semi_space.cc revision 893263b7d5bc2ca43a91ecb8071867f5134fc60a
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "semi_space.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/logging.h"
25#include "base/macros.h"
26#include "base/mutex-inl.h"
27#include "base/timing_logger.h"
28#include "gc/accounting/heap_bitmap.h"
29#include "gc/accounting/mod_union_table.h"
30#include "gc/accounting/space_bitmap-inl.h"
31#include "gc/heap.h"
32#include "gc/space/bump_pointer_space.h"
33#include "gc/space/bump_pointer_space-inl.h"
34#include "gc/space/image_space.h"
35#include "gc/space/large_object_space.h"
36#include "gc/space/space-inl.h"
37#include "indirect_reference_table.h"
38#include "intern_table.h"
39#include "jni_internal.h"
40#include "mark_sweep-inl.h"
41#include "monitor.h"
42#include "mirror/art_field.h"
43#include "mirror/art_field-inl.h"
44#include "mirror/class-inl.h"
45#include "mirror/class_loader.h"
46#include "mirror/dex_cache.h"
47#include "mirror/object-inl.h"
48#include "mirror/object_array.h"
49#include "mirror/object_array-inl.h"
50#include "runtime.h"
51#include "semi_space-inl.h"
52#include "thread-inl.h"
53#include "thread_list.h"
54#include "verifier/method_verifier.h"
55
56using ::art::mirror::Class;
57using ::art::mirror::Object;
58
59namespace art {
60namespace gc {
61namespace collector {
62
63static constexpr bool kProtectFromSpace = true;
64static constexpr bool kClearFromSpace = true;
65static constexpr bool kStoreStackTraces = false;
66
67// TODO: Unduplicate logic.
68void SemiSpace::ImmuneSpace(space::ContinuousSpace* space) {
69  // Bind live to mark bitmap if necessary.
70  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
71    CHECK(space->IsContinuousMemMapAllocSpace());
72    space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
73  }
74  // Add the space to the immune region.
75  if (immune_begin_ == nullptr) {
76    DCHECK(immune_end_ == nullptr);
77    immune_begin_ = reinterpret_cast<Object*>(space->Begin());
78    immune_end_ = reinterpret_cast<Object*>(space->End());
79  } else {
80    const space::ContinuousSpace* prev_space = nullptr;
81    // Find out if the previous space is immune.
82    for (space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
83      if (cur_space == space) {
84        break;
85      }
86      prev_space = cur_space;
87    }
88    // If previous space was immune, then extend the immune region. Relies on continuous spaces
89    // being sorted by Heap::AddContinuousSpace.
90    if (prev_space != nullptr && IsImmuneSpace(prev_space)) {
91      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
92      // Use Limit() instead of End() because otherwise if the
93      // generational mode is enabled, the alloc space might expand
94      // due to promotion and the sense of immunity may change in the
95      // middle of a GC.
96      immune_end_ = std::max(reinterpret_cast<Object*>(space->Limit()), immune_end_);
97    }
98  }
99}
100
101void SemiSpace::BindBitmaps() {
102  timings_.StartSplit("BindBitmaps");
103  WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
104  // Mark all of the spaces we never collect as immune.
105  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
106    if (space->GetLiveBitmap() != nullptr) {
107      if (space == to_space_) {
108        CHECK(to_space_->IsContinuousMemMapAllocSpace());
109        to_space_->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
110      } else if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
111                 || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect
112                 // Add the main free list space and the non-moving
113                 // space to the immune space if a bump pointer space
114                 // only collection.
115                 || (generational_ && !whole_heap_collection_ &&
116                     (space == GetHeap()->GetNonMovingSpace() ||
117                      space == GetHeap()->GetPrimaryFreeListSpace()))) {
118        ImmuneSpace(space);
119      }
120    }
121  }
122  if (generational_ && !whole_heap_collection_) {
123    // We won't collect the large object space if a bump pointer space only collection.
124    is_large_object_space_immune_ = true;
125  }
126  timings_.EndSplit();
127}
128
129SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
130    : GarbageCollector(heap,
131                       name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
132      mark_stack_(nullptr),
133      immune_begin_(nullptr),
134      immune_end_(nullptr),
135      is_large_object_space_immune_(false),
136      to_space_(nullptr),
137      to_space_live_bitmap_(nullptr),
138      from_space_(nullptr),
139      self_(nullptr),
140      generational_(generational),
141      last_gc_to_space_end_(nullptr),
142      bytes_promoted_(0),
143      whole_heap_collection_(true),
144      whole_heap_collection_interval_counter_(0),
145      saved_bytes_(0) {
146}
147
148void SemiSpace::InitializePhase() {
149  timings_.Reset();
150  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
151  mark_stack_ = heap_->mark_stack_.get();
152  DCHECK(mark_stack_ != nullptr);
153  immune_begin_ = nullptr;
154  immune_end_ = nullptr;
155  is_large_object_space_immune_ = false;
156  saved_bytes_ = 0;
157  self_ = Thread::Current();
158  // Do any pre GC verification.
159  timings_.NewSplit("PreGcVerification");
160  heap_->PreGcVerification(this);
161  // Set the initial bitmap.
162  to_space_live_bitmap_ = to_space_->GetLiveBitmap();
163}
164
165void SemiSpace::ProcessReferences(Thread* self) {
166  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
167  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
168  GetHeap()->ProcessReferences(timings_, clear_soft_references_, &MarkedForwardingAddressCallback,
169                               &MarkObjectCallback, &ProcessMarkStackCallback, this);
170}
171
172void SemiSpace::MarkingPhase() {
173  if (kStoreStackTraces) {
174    Locks::mutator_lock_->AssertExclusiveHeld(self_);
175    // Store the stack traces into the runtime fault string in case we get a heap corruption
176    // related crash later.
177    ThreadState old_state = self_->SetStateUnsafe(kRunnable);
178    std::ostringstream oss;
179    Runtime* runtime = Runtime::Current();
180    runtime->GetThreadList()->DumpForSigQuit(oss);
181    runtime->GetThreadList()->DumpNativeStacks(oss);
182    runtime->SetFaultMessage(oss.str());
183    CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
184  }
185
186  if (generational_) {
187    if (gc_cause_ == kGcCauseExplicit || gc_cause_ == kGcCauseForNativeAlloc ||
188        clear_soft_references_) {
189      // If an explicit, native allocation-triggered, or last attempt
190      // collection, collect the whole heap (and reset the interval
191      // counter to be consistent.)
192      whole_heap_collection_ = true;
193      whole_heap_collection_interval_counter_ = 0;
194    }
195    if (whole_heap_collection_) {
196      VLOG(heap) << "Whole heap collection";
197    } else {
198      VLOG(heap) << "Bump pointer space only collection";
199    }
200  }
201  Locks::mutator_lock_->AssertExclusiveHeld(self_);
202
203  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
204  // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
205  // wrong space.
206  heap_->SwapSemiSpaces();
207  if (generational_) {
208    // If last_gc_to_space_end_ is out of the bounds of the from-space
209    // (the to-space from last GC), then point it to the beginning of
210    // the from-space. For example, the very first GC or the
211    // pre-zygote compaction.
212    if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
213      last_gc_to_space_end_ = from_space_->Begin();
214    }
215    // Reset this before the marking starts below.
216    bytes_promoted_ = 0;
217  }
218  // Assume the cleared space is already empty.
219  BindBitmaps();
220  // Process dirty cards and add dirty cards to mod-union tables.
221  heap_->ProcessCards(timings_);
222  // Clear the whole card table since we can not get any additional dirty cards during the
223  // paused GC. This saves memory but only works for pause the world collectors.
224  timings_.NewSplit("ClearCardTable");
225  heap_->GetCardTable()->ClearCardTable();
226  // Need to do this before the checkpoint since we don't want any threads to add references to
227  // the live stack during the recursive mark.
228  timings_.NewSplit("SwapStacks");
229  if (kUseThreadLocalAllocationStack) {
230    heap_->RevokeAllThreadLocalAllocationStacks(self_);
231  }
232  heap_->SwapStacks(self_);
233  WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
234  MarkRoots();
235  // Mark roots of immune spaces.
236  UpdateAndMarkModUnion();
237  // Recursively mark remaining objects.
238  MarkReachableObjects();
239}
240
241bool SemiSpace::IsImmuneSpace(const space::ContinuousSpace* space) const {
242  return
243    immune_begin_ <= reinterpret_cast<Object*>(space->Begin()) &&
244    immune_end_ >= reinterpret_cast<Object*>(space->End());
245}
246
247void SemiSpace::UpdateAndMarkModUnion() {
248  for (auto& space : heap_->GetContinuousSpaces()) {
249    // If the space is immune then we need to mark the references to other spaces.
250    if (IsImmuneSpace(space)) {
251      accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
252      if (table != nullptr) {
253        // TODO: Improve naming.
254        TimingLogger::ScopedSplit split(
255            space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
256                                     "UpdateAndMarkImageModUnionTable",
257                                     &timings_);
258        table->UpdateAndMarkReferences(MarkObjectCallback, this);
259      } else {
260        // If a bump pointer space only collection, the non-moving
261        // space is added to the immune space. But the non-moving
262        // space doesn't have a mod union table. Instead, its live
263        // bitmap will be scanned later in MarkReachableObjects().
264        DCHECK(generational_ && !whole_heap_collection_ &&
265               (space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()));
266      }
267    }
268  }
269}
270
271class SemiSpaceScanObjectVisitor {
272 public:
273  explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
274  void operator()(Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
275    // TODO: fix NO_THREAD_SAFETY_ANALYSIS. ScanObject() requires an
276    // exclusive lock on the mutator lock, but
277    // SpaceBitmap::VisitMarkedRange() only requires the shared lock.
278    DCHECK(obj != nullptr);
279    semi_space_->ScanObject(obj);
280  }
281 private:
282  SemiSpace* const semi_space_;
283};
284
285void SemiSpace::MarkReachableObjects() {
286  timings_.StartSplit("MarkStackAsLive");
287  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
288  heap_->MarkAllocStackAsLive(live_stack);
289  live_stack->Reset();
290  timings_.EndSplit();
291
292  for (auto& space : heap_->GetContinuousSpaces()) {
293    // If the space is immune and has no mod union table (the
294    // non-moving space when the bump pointer space only collection is
295    // enabled,) then we need to scan its live bitmap as roots
296    // (including the objects on the live stack which have just marked
297    // in the live bitmap above in MarkAllocStackAsLive().)
298    if (IsImmuneSpace(space) && heap_->FindModUnionTableFromSpace(space) == nullptr) {
299      DCHECK(generational_ && !whole_heap_collection_ &&
300             (space == GetHeap()->GetNonMovingSpace() || space == GetHeap()->GetPrimaryFreeListSpace()));
301      accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
302      SemiSpaceScanObjectVisitor visitor(this);
303      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
304                                    reinterpret_cast<uintptr_t>(space->End()),
305                                    visitor);
306    }
307  }
308
309  if (is_large_object_space_immune_) {
310    DCHECK(generational_ && !whole_heap_collection_);
311    // Delay copying the live set to the marked set until here from
312    // BindBitmaps() as the large objects on the allocation stack may
313    // be newly added to the live set above in MarkAllocStackAsLive().
314    GetHeap()->GetLargeObjectsSpace()->CopyLiveToMarked();
315
316    // When the large object space is immune, we need to scan the
317    // large object space as roots as they contain references to their
318    // classes (primitive array classes) that could move though they
319    // don't contain any other references.
320    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
321    accounting::ObjectSet* large_live_objects = large_object_space->GetLiveObjects();
322    SemiSpaceScanObjectVisitor visitor(this);
323    for (const Object* obj : large_live_objects->GetObjects()) {
324      visitor(const_cast<Object*>(obj));
325    }
326  }
327
328  // Recursively process the mark stack.
329  ProcessMarkStack();
330}
331
332void SemiSpace::ReclaimPhase() {
333  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
334  ProcessReferences(self_);
335  {
336    ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
337    SweepSystemWeaks();
338  }
339  // Record freed memory.
340  uint64_t from_bytes = from_space_->GetBytesAllocated();
341  uint64_t to_bytes = to_space_->GetBytesAllocated();
342  uint64_t from_objects = from_space_->GetObjectsAllocated();
343  uint64_t to_objects = to_space_->GetObjectsAllocated();
344  CHECK_LE(to_objects, from_objects);
345  int64_t freed_bytes = from_bytes - to_bytes;
346  int64_t freed_objects = from_objects - to_objects;
347  freed_bytes_.FetchAndAdd(freed_bytes);
348  freed_objects_.FetchAndAdd(freed_objects);
349  // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
350  // space.
351  heap_->RecordFree(freed_objects, freed_bytes);
352  timings_.StartSplit("PreSweepingGcVerification");
353  heap_->PreSweepingGcVerification(this);
354  timings_.EndSplit();
355
356  {
357    WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
358    // Reclaim unmarked objects.
359    Sweep(false);
360    // Swap the live and mark bitmaps for each space which we modified space. This is an
361    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
362    // bitmaps.
363    timings_.StartSplit("SwapBitmaps");
364    SwapBitmaps();
365    timings_.EndSplit();
366    // Unbind the live and mark bitmaps.
367    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
368    GetHeap()->UnBindBitmaps();
369  }
370  if (kClearFromSpace) {
371    // Release the memory used by the from space.
372    from_space_->Clear();
373  }
374  from_space_->Reset();
375  // Protect the from space.
376  VLOG(heap) << "Protecting space " << *from_space_;
377  if (kProtectFromSpace) {
378    from_space_->GetMemMap()->Protect(PROT_NONE);
379  } else {
380    from_space_->GetMemMap()->Protect(PROT_READ);
381  }
382  if (saved_bytes_ > 0) {
383    VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
384  }
385
386  if (generational_) {
387    // Record the end (top) of the to space so we can distinguish
388    // between objects that were allocated since the last GC and the
389    // older objects.
390    last_gc_to_space_end_ = to_space_->End();
391  }
392}
393
394void SemiSpace::ResizeMarkStack(size_t new_size) {
395  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
396  CHECK_LE(mark_stack_->Size(), new_size);
397  mark_stack_->Resize(new_size);
398  for (const auto& obj : temp) {
399    mark_stack_->PushBack(obj);
400  }
401}
402
403inline void SemiSpace::MarkStackPush(Object* obj) {
404  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
405    ResizeMarkStack(mark_stack_->Capacity() * 2);
406  }
407  // The object must be pushed on to the mark stack.
408  mark_stack_->PushBack(obj);
409}
410
411// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
412bool SemiSpace::MarkLargeObject(const Object* obj) {
413  // TODO: support >1 discontinuous space.
414  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
415  DCHECK(large_object_space->Contains(obj));
416  accounting::ObjectSet* large_objects = large_object_space->GetMarkObjects();
417  if (UNLIKELY(!large_objects->Test(obj))) {
418    large_objects->Set(obj);
419    return true;
420  }
421  return false;
422}
423
424static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
425  if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
426    // We will dirty the current page and somewhere in the middle of the next page. This means
427    // that the next object copied will also dirty that page.
428    // TODO: Worth considering the last object copied? We may end up dirtying one page which is
429    // not necessary per GC.
430    memcpy(dest, src, size);
431    return 0;
432  }
433  size_t saved_bytes = 0;
434  byte* byte_dest = reinterpret_cast<byte*>(dest);
435  if (kIsDebugBuild) {
436    for (size_t i = 0; i < size; ++i) {
437      CHECK_EQ(byte_dest[i], 0U);
438    }
439  }
440  // Process the start of the page. The page must already be dirty, don't bother with checking.
441  const byte* byte_src = reinterpret_cast<const byte*>(src);
442  const byte* limit = byte_src + size;
443  size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
444  // Copy the bytes until the start of the next page.
445  memcpy(dest, src, page_remain);
446  byte_src += page_remain;
447  byte_dest += page_remain;
448  CHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
449  CHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
450  CHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
451  while (byte_src + kPageSize < limit) {
452    bool all_zero = true;
453    uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
454    const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
455    for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
456      // Assumes the destination of the copy is all zeros.
457      if (word_src[i] != 0) {
458        all_zero = false;
459        word_dest[i] = word_src[i];
460      }
461    }
462    if (all_zero) {
463      // Avoided copying into the page since it was all zeros.
464      saved_bytes += kPageSize;
465    }
466    byte_src += kPageSize;
467    byte_dest += kPageSize;
468  }
469  // Handle the part of the page at the end.
470  memcpy(byte_dest, byte_src, limit - byte_src);
471  return saved_bytes;
472}
473
474mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
475  size_t object_size = obj->SizeOf();
476  size_t bytes_allocated;
477  mirror::Object* forward_address = nullptr;
478  if (generational_ && reinterpret_cast<byte*>(obj) < last_gc_to_space_end_) {
479    // If it's allocated before the last GC (older), move
480    // (pseudo-promote) it to the main free list space (as sort
481    // of an old generation.)
482    size_t bytes_promoted;
483    space::MallocSpace* promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
484    forward_address = promo_dest_space->Alloc(self_, object_size, &bytes_promoted, nullptr);
485    if (forward_address == nullptr) {
486      // If out of space, fall back to the to-space.
487      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
488    } else {
489      GetHeap()->num_bytes_allocated_.FetchAndAdd(bytes_promoted);
490      bytes_promoted_ += bytes_promoted;
491      // Handle the bitmaps marking.
492      accounting::SpaceBitmap* live_bitmap = promo_dest_space->GetLiveBitmap();
493      DCHECK(live_bitmap != nullptr);
494      accounting::SpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
495      DCHECK(mark_bitmap != nullptr);
496      DCHECK(!live_bitmap->Test(forward_address));
497      if (!whole_heap_collection_) {
498        // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
499        DCHECK_EQ(live_bitmap, mark_bitmap);
500
501        // If a bump pointer space only collection, delay the live
502        // bitmap marking of the promoted object until it's popped off
503        // the mark stack (ProcessMarkStack()). The rationale: we may
504        // be in the middle of scanning the objects in the promo
505        // destination space for
506        // non-moving-space-to-bump-pointer-space references by
507        // iterating over the marked bits of the live bitmap
508        // (MarkReachableObjects()). If we don't delay it (and instead
509        // mark the promoted object here), the above promo destination
510        // space scan could encounter the just-promoted object and
511        // forward the references in the promoted object's fields even
512        // through it is pushed onto the mark stack. If this happens,
513        // the promoted object would be in an inconsistent state, that
514        // is, it's on the mark stack (gray) but its fields are
515        // already forwarded (black), which would cause a
516        // DCHECK(!to_space_->HasAddress(obj)) failure below.
517      } else {
518        // Mark forward_address on the live bit map.
519        live_bitmap->Set(forward_address);
520        // Mark forward_address on the mark bit map.
521        DCHECK(!mark_bitmap->Test(forward_address));
522        mark_bitmap->Set(forward_address);
523      }
524    }
525    DCHECK(forward_address != nullptr);
526  } else {
527    // If it's allocated after the last GC (younger), copy it to the to-space.
528    forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
529  }
530  // Copy over the object and add it to the mark stack since we still need to update its
531  // references.
532  saved_bytes_ +=
533      CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
534  if (kUseBrooksPointer) {
535    obj->AssertSelfBrooksPointer();
536    DCHECK_EQ(forward_address->GetBrooksPointer(), obj);
537    forward_address->SetBrooksPointer(forward_address);
538    forward_address->AssertSelfBrooksPointer();
539  }
540  if (to_space_live_bitmap_ != nullptr) {
541    to_space_live_bitmap_->Set(forward_address);
542  }
543  DCHECK(to_space_->HasAddress(forward_address) ||
544         (generational_ && GetHeap()->GetPrimaryFreeListSpace()->HasAddress(forward_address)));
545  return forward_address;
546}
547
548// Used to mark and copy objects. Any newly-marked objects who are in the from space get moved to
549// the to-space and have their forward address updated. Objects which have been newly marked are
550// pushed on the mark stack.
551Object* SemiSpace::MarkObject(Object* obj) {
552  if (kUseBrooksPointer) {
553    // Verify all the objects have the correct forward pointer installed.
554    if (obj != nullptr) {
555      obj->AssertSelfBrooksPointer();
556    }
557  }
558  Object* forward_address = obj;
559  if (obj != nullptr && !IsImmune(obj)) {
560    if (from_space_->HasAddress(obj)) {
561      forward_address = GetForwardingAddressInFromSpace(obj);
562      // If the object has already been moved, return the new forward address.
563      if (forward_address == nullptr) {
564        forward_address = MarkNonForwardedObject(obj);
565        DCHECK(forward_address != nullptr);
566        // Make sure to only update the forwarding address AFTER you copy the object so that the
567        // monitor word doesn't get stomped over.
568        obj->SetLockWord(LockWord::FromForwardingAddress(
569            reinterpret_cast<size_t>(forward_address)));
570        // Push the object onto the mark stack for later processing.
571        MarkStackPush(forward_address);
572      }
573      // TODO: Do we need this if in the else statement?
574    } else {
575      accounting::SpaceBitmap* object_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
576      if (LIKELY(object_bitmap != nullptr)) {
577        if (generational_) {
578          // If a bump pointer space only collection, we should not
579          // reach here as we don't/won't mark the objects in the
580          // non-moving space (except for the promoted objects.)  Note
581          // the non-moving space is added to the immune space.
582          DCHECK(whole_heap_collection_);
583        }
584        // This object was not previously marked.
585        if (!object_bitmap->Test(obj)) {
586          object_bitmap->Set(obj);
587          MarkStackPush(obj);
588        }
589      } else {
590        CHECK(!to_space_->HasAddress(obj)) << "Marking object in to_space_";
591        if (MarkLargeObject(obj)) {
592          MarkStackPush(obj);
593        }
594      }
595    }
596  }
597  return forward_address;
598}
599
600void SemiSpace::ProcessMarkStackCallback(void* arg) {
601  DCHECK(arg != nullptr);
602  reinterpret_cast<SemiSpace*>(arg)->ProcessMarkStack();
603}
604
605mirror::Object* SemiSpace::MarkObjectCallback(mirror::Object* root, void* arg) {
606  DCHECK(root != nullptr);
607  DCHECK(arg != nullptr);
608  return reinterpret_cast<SemiSpace*>(arg)->MarkObject(root);
609}
610
611void SemiSpace::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
612                                 RootType /*root_type*/) {
613  DCHECK(root != nullptr);
614  DCHECK(arg != nullptr);
615  *root = reinterpret_cast<SemiSpace*>(arg)->MarkObject(*root);
616}
617
618// Marks all objects in the root set.
619void SemiSpace::MarkRoots() {
620  timings_.StartSplit("MarkRoots");
621  // TODO: Visit up image roots as well?
622  Runtime::Current()->VisitRoots(MarkRootCallback, this);
623  timings_.EndSplit();
624}
625
626mirror::Object* SemiSpace::MarkedForwardingAddressCallback(mirror::Object* object, void* arg) {
627  return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
628}
629
630void SemiSpace::SweepSystemWeaks() {
631  timings_.StartSplit("SweepSystemWeaks");
632  Runtime::Current()->SweepSystemWeaks(MarkedForwardingAddressCallback, this);
633  timings_.EndSplit();
634}
635
636bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
637  return space != from_space_ && space != to_space_ && !IsImmuneSpace(space);
638}
639
640void SemiSpace::Sweep(bool swap_bitmaps) {
641  DCHECK(mark_stack_->IsEmpty());
642  TimingLogger::ScopedSplit("Sweep", &timings_);
643  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
644    if (space->IsContinuousMemMapAllocSpace()) {
645      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
646      if (!ShouldSweepSpace(alloc_space)) {
647        continue;
648      }
649      TimingLogger::ScopedSplit split(
650          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", &timings_);
651      size_t freed_objects = 0;
652      size_t freed_bytes = 0;
653      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
654      heap_->RecordFree(freed_objects, freed_bytes);
655      freed_objects_.FetchAndAdd(freed_objects);
656      freed_bytes_.FetchAndAdd(freed_bytes);
657    }
658  }
659  if (!is_large_object_space_immune_) {
660    SweepLargeObjects(swap_bitmaps);
661  }
662}
663
664void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
665  DCHECK(!is_large_object_space_immune_);
666  TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
667  size_t freed_objects = 0;
668  size_t freed_bytes = 0;
669  GetHeap()->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
670  freed_large_objects_.FetchAndAdd(freed_objects);
671  freed_large_object_bytes_.FetchAndAdd(freed_bytes);
672  GetHeap()->RecordFree(freed_objects, freed_bytes);
673}
674
675// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
676// marked, put it on the appropriate list in the heap for later processing.
677void SemiSpace::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
678  heap_->DelayReferenceReferent(klass, obj, MarkedForwardingAddressCallback, this);
679}
680
681// Visit all of the references of an object and update.
682void SemiSpace::ScanObject(Object* obj) {
683  DCHECK(obj != NULL);
684  DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
685  MarkSweep::VisitObjectReferences(obj, [this](Object* obj, Object* ref, const MemberOffset& offset,
686     bool /* is_static */) ALWAYS_INLINE_LAMBDA NO_THREAD_SAFETY_ANALYSIS {
687    mirror::Object* new_address = MarkObject(ref);
688    if (new_address != ref) {
689      DCHECK(new_address != nullptr);
690      // Don't need to mark the card since we updating the object address and not changing the
691      // actual objects its pointing to. Using SetFieldObjectWithoutWriteBarrier is better in this
692      // case since it does not dirty cards and use additional memory.
693      // Since we do not change the actual object, we can safely use non-transactional mode. Also
694      // disable check as we could run inside a transaction.
695      obj->SetFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(offset, new_address, false);
696    }
697  }, kMovingClasses);
698  mirror::Class* klass = obj->GetClass<kVerifyNone>();
699  if (UNLIKELY(klass->IsReferenceClass<kVerifyNone>())) {
700    DelayReferenceReferent(klass, obj);
701  }
702}
703
704// Scan anything that's on the mark stack.
705void SemiSpace::ProcessMarkStack() {
706  space::MallocSpace* promo_dest_space = NULL;
707  accounting::SpaceBitmap* live_bitmap = NULL;
708  if (generational_ && !whole_heap_collection_) {
709    // If a bump pointer space only collection (and the promotion is
710    // enabled,) we delay the live-bitmap marking of promoted objects
711    // from MarkObject() until this function.
712    promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
713    live_bitmap = promo_dest_space->GetLiveBitmap();
714    DCHECK(live_bitmap != nullptr);
715    accounting::SpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
716    DCHECK(mark_bitmap != nullptr);
717    DCHECK_EQ(live_bitmap, mark_bitmap);
718  }
719  timings_.StartSplit("ProcessMarkStack");
720  while (!mark_stack_->IsEmpty()) {
721    Object* obj = mark_stack_->PopBack();
722    if (generational_ && !whole_heap_collection_ && promo_dest_space->HasAddress(obj)) {
723      // obj has just been promoted. Mark the live bitmap for it,
724      // which is delayed from MarkObject().
725      DCHECK(!live_bitmap->Test(obj));
726      live_bitmap->Set(obj);
727    }
728    ScanObject(obj);
729  }
730  timings_.EndSplit();
731}
732
733inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
734    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
735  // All immune objects are assumed marked.
736  if (IsImmune(obj)) {
737    return obj;
738  }
739  if (from_space_->HasAddress(obj)) {
740    mirror::Object* forwarding_address = GetForwardingAddressInFromSpace(const_cast<Object*>(obj));
741    return forwarding_address;  // Returns either the forwarding address or nullptr.
742  } else if (to_space_->HasAddress(obj)) {
743    // Should be unlikely.
744    // Already forwarded, must be marked.
745    return obj;
746  }
747  return heap_->GetMarkBitmap()->Test(obj) ? obj : nullptr;
748}
749
750void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
751  DCHECK(to_space != nullptr);
752  to_space_ = to_space;
753}
754
755void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
756  DCHECK(from_space != nullptr);
757  from_space_ = from_space;
758}
759
760void SemiSpace::FinishPhase() {
761  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
762  Heap* heap = GetHeap();
763  timings_.NewSplit("PostGcVerification");
764  heap->PostGcVerification(this);
765
766  // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
767  // further action is done by the heap.
768  to_space_ = nullptr;
769  from_space_ = nullptr;
770
771  // Update the cumulative statistics
772  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
773  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
774
775  // Ensure that the mark stack is empty.
776  CHECK(mark_stack_->IsEmpty());
777
778  // Update the cumulative loggers.
779  cumulative_timings_.Start();
780  cumulative_timings_.AddLogger(timings_);
781  cumulative_timings_.End();
782
783  // Clear all of the spaces' mark bitmaps.
784  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
785    accounting::SpaceBitmap* bitmap = space->GetMarkBitmap();
786    if (bitmap != nullptr &&
787        space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
788      bitmap->Clear();
789    }
790  }
791  mark_stack_->Reset();
792
793  // Reset the marked large objects.
794  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
795  large_objects->GetMarkObjects()->Clear();
796
797  if (generational_) {
798    // Decide whether to do a whole heap collection or a bump pointer
799    // only space collection at the next collection by updating
800    // whole_heap_collection. Enable whole_heap_collection once every
801    // kDefaultWholeHeapCollectionInterval collections.
802    if (!whole_heap_collection_) {
803      --whole_heap_collection_interval_counter_;
804      DCHECK_GE(whole_heap_collection_interval_counter_, 0);
805      if (whole_heap_collection_interval_counter_ == 0) {
806        whole_heap_collection_ = true;
807      }
808    } else {
809      DCHECK_EQ(whole_heap_collection_interval_counter_, 0);
810      whole_heap_collection_interval_counter_ = kDefaultWholeHeapCollectionInterval;
811      whole_heap_collection_ = false;
812    }
813  }
814}
815
816}  // namespace collector
817}  // namespace gc
818}  // namespace art
819