semi_space.cc revision f85c2fb317399ab540854cd7551ac47690366543
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "semi_space-inl.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/logging.h"
25#include "base/macros.h"
26#include "base/mutex-inl.h"
27#include "base/timing_logger.h"
28#include "gc/accounting/heap_bitmap-inl.h"
29#include "gc/accounting/mod_union_table.h"
30#include "gc/accounting/remembered_set.h"
31#include "gc/accounting/space_bitmap-inl.h"
32#include "gc/heap.h"
33#include "gc/reference_processor.h"
34#include "gc/space/bump_pointer_space.h"
35#include "gc/space/bump_pointer_space-inl.h"
36#include "gc/space/image_space.h"
37#include "gc/space/large_object_space.h"
38#include "gc/space/space-inl.h"
39#include "indirect_reference_table.h"
40#include "intern_table.h"
41#include "jni_internal.h"
42#include "mark_sweep-inl.h"
43#include "monitor.h"
44#include "mirror/reference-inl.h"
45#include "mirror/object-inl.h"
46#include "runtime.h"
47#include "thread-inl.h"
48#include "thread_list.h"
49
50using ::art::mirror::Object;
51
52namespace art {
53namespace gc {
54namespace collector {
55
56static constexpr bool kProtectFromSpace = true;
57static constexpr bool kStoreStackTraces = false;
58static constexpr size_t kBytesPromotedThreshold = 4 * MB;
59static constexpr size_t kLargeObjectBytesAllocatedThreshold = 16 * MB;
60
61void SemiSpace::BindBitmaps() {
62  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
63  WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
64  // Mark all of the spaces we never collect as immune.
65  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
66    if (space->GetLiveBitmap() != nullptr) {
67      if (space == to_space_) {
68        CHECK(to_space_->IsContinuousMemMapAllocSpace());
69        to_space_->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
70      } else if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
71                 || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect
72                 // Add the main free list space and the non-moving
73                 // space to the immune space if a bump pointer space
74                 // only collection.
75                 || (generational_ && !whole_heap_collection_ &&
76                     (space == GetHeap()->GetNonMovingSpace() ||
77                      space == GetHeap()->GetPrimaryFreeListSpace()))) {
78        CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
79      }
80    }
81  }
82  if (generational_ && !whole_heap_collection_) {
83    // We won't collect the large object space if a bump pointer space only collection.
84    is_large_object_space_immune_ = true;
85  }
86}
87
88SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
89    : GarbageCollector(heap,
90                       name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
91      to_space_(nullptr),
92      from_space_(nullptr),
93      generational_(generational),
94      last_gc_to_space_end_(nullptr),
95      bytes_promoted_(0),
96      bytes_promoted_since_last_whole_heap_collection_(0),
97      large_object_bytes_allocated_at_last_whole_heap_collection_(0),
98      whole_heap_collection_(true),
99      collector_name_(name_),
100      swap_semi_spaces_(true) {
101}
102
103void SemiSpace::RunPhases() {
104  Thread* self = Thread::Current();
105  InitializePhase();
106  // Semi-space collector is special since it is sometimes called with the mutators suspended
107  // during the zygote creation and collector transitions. If we already exclusively hold the
108  // mutator lock, then we can't lock it again since it will cause a deadlock.
109  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
110    GetHeap()->PreGcVerificationPaused(this);
111    GetHeap()->PrePauseRosAllocVerification(this);
112    MarkingPhase();
113    ReclaimPhase();
114    GetHeap()->PostGcVerificationPaused(this);
115  } else {
116    Locks::mutator_lock_->AssertNotHeld(self);
117    {
118      ScopedPause pause(this);
119      GetHeap()->PreGcVerificationPaused(this);
120      GetHeap()->PrePauseRosAllocVerification(this);
121      MarkingPhase();
122    }
123    {
124      ReaderMutexLock mu(self, *Locks::mutator_lock_);
125      ReclaimPhase();
126    }
127    GetHeap()->PostGcVerification(this);
128  }
129  FinishPhase();
130}
131
132void SemiSpace::InitializePhase() {
133  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
134  mark_stack_ = heap_->GetMarkStack();
135  DCHECK(mark_stack_ != nullptr);
136  immune_region_.Reset();
137  is_large_object_space_immune_ = false;
138  saved_bytes_ = 0;
139  bytes_moved_ = 0;
140  objects_moved_ = 0;
141  self_ = Thread::Current();
142  CHECK(from_space_->CanMoveObjects()) << "Attempting to move from " << *from_space_;
143  // Set the initial bitmap.
144  to_space_live_bitmap_ = to_space_->GetLiveBitmap();
145  {
146    // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
147    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
148    mark_bitmap_ = heap_->GetMarkBitmap();
149  }
150}
151
152void SemiSpace::ProcessReferences(Thread* self) {
153  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
154  GetHeap()->GetReferenceProcessor()->ProcessReferences(
155      false, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
156      &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
157}
158
159void SemiSpace::MarkingPhase() {
160  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
161  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self_));
162  if (kStoreStackTraces) {
163    Locks::mutator_lock_->AssertExclusiveHeld(self_);
164    // Store the stack traces into the runtime fault string in case we Get a heap corruption
165    // related crash later.
166    ThreadState old_state = self_->SetStateUnsafe(kRunnable);
167    std::ostringstream oss;
168    Runtime* runtime = Runtime::Current();
169    runtime->GetThreadList()->DumpForSigQuit(oss);
170    runtime->GetThreadList()->DumpNativeStacks(oss);
171    runtime->SetFaultMessage(oss.str());
172    CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
173  }
174  // Revoke the thread local buffers since the GC may allocate into a RosAllocSpace and this helps
175  // to prevent fragmentation.
176  RevokeAllThreadLocalBuffers();
177  if (generational_) {
178    if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
179        GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
180        GetCurrentIteration()->GetClearSoftReferences()) {
181      // If an explicit, native allocation-triggered, or last attempt
182      // collection, collect the whole heap.
183      whole_heap_collection_ = true;
184    }
185    if (whole_heap_collection_) {
186      VLOG(heap) << "Whole heap collection";
187      name_ = collector_name_ + " whole";
188    } else {
189      VLOG(heap) << "Bump pointer space only collection";
190      name_ = collector_name_ + " bps";
191    }
192  }
193
194  if (!generational_ || whole_heap_collection_) {
195    // If non-generational, always clear soft references.
196    // If generational, clear soft references if a whole heap collection.
197    GetCurrentIteration()->SetClearSoftReferences(true);
198  }
199  Locks::mutator_lock_->AssertExclusiveHeld(self_);
200  if (generational_) {
201    // If last_gc_to_space_end_ is out of the bounds of the from-space
202    // (the to-space from last GC), then point it to the beginning of
203    // the from-space. For example, the very first GC or the
204    // pre-zygote compaction.
205    if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
206      last_gc_to_space_end_ = from_space_->Begin();
207    }
208    // Reset this before the marking starts below.
209    bytes_promoted_ = 0;
210  }
211  // Assume the cleared space is already empty.
212  BindBitmaps();
213  // Process dirty cards and add dirty cards to mod-union tables.
214  heap_->ProcessCards(GetTimings(), kUseRememberedSet && generational_);
215  // Clear the whole card table since we can not Get any additional dirty cards during the
216  // paused GC. This saves memory but only works for pause the world collectors.
217  t.NewTiming("ClearCardTable");
218  heap_->GetCardTable()->ClearCardTable();
219  // Need to do this before the checkpoint since we don't want any threads to add references to
220  // the live stack during the recursive mark.
221  t.NewTiming("SwapStacks");
222  if (kUseThreadLocalAllocationStack) {
223    TimingLogger::ScopedTiming t("RevokeAllThreadLocalAllocationStacks", GetTimings());
224    heap_->RevokeAllThreadLocalAllocationStacks(self_);
225  }
226  heap_->SwapStacks(self_);
227  {
228    WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
229    MarkRoots();
230    // Mark roots of immune spaces.
231    UpdateAndMarkModUnion();
232    // Recursively mark remaining objects.
233    MarkReachableObjects();
234  }
235  ProcessReferences(self_);
236  {
237    ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
238    SweepSystemWeaks();
239  }
240  // Revoke buffers before measuring how many objects were moved since the TLABs need to be revoked
241  // before they are properly counted.
242  RevokeAllThreadLocalBuffers();
243  // Record freed memory.
244  const int64_t from_bytes = from_space_->GetBytesAllocated();
245  const int64_t to_bytes = bytes_moved_;
246  const uint64_t from_objects = from_space_->GetObjectsAllocated();
247  const uint64_t to_objects = objects_moved_;
248  CHECK_LE(to_objects, from_objects);
249  // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
250  // space.
251  RecordFree(ObjectBytePair(from_objects - to_objects, from_bytes - to_bytes));
252  // Clear and protect the from space.
253  from_space_->Clear();
254  VLOG(heap) << "Protecting from_space_: " << *from_space_;
255  from_space_->GetMemMap()->Protect(kProtectFromSpace ? PROT_NONE : PROT_READ);
256  heap_->PreSweepingGcVerification(this);
257  if (swap_semi_spaces_) {
258    heap_->SwapSemiSpaces();
259  }
260}
261
262void SemiSpace::UpdateAndMarkModUnion() {
263  for (auto& space : heap_->GetContinuousSpaces()) {
264    // If the space is immune then we need to mark the references to other spaces.
265    if (immune_region_.ContainsSpace(space)) {
266      accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
267      if (table != nullptr) {
268        // TODO: Improve naming.
269        TimingLogger::ScopedTiming t(
270            space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
271                                     "UpdateAndMarkImageModUnionTable",
272                                     GetTimings());
273        table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
274      } else if (heap_->FindRememberedSetFromSpace(space) != nullptr) {
275        DCHECK(kUseRememberedSet);
276        // If a bump pointer space only collection, the non-moving
277        // space is added to the immune space. The non-moving space
278        // doesn't have a mod union table, but has a remembered
279        // set. Its dirty cards will be scanned later in
280        // MarkReachableObjects().
281        DCHECK(generational_ && !whole_heap_collection_ &&
282               (space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()))
283            << "Space " << space->GetName() << " "
284            << "generational_=" << generational_ << " "
285            << "whole_heap_collection_=" << whole_heap_collection_ << " ";
286      } else {
287        DCHECK(!kUseRememberedSet);
288        // If a bump pointer space only collection, the non-moving
289        // space is added to the immune space. But the non-moving
290        // space doesn't have a mod union table. Instead, its live
291        // bitmap will be scanned later in MarkReachableObjects().
292        DCHECK(generational_ && !whole_heap_collection_ &&
293               (space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace()))
294            << "Space " << space->GetName() << " "
295            << "generational_=" << generational_ << " "
296            << "whole_heap_collection_=" << whole_heap_collection_ << " ";
297      }
298    }
299  }
300}
301
302class SemiSpaceScanObjectVisitor {
303 public:
304  explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
305  void operator()(Object* obj) const EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_,
306                                                              Locks::heap_bitmap_lock_) {
307    DCHECK(obj != nullptr);
308    semi_space_->ScanObject(obj);
309  }
310 private:
311  SemiSpace* const semi_space_;
312};
313
314// Used to verify that there's no references to the from-space.
315class SemiSpaceVerifyNoFromSpaceReferencesVisitor {
316 public:
317  explicit SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space) :
318      from_space_(from_space) {}
319
320  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
321      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
322    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
323    if (from_space_->HasAddress(ref)) {
324      Runtime::Current()->GetHeap()->DumpObject(LOG(INFO), obj);
325      LOG(FATAL) << ref << " found in from space";
326    }
327  }
328 private:
329  space::ContinuousMemMapAllocSpace* from_space_;
330};
331
332void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
333  DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
334  SemiSpaceVerifyNoFromSpaceReferencesVisitor visitor(from_space_);
335  obj->VisitReferences<kMovingClasses>(visitor, VoidFunctor());
336}
337
338class SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor {
339 public:
340  explicit SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
341  void operator()(Object* obj) const
342      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
343    DCHECK(obj != nullptr);
344    semi_space_->VerifyNoFromSpaceReferences(obj);
345  }
346 private:
347  SemiSpace* const semi_space_;
348};
349
350void SemiSpace::MarkReachableObjects() {
351  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
352  {
353    TimingLogger::ScopedTiming t2("MarkStackAsLive", GetTimings());
354    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
355    heap_->MarkAllocStackAsLive(live_stack);
356    live_stack->Reset();
357  }
358  t.NewTiming("UpdateAndMarkRememberedSets");
359  for (auto& space : heap_->GetContinuousSpaces()) {
360    // If the space is immune and has no mod union table (the
361    // non-moving space when the bump pointer space only collection is
362    // enabled,) then we need to scan its live bitmap or dirty cards as roots
363    // (including the objects on the live stack which have just marked
364    // in the live bitmap above in MarkAllocStackAsLive().)
365    if (immune_region_.ContainsSpace(space) &&
366        heap_->FindModUnionTableFromSpace(space) == nullptr) {
367      DCHECK(generational_ && !whole_heap_collection_ &&
368             (space == GetHeap()->GetNonMovingSpace() || space == GetHeap()->GetPrimaryFreeListSpace()));
369      accounting::RememberedSet* rem_set = heap_->FindRememberedSetFromSpace(space);
370      if (kUseRememberedSet) {
371        DCHECK(rem_set != nullptr);
372        rem_set->UpdateAndMarkReferences(MarkHeapReferenceCallback, DelayReferenceReferentCallback,
373                                         from_space_, this);
374        if (kIsDebugBuild) {
375          // Verify that there are no from-space references that
376          // remain in the space, that is, the remembered set (and the
377          // card table) didn't miss any from-space references in the
378          // space.
379          accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
380          SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor visitor(this);
381          live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
382                                        reinterpret_cast<uintptr_t>(space->End()),
383                                        visitor);
384        }
385      } else {
386        DCHECK(rem_set == nullptr);
387        accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
388        SemiSpaceScanObjectVisitor visitor(this);
389        live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
390                                      reinterpret_cast<uintptr_t>(space->End()),
391                                      visitor);
392      }
393    }
394  }
395
396  if (is_large_object_space_immune_) {
397    TimingLogger::ScopedTiming t("VisitLargeObjects", GetTimings());
398    DCHECK(generational_ && !whole_heap_collection_);
399    // Delay copying the live set to the marked set until here from
400    // BindBitmaps() as the large objects on the allocation stack may
401    // be newly added to the live set above in MarkAllocStackAsLive().
402    GetHeap()->GetLargeObjectsSpace()->CopyLiveToMarked();
403
404    // When the large object space is immune, we need to scan the
405    // large object space as roots as they contain references to their
406    // classes (primitive array classes) that could move though they
407    // don't contain any other references.
408    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
409    accounting::LargeObjectBitmap* large_live_bitmap = large_object_space->GetLiveBitmap();
410    SemiSpaceScanObjectVisitor visitor(this);
411    large_live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(large_object_space->Begin()),
412                                        reinterpret_cast<uintptr_t>(large_object_space->End()),
413                                        visitor);
414  }
415  // Recursively process the mark stack.
416  ProcessMarkStack();
417}
418
419void SemiSpace::ReclaimPhase() {
420  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
421  WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
422  // Reclaim unmarked objects.
423  Sweep(false);
424  // Swap the live and mark bitmaps for each space which we modified space. This is an
425  // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
426  // bitmaps.
427  SwapBitmaps();
428  // Unbind the live and mark bitmaps.
429  GetHeap()->UnBindBitmaps();
430  if (saved_bytes_ > 0) {
431    VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
432  }
433  if (generational_) {
434    // Record the end (top) of the to space so we can distinguish
435    // between objects that were allocated since the last GC and the
436    // older objects.
437    last_gc_to_space_end_ = to_space_->End();
438  }
439}
440
441void SemiSpace::ResizeMarkStack(size_t new_size) {
442  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
443  CHECK_LE(mark_stack_->Size(), new_size);
444  mark_stack_->Resize(new_size);
445  for (const auto& obj : temp) {
446    mark_stack_->PushBack(obj);
447  }
448}
449
450inline void SemiSpace::MarkStackPush(Object* obj) {
451  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
452    ResizeMarkStack(mark_stack_->Capacity() * 2);
453  }
454  // The object must be pushed on to the mark stack.
455  mark_stack_->PushBack(obj);
456}
457
458static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
459  if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
460    // We will dirty the current page and somewhere in the middle of the next page. This means
461    // that the next object copied will also dirty that page.
462    // TODO: Worth considering the last object copied? We may end up dirtying one page which is
463    // not necessary per GC.
464    memcpy(dest, src, size);
465    return 0;
466  }
467  size_t saved_bytes = 0;
468  byte* byte_dest = reinterpret_cast<byte*>(dest);
469  if (kIsDebugBuild) {
470    for (size_t i = 0; i < size; ++i) {
471      CHECK_EQ(byte_dest[i], 0U);
472    }
473  }
474  // Process the start of the page. The page must already be dirty, don't bother with checking.
475  const byte* byte_src = reinterpret_cast<const byte*>(src);
476  const byte* limit = byte_src + size;
477  size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
478  // Copy the bytes until the start of the next page.
479  memcpy(dest, src, page_remain);
480  byte_src += page_remain;
481  byte_dest += page_remain;
482  DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
483  DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
484  DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
485  while (byte_src + kPageSize < limit) {
486    bool all_zero = true;
487    uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
488    const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
489    for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
490      // Assumes the destination of the copy is all zeros.
491      if (word_src[i] != 0) {
492        all_zero = false;
493        word_dest[i] = word_src[i];
494      }
495    }
496    if (all_zero) {
497      // Avoided copying into the page since it was all zeros.
498      saved_bytes += kPageSize;
499    }
500    byte_src += kPageSize;
501    byte_dest += kPageSize;
502  }
503  // Handle the part of the page at the end.
504  memcpy(byte_dest, byte_src, limit - byte_src);
505  return saved_bytes;
506}
507
508mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
509  size_t object_size = obj->SizeOf();
510  size_t bytes_allocated;
511  mirror::Object* forward_address = nullptr;
512  if (generational_ && reinterpret_cast<byte*>(obj) < last_gc_to_space_end_) {
513    // If it's allocated before the last GC (older), move
514    // (pseudo-promote) it to the main free list space (as sort
515    // of an old generation.)
516    space::MallocSpace* promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
517    forward_address = promo_dest_space->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
518                                                          nullptr);
519    if (UNLIKELY(forward_address == nullptr)) {
520      // If out of space, fall back to the to-space.
521      forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr);
522    } else {
523      bytes_promoted_ += bytes_allocated;
524      // Dirty the card at the destionation as it may contain
525      // references (including the class pointer) to the bump pointer
526      // space.
527      GetHeap()->WriteBarrierEveryFieldOf(forward_address);
528      // Handle the bitmaps marking.
529      accounting::ContinuousSpaceBitmap* live_bitmap = promo_dest_space->GetLiveBitmap();
530      DCHECK(live_bitmap != nullptr);
531      accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
532      DCHECK(mark_bitmap != nullptr);
533      DCHECK(!live_bitmap->Test(forward_address));
534      if (!whole_heap_collection_) {
535        // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
536        DCHECK_EQ(live_bitmap, mark_bitmap);
537
538        // If a bump pointer space only collection, delay the live
539        // bitmap marking of the promoted object until it's popped off
540        // the mark stack (ProcessMarkStack()). The rationale: we may
541        // be in the middle of scanning the objects in the promo
542        // destination space for
543        // non-moving-space-to-bump-pointer-space references by
544        // iterating over the marked bits of the live bitmap
545        // (MarkReachableObjects()). If we don't delay it (and instead
546        // mark the promoted object here), the above promo destination
547        // space scan could encounter the just-promoted object and
548        // forward the references in the promoted object's fields even
549        // through it is pushed onto the mark stack. If this happens,
550        // the promoted object would be in an inconsistent state, that
551        // is, it's on the mark stack (gray) but its fields are
552        // already forwarded (black), which would cause a
553        // DCHECK(!to_space_->HasAddress(obj)) failure below.
554      } else {
555        // Mark forward_address on the live bit map.
556        live_bitmap->Set(forward_address);
557        // Mark forward_address on the mark bit map.
558        DCHECK(!mark_bitmap->Test(forward_address));
559        mark_bitmap->Set(forward_address);
560      }
561    }
562    DCHECK(forward_address != nullptr);
563  } else {
564    // If it's allocated after the last GC (younger), copy it to the to-space.
565    forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr);
566  }
567  CHECK(forward_address != nullptr) << "Out of memory in the to-space.";
568  ++objects_moved_;
569  bytes_moved_ += bytes_allocated;
570  // Copy over the object and add it to the mark stack since we still need to update its
571  // references.
572  saved_bytes_ +=
573      CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
574  if (kUseBakerOrBrooksReadBarrier) {
575    obj->AssertReadBarrierPointer();
576    if (kUseBrooksReadBarrier) {
577      DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
578      forward_address->SetReadBarrierPointer(forward_address);
579    }
580    forward_address->AssertReadBarrierPointer();
581  }
582  if (to_space_live_bitmap_ != nullptr) {
583    to_space_live_bitmap_->Set(forward_address);
584  }
585  DCHECK(to_space_->HasAddress(forward_address) ||
586         (generational_ && GetHeap()->GetPrimaryFreeListSpace()->HasAddress(forward_address)));
587  return forward_address;
588}
589
590void SemiSpace::ProcessMarkStackCallback(void* arg) {
591  reinterpret_cast<SemiSpace*>(arg)->ProcessMarkStack();
592}
593
594mirror::Object* SemiSpace::MarkObjectCallback(mirror::Object* root, void* arg) {
595  auto ref = StackReference<mirror::Object>::FromMirrorPtr(root);
596  reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
597  return ref.AsMirrorPtr();
598}
599
600void SemiSpace::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* obj_ptr,
601                                          void* arg) {
602  reinterpret_cast<SemiSpace*>(arg)->MarkObject(obj_ptr);
603}
604
605void SemiSpace::DelayReferenceReferentCallback(mirror::Class* klass, mirror::Reference* ref,
606                                               void* arg) {
607  reinterpret_cast<SemiSpace*>(arg)->DelayReferenceReferent(klass, ref);
608}
609
610void SemiSpace::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
611                                 RootType /*root_type*/) {
612  auto ref = StackReference<mirror::Object>::FromMirrorPtr(*root);
613  reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
614  if (*root != ref.AsMirrorPtr()) {
615    *root = ref.AsMirrorPtr();
616  }
617}
618
619// Marks all objects in the root set.
620void SemiSpace::MarkRoots() {
621  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
622  Runtime::Current()->VisitRoots(MarkRootCallback, this);
623}
624
625bool SemiSpace::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* object,
626                                            void* arg) {
627  mirror::Object* obj = object->AsMirrorPtr();
628  mirror::Object* new_obj =
629      reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(obj);
630  if (new_obj == nullptr) {
631    return false;
632  }
633  if (new_obj != obj) {
634    // Write barrier is not necessary since it still points to the same object, just at a different
635    // address.
636    object->Assign(new_obj);
637  }
638  return true;
639}
640
641mirror::Object* SemiSpace::MarkedForwardingAddressCallback(mirror::Object* object, void* arg) {
642  return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
643}
644
645void SemiSpace::SweepSystemWeaks() {
646  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
647  Runtime::Current()->SweepSystemWeaks(MarkedForwardingAddressCallback, this);
648}
649
650bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
651  return space != from_space_ && space != to_space_ && !immune_region_.ContainsSpace(space);
652}
653
654void SemiSpace::Sweep(bool swap_bitmaps) {
655  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
656  DCHECK(mark_stack_->IsEmpty());
657  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
658    if (space->IsContinuousMemMapAllocSpace()) {
659      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
660      if (!ShouldSweepSpace(alloc_space)) {
661        continue;
662      }
663      TimingLogger::ScopedTiming split(
664          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
665      RecordFree(alloc_space->Sweep(swap_bitmaps));
666    }
667  }
668  if (!is_large_object_space_immune_) {
669    SweepLargeObjects(swap_bitmaps);
670  }
671}
672
673void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
674  DCHECK(!is_large_object_space_immune_);
675  TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
676  RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
677}
678
679// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
680// marked, put it on the appropriate list in the heap for later processing.
681void SemiSpace::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
682  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference,
683                                                         &HeapReferenceMarkedCallback, this);
684}
685
686class SemiSpaceMarkObjectVisitor {
687 public:
688  explicit SemiSpaceMarkObjectVisitor(SemiSpace* collector) : collector_(collector) {
689  }
690
691  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE
692      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
693    // Object was already verified when we scanned it.
694    collector_->MarkObject(obj->GetFieldObjectReferenceAddr<kVerifyNone>(offset));
695  }
696
697  void operator()(mirror::Class* klass, mirror::Reference* ref) const
698      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
699      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
700    collector_->DelayReferenceReferent(klass, ref);
701  }
702
703 private:
704  SemiSpace* const collector_;
705};
706
707// Visit all of the references of an object and update.
708void SemiSpace::ScanObject(Object* obj) {
709  DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
710  SemiSpaceMarkObjectVisitor visitor(this);
711  obj->VisitReferences<kMovingClasses>(visitor, visitor);
712}
713
714// Scan anything that's on the mark stack.
715void SemiSpace::ProcessMarkStack() {
716  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
717  space::MallocSpace* promo_dest_space = nullptr;
718  accounting::ContinuousSpaceBitmap* live_bitmap = nullptr;
719  if (generational_ && !whole_heap_collection_) {
720    // If a bump pointer space only collection (and the promotion is
721    // enabled,) we delay the live-bitmap marking of promoted objects
722    // from MarkObject() until this function.
723    promo_dest_space = GetHeap()->GetPrimaryFreeListSpace();
724    live_bitmap = promo_dest_space->GetLiveBitmap();
725    DCHECK(live_bitmap != nullptr);
726    accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space->GetMarkBitmap();
727    DCHECK(mark_bitmap != nullptr);
728    DCHECK_EQ(live_bitmap, mark_bitmap);
729  }
730  while (!mark_stack_->IsEmpty()) {
731    Object* obj = mark_stack_->PopBack();
732    if (generational_ && !whole_heap_collection_ && promo_dest_space->HasAddress(obj)) {
733      // obj has just been promoted. Mark the live bitmap for it,
734      // which is delayed from MarkObject().
735      DCHECK(!live_bitmap->Test(obj));
736      live_bitmap->Set(obj);
737    }
738    ScanObject(obj);
739  }
740}
741
742inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
743    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
744  // All immune objects are assumed marked.
745  if (immune_region_.ContainsObject(obj)) {
746    return obj;
747  }
748  if (from_space_->HasAddress(obj)) {
749    // Returns either the forwarding address or nullptr.
750    return GetForwardingAddressInFromSpace(obj);
751  } else if (to_space_->HasAddress(obj)) {
752    // Should be unlikely.
753    // Already forwarded, must be marked.
754    return obj;
755  }
756  return mark_bitmap_->Test(obj) ? obj : nullptr;
757}
758
759void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
760  DCHECK(to_space != nullptr);
761  to_space_ = to_space;
762}
763
764void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
765  DCHECK(from_space != nullptr);
766  from_space_ = from_space;
767}
768
769void SemiSpace::FinishPhase() {
770  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
771  // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
772  // further action is done by the heap.
773  to_space_ = nullptr;
774  from_space_ = nullptr;
775  CHECK(mark_stack_->IsEmpty());
776  mark_stack_->Reset();
777  if (generational_) {
778    // Decide whether to do a whole heap collection or a bump pointer
779    // only space collection at the next collection by updating
780    // whole_heap_collection.
781    if (!whole_heap_collection_) {
782      // Enable whole_heap_collection if the bytes promoted since the
783      // last whole heap collection or the large object bytes
784      // allocated exceeds a threshold.
785      bytes_promoted_since_last_whole_heap_collection_ += bytes_promoted_;
786      bool bytes_promoted_threshold_exceeded =
787          bytes_promoted_since_last_whole_heap_collection_ >= kBytesPromotedThreshold;
788      uint64_t current_los_bytes_allocated = GetHeap()->GetLargeObjectsSpace()->GetBytesAllocated();
789      uint64_t last_los_bytes_allocated =
790          large_object_bytes_allocated_at_last_whole_heap_collection_;
791      bool large_object_bytes_threshold_exceeded =
792          current_los_bytes_allocated >=
793          last_los_bytes_allocated + kLargeObjectBytesAllocatedThreshold;
794      if (bytes_promoted_threshold_exceeded || large_object_bytes_threshold_exceeded) {
795        whole_heap_collection_ = true;
796      }
797    } else {
798      // Reset the counters.
799      bytes_promoted_since_last_whole_heap_collection_ = bytes_promoted_;
800      large_object_bytes_allocated_at_last_whole_heap_collection_ =
801          GetHeap()->GetLargeObjectsSpace()->GetBytesAllocated();
802      whole_heap_collection_ = false;
803    }
804  }
805  // Clear all of the spaces' mark bitmaps.
806  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
807  heap_->ClearMarkedObjects();
808}
809
810void SemiSpace::RevokeAllThreadLocalBuffers() {
811  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
812  GetHeap()->RevokeAllThreadLocalBuffers();
813}
814
815}  // namespace collector
816}  // namespace gc
817}  // namespace art
818