semi_space.cc revision 815873ecc312b1d231acce71e1a16f42cdaf09f2
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "semi_space.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/logging.h"
25#include "base/macros.h"
26#include "base/mutex-inl.h"
27#include "base/timing_logger.h"
28#include "gc/accounting/heap_bitmap.h"
29#include "gc/accounting/mod_union_table.h"
30#include "gc/accounting/space_bitmap-inl.h"
31#include "gc/heap.h"
32#include "gc/space/bump_pointer_space.h"
33#include "gc/space/bump_pointer_space-inl.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "indirect_reference_table.h"
38#include "intern_table.h"
39#include "jni_internal.h"
40#include "mark_sweep-inl.h"
41#include "monitor.h"
42#include "mirror/art_field.h"
43#include "mirror/art_field-inl.h"
44#include "mirror/class-inl.h"
45#include "mirror/class_loader.h"
46#include "mirror/dex_cache.h"
47#include "mirror/object-inl.h"
48#include "mirror/object_array.h"
49#include "mirror/object_array-inl.h"
50#include "runtime.h"
51#include "semi_space-inl.h"
52#include "thread-inl.h"
53#include "thread_list.h"
54#include "verifier/method_verifier.h"
55
56using ::art::mirror::Class;
57using ::art::mirror::Object;
58
59namespace art {
60namespace gc {
61namespace collector {
62
63static constexpr bool kProtectFromSpace = true;
64static constexpr bool kResetFromSpace = true;
65
66// TODO: Unduplicate logic.
67void SemiSpace::ImmuneSpace(space::ContinuousSpace* space) {
68  // Bind live to mark bitmap if necessary.
69  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
70    CHECK(space->IsContinuousMemMapAllocSpace());
71    space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
72  }
73  // Add the space to the immune region.
74  if (immune_begin_ == nullptr) {
75    DCHECK(immune_end_ == nullptr);
76    immune_begin_ = reinterpret_cast<Object*>(space->Begin());
77    immune_end_ = reinterpret_cast<Object*>(space->End());
78  } else {
79    const space::ContinuousSpace* prev_space = nullptr;
80    // Find out if the previous space is immune.
81    for (space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
82      if (cur_space == space) {
83        break;
84      }
85      prev_space = cur_space;
86    }
87    // If previous space was immune, then extend the immune region. Relies on continuous spaces
88    // being sorted by Heap::AddContinuousSpace.
89    if (prev_space != nullptr && IsImmuneSpace(prev_space)) {
90      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
91      // Use Limit() instead of End() because otherwise if the
92      // generational mode is enabled, the alloc space might expand
93      // due to promotion and the sense of immunity may change in the
94      // middle of a GC.
95      immune_end_ = std::max(reinterpret_cast<Object*>(space->Limit()), immune_end_);
96    }
97  }
98}
99
100void SemiSpace::BindBitmaps() {
101  timings_.StartSplit("BindBitmaps");
102  WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
103  // Mark all of the spaces we never collect as immune.
104  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
105    if (space->GetLiveBitmap() != nullptr) {
106      if (space == to_space_) {
107        CHECK(to_space_->IsContinuousMemMapAllocSpace());
108        to_space_->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
109      } else if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
110                 || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect
111                 // Add the main free list space and the non-moving
112                 // space to the immune space if a bump pointer space
113                 // only collection.
114                 || (generational_ && !whole_heap_collection_ &&
115                     (space == GetHeap()->GetNonMovingSpace() ||
116                      space == GetHeap()->GetPrimaryFreeListSpace()))) {
117        ImmuneSpace(space);
118      }
119    }
120  }
121  if (generational_ && !whole_heap_collection_) {
122    // We won't collect the large object space if a bump pointer space only collection.
123    is_large_object_space_immune_ = true;
124  }
125  timings_.EndSplit();
126}
127
128SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
129    : GarbageCollector(heap,
130                       name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
131      mark_stack_(nullptr),
132      immune_begin_(nullptr),
133      immune_end_(nullptr),
134      is_large_object_space_immune_(false),
135      to_space_(nullptr),
136      from_space_(nullptr),
137      self_(nullptr),
138      generational_(generational),
139      last_gc_to_space_end_(nullptr),
140      bytes_promoted_(0),
141      whole_heap_collection_(true),
142      whole_heap_collection_interval_counter_(0) {
143}
144
145void SemiSpace::InitializePhase() {
146  timings_.Reset();
147  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
148  mark_stack_ = heap_->mark_stack_.get();
149  DCHECK(mark_stack_ != nullptr);
150  immune_begin_ = nullptr;
151  immune_end_ = nullptr;
152  is_large_object_space_immune_ = false;
153  saved_bytes_ = 0;
154  self_ = Thread::Current();
155  // Do any pre GC verification.
156  timings_.NewSplit("PreGcVerification");
157  heap_->PreGcVerification(this);
158  // Set the initial bitmap.
159  to_space_live_bitmap_ = to_space_->GetLiveBitmap();
160}
161
162void SemiSpace::ProcessReferences(Thread* self) {
163  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
164  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
165  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &MarkedForwardingAddressCallback,
166                               &RecursiveMarkObjectCallback, this);
167}
168
169void SemiSpace::MarkingPhase() {
170  if (generational_) {
171    if (gc_cause_ == kGcCauseExplicit || gc_cause_ == kGcCauseForNativeAlloc ||
172        clear_soft_references_) {
173      // If an explicit, native allocation-triggered, or last attempt
174      // collection, collect the whole heap (and reset the interval
175      // counter to be consistent.)
176      whole_heap_collection_ = true;
177      whole_heap_collection_interval_counter_ = 0;
178    }
179    if (whole_heap_collection_) {
180      VLOG(heap) << "Whole heap collection";
181    } else {
182      VLOG(heap) << "Bump pointer space only collection";
183    }
184  }
185  Locks::mutator_lock_->AssertExclusiveHeld(self_);
186
187  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
188  // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
189  // wrong space.
190  heap_->SwapSemiSpaces();
191  if (generational_) {
192    // If last_gc_to_space_end_ is out of the bounds of the from-space
193    // (the to-space from last GC), then point it to the beginning of
194    // the from-space. For example, the very first GC or the
195    // pre-zygote compaction.
196    if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
197      last_gc_to_space_end_ = from_space_->Begin();
198    }
199    // Reset this before the marking starts below.
200    bytes_promoted_ = 0;
201  }
202  // Assume the cleared space is already empty.
203  BindBitmaps();
204  // Process dirty cards and add dirty cards to mod-union tables.
205  heap_->ProcessCards(timings_);
206  // Clear the whole card table since we can not get any additional dirty cards during the
207  // paused GC. This saves memory but only works for pause the world collectors.
208  timings_.NewSplit("ClearCardTable");
209  heap_->GetCardTable()->ClearCardTable();
210  // Need to do this before the checkpoint since we don't want any threads to add references to
211  // the live stack during the recursive mark.
212  timings_.NewSplit("SwapStacks");
213  if (kUseThreadLocalAllocationStack) {
214    heap_->RevokeAllThreadLocalAllocationStacks(self_);
215  }
216  heap_->SwapStacks(self_);
217  WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
218  MarkRoots();
219  // Mark roots of immune spaces.
220  UpdateAndMarkModUnion();
221  // Recursively mark remaining objects.
222  MarkReachableObjects();
223}
224
225bool SemiSpace::IsImmuneSpace(const space::ContinuousSpace* space) const {
226  return
227    immune_begin_ <= reinterpret_cast<Object*>(space->Begin()) &&
228    immune_end_ >= reinterpret_cast<Object*>(space->End());
229}
230
231void SemiSpace::UpdateAndMarkModUnion() {
232  for (auto& space : heap_->GetContinuousSpaces()) {
233    // If the space is immune then we need to mark the references to other spaces.
234    if (IsImmuneSpace(space)) {
235      accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
236      if (table != nullptr) {
237        // TODO: Improve naming.
238        TimingLogger::ScopedSplit split(
239            space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
240                                     "UpdateAndMarkImageModUnionTable",
241                                     &timings_);
242        table->UpdateAndMarkReferences(MarkObjectCallback, this);
243      } else {
244        // If a bump pointer space only collection, the non-moving
245        // space is added to the immune space. But the non-moving
246        // space doesn't have a mod union table. Instead, its live
247        // bitmap will be scanned later in MarkReachableObjects().
248        DCHECK(generational_ && !whole_heap_collection_ &&
249               (space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()));
250      }
251    }
252  }
253}
254
255class SemiSpaceScanObjectVisitor {
256 public:
257  explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
258  void operator()(Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
259    // TODO: fix NO_THREAD_SAFETY_ANALYSIS. ScanObject() requires an
260    // exclusive lock on the mutator lock, but
261    // SpaceBitmap::VisitMarkedRange() only requires the shared lock.
262    DCHECK(obj != nullptr);
263    semi_space_->ScanObject(obj);
264  }
265 private:
266  SemiSpace* semi_space_;
267};
268
269void SemiSpace::MarkReachableObjects() {
270  timings_.StartSplit("MarkStackAsLive");
271  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
272  heap_->MarkAllocStackAsLive(live_stack);
273  live_stack->Reset();
274  timings_.EndSplit();
275
276  for (auto& space : heap_->GetContinuousSpaces()) {
277    // If the space is immune and has no mod union table (the
278    // non-moving space when the bump pointer space only collection is
279    // enabled,) then we need to scan its live bitmap as roots
280    // (including the objects on the live stack which have just marked
281    // in the live bitmap above in MarkAllocStackAsLive().)
282    if (IsImmuneSpace(space) && heap_->FindModUnionTableFromSpace(space) == nullptr) {
283      DCHECK(generational_ && !whole_heap_collection_ &&
284             (space == GetHeap()->GetNonMovingSpace() || space == GetHeap()->GetPrimaryFreeListSpace()));
285      accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
286      SemiSpaceScanObjectVisitor visitor(this);
287      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
288                                    reinterpret_cast<uintptr_t>(space->End()),
289                                    visitor);
290    }
291  }
292
293  if (is_large_object_space_immune_) {
294    DCHECK(generational_ && !whole_heap_collection_);
295    // Delay copying the live set to the marked set until here from
296    // BindBitmaps() as the large objects on the allocation stack may
297    // be newly added to the live set above in MarkAllocStackAsLive().
298    GetHeap()->GetLargeObjectsSpace()->CopyLiveToMarked();
299
300    // When the large object space is immune, we need to scan the
301    // large object space as roots as they contain references to their
302    // classes (primitive array classes) that could move though they
303    // don't contain any other references.
304    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
305    accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
306    SemiSpaceScanObjectVisitor visitor(this);
307    for (const Object* obj : large_live_objects->GetObjects()) {
308      visitor(const_cast<Object*>(obj));
309    }
310  }
311
312  // Recursively process the mark stack.
313  ProcessMarkStack(true);
314}
315
316void SemiSpace::ReclaimPhase() {
317  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
318  ProcessReferences(self_);
319  {
320    ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
321    SweepSystemWeaks();
322  }
323  // Record freed memory.
324  uint64_t from_bytes = from_space_->GetBytesAllocated();
325  uint64_t to_bytes = to_space_->GetBytesAllocated();
326  uint64_t from_objects = from_space_->GetObjectsAllocated();
327  uint64_t to_objects = to_space_->GetObjectsAllocated();
328  CHECK_LE(to_objects, from_objects);
329  int64_t freed_bytes = from_bytes - to_bytes;
330  int64_t freed_objects = from_objects - to_objects;
331  freed_bytes_.FetchAndAdd(freed_bytes);
332  freed_objects_.FetchAndAdd(freed_objects);
333  // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
334  // space.
335  heap_->RecordFree(freed_objects, freed_bytes);
336  timings_.StartSplit("PreSweepingGcVerification");
337  heap_->PreSweepingGcVerification(this);
338  timings_.EndSplit();
339
340  {
341    WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
342    // Reclaim unmarked objects.
343    Sweep(false);
344    // Swap the live and mark bitmaps for each space which we modified space. This is an
345    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
346    // bitmaps.
347    timings_.StartSplit("SwapBitmaps");
348    SwapBitmaps();
349    timings_.EndSplit();
350    // Unbind the live and mark bitmaps.
351    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
352    GetHeap()->UnBindBitmaps();
353  }
354  // Release the memory used by the from space.
355  if (kResetFromSpace) {
356    // Clearing from space.
357    from_space_->Clear();
358  }
359  // Protect the from space.
360  VLOG(heap)
361      << "mprotect region " << reinterpret_cast<void*>(from_space_->Begin()) << " - "
362      << reinterpret_cast<void*>(from_space_->Limit());
363  if (kProtectFromSpace) {
364    mprotect(from_space_->Begin(), from_space_->Capacity(), PROT_NONE);
365  } else {
366    mprotect(from_space_->Begin(), from_space_->Capacity(), PROT_READ);
367  }
368  if (saved_bytes_ > 0) {
369    VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
370  }
371
372  if (generational_) {
373    // Record the end (top) of the to space so we can distinguish
374    // between objects that were allocated since the last GC and the
375    // older objects.
376    last_gc_to_space_end_ = to_space_->End();
377  }
378}
379
380void SemiSpace::ResizeMarkStack(size_t new_size) {
381  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
382  CHECK_LE(mark_stack_->Size(), new_size);
383  mark_stack_->Resize(new_size);
384  for (const auto& obj : temp) {
385    mark_stack_->PushBack(obj);
386  }
387}
388
389inline void SemiSpace::MarkStackPush(Object* obj) {
390  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
391    ResizeMarkStack(mark_stack_->Capacity() * 2);
392  }
393  // The object must be pushed on to the mark stack.
394  mark_stack_->PushBack(obj);
395}
396
397// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
398bool SemiSpace::MarkLargeObject(const Object* obj) {
399  // TODO: support >1 discontinuous space.
400  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
401  DCHECK(large_object_space->Contains(obj));
402  accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
403  if (UNLIKELY(!large_objects->Test(obj))) {
404    large_objects->Set(obj);
405    return true;
406  }
407  return false;
408}
409
410static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
411  if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
412    // We will dirty the current page and somewhere in the middle of the next page. This means
413    // that the next object copied will also dirty that page.
414    // TODO: Worth considering the last object copied? We may end up dirtying one page which is
415    // not necessary per GC.
416    memcpy(dest, src, size);
417    return 0;
418  }
419  size_t saved_bytes = 0;
420  byte* byte_dest = reinterpret_cast<byte*>(dest);
421  if (kIsDebugBuild) {
422    for (size_t i = 0; i < size; ++i) {
423      CHECK_EQ(byte_dest[i], 0U);
424    }
425  }
426  // Process the start of the page. The page must already be dirty, don't bother with checking.
427  const byte* byte_src = reinterpret_cast<const byte*>(src);
428  const byte* limit = byte_src + size;
429  size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
430  // Copy the bytes until the start of the next page.
431  memcpy(dest, src, page_remain);
432  byte_src += page_remain;
433  byte_dest += page_remain;
434  CHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
435  CHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
436  CHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
437  while (byte_src + kPageSize < limit) {
438    bool all_zero = true;
439    uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
440    const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
441    for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
442      // Assumes the destination of the copy is all zeros.
443      if (word_src[i] != 0) {
444        all_zero = false;
445        word_dest[i] = word_src[i];
446      }
447    }
448    if (all_zero) {
449      // Avoided copying into the page since it was all zeros.
450      saved_bytes += kPageSize;
451    }
452    byte_src += kPageSize;
453    byte_dest += kPageSize;
454  }
455  // Handle the part of the page at the end.
456  memcpy(byte_dest, byte_src, limit - byte_src);
457  return saved_bytes;
458}
459
460mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
461  size_t object_size = obj->SizeOf();
462  size_t bytes_allocated;
463  mirror::Object* forward_address = nullptr;
464  if (generational_ && reinterpret_cast<byte*>(obj) < last_gc_to_space_end_) {
465    // If it's allocated before the last GC (older), move
466    // (pseudo-promote) it to the main free list space (as sort
467    // of an old generation.)
468    size_t bytes_promoted;
469    space::MallocSpace* promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
470    forward_address = promo_dest_space->Alloc(self_, object_size, &bytes_promoted);
471    if (forward_address == nullptr) {
472      // If out of space, fall back to the to-space.
473      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated);
474    } else {
475      GetHeap()->num_bytes_allocated_.FetchAndAdd(bytes_promoted);
476      bytes_promoted_ += bytes_promoted;
477      // Handle the bitmaps marking.
478      accounting::SpaceBitmap* live_bitmap = promo_dest_space->GetLiveBitmap();
479      DCHECK(live_bitmap != nullptr);
480      accounting::SpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
481      DCHECK(mark_bitmap != nullptr);
482      DCHECK(!live_bitmap->Test(forward_address));
483      if (!whole_heap_collection_) {
484        // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
485        DCHECK_EQ(live_bitmap, mark_bitmap);
486
487        // If a bump pointer space only collection, delay the live
488        // bitmap marking of the promoted object until it's popped off
489        // the mark stack (ProcessMarkStack()). The rationale: we may
490        // be in the middle of scanning the objects in the promo
491        // destination space for
492        // non-moving-space-to-bump-pointer-space references by
493        // iterating over the marked bits of the live bitmap
494        // (MarkReachableObjects()). If we don't delay it (and instead
495        // mark the promoted object here), the above promo destination
496        // space scan could encounter the just-promoted object and
497        // forward the references in the promoted object's fields even
498        // through it is pushed onto the mark stack. If this happens,
499        // the promoted object would be in an inconsistent state, that
500        // is, it's on the mark stack (gray) but its fields are
501        // already forwarded (black), which would cause a
502        // DCHECK(!to_space_->HasAddress(obj)) failure below.
503      } else {
504        // Mark forward_address on the live bit map.
505        live_bitmap->Set(forward_address);
506        // Mark forward_address on the mark bit map.
507        DCHECK(!mark_bitmap->Test(forward_address));
508        mark_bitmap->Set(forward_address);
509      }
510    }
511    DCHECK(forward_address != nullptr);
512  } else {
513    // If it's allocated after the last GC (younger), copy it to the to-space.
514    forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated);
515  }
516  // Copy over the object and add it to the mark stack since we still need to update its
517  // references.
518  saved_bytes_ +=
519      CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
520  if (to_space_live_bitmap_ != nullptr) {
521    to_space_live_bitmap_->Set(forward_address);
522  }
523  DCHECK(to_space_->HasAddress(forward_address) ||
524         (generational_ && GetHeap()->GetPrimaryFreeListSpace()->HasAddress(forward_address)));
525  return forward_address;
526}
527
528// Used to mark and copy objects. Any newly-marked objects who are in the from space get moved to
529// the to-space and have their forward address updated. Objects which have been newly marked are
530// pushed on the mark stack.
531Object* SemiSpace::MarkObject(Object* obj) {
532  Object* forward_address = obj;
533  if (obj != nullptr && !IsImmune(obj)) {
534    if (from_space_->HasAddress(obj)) {
535      forward_address = GetForwardingAddressInFromSpace(obj);
536      // If the object has already been moved, return the new forward address.
537      if (forward_address == nullptr) {
538        forward_address = MarkNonForwardedObject(obj);
539        DCHECK(forward_address != nullptr);
540        // Make sure to only update the forwarding address AFTER you copy the object so that the
541        // monitor word doesn't get stomped over.
542        obj->SetLockWord(LockWord::FromForwardingAddress(
543            reinterpret_cast<size_t>(forward_address)));
544        // Push the object onto the mark stack for later processing.
545        MarkStackPush(forward_address);
546      }
547      // TODO: Do we need this if in the else statement?
548    } else {
549      accounting::SpaceBitmap* object_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
550      if (LIKELY(object_bitmap != nullptr)) {
551        if (generational_) {
552          // If a bump pointer space only collection, we should not
553          // reach here as we don't/won't mark the objects in the
554          // non-moving space (except for the promoted objects.)  Note
555          // the non-moving space is added to the immune space.
556          DCHECK(whole_heap_collection_);
557        }
558        // This object was not previously marked.
559        if (!object_bitmap->Test(obj)) {
560          object_bitmap->Set(obj);
561          MarkStackPush(obj);
562        }
563      } else {
564        CHECK(!to_space_->HasAddress(obj)) << "Marking object in to_space_";
565        if (MarkLargeObject(obj)) {
566          MarkStackPush(obj);
567        }
568      }
569    }
570  }
571  return forward_address;
572}
573
574mirror::Object* SemiSpace::RecursiveMarkObjectCallback(mirror::Object* root, void* arg) {
575  DCHECK(root != nullptr);
576  DCHECK(arg != nullptr);
577  SemiSpace* semi_space = reinterpret_cast<SemiSpace*>(arg);
578  mirror::Object* ret = semi_space->MarkObject(root);
579  semi_space->ProcessMarkStack(true);
580  return ret;
581}
582
583void SemiSpace::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
584                                 RootType /*root_type*/) {
585  DCHECK(root != nullptr);
586  DCHECK(arg != nullptr);
587  *root = reinterpret_cast<SemiSpace*>(arg)->MarkObject(*root);
588}
589
590Object* SemiSpace::MarkObjectCallback(Object* object, void* arg) {
591  DCHECK(object != nullptr);
592  DCHECK(arg != nullptr);
593  return reinterpret_cast<SemiSpace*>(arg)->MarkObject(object);
594}
595
596// Marks all objects in the root set.
597void SemiSpace::MarkRoots() {
598  timings_.StartSplit("MarkRoots");
599  // TODO: Visit up image roots as well?
600  Runtime::Current()->VisitRoots(MarkRootCallback, this, false, true);
601  timings_.EndSplit();
602}
603
604mirror::Object* SemiSpace::MarkedForwardingAddressCallback(mirror::Object* object, void* arg) {
605  return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
606}
607
608void SemiSpace::SweepSystemWeaks() {
609  timings_.StartSplit("SweepSystemWeaks");
610  Runtime::Current()->SweepSystemWeaks(MarkedForwardingAddressCallback, this);
611  timings_.EndSplit();
612}
613
614bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
615  return space != from_space_ && space != to_space_ && !IsImmuneSpace(space);
616}
617
618void SemiSpace::Sweep(bool swap_bitmaps) {
619  DCHECK(mark_stack_->IsEmpty());
620  TimingLogger::ScopedSplit("Sweep", &timings_);
621  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
622    if (space->IsContinuousMemMapAllocSpace()) {
623      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
624      if (!ShouldSweepSpace(alloc_space)) {
625        continue;
626      }
627      TimingLogger::ScopedSplit split(
628          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", &timings_);
629      size_t freed_objects = 0;
630      size_t freed_bytes = 0;
631      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
632      heap_->RecordFree(freed_objects, freed_bytes);
633      freed_objects_.FetchAndAdd(freed_objects);
634      freed_bytes_.FetchAndAdd(freed_bytes);
635    }
636  }
637  if (!is_large_object_space_immune_) {
638    SweepLargeObjects(swap_bitmaps);
639  }
640}
641
642void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
643  DCHECK(!is_large_object_space_immune_);
644  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
645  size_t freed_objects = 0;
646  size_t freed_bytes = 0;
647  GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
648  freed_large_objects_.FetchAndAdd(freed_objects);
649  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
650  GetHeap()->RecordFree(freed_objects, freed_bytes);
651}
652
653// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
654// marked, put it on the appropriate list in the heap for later processing.
655void SemiSpace::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
656  heap_->DelayReferenceReferent(klass, obj, MarkedForwardingAddressCallback, this);
657}
658
659// Visit all of the references of an object and update.
660void SemiSpace::ScanObject(Object* obj) {
661  DCHECK(obj != NULL);
662  DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
663  MarkSweep::VisitObjectReferences(obj, [this](Object* obj, Object* ref, const MemberOffset& offset,
664     bool /* is_static */) ALWAYS_INLINE_LAMBDA NO_THREAD_SAFETY_ANALYSIS {
665    mirror::Object* new_address = MarkObject(ref);
666    if (new_address != ref) {
667      DCHECK(new_address != nullptr);
668      // Don't need to mark the card since we updating the object address and not changing the
669      // actual objects its pointing to. Using SetFieldObjectWithoutWriteBarrier is better in this
670      // case since it does not dirty cards and use additional memory.
671      // Since we do not change the actual object, we can safely use non-transactional mode. Also
672      // disable check as we could run inside a transaction.
673      obj->SetFieldObjectWithoutWriteBarrier<false, false>(offset, new_address, false);
674    }
675  }, kMovingClasses);
676  mirror::Class* klass = obj->GetClass();
677  if (UNLIKELY(klass->IsReferenceClass())) {
678    DelayReferenceReferent(klass, obj);
679  }
680}
681
682// Scan anything that's on the mark stack.
683void SemiSpace::ProcessMarkStack(bool paused) {
684  space::MallocSpace* promo_dest_space = NULL;
685  accounting::SpaceBitmap* live_bitmap = NULL;
686  if (generational_ && !whole_heap_collection_) {
687    // If a bump pointer space only collection (and the promotion is
688    // enabled,) we delay the live-bitmap marking of promoted objects
689    // from MarkObject() until this function.
690    promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
691    live_bitmap = promo_dest_space->GetLiveBitmap();
692    DCHECK(live_bitmap != nullptr);
693    accounting::SpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
694    DCHECK(mark_bitmap != nullptr);
695    DCHECK_EQ(live_bitmap, mark_bitmap);
696  }
697  timings_.StartSplit(paused ? "(paused)ProcessMarkStack" : "ProcessMarkStack");
698  while (!mark_stack_->IsEmpty()) {
699    Object* obj = mark_stack_->PopBack();
700    if (generational_ && !whole_heap_collection_ && promo_dest_space->HasAddress(obj)) {
701      // obj has just been promoted. Mark the live bitmap for it,
702      // which is delayed from MarkObject().
703      DCHECK(!live_bitmap->Test(obj));
704      live_bitmap->Set(obj);
705    }
706    ScanObject(obj);
707  }
708  timings_.EndSplit();
709}
710
711inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
712    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
713  // All immune objects are assumed marked.
714  if (IsImmune(obj)) {
715    return obj;
716  }
717  if (from_space_->HasAddress(obj)) {
718    mirror::Object* forwarding_address = GetForwardingAddressInFromSpace(const_cast<Object*>(obj));
719    return forwarding_address;  // Returns either the forwarding address or nullptr.
720  } else if (to_space_->HasAddress(obj)) {
721    // Should be unlikely.
722    // Already forwarded, must be marked.
723    return obj;
724  }
725  return heap_->GetMarkBitmap()->Test(obj) ? obj : nullptr;
726}
727
728void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
729  DCHECK(to_space != nullptr);
730  to_space_ = to_space;
731}
732
733void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
734  DCHECK(from_space != nullptr);
735  from_space_ = from_space;
736}
737
738void SemiSpace::FinishPhase() {
739  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
740  Heap* heap = GetHeap();
741  timings_.NewSplit("PostGcVerification");
742  heap->PostGcVerification(this);
743
744  // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
745  // further action is done by the heap.
746  to_space_ = nullptr;
747  from_space_ = nullptr;
748
749  // Update the cumulative statistics
750  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
751  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
752
753  // Ensure that the mark stack is empty.
754  CHECK(mark_stack_->IsEmpty());
755
756  // Update the cumulative loggers.
757  cumulative_timings_.Start();
758  cumulative_timings_.AddLogger(timings_);
759  cumulative_timings_.End();
760
761  // Clear all of the spaces' mark bitmaps.
762  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
763    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
764    if (bitmap != nullptr &&
765        space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
766      bitmap->Clear();
767    }
768  }
769  mark_stack_->Reset();
770
771  // Reset the marked large objects.
772  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
773  large_objects->GetMarkObjects()->Clear();
774
775  if (generational_) {
776    // Decide whether to do a whole heap collection or a bump pointer
777    // only space collection at the next collection by updating
778    // whole_heap_collection. Enable whole_heap_collection once every
779    // kDefaultWholeHeapCollectionInterval collections.
780    if (!whole_heap_collection_) {
781      --whole_heap_collection_interval_counter_;
782      DCHECK_GE(whole_heap_collection_interval_counter_, 0);
783      if (whole_heap_collection_interval_counter_ == 0) {
784        whole_heap_collection_ = true;
785      }
786    } else {
787      DCHECK_EQ(whole_heap_collection_interval_counter_, 0);
788      whole_heap_collection_interval_counter_ = kDefaultWholeHeapCollectionInterval;
789      whole_heap_collection_ = false;
790    }
791  }
792}
793
794}  // namespace collector
795}  // namespace gc
796}  // namespace art
797