes += kPageSize;
490    }
491    byte_src += kPageSize;
492    byte_dest += kPageSize;
493  }
494  // Handle the part of the page at the end.
495  memcpy(byte_dest, byte_src, limit - byte_src);
496  return saved_bytes;
497}
498
499mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
500  size_t object_size = obj->SizeOf();
501  size_t bytes_allocated;
502  mirror::Object* forward_address = nullptr;
503  if (generational_ && reinterpret_cast<byte*>(obj) < last_gc_to_space_end_) {
504    // If it's allocated before the last GC (older), move
505    // (pseudo-promote) it to the main free list space (as sort
506    // of an old generation.)
507    size_t bytes_promoted;
508    space::MallocSpace* promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
509    forward_address = promo_dest_space->Alloc(self_, object_size, &bytes_promoted, nullptr);
510    if (forward_address == nullptr) {
511      // If out of space, fall back to the to-space.
512      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
513    } else {
514      GetHeap()->num_bytes_allocated_.FetchAndAdd(bytes_promoted);
515      bytes_promoted_ += bytes_promoted;
516      // Dirty the card at the destionation as it may contain
517      // references (including the class pointer) to the bump pointer
518      // space.
519      GetHeap()->WriteBarrierEveryFieldOf(forward_address);
520      // Handle the bitmaps marking.
521      accounting::SpaceBitmap* live_bitmap = promo_dest_space->GetLiveBitmap();
522      DCHECK(live_bitmap != nullptr);
523      accounting::SpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
524      DCHECK(mark_bitmap != nullptr);
525      DCHECK(!live_bitmap->Test(forward_address));
526      if (!whole_heap_collection_) {
527        // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
528        DCHECK_EQ(live_bitmap, mark_bitmap);
529
530        // If a bump pointer space only collection, delay the live
531        // bitmap marking of the promoted object until it's popped off
532        // the mark stack (ProcessMarkStack()). The rationale: we may
533        // be in the middle of scanning the objects in the promo
534        // destination space for
535        // non-moving-space-to-bump-pointer-space references by
536        // iterating over the marked bits of the live bitmap
537        // (MarkReachableObjects()). If we don't delay it (and instead
538        // mark the promoted object here), the above promo destination
539        // space scan could encounter the just-promoted object and
540        // forward the references in the promoted object's fields even
541        // through it is pushed onto the mark stack. If this happens,
542        // the promoted object would be in an inconsistent state, that
543        // is, it's on the mark stack (gray) but its fields are
544        // already forwarded (black), which would cause a
545        // DCHECK(!to_space_->HasAddress(obj)) failure below.
546      } else {
547        // Mark forward_address on the live bit map.
548        live_bitmap->Set(forward_address);
549        // Mark forward_address on the mark bit map.
550        DCHECK(!mark_bitmap->Test(forward_address));
551        mark_bitmap->Set(forward_address);
552      }
553    }
554    DCHECK(forward_address != nullptr);
555  } else {
556    // If it's allocated after the last GC (younger), copy it to the to-space.
557    forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
558  }
559  // Copy over the object and add it to the mark stack since we still need to update its
560  // references.
561  saved_bytes_ +=
562      CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
563  if (kUseBrooksPointer) {
564    obj->AssertSelfBrooksPointer();
565    DCHECK_EQ(forward_address->GetBrooksPointer(), obj);
566    forward_address->SetBrooksPointer(forward_address);
567    forward_address->AssertSelfBrooksPointer();
568  }
569  if (to_space_live_bitmap_ != nullptr) {
570    to_space_live_bitmap_->Set(forward_address);
571  }
572  DCHECK(to_space_->HasAddress(forward_address) ||
573         (generational_ && GetHeap()->GetPrimaryFreeListSpace()->HasAddress(forward_address)));
574  return forward_address;
575}
576
577// Used to mark and copy objects. Any newly-marked objects who are in the from space get moved to
578// the to-space and have their forward address updated. Objects which have been newly marked are
579// pushed on the mark stack.
580void SemiSpace::MarkObject(mirror::HeapReference<Object>* obj_ptr) {
581  Object* obj = obj_ptr->AsMirrorPtr();
582  if (obj == nullptr) {
583    return;
584  }
585  if (kUseBrooksPointer) {
586    // Verify all the objects have the correct forward pointer installed.
587    obj->AssertSelfBrooksPointer();
588  }
589  if (!immune_region_.ContainsObject(obj)) {
590    if (from_space_->HasAddress(obj)) {
591      mirror::Object* forward_address = GetForwardingAddressInFromSpace(obj);
592      // If the object has already been moved, return the new forward address.
593      if (forward_address == nullptr) {
594        forward_address = MarkNonForwardedObject(obj);
595        DCHECK(forward_address != nullptr);
596        // Make sure to only update the forwarding address AFTER you copy the object so that the
597        // monitor word doesn't get stomped over.
598        obj->SetLockWord(LockWord::FromForwardingAddress(
599            reinterpret_cast<size_t>(forward_address)));
600        // Push the object onto the mark stack for later processing.
601        MarkStackPush(forward_address);
602      }
603      obj_ptr->Assign(forward_address);
604    } else {
605      accounting::SpaceBitmap* object_bitmap =
606          heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
607      if (LIKELY(object_bitmap != nullptr)) {
608        if (generational_) {
609          // If a bump pointer space only collection, we should not
610          // reach here as we don't/won't mark the objects in the
611          // non-moving space (except for the promoted objects.)  Note
612          // the non-moving space is added to the immune space.
613          DCHECK(whole_heap_collection_);
614        }
615        if (!object_bitmap->Set(obj)) {
616          // This object was not previously marked.
617          MarkStackPush(obj);
618        }
619      } else {
620        CHECK(!to_space_->HasAddress(obj)) << "Marking object in to_space_";
621        if (MarkLargeObject(obj)) {
622          MarkStackPush(obj);
623        }
624      }
625    }
626  }
627}
628
629void SemiSpace::ProcessMarkStackCallback(void* arg) {
630  reinterpret_cast<SemiSpace*>(arg)->ProcessMarkStack();
631}
632
633mirror::Object* SemiSpace::MarkObjectCallback(mirror::Object* root, void* arg) {
634  auto ref = mirror::HeapReference<mirror::Object>::FromMirrorPtr(root);
635  reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
636  return ref.AsMirrorPtr();
637}
638
639void SemiSpace::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* obj_ptr,
640                                          void* arg) {
641  reinterpret_cast<SemiSpace*>(arg)->MarkObject(obj_ptr);
642}
643
644void SemiSpace::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
645                                 RootType /*root_type*/) {
646  auto ref = mirror::HeapReference<mirror::Object>::FromMirrorPtr(*root);
647  reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
648  if (*root != ref.AsMirrorPtr()) {
649    *root = ref.AsMirrorPtr();
650  }
651}
652
653// Marks all objects in the root set.
654void SemiSpace::MarkRoots() {
655  timings_.StartSplit("MarkRoots");
656  // TODO: Visit up image roots as well?
657  Runtime::Current()->VisitRoots(MarkRootCallback, this);
658  timings_.EndSplit();
659}
660
661mirror::Object* SemiSpace::MarkedForwardingAddressCallback(mirror::Object* object, void* arg) {
662  return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
663}
664
665void SemiSpace::SweepSystemWeaks() {
666  timings_.StartSplit("SweepSystemWeaks");
667  Runtime::Current()->SweepSystemWeaks(MarkedForwardingAddressCallback, this);
668  timings_.EndSplit();
669}
670
671bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
672  return space != from_space_ && space != to_space_ && !immune_region_.ContainsSpace(space);
673}
674
675void SemiSpace::Sweep(bool swap_bitmaps) {
676  DCHECK(mark_stack_->IsEmpty());
677  TimingLogger::ScopedSplit("Sweep", &timings_);
678  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
679    if (space->IsContinuousMemMapAllocSpace()) {
680      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
681      if (!ShouldSweepSpace(alloc_space)) {
682        continue;
683      }
684      TimingLogger::ScopedSplit split(
685          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", &timings_);
686      size_t freed_objects = 0;
687      size_t freed_bytes = 0;
688      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
689      heap_->RecordFree(freed_objects, freed_bytes);
690      freed_objects_.FetchAndAdd(freed_objects);
691      freed_bytes_.FetchAndAdd(freed_bytes);
692    }
693  }
694  if (!is_large_object_space_immune_) {
695    SweepLargeObjects(swap_bitmaps);
696  }
697}
698
699void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
700  DCHECK(!is_large_object_space_immune_);
701  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
702  size_t freed_objects = 0;
703  size_t freed_bytes = 0;
704  GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
705  freed_large_objects_.FetchAndAdd(freed_objects);
706  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
707  GetHeap()->RecordFree(freed_objects, freed_bytes);
708}
709
710// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
711// marked, put it on the appropriate list in the heap for later processing.
712void SemiSpace::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
713  heap_->DelayReferenceReferent(klass, reference, MarkedForwardingAddressCallback, this);
714}
715
716class SemiSpaceMarkObjectVisitor {
717 public:
718  explicit SemiSpaceMarkObjectVisitor(SemiSpace* collector) : collector_(collector) {
719  }
720
721  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE
722      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
723    collector_->MarkObject(obj->GetFieldObjectReferenceAddr(offset));
724  }
725
726  void operator()(mirror::Class* klass, mirror::Reference* ref) const
727      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
728      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
729    collector_->DelayReferenceReferent(klass, ref);
730  }
731
732 private:
733  SemiSpace* const collector_;
734};
735
736// Visit all of the references of an object and update.
737void SemiSpace::ScanObject(Object* obj) {
738  DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
739  SemiSpaceMarkObjectVisitor visitor(this);
740  obj->VisitReferences<kMovingClasses>(visitor, visitor);
741}
742
743// Scan anything that's on the mark stack.
744void SemiSpace::ProcessMarkStack() {
745  space::MallocSpace* promo_dest_space = NULL;
746  accounting::SpaceBitmap* live_bitmap = NULL;
747  if (generational_ && !whole_heap_collection_) {
748    // If a bump pointer space only collection (and the promotion is
749    // enabled,) we delay the live-bitmap marking of promoted objects
750    // from MarkObject() until this function.
751    promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
752    live_bitmap = promo_dest_space->GetLiveBitmap();
753    DCHECK(live_bitmap != nullptr);
754    accounting::SpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
755    DCHECK(mark_bitmap != nullptr);
756    DCHECK_EQ(live_bitmap, mark_bitmap);
757  }
758  timings_.StartSplit("ProcessMarkStack");
759  while (!mark_stack_->IsEmpty()) {
760    Object* obj = mark_stack_->PopBack();
761    if (generational_ && !whole_heap_collection_ && promo_dest_space->HasAddress(obj)) {
762      // obj has just been promoted. Mark the live bitmap for it,
763      // which is delayed from MarkObject().
764      DCHECK(!live_bitmap->Test(obj));
765      live_bitmap->Set(obj);
766    }
767    ScanObject(obj);
768  }
769  timings_.EndSplit();
770}
771
772inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
773    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
774  // All immune objects are assumed marked.
775  if (immune_region_.ContainsObject(obj)) {
776    return obj;
777  }
778  if (from_space_->HasAddress(obj)) {
779    mirror::Object* forwarding_address = GetForwardingAddressInFromSpace(const_cast<Object*>(obj));
780    return forwarding_address;  // Returns either the forwarding address or nullptr.
781  } else if (to_space_->HasAddress(obj)) {
782    // Should be unlikely.
783    // Already forwarded, must be marked.
784    return obj;
785  }
786  return heap_->GetMarkBitmap()->Test(obj) ? obj : nullptr;
787}
788
789void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
790  DCHECK(to_space != nullptr);
791  to_space_ = to_space;
792}
793
794void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
795  DCHECK(from_space != nullptr);
796  from_space_ = from_space;
797}
798
799void SemiSpace::FinishPhase() {
800  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
801  Heap* heap = GetHeap();
802  timings_.NewSplit("PostGcVerification");
803  heap->PostGcVerification(this);
804
805  // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
806  // further action is done by the heap.
807  to_space_ = nullptr;
808  from_space_ = nullptr;
809
810  // Update the cumulative statistics
811  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
812  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
813
814  // Ensure that the mark stack is empty.
815  CHECK(mark_stack_->IsEmpty());
816
817  // Update the cumulative loggers.
818  cumulative_timings_.Start();
819  cumulative_timings_.AddLogger(timings_);
820  cumulative_timings_.End();
821
822  // Clear all of the spaces' mark bitmaps.
823  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
824    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
825    if (bitmap != nullptr &&
826        space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
827      bitmap->Clear();
828    }
829  }
830  mark_stack_->Reset();
831
832  // Reset the marked large objects.
833  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
834  large_objects->GetMarkObjects()->Clear();
835
836  if (generational_) {
837    // Decide whether to do a whole heap collection or a bump pointer
838    // only space collection at the next collection by updating
839    // whole_heap_collection. Enable whole_heap_collection once every
840    // kDefaultWholeHeapCollectionInterval collections.
841    if (!whole_heap_collection_) {
842      --whole_heap_collection_interval_counter_;
843      DCHECK_GE(whole_heap_collection_interval_counter_, 0);
844      if (whole_heap_collection_interval_counter_ == 0) {
845        whole_heap_collection_ = true;
846      }
847    } else {
848      DCHECK_EQ(whole_heap_collection_interval_counter_, 0);
849      whole_heap_collection_interval_counter_ = kDefaultWholeHeapCollectionInterval;
850      whole_heap_collection_ = false;
851    }
852  }
853}
854
855void SemiSpace::RevokeAllThreadLocalBuffers() {
856  timings_.StartSplit("(Paused)RevokeAllThreadLocalBuffers");
857  GetHeap()->RevokeAllThreadLocalBuffers();
858  timings_.EndSplit();
859}
860
861}  // namespace collector
862}  // namespace gc
863}  // namespace art
864