semi_space.cc revision 62ab87bb3ff4830def25a1716f6785256c7eebca
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "semi_space-inl.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/logging.h"
25#include "base/macros.h"
26#include "base/mutex-inl.h"
27#include "base/timing_logger.h"
28#include "gc/accounting/heap_bitmap-inl.h"
29#include "gc/accounting/mod_union_table.h"
30#include "gc/accounting/remembered_set.h"
31#include "gc/accounting/space_bitmap-inl.h"
32#include "gc/heap.h"
33#include "gc/space/bump_pointer_space.h"
34#include "gc/space/bump_pointer_space-inl.h"
35#include "gc/space/image_space.h"
36#include "gc/space/large_object_space.h"
37#include "gc/space/space-inl.h"
38#include "indirect_reference_table.h"
39#include "intern_table.h"
40#include "jni_internal.h"
41#include "mark_sweep-inl.h"
42#include "monitor.h"
43#include "mirror/art_field.h"
44#include "mirror/art_field-inl.h"
45#include "mirror/class-inl.h"
46#include "mirror/class_loader.h"
47#include "mirror/dex_cache.h"
48#include "mirror/reference-inl.h"
49#include "mirror/object-inl.h"
50#include "mirror/object_array.h"
51#include "mirror/object_array-inl.h"
52#include "runtime.h"
53#include "stack.h"
54#include "thread-inl.h"
55#include "thread_list.h"
56#include "verifier/method_verifier.h"
57
58using ::art::mirror::Class;
59using ::art::mirror::Object;
60
61namespace art {
62namespace gc {
63namespace collector {
64
65static constexpr bool kProtectFromSpace = true;
66static constexpr bool kStoreStackTraces = false;
67static constexpr bool kUseBytesPromoted = true;
68static constexpr size_t kBytesPromotedThreshold = 4 * MB;
69
70void SemiSpace::BindBitmaps() {
71  timings_.StartSplit("BindBitmaps");
72  WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
73  // Mark all of the spaces we never collect as immune.
74  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
75    if (space->GetLiveBitmap() != nullptr) {
76      if (space == to_space_) {
77        CHECK(to_space_->IsContinuousMemMapAllocSpace());
78        to_space_->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
79      } else if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
80                 || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect
81                 // Add the main free list space and the non-moving
82                 // space to the immune space if a bump pointer space
83                 // only collection.
84                 || (generational_ && !whole_heap_collection_ &&
85                     (space == GetHeap()->GetNonMovingSpace() ||
86                      space == GetHeap()->GetPrimaryFreeListSpace()))) {
87        CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
88      }
89    }
90  }
91  if (generational_ && !whole_heap_collection_) {
92    // We won't collect the large object space if a bump pointer space only collection.
93    is_large_object_space_immune_ = true;
94  }
95  timings_.EndSplit();
96}
97
98SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
99    : GarbageCollector(heap,
100                       name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
101      to_space_(nullptr),
102      from_space_(nullptr),
103      generational_(generational),
104      last_gc_to_space_end_(nullptr),
105      bytes_promoted_(0),
106      bytes_promoted_since_last_whole_heap_collection_(0),
107      whole_heap_collection_(true),
108      whole_heap_collection_interval_counter_(0),
109      collector_name_(name_) {
110}
111
112void SemiSpace::InitializePhase() {
113  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
114  mark_stack_ = heap_->mark_stack_.get();
115  DCHECK(mark_stack_ != nullptr);
116  immune_region_.Reset();
117  is_large_object_space_immune_ = false;
118  saved_bytes_ = 0;
119  bytes_moved_ = 0;
120  objects_moved_ = 0;
121  self_ = Thread::Current();
122  // Do any pre GC verification.
123  timings_.NewSplit("PreGcVerification");
124  heap_->PreGcVerification(this);
125  CHECK(from_space_->CanMoveObjects()) << "Attempting to move from " << *from_space_;
126  // Set the initial bitmap.
127  to_space_live_bitmap_ = to_space_->GetLiveBitmap();
128  {
129    // TODO: I don't think we should need heap bitmap lock to get the mark bitmap.
130    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
131    mark_bitmap_ = heap_->GetMarkBitmap();
132  }
133}
134
135void SemiSpace::ProcessReferences(Thread* self) {
136  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
137  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
138  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &MarkedForwardingAddressCallback,
139                               &MarkObjectCallback, &ProcessMarkStackCallback, this);
140}
141
142void SemiSpace::MarkingPhase() {
143  if (kStoreStackTraces) {
144    Locks::mutator_lock_->AssertExclusiveHeld(self_);
145    // Store the stack traces into the runtime fault string in case we get a heap corruption
146    // related crash later.
147    ThreadState old_state = self_->SetStateUnsafe(kRunnable);
148    std::ostringstream oss;
149    Runtime* runtime = Runtime::Current();
150    runtime->GetThreadList()->DumpForSigQuit(oss);
151    runtime->GetThreadList()->DumpNativeStacks(oss);
152    runtime->SetFaultMessage(oss.str());
153    CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
154  }
155
156  if (generational_) {
157    if (gc_cause_ == kGcCauseExplicit || gc_cause_ == kGcCauseForNativeAlloc ||
158        clear_soft_references_) {
159      // If an explicit, native allocation-triggered, or last attempt
160      // collection, collect the whole heap (and reset the interval
161      // counter to be consistent.)
162      whole_heap_collection_ = true;
163      if (!kUseBytesPromoted) {
164        whole_heap_collection_interval_counter_ = 0;
165      }
166    }
167    if (whole_heap_collection_) {
168      VLOG(heap) << "Whole heap collection";
169      name_ = collector_name_ + " whole";
170    } else {
171      VLOG(heap) << "Bump pointer space only collection";
172      name_ = collector_name_ + " bps";
173    }
174  }
175
176  if (!clear_soft_references_) {
177    if (!generational_) {
178      // If non-generational, always clear soft references.
179      clear_soft_references_ = true;
180    } else {
181      // If generational, clear soft references if a whole heap collection.
182      if (whole_heap_collection_) {
183        clear_soft_references_ = true;
184      }
185    }
186  }
187
188  Locks::mutator_lock_->AssertExclusiveHeld(self_);
189
190  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
191  if (generational_) {
192    // If last_gc_to_space_end_ is out of the bounds of the from-space
193    // (the to-space from last GC), then point it to the beginning of
194    // the from-space. For example, the very first GC or the
195    // pre-zygote compaction.
196    if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
197      last_gc_to_space_end_ = from_space_->Begin();
198    }
199    // Reset this before the marking starts below.
200    bytes_promoted_ = 0;
201  }
202  // Assume the cleared space is already empty.
203  BindBitmaps();
204  // Process dirty cards and add dirty cards to mod-union tables.
205  heap_->ProcessCards(timings_, kUseRememberedSet && generational_);
206  // Clear the whole card table since we can not get any additional dirty cards during the
207  // paused GC. This saves memory but only works for pause the world collectors.
208  timings_.NewSplit("ClearCardTable");
209  heap_->GetCardTable()->ClearCardTable();
210  // Need to do this before the checkpoint since we don't want any threads to add references to
211  // the live stack during the recursive mark.
212  timings_.NewSplit("SwapStacks");
213  if (kUseThreadLocalAllocationStack) {
214    heap_->RevokeAllThreadLocalAllocationStacks(self_);
215  }
216  heap_->SwapStacks(self_);
217  WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
218  MarkRoots();
219  // Mark roots of immune spaces.
220  UpdateAndMarkModUnion();
221  // Recursively mark remaining objects.
222  MarkReachableObjects();
223}
224
225void SemiSpace::UpdateAndMarkModUnion() {
226  for (auto& space : heap_->GetContinuousSpaces()) {
227    // If the space is immune then we need to mark the references to other spaces.
228    if (immune_region_.ContainsSpace(space)) {
229      accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
230      if (table != nullptr) {
231        // TODO: Improve naming.
232        TimingLogger::ScopedSplit split(
233            space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
234                                     "UpdateAndMarkImageModUnionTable",
235                                     &timings_);
236        table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
237      } else if (heap_->FindRememberedSetFromSpace(space) != nullptr) {
238        DCHECK(kUseRememberedSet);
239        // If a bump pointer space only collection, the non-moving
240        // space is added to the immune space. The non-moving space
241        // doesn't have a mod union table, but has a remembered
242        // set. Its dirty cards will be scanned later in
243        // MarkReachableObjects().
244        DCHECK(generational_ && !whole_heap_collection_ &&
245               (space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()))
246            << "Space " << space->GetName() << " "
247            << "generational_=" << generational_ << " "
248            << "whole_heap_collection_=" << whole_heap_collection_ << " ";
249      } else {
250        DCHECK(!kUseRememberedSet);
251        // If a bump pointer space only collection, the non-moving
252        // space is added to the immune space. But the non-moving
253        // space doesn't have a mod union table. Instead, its live
254        // bitmap will be scanned later in MarkReachableObjects().
255        DCHECK(generational_ && !whole_heap_collection_ &&
256               (space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()))
257            << "Space " << space->GetName() << " "
258            << "generational_=" << generational_ << " "
259            << "whole_heap_collection_=" << whole_heap_collection_ << " ";
260      }
261    }
262  }
263}
264
265class SemiSpaceScanObjectVisitor {
266 public:
267  explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
268  void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
269      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
270    // TODO: fix NO_THREAD_SAFETY_ANALYSIS. ScanObject() requires an
271    // exclusive lock on the mutator lock, but
272    // SpaceBitmap::VisitMarkedRange() only requires the shared lock.
273    DCHECK(obj != nullptr);
274    semi_space_->ScanObject(obj);
275  }
276 private:
277  SemiSpace* const semi_space_;
278};
279
280// Used to verify that there's no references to the from-space.
281class SemiSpaceVerifyNoFromSpaceReferencesVisitor {
282 public:
283  explicit SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space) :
284      from_space_(from_space) {}
285
286  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
287      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
288    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset, false);
289    if (from_space_->HasAddress(ref)) {
290      Runtime::Current()->GetHeap()->DumpObject(LOG(INFO), obj);
291      LOG(FATAL) << ref << " found in from space";
292    }
293  }
294 private:
295  space::ContinuousMemMapAllocSpace* from_space_;
296};
297
298void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
299  DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
300  SemiSpaceVerifyNoFromSpaceReferencesVisitor visitor(from_space_);
301  obj->VisitReferences<kMovingClasses>(visitor);
302}
303
304class SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor {
305 public:
306  explicit SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
307  void operator()(Object* obj) const
308      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
309    DCHECK(obj != nullptr);
310    semi_space_->VerifyNoFromSpaceReferences(obj);
311  }
312 private:
313  SemiSpace* const semi_space_;
314};
315
316void SemiSpace::MarkReachableObjects() {
317  timings_.StartSplit("MarkStackAsLive");
318  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
319  heap_->MarkAllocStackAsLive(live_stack);
320  live_stack->Reset();
321
322  timings_.NewSplit("UpdateAndMarkRememberedSets");
323  for (auto& space : heap_->GetContinuousSpaces()) {
324    // If the space is immune and has no mod union table (the
325    // non-moving space when the bump pointer space only collection is
326    // enabled,) then we need to scan its live bitmap or dirty cards as roots
327    // (including the objects on the live stack which have just marked
328    // in the live bitmap above in MarkAllocStackAsLive().)
329    if (immune_region_.ContainsSpace(space) &&
330        heap_->FindModUnionTableFromSpace(space) == nullptr) {
331      DCHECK(generational_ && !whole_heap_collection_ &&
332             (space == GetHeap()->GetNonMovingSpace() || space == GetHeap()->GetPrimaryFreeListSpace()));
333      accounting::RememberedSet* rem_set = heap_->FindRememberedSetFromSpace(space);
334      if (kUseRememberedSet) {
335        DCHECK(rem_set != nullptr);
336        rem_set->UpdateAndMarkReferences(MarkHeapReferenceCallback, from_space_, this);
337        if (kIsDebugBuild) {
338          // Verify that there are no from-space references that
339          // remain in the space, that is, the remembered set (and the
340          // card table) didn't miss any from-space references in the
341          // space.
342          accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
343          SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor visitor(this);
344          live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
345                                        reinterpret_cast<uintptr_t>(space->End()),
346                                        visitor);
347        }
348      } else {
349        DCHECK(rem_set == nullptr);
350        accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
351        SemiSpaceScanObjectVisitor visitor(this);
352        live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
353                                      reinterpret_cast<uintptr_t>(space->End()),
354                                      visitor);
355      }
356    }
357  }
358
359  if (is_large_object_space_immune_) {
360    timings_.NewSplit("VisitLargeObjects");
361    DCHECK(generational_ && !whole_heap_collection_);
362    // Delay copying the live set to the marked set until here from
363    // BindBitmaps() as the large objects on the allocation stack may
364    // be newly added to the live set above in MarkAllocStackAsLive().
365    GetHeap()->GetLargeObjectsSpace()->CopyLiveToMarked();
366
367    // When the large object space is immune, we need to scan the
368    // large object space as roots as they contain references to their
369    // classes (primitive array classes) that could move though they
370    // don't contain any other references.
371    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
372    accounting::LargeObjectBitmap* large_live_bitmap = large_object_space->GetLiveBitmap();
373    SemiSpaceScanObjectVisitor visitor(this);
374    large_live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(large_object_space->Begin()),
375                                        reinterpret_cast<uintptr_t>(large_object_space->End()),
376                                        visitor);
377  }
378  timings_.EndSplit();
379  // Recursively process the mark stack.
380  ProcessMarkStack();
381}
382
383void SemiSpace::ReclaimPhase() {
384  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
385  ProcessReferences(self_);
386  {
387    ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
388    SweepSystemWeaks();
389  }
390  // Record freed memory.
391  uint64_t from_bytes = from_space_->GetBytesAllocated();
392  uint64_t to_bytes = bytes_moved_;
393  uint64_t from_objects = from_space_->GetObjectsAllocated();
394  uint64_t to_objects = objects_moved_;
395  CHECK_LE(to_objects, from_objects);
396  int64_t freed_bytes = from_bytes - to_bytes;
397  int64_t freed_objects = from_objects - to_objects;
398  freed_bytes_.FetchAndAdd(freed_bytes);
399  freed_objects_.FetchAndAdd(freed_objects);
400  // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
401  // space.
402  heap_->RecordFree(freed_objects, freed_bytes);
403
404  timings_.StartSplit("PreSweepingGcVerification");
405  heap_->PreSweepingGcVerification(this);
406  timings_.EndSplit();
407  {
408    WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
409    // Reclaim unmarked objects.
410    Sweep(false);
411    // Swap the live and mark bitmaps for each space which we modified space. This is an
412    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
413    // bitmaps.
414    timings_.StartSplit("SwapBitmaps");
415    SwapBitmaps();
416    timings_.EndSplit();
417    // Unbind the live and mark bitmaps.
418    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
419    GetHeap()->UnBindBitmaps();
420  }
421  // TODO: Do this before doing verification since the from space may have objects which weren't
422  // moved and point to dead objects.
423  from_space_->Clear();
424  // Protect the from space.
425  VLOG(heap) << "Protecting space " << *from_space_;
426  if (kProtectFromSpace) {
427    from_space_->GetMemMap()->Protect(PROT_NONE);
428  } else {
429    from_space_->GetMemMap()->Protect(PROT_READ);
430  }
431  if (saved_bytes_ > 0) {
432    VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
433  }
434
435  if (generational_) {
436    // Record the end (top) of the to space so we can distinguish
437    // between objects that were allocated since the last GC and the
438    // older objects.
439    last_gc_to_space_end_ = to_space_->End();
440  }
441}
442
443void SemiSpace::ResizeMarkStack(size_t new_size) {
444  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
445  CHECK_LE(mark_stack_->Size(), new_size);
446  mark_stack_->Resize(new_size);
447  for (const auto& obj : temp) {
448    mark_stack_->PushBack(obj);
449  }
450}
451
452inline void SemiSpace::MarkStackPush(Object* obj) {
453  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
454    ResizeMarkStack(mark_stack_->Capacity() * 2);
455  }
456  // The object must be pushed on to the mark stack.
457  mark_stack_->PushBack(obj);
458}
459
460static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
461  if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
462    // We will dirty the current page and somewhere in the middle of the next page. This means
463    // that the next object copied will also dirty that page.
464    // TODO: Worth considering the last object copied? We may end up dirtying one page which is
465    // not necessary per GC.
466    memcpy(dest, src, size);
467    return 0;
468  }
469  size_t saved_bytes = 0;
470  byte* byte_dest = reinterpret_cast<byte*>(dest);
471  if (kIsDebugBuild) {
472    for (size_t i = 0; i < size; ++i) {
473      CHECK_EQ(byte_dest[i], 0U);
474    }
475  }
476  // Process the start of the page. The page must already be dirty, don't bother with checking.
477  const byte* byte_src = reinterpret_cast<const byte*>(src);
478  const byte* limit = byte_src + size;
479  size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
480  // Copy the bytes until the start of the next page.
481  memcpy(dest, src, page_remain);
482  byte_src += page_remain;
483  byte_dest += page_remain;
484  DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
485  DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
486  DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
487  while (byte_src + kPageSize < limit) {
488    bool all_zero = true;
489    uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
490    const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
491    for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
492      // Assumes the destination of the copy is all zeros.
493      if (word_src[i] != 0) {
494        all_zero = false;
495        word_dest[i] = word_src[i];
496      }
497    }
498    if (all_zero) {
499      // Avoided copying into the page since it was all zeros.
500      saved_bytes += kPageSize;
501    }
502    byte_src += kPageSize;
503    byte_dest += kPageSize;
504  }
505  // Handle the part of the page at the end.
506  memcpy(byte_dest, byte_src, limit - byte_src);
507  return saved_bytes;
508}
509
510mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
511  size_t object_size = obj->SizeOf();
512  size_t bytes_allocated;
513  mirror::Object* forward_address = nullptr;
514  if (generational_ && reinterpret_cast<byte*>(obj) < last_gc_to_space_end_) {
515    // If it's allocated before the last GC (older), move
516    // (pseudo-promote) it to the main free list space (as sort
517    // of an old generation.)
518    space::MallocSpace* promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
519    forward_address = promo_dest_space->Alloc(self_, object_size, &bytes_allocated, nullptr);
520    if (UNLIKELY(forward_address == nullptr)) {
521      // If out of space, fall back to the to-space.
522      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
523    } else {
524      bytes_promoted_ += bytes_allocated;
525      // Dirty the card at the destionation as it may contain
526      // references (including the class pointer) to the bump pointer
527      // space.
528      GetHeap()->WriteBarrierEveryFieldOf(forward_address);
529      // Handle the bitmaps marking.
530      accounting::ContinuousSpaceBitmap* live_bitmap = promo_dest_space->GetLiveBitmap();
531      DCHECK(live_bitmap != nullptr);
532      accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
533      DCHECK(mark_bitmap != nullptr);
534      DCHECK(!live_bitmap->Test(forward_address));
535      if (!whole_heap_collection_) {
536        // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
537        DCHECK_EQ(live_bitmap, mark_bitmap);
538
539        // If a bump pointer space only collection, delay the live
540        // bitmap marking of the promoted object until it's popped off
541        // the mark stack (ProcessMarkStack()). The rationale: we may
542        // be in the middle of scanning the objects in the promo
543        // destination space for
544        // non-moving-space-to-bump-pointer-space references by
545        // iterating over the marked bits of the live bitmap
546        // (MarkReachableObjects()). If we don't delay it (and instead
547        // mark the promoted object here), the above promo destination
548        // space scan could encounter the just-promoted object and
549        // forward the references in the promoted object's fields even
550        // through it is pushed onto the mark stack. If this happens,
551        // the promoted object would be in an inconsistent state, that
552        // is, it's on the mark stack (gray) but its fields are
553        // already forwarded (black), which would cause a
554        // DCHECK(!to_space_->HasAddress(obj)) failure below.
555      } else {
556        // Mark forward_address on the live bit map.
557        live_bitmap->Set(forward_address);
558        // Mark forward_address on the mark bit map.
559        DCHECK(!mark_bitmap->Test(forward_address));
560        mark_bitmap->Set(forward_address);
561      }
562    }
563    DCHECK(forward_address != nullptr);
564  } else {
565    // If it's allocated after the last GC (younger), copy it to the to-space.
566    forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
567  }
568  ++objects_moved_;
569  bytes_moved_ += bytes_allocated;
570  // Copy over the object and add it to the mark stack since we still need to update its
571  // references.
572  saved_bytes_ +=
573      CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
574  if (kUseBakerOrBrooksReadBarrier) {
575    obj->AssertReadBarrierPointer();
576    if (kUseBrooksReadBarrier) {
577      DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
578      forward_address->SetReadBarrierPointer(forward_address);
579    }
580    forward_address->AssertReadBarrierPointer();
581  }
582  if (to_space_live_bitmap_ != nullptr) {
583    to_space_live_bitmap_->Set(forward_address);
584  }
585  DCHECK(to_space_->HasAddress(forward_address) ||
586         (generational_ && GetHeap()->GetPrimaryFreeListSpace()->HasAddress(forward_address)));
587  return forward_address;
588}
589
590void SemiSpace::ProcessMarkStackCallback(void* arg) {
591  reinterpret_cast<SemiSpace*>(arg)->ProcessMarkStack();
592}
593
594mirror::Object* SemiSpace::MarkObjectCallback(mirror::Object* root, void* arg) {
595  auto ref = StackReference<mirror::Object>::FromMirrorPtr(root);
596  reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
597  return ref.AsMirrorPtr();
598}
599
600void SemiSpace::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* obj_ptr,
601                                          void* arg) {
602  reinterpret_cast<SemiSpace*>(arg)->MarkObject(obj_ptr);
603}
604
605void SemiSpace::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
606                                 RootType /*root_type*/) {
607  auto ref = StackReference<mirror::Object>::FromMirrorPtr(*root);
608  reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
609  if (*root != ref.AsMirrorPtr()) {
610    *root = ref.AsMirrorPtr();
611  }
612}
613
614// Marks all objects in the root set.
615void SemiSpace::MarkRoots() {
616  timings_.NewSplit("MarkRoots");
617  // TODO: Visit up image roots as well?
618  Runtime::Current()->VisitRoots(MarkRootCallback, this);
619}
620
621mirror::Object* SemiSpace::MarkedForwardingAddressCallback(mirror::Object* object, void* arg) {
622  return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
623}
624
625void SemiSpace::SweepSystemWeaks() {
626  timings_.StartSplit("SweepSystemWeaks");
627  Runtime::Current()->SweepSystemWeaks(MarkedForwardingAddressCallback, this);
628  timings_.EndSplit();
629}
630
631bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
632  return space != from_space_ && space != to_space_ && !immune_region_.ContainsSpace(space);
633}
634
635void SemiSpace::Sweep(bool swap_bitmaps) {
636  DCHECK(mark_stack_->IsEmpty());
637  TimingLogger::ScopedSplit split("Sweep", &timings_);
638  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
639    if (space->IsContinuousMemMapAllocSpace()) {
640      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
641      if (!ShouldSweepSpace(alloc_space)) {
642        continue;
643      }
644      TimingLogger::ScopedSplit split(
645          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", &timings_);
646      size_t freed_objects = 0;
647      size_t freed_bytes = 0;
648      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
649      heap_->RecordFree(freed_objects, freed_bytes);
650      freed_objects_.FetchAndAdd(freed_objects);
651      freed_bytes_.FetchAndAdd(freed_bytes);
652    }
653  }
654  if (!is_large_object_space_immune_) {
655    SweepLargeObjects(swap_bitmaps);
656  }
657}
658
659void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
660  DCHECK(!is_large_object_space_immune_);
661  TimingLogger::ScopedSplit split("SweepLargeObjects", &timings_);
662  size_t freed_objects = 0;
663  size_t freed_bytes = 0;
664  heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
665  freed_large_objects_.FetchAndAdd(freed_objects);
666  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
667  heap_->RecordFree(freed_objects, freed_bytes);
668}
669
670// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
671// marked, put it on the appropriate list in the heap for later processing.
672void SemiSpace::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
673  heap_->DelayReferenceReferent(klass, reference, MarkedForwardingAddressCallback, this);
674}
675
676class SemiSpaceMarkObjectVisitor {
677 public:
678  explicit SemiSpaceMarkObjectVisitor(SemiSpace* collector) : collector_(collector) {
679  }
680
681  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE
682      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
683    // Object was already verified when we scanned it.
684    collector_->MarkObject(obj->GetFieldObjectReferenceAddr<kVerifyNone>(offset));
685  }
686
687  void operator()(mirror::Class* klass, mirror::Reference* ref) const
688      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
689      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
690    collector_->DelayReferenceReferent(klass, ref);
691  }
692
693 private:
694  SemiSpace* const collector_;
695};
696
697// Visit all of the references of an object and update.
698void SemiSpace::ScanObject(Object* obj) {
699  DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
700  SemiSpaceMarkObjectVisitor visitor(this);
701  obj->VisitReferences<kMovingClasses>(visitor, visitor);
702}
703
704// Scan anything that's on the mark stack.
705void SemiSpace::ProcessMarkStack() {
706  space::MallocSpace* promo_dest_space = nullptr;
707  accounting::ContinuousSpaceBitmap* live_bitmap = nullptr;
708  if (generational_ && !whole_heap_collection_) {
709    // If a bump pointer space only collection (and the promotion is
710    // enabled,) we delay the live-bitmap marking of promoted objects
711    // from MarkObject() until this function.
712    promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
713    live_bitmap = promo_dest_space->GetLiveBitmap();
714    DCHECK(live_bitmap != nullptr);
715    accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
716    DCHECK(mark_bitmap != nullptr);
717    DCHECK_EQ(live_bitmap, mark_bitmap);
718  }
719  timings_.StartSplit("ProcessMarkStack");
720  while (!mark_stack_->IsEmpty()) {
721    Object* obj = mark_stack_->PopBack();
722    if (generational_ && !whole_heap_collection_ && promo_dest_space->HasAddress(obj)) {
723      // obj has just been promoted. Mark the live bitmap for it,
724      // which is delayed from MarkObject().
725      DCHECK(!live_bitmap->Test(obj));
726      live_bitmap->Set(obj);
727    }
728    ScanObject(obj);
729  }
730  timings_.EndSplit();
731}
732
733inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
734    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
735  // All immune objects are assumed marked.
736  if (immune_region_.ContainsObject(obj)) {
737    return obj;
738  }
739  if (from_space_->HasAddress(obj)) {
740    // Returns either the forwarding address or nullptr.
741    return GetForwardingAddressInFromSpace(obj);
742  } else if (to_space_->HasAddress(obj)) {
743    // Should be unlikely.
744    // Already forwarded, must be marked.
745    return obj;
746  }
747  return heap_->GetMarkBitmap()->Test(obj) ? obj : nullptr;
748}
749
750void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
751  DCHECK(to_space != nullptr);
752  to_space_ = to_space;
753}
754
755void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
756  DCHECK(from_space != nullptr);
757  from_space_ = from_space;
758}
759
760void SemiSpace::FinishPhase() {
761  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
762  Heap* heap = GetHeap();
763  timings_.NewSplit("PostGcVerification");
764  heap->PostGcVerification(this);
765  // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
766  // further action is done by the heap.
767  to_space_ = nullptr;
768  from_space_ = nullptr;
769  CHECK(mark_stack_->IsEmpty());
770  mark_stack_->Reset();
771  if (generational_) {
772    // Decide whether to do a whole heap collection or a bump pointer
773    // only space collection at the next collection by updating
774    // whole_heap_collection.
775    if (!whole_heap_collection_) {
776      if (!kUseBytesPromoted) {
777        // Enable whole_heap_collection once every
778        // kDefaultWholeHeapCollectionInterval collections.
779        --whole_heap_collection_interval_counter_;
780        DCHECK_GE(whole_heap_collection_interval_counter_, 0);
781        if (whole_heap_collection_interval_counter_ == 0) {
782          whole_heap_collection_ = true;
783        }
784      } else {
785        // Enable whole_heap_collection if the bytes promoted since
786        // the last whole heap collection exceeds a threshold.
787        bytes_promoted_since_last_whole_heap_collection_ += bytes_promoted_;
788        if (bytes_promoted_since_last_whole_heap_collection_ >= kBytesPromotedThreshold) {
789          whole_heap_collection_ = true;
790        }
791      }
792    } else {
793      if (!kUseBytesPromoted) {
794        DCHECK_EQ(whole_heap_collection_interval_counter_, 0);
795        whole_heap_collection_interval_counter_ = kDefaultWholeHeapCollectionInterval;
796        whole_heap_collection_ = false;
797      } else {
798        // Reset it.
799        bytes_promoted_since_last_whole_heap_collection_ = bytes_promoted_;
800        whole_heap_collection_ = false;
801      }
802    }
803  }
804  // Clear all of the spaces' mark bitmaps.
805  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
806  heap_->ClearMarkedObjects();
807}
808
809void SemiSpace::RevokeAllThreadLocalBuffers() {
810  timings_.StartSplit("(Paused)RevokeAllThreadLocalBuffers");
811  GetHeap()->RevokeAllThreadLocalBuffers();
812  timings_.EndSplit();
813}
814
815}  // namespace collector
816}  // namespace gc
817}  // namespace art
818