heap.cc revision 38c488bcd41ba632a646d7a1d790ec71a2fcf6fa
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/remembered_set.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/collector/concurrent_copying.h"
39#include "gc/collector/mark_compact.h"
40#include "gc/collector/mark_sweep-inl.h"
41#include "gc/collector/partial_mark_sweep.h"
42#include "gc/collector/semi_space.h"
43#include "gc/collector/sticky_mark_sweep.h"
44#include "gc/reference_processor.h"
45#include "gc/space/bump_pointer_space.h"
46#include "gc/space/dlmalloc_space-inl.h"
47#include "gc/space/image_space.h"
48#include "gc/space/large_object_space.h"
49#include "gc/space/rosalloc_space-inl.h"
50#include "gc/space/space-inl.h"
51#include "gc/space/zygote_space.h"
52#include "entrypoints/quick/quick_alloc_entrypoints.h"
53#include "heap-inl.h"
54#include "image.h"
55#include "mirror/art_field-inl.h"
56#include "mirror/class-inl.h"
57#include "mirror/object.h"
58#include "mirror/object-inl.h"
59#include "mirror/object_array-inl.h"
60#include "mirror/reference-inl.h"
61#include "object_utils.h"
62#include "os.h"
63#include "reflection.h"
64#include "runtime.h"
65#include "ScopedLocalRef.h"
66#include "scoped_thread_state_change.h"
67#include "handle_scope-inl.h"
68#include "thread_list.h"
69#include "well_known_classes.h"
70
71namespace art {
72
73namespace gc {
74
75static constexpr size_t kCollectorTransitionStressIterations = 0;
76static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
77static constexpr bool kGCALotMode = false;
78static constexpr size_t kGcAlotInterval = KB;
79// Minimum amount of remaining bytes before a concurrent GC is triggered.
80static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
81static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
82// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
83// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
84// threads (lower pauses, use less memory bandwidth).
85static constexpr double kStickyGcThroughputAdjustment = 1.0;
86// Whether or not we use the free list large object space.
87static constexpr bool kUseFreeListSpaceForLOS = false;
88// Whether or not we compact the zygote in PreZygoteFork.
89static constexpr bool kCompactZygote = kMovingCollector;
90static constexpr size_t kNonMovingSpaceCapacity = 64 * MB;
91// How many reserve entries are at the end of the allocation stack, these are only needed if the
92// allocation stack overflows.
93static constexpr size_t kAllocationStackReserveSize = 1024;
94// Default mark stack size in bytes.
95static const size_t kDefaultMarkStackSize = 64 * KB;
96// Define space name.
97static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
98static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
99static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
100static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
101
102Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
103           double target_utilization, double foreground_heap_growth_multiplier, size_t capacity,
104           const std::string& image_file_name, const InstructionSet image_instruction_set,
105           CollectorType foreground_collector_type, CollectorType background_collector_type,
106           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
107           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
108           bool ignore_max_footprint, bool use_tlab,
109           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
110           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
111           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
112           uint64_t min_interval_homogeneous_space_compaction_by_oom)
113    : non_moving_space_(nullptr),
114      rosalloc_space_(nullptr),
115      dlmalloc_space_(nullptr),
116      main_space_(nullptr),
117      collector_type_(kCollectorTypeNone),
118      foreground_collector_type_(foreground_collector_type),
119      background_collector_type_(background_collector_type),
120      desired_collector_type_(foreground_collector_type_),
121      heap_trim_request_lock_(nullptr),
122      last_trim_time_(0),
123      heap_transition_or_trim_target_time_(0),
124      heap_trim_request_pending_(false),
125      parallel_gc_threads_(parallel_gc_threads),
126      conc_gc_threads_(conc_gc_threads),
127      low_memory_mode_(low_memory_mode),
128      long_pause_log_threshold_(long_pause_log_threshold),
129      long_gc_log_threshold_(long_gc_log_threshold),
130      ignore_max_footprint_(ignore_max_footprint),
131      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
132      have_zygote_space_(false),
133      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
134      collector_type_running_(kCollectorTypeNone),
135      last_gc_type_(collector::kGcTypeNone),
136      next_gc_type_(collector::kGcTypePartial),
137      capacity_(capacity),
138      growth_limit_(growth_limit),
139      max_allowed_footprint_(initial_size),
140      native_footprint_gc_watermark_(initial_size),
141      native_footprint_limit_(2 * initial_size),
142      native_need_to_run_finalization_(false),
143      // Initially assume we perceive jank in case the process state is never updated.
144      process_state_(kProcessStateJankPerceptible),
145      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
146      total_bytes_freed_ever_(0),
147      total_objects_freed_ever_(0),
148      num_bytes_allocated_(0),
149      native_bytes_allocated_(0),
150      gc_memory_overhead_(0),
151      verify_missing_card_marks_(false),
152      verify_system_weaks_(false),
153      verify_pre_gc_heap_(verify_pre_gc_heap),
154      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
155      verify_post_gc_heap_(verify_post_gc_heap),
156      verify_mod_union_table_(false),
157      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
158      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
159      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
160      last_gc_time_ns_(NanoTime()),
161      allocation_rate_(0),
162      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
163       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
164       * verification is enabled, we limit the size of allocation stacks to speed up their
165       * searching.
166       */
167      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
168          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
169      current_allocator_(kAllocatorTypeDlMalloc),
170      current_non_moving_allocator_(kAllocatorTypeNonMoving),
171      bump_pointer_space_(nullptr),
172      temp_space_(nullptr),
173      min_free_(min_free),
174      max_free_(max_free),
175      target_utilization_(target_utilization),
176      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
177      total_wait_time_(0),
178      total_allocation_time_(0),
179      verify_object_mode_(kVerifyObjectModeDisabled),
180      disable_moving_gc_count_(0),
181      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
182      use_tlab_(use_tlab),
183      main_space_backup_(nullptr),
184      min_interval_homogeneous_space_compaction_by_oom_(
185          min_interval_homogeneous_space_compaction_by_oom),
186      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
187      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
188  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
189    LOG(INFO) << "Heap() entering";
190  }
191  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
192  // entrypoints.
193  if (!Runtime::Current()->IsZygote()) {
194    large_object_threshold_ = kDefaultLargeObjectThreshold;
195    // Background compaction is currently not supported for command line runs.
196    if (background_collector_type_ != foreground_collector_type_) {
197      VLOG(heap) << "Disabling background compaction for non zygote";
198      background_collector_type_ = foreground_collector_type_;
199    }
200  }
201  ChangeCollector(desired_collector_type_);
202  live_bitmap_.reset(new accounting::HeapBitmap(this));
203  mark_bitmap_.reset(new accounting::HeapBitmap(this));
204  // Requested begin for the alloc space, to follow the mapped image and oat files
205  byte* requested_alloc_space_begin = nullptr;
206  if (!image_file_name.empty()) {
207    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
208                                                               image_instruction_set);
209    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
210    AddSpace(image_space);
211    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
212    // isn't going to get in the middle
213    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
214    CHECK_GT(oat_file_end_addr, image_space->End());
215    requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
216  }
217  /*
218  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
219                                     +-  nonmoving space (kNonMovingSpaceCapacity) +-
220                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
221                                     +-main alloc space / bump space 1 (capacity_) +-
222                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
223                                     +-????????????????????????????????????????????+-
224                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
225                                     +-main alloc space2 / bump space 2 (capacity_)+-
226                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
227  */
228  bool support_homogeneous_space_compaction =
229      background_collector_type == gc::kCollectorTypeHomogeneousSpaceCompact ||
230      use_homogeneous_space_compaction_for_oom;
231  // We may use the same space the main space for the non moving space if we don't need to compact
232  // from the main space.
233  // This is not the case if we support homogeneous compaction or have a moving background
234  // collector type.
235  const bool is_zygote = Runtime::Current()->IsZygote();
236  bool separate_non_moving_space = is_zygote ||
237      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
238      IsMovingGc(background_collector_type_);
239  if (foreground_collector_type == kCollectorTypeGSS) {
240    separate_non_moving_space = false;
241  }
242  std::unique_ptr<MemMap> main_mem_map_1;
243  std::unique_ptr<MemMap> main_mem_map_2;
244  byte* request_begin = requested_alloc_space_begin;
245  if (request_begin != nullptr && separate_non_moving_space) {
246    request_begin += kNonMovingSpaceCapacity;
247  }
248  std::string error_str;
249  std::unique_ptr<MemMap> non_moving_space_mem_map;
250  if (separate_non_moving_space) {
251    // Reserve the non moving mem map before the other two since it needs to be at a specific
252    // address.
253    non_moving_space_mem_map.reset(
254        MemMap::MapAnonymous("non moving space", requested_alloc_space_begin,
255                             kNonMovingSpaceCapacity, PROT_READ | PROT_WRITE, true, &error_str));
256    CHECK(non_moving_space_mem_map != nullptr) << error_str;
257  }
258  // Attempt to create 2 mem maps at or after the requested begin.
259  main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
260                                                    PROT_READ | PROT_WRITE, &error_str));
261  CHECK(main_mem_map_1.get() != nullptr) << error_str;
262  if (support_homogeneous_space_compaction ||
263      background_collector_type_ == kCollectorTypeSS ||
264      foreground_collector_type_ == kCollectorTypeSS) {
265    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
266                                                      capacity_, PROT_READ | PROT_WRITE,
267                                                      &error_str));
268    CHECK(main_mem_map_2.get() != nullptr) << error_str;
269  }
270  // Create the non moving space first so that bitmaps don't take up the address range.
271  if (separate_non_moving_space) {
272    // Non moving space is always dlmalloc since we currently don't have support for multiple
273    // active rosalloc spaces.
274    const size_t size = non_moving_space_mem_map->Size();
275    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
276        non_moving_space_mem_map.release(), "zygote / non moving space", initial_size,
277        initial_size, size, size, false);
278    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
279    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
280        << requested_alloc_space_begin;
281    AddSpace(non_moving_space_);
282  }
283  // Create other spaces based on whether or not we have a moving GC.
284  if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
285    // Create bump pointer spaces.
286    // We only to create the bump pointer if the foreground collector is a compacting GC.
287    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
288    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
289                                                                    main_mem_map_1.release());
290    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
291    AddSpace(bump_pointer_space_);
292    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
293                                                            main_mem_map_2.release());
294    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
295    AddSpace(temp_space_);
296    CHECK(separate_non_moving_space);
297  } else {
298    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
299    CHECK(main_space_ != nullptr);
300    AddSpace(main_space_);
301    if (!separate_non_moving_space) {
302      non_moving_space_ = main_space_;
303      CHECK(!non_moving_space_->CanMoveObjects());
304    }
305    if (foreground_collector_type_ == kCollectorTypeGSS) {
306      CHECK_EQ(foreground_collector_type_, background_collector_type_);
307      // Create bump pointer spaces instead of a backup space.
308      main_mem_map_2.release();
309      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
310                                                            kGSSBumpPointerSpaceCapacity, nullptr);
311      CHECK(bump_pointer_space_ != nullptr);
312      AddSpace(bump_pointer_space_);
313      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
314                                                    kGSSBumpPointerSpaceCapacity, nullptr);
315      CHECK(temp_space_ != nullptr);
316      AddSpace(temp_space_);
317    } else if (main_mem_map_2.get() != nullptr) {
318      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
319      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
320                                                           growth_limit_, capacity_, name, true));
321      CHECK(main_space_backup_.get() != nullptr);
322      // Add the space so its accounted for in the heap_begin and heap_end.
323      AddSpace(main_space_backup_.get());
324    }
325  }
326  CHECK(non_moving_space_ != nullptr);
327  CHECK(!non_moving_space_->CanMoveObjects());
328  // Allocate the large object space.
329  if (kUseFreeListSpaceForLOS) {
330    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity_);
331  } else {
332    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
333  }
334  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
335  AddSpace(large_object_space_);
336  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
337  CHECK(!continuous_spaces_.empty());
338  // Relies on the spaces being sorted.
339  byte* heap_begin = continuous_spaces_.front()->Begin();
340  byte* heap_end = continuous_spaces_.back()->Limit();
341  size_t heap_capacity = heap_end - heap_begin;
342  // Remove the main backup space since it slows down the GC to have unused extra spaces.
343  if (main_space_backup_.get() != nullptr) {
344    RemoveSpace(main_space_backup_.get());
345  }
346  // Allocate the card table.
347  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
348  CHECK(card_table_.get() != NULL) << "Failed to create card table";
349  // Card cache for now since it makes it easier for us to update the references to the copying
350  // spaces.
351  accounting::ModUnionTable* mod_union_table =
352      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
353                                                      GetImageSpace());
354  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
355  AddModUnionTable(mod_union_table);
356  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
357    accounting::RememberedSet* non_moving_space_rem_set =
358        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
359    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
360    AddRememberedSet(non_moving_space_rem_set);
361  }
362  // TODO: Count objects in the image space here?
363  num_bytes_allocated_.StoreRelaxed(0);
364  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
365                                                    kDefaultMarkStackSize));
366  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
367  allocation_stack_.reset(accounting::ObjectStack::Create(
368      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
369  live_stack_.reset(accounting::ObjectStack::Create(
370      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
371  // It's still too early to take a lock because there are no threads yet, but we can create locks
372  // now. We don't create it earlier to make it clear that you can't use locks during heap
373  // initialization.
374  gc_complete_lock_ = new Mutex("GC complete lock");
375  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
376                                                *gc_complete_lock_));
377  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
378  last_gc_size_ = GetBytesAllocated();
379  if (ignore_max_footprint_) {
380    SetIdealFootprint(std::numeric_limits<size_t>::max());
381    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
382  }
383  CHECK_NE(max_allowed_footprint_, 0U);
384  // Create our garbage collectors.
385  for (size_t i = 0; i < 2; ++i) {
386    const bool concurrent = i != 0;
387    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
388    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
389    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
390  }
391  if (kMovingCollector) {
392    // TODO: Clean this up.
393    const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
394    semi_space_collector_ = new collector::SemiSpace(this, generational,
395                                                     generational ? "generational" : "");
396    garbage_collectors_.push_back(semi_space_collector_);
397    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
398    garbage_collectors_.push_back(concurrent_copying_collector_);
399    mark_compact_collector_ = new collector::MarkCompact(this);
400    garbage_collectors_.push_back(mark_compact_collector_);
401  }
402  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr) {
403    // Check that there's no gap between the image space and the non moving space so that the
404    // immune region won't break (eg. due to a large object allocated in the gap).
405    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
406                                      non_moving_space_->GetMemMap());
407    if (!no_gap) {
408      MemMap::DumpMaps(LOG(ERROR));
409      LOG(FATAL) << "There's a gap between the image space and the main space";
410    }
411  }
412  if (running_on_valgrind_) {
413    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
414  }
415  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
416    LOG(INFO) << "Heap() exiting";
417  }
418}
419
420MemMap* Heap::MapAnonymousPreferredAddress(const char* name, byte* request_begin, size_t capacity,
421                                           int prot_flags, std::string* out_error_str) {
422  while (true) {
423    MemMap* map = MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity,
424                                       PROT_READ | PROT_WRITE, true, out_error_str);
425    if (map != nullptr || request_begin == nullptr) {
426      return map;
427    }
428    // Retry a  second time with no specified request begin.
429    request_begin = nullptr;
430  }
431  return nullptr;
432}
433
434space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
435                                                      size_t growth_limit, size_t capacity,
436                                                      const char* name, bool can_move_objects) {
437  space::MallocSpace* malloc_space = nullptr;
438  if (kUseRosAlloc) {
439    // Create rosalloc space.
440    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
441                                                          initial_size, growth_limit, capacity,
442                                                          low_memory_mode_, can_move_objects);
443  } else {
444    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
445                                                          initial_size, growth_limit, capacity,
446                                                          can_move_objects);
447  }
448  if (collector::SemiSpace::kUseRememberedSet) {
449    accounting::RememberedSet* rem_set  =
450        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
451    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
452    AddRememberedSet(rem_set);
453  }
454  CHECK(malloc_space != nullptr) << "Failed to create " << name;
455  malloc_space->SetFootprintLimit(malloc_space->Capacity());
456  return malloc_space;
457}
458
459void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
460                                 size_t capacity) {
461  // Is background compaction is enabled?
462  bool can_move_objects = IsMovingGc(background_collector_type_) !=
463      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
464  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
465  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
466  // from the main space to the zygote space. If background compaction is enabled, always pass in
467  // that we can move objets.
468  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
469    // After the zygote we want this to be false if we don't have background compaction enabled so
470    // that getting primitive array elements is faster.
471    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
472    can_move_objects = !have_zygote_space_ && foreground_collector_type_ != kCollectorTypeGSS;
473  }
474  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
475    RemoveRememberedSet(main_space_);
476  }
477  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
478  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
479                                            can_move_objects);
480  SetSpaceAsDefault(main_space_);
481  VLOG(heap) << "Created main space " << main_space_;
482}
483
484void Heap::ChangeAllocator(AllocatorType allocator) {
485  if (current_allocator_ != allocator) {
486    // These two allocators are only used internally and don't have any entrypoints.
487    CHECK_NE(allocator, kAllocatorTypeLOS);
488    CHECK_NE(allocator, kAllocatorTypeNonMoving);
489    current_allocator_ = allocator;
490    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
491    SetQuickAllocEntryPointsAllocator(current_allocator_);
492    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
493  }
494}
495
496void Heap::DisableCompaction() {
497  if (IsMovingGc(foreground_collector_type_)) {
498    foreground_collector_type_  = kCollectorTypeCMS;
499  }
500  if (IsMovingGc(background_collector_type_)) {
501    background_collector_type_ = foreground_collector_type_;
502  }
503  TransitionCollector(foreground_collector_type_);
504}
505
506std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
507  if (!IsValidContinuousSpaceObjectAddress(klass)) {
508    return StringPrintf("<non heap address klass %p>", klass);
509  }
510  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
511  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
512    std::string result("[");
513    result += SafeGetClassDescriptor(component_type);
514    return result;
515  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
516    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
517  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
518    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
519  } else {
520    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
521    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
522      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
523    }
524    const DexFile* dex_file = dex_cache->GetDexFile();
525    uint16_t class_def_idx = klass->GetDexClassDefIndex();
526    if (class_def_idx == DexFile::kDexNoIndex16) {
527      return "<class def not found>";
528    }
529    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
530    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
531    return dex_file->GetTypeDescriptor(type_id);
532  }
533}
534
535std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
536  if (obj == nullptr) {
537    return "null";
538  }
539  mirror::Class* klass = obj->GetClass<kVerifyNone>();
540  if (klass == nullptr) {
541    return "(class=null)";
542  }
543  std::string result(SafeGetClassDescriptor(klass));
544  if (obj->IsClass()) {
545    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
546  }
547  return result;
548}
549
550void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
551  if (obj == nullptr) {
552    stream << "(obj=null)";
553    return;
554  }
555  if (IsAligned<kObjectAlignment>(obj)) {
556    space::Space* space = nullptr;
557    // Don't use find space since it only finds spaces which actually contain objects instead of
558    // spaces which may contain objects (e.g. cleared bump pointer spaces).
559    for (const auto& cur_space : continuous_spaces_) {
560      if (cur_space->HasAddress(obj)) {
561        space = cur_space;
562        break;
563      }
564    }
565    // Unprotect all the spaces.
566    for (const auto& space : continuous_spaces_) {
567      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
568    }
569    stream << "Object " << obj;
570    if (space != nullptr) {
571      stream << " in space " << *space;
572    }
573    mirror::Class* klass = obj->GetClass<kVerifyNone>();
574    stream << "\nclass=" << klass;
575    if (klass != nullptr) {
576      stream << " type= " << SafePrettyTypeOf(obj);
577    }
578    // Re-protect the address we faulted on.
579    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
580  }
581}
582
583bool Heap::IsCompilingBoot() const {
584  for (const auto& space : continuous_spaces_) {
585    if (space->IsImageSpace() || space->IsZygoteSpace()) {
586      return false;
587    }
588  }
589  return true;
590}
591
592bool Heap::HasImageSpace() const {
593  for (const auto& space : continuous_spaces_) {
594    if (space->IsImageSpace()) {
595      return true;
596    }
597  }
598  return false;
599}
600
601void Heap::IncrementDisableMovingGC(Thread* self) {
602  // Need to do this holding the lock to prevent races where the GC is about to run / running when
603  // we attempt to disable it.
604  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
605  MutexLock mu(self, *gc_complete_lock_);
606  ++disable_moving_gc_count_;
607  if (IsMovingGc(collector_type_running_)) {
608    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
609  }
610}
611
612void Heap::DecrementDisableMovingGC(Thread* self) {
613  MutexLock mu(self, *gc_complete_lock_);
614  CHECK_GE(disable_moving_gc_count_, 0U);
615  --disable_moving_gc_count_;
616}
617
618void Heap::UpdateProcessState(ProcessState process_state) {
619  if (process_state_ != process_state) {
620    process_state_ = process_state;
621    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
622      // Start at index 1 to avoid "is always false" warning.
623      // Have iteration 1 always transition the collector.
624      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
625                          ? foreground_collector_type_ : background_collector_type_);
626      usleep(kCollectorTransitionStressWait);
627    }
628    if (process_state_ == kProcessStateJankPerceptible) {
629      // Transition back to foreground right away to prevent jank.
630      RequestCollectorTransition(foreground_collector_type_, 0);
631    } else {
632      // Don't delay for debug builds since we may want to stress test the GC.
633      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
634      // special handling which does a homogenous space compaction once but then doesn't transition
635      // the collector.
636      RequestCollectorTransition(background_collector_type_,
637                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
638    }
639  }
640}
641
642void Heap::CreateThreadPool() {
643  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
644  if (num_threads != 0) {
645    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
646  }
647}
648
649void Heap::VisitObjects(ObjectCallback callback, void* arg) {
650  Thread* self = Thread::Current();
651  // GCs can move objects, so don't allow this.
652  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
653  if (bump_pointer_space_ != nullptr) {
654    // Visit objects in bump pointer space.
655    bump_pointer_space_->Walk(callback, arg);
656  }
657  // TODO: Switch to standard begin and end to use ranged a based loop.
658  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
659      it < end; ++it) {
660    mirror::Object* obj = *it;
661    if (obj != nullptr && obj->GetClass() != nullptr) {
662      // Avoid the race condition caused by the object not yet being written into the allocation
663      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
664      // there can be nulls on the allocation stack.
665      callback(obj, arg);
666    }
667  }
668  GetLiveBitmap()->Walk(callback, arg);
669  self->EndAssertNoThreadSuspension(old_cause);
670}
671
672void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
673  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
674  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
675  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
676  // TODO: Generalize this to n bitmaps?
677  if (space1 == nullptr) {
678    DCHECK(space2 != nullptr);
679    space1 = space2;
680  }
681  if (space2 == nullptr) {
682    DCHECK(space1 != nullptr);
683    space2 = space1;
684  }
685  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
686                 large_object_space_->GetLiveBitmap(), stack);
687}
688
689void Heap::DeleteThreadPool() {
690  thread_pool_.reset(nullptr);
691}
692
693void Heap::AddSpace(space::Space* space) {
694  CHECK(space != nullptr);
695  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
696  if (space->IsContinuousSpace()) {
697    DCHECK(!space->IsDiscontinuousSpace());
698    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
699    // Continuous spaces don't necessarily have bitmaps.
700    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
701    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
702    if (live_bitmap != nullptr) {
703      DCHECK(mark_bitmap != nullptr);
704      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
705      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
706    }
707    continuous_spaces_.push_back(continuous_space);
708    // Ensure that spaces remain sorted in increasing order of start address.
709    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
710              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
711      return a->Begin() < b->Begin();
712    });
713  } else {
714    DCHECK(space->IsDiscontinuousSpace());
715    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
716    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
717    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
718    discontinuous_spaces_.push_back(discontinuous_space);
719  }
720  if (space->IsAllocSpace()) {
721    alloc_spaces_.push_back(space->AsAllocSpace());
722  }
723}
724
725void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
726  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
727  if (continuous_space->IsDlMallocSpace()) {
728    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
729  } else if (continuous_space->IsRosAllocSpace()) {
730    rosalloc_space_ = continuous_space->AsRosAllocSpace();
731  }
732}
733
734void Heap::RemoveSpace(space::Space* space) {
735  DCHECK(space != nullptr);
736  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
737  if (space->IsContinuousSpace()) {
738    DCHECK(!space->IsDiscontinuousSpace());
739    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
740    // Continuous spaces don't necessarily have bitmaps.
741    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
742    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
743    if (live_bitmap != nullptr) {
744      DCHECK(mark_bitmap != nullptr);
745      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
746      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
747    }
748    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
749    DCHECK(it != continuous_spaces_.end());
750    continuous_spaces_.erase(it);
751  } else {
752    DCHECK(space->IsDiscontinuousSpace());
753    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
754    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
755    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
756    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
757                        discontinuous_space);
758    DCHECK(it != discontinuous_spaces_.end());
759    discontinuous_spaces_.erase(it);
760  }
761  if (space->IsAllocSpace()) {
762    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
763    DCHECK(it != alloc_spaces_.end());
764    alloc_spaces_.erase(it);
765  }
766}
767
768void Heap::RegisterGCAllocation(size_t bytes) {
769  if (this != nullptr) {
770    gc_memory_overhead_.FetchAndAddSequentiallyConsistent(bytes);
771  }
772}
773
774void Heap::RegisterGCDeAllocation(size_t bytes) {
775  if (this != nullptr) {
776    gc_memory_overhead_.FetchAndSubSequentiallyConsistent(bytes);
777  }
778}
779
780void Heap::DumpGcPerformanceInfo(std::ostream& os) {
781  // Dump cumulative timings.
782  os << "Dumping cumulative Gc timings\n";
783  uint64_t total_duration = 0;
784  // Dump cumulative loggers for each GC type.
785  uint64_t total_paused_time = 0;
786  for (auto& collector : garbage_collectors_) {
787    const CumulativeLogger& logger = collector->GetCumulativeTimings();
788    const size_t iterations = logger.GetIterations();
789    const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
790    if (iterations != 0 && pause_histogram.SampleSize() != 0) {
791      os << ConstDumpable<CumulativeLogger>(logger);
792      const uint64_t total_ns = logger.GetTotalNs();
793      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
794      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
795      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
796      const uint64_t freed_objects = collector->GetTotalFreedObjects();
797      Histogram<uint64_t>::CumulativeData cumulative_data;
798      pause_histogram.CreateHistogram(&cumulative_data);
799      pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
800      os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
801         << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
802         << collector->GetName() << " freed: " << freed_objects
803         << " objects with total size " << PrettySize(freed_bytes) << "\n"
804         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
805         << PrettySize(freed_bytes / seconds) << "/s\n";
806      total_duration += total_ns;
807      total_paused_time += total_pause_ns;
808    }
809    collector->ResetMeasurements();
810  }
811  uint64_t allocation_time =
812      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
813  if (total_duration != 0) {
814    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
815    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
816    os << "Mean GC size throughput: "
817       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
818    os << "Mean GC object throughput: "
819       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
820  }
821  size_t total_objects_allocated = GetObjectsAllocatedEver();
822  os << "Total number of allocations: " << total_objects_allocated << "\n";
823  size_t total_bytes_allocated = GetBytesAllocatedEver();
824  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
825  if (kMeasureAllocationTime) {
826    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
827    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
828       << "\n";
829  }
830  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
831  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
832  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_.LoadRelaxed();
833  BaseMutex::DumpAll(os);
834}
835
836Heap::~Heap() {
837  VLOG(heap) << "Starting ~Heap()";
838  STLDeleteElements(&garbage_collectors_);
839  // If we don't reset then the mark stack complains in its destructor.
840  allocation_stack_->Reset();
841  live_stack_->Reset();
842  STLDeleteValues(&mod_union_tables_);
843  STLDeleteValues(&remembered_sets_);
844  STLDeleteElements(&continuous_spaces_);
845  STLDeleteElements(&discontinuous_spaces_);
846  delete gc_complete_lock_;
847  delete heap_trim_request_lock_;
848  VLOG(heap) << "Finished ~Heap()";
849}
850
851space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
852                                                            bool fail_ok) const {
853  for (const auto& space : continuous_spaces_) {
854    if (space->Contains(obj)) {
855      return space;
856    }
857  }
858  if (!fail_ok) {
859    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
860  }
861  return NULL;
862}
863
864space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
865                                                                  bool fail_ok) const {
866  for (const auto& space : discontinuous_spaces_) {
867    if (space->Contains(obj)) {
868      return space;
869    }
870  }
871  if (!fail_ok) {
872    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
873  }
874  return NULL;
875}
876
877space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
878  space::Space* result = FindContinuousSpaceFromObject(obj, true);
879  if (result != NULL) {
880    return result;
881  }
882  return FindDiscontinuousSpaceFromObject(obj, true);
883}
884
885space::ImageSpace* Heap::GetImageSpace() const {
886  for (const auto& space : continuous_spaces_) {
887    if (space->IsImageSpace()) {
888      return space->AsImageSpace();
889    }
890  }
891  return NULL;
892}
893
894void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
895  std::ostringstream oss;
896  size_t total_bytes_free = GetFreeMemory();
897  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
898      << " free bytes";
899  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
900  if (total_bytes_free >= byte_count) {
901    space::AllocSpace* space = nullptr;
902    if (allocator_type == kAllocatorTypeNonMoving) {
903      space = non_moving_space_;
904    } else if (allocator_type == kAllocatorTypeRosAlloc ||
905               allocator_type == kAllocatorTypeDlMalloc) {
906      space = main_space_;
907    } else if (allocator_type == kAllocatorTypeBumpPointer ||
908               allocator_type == kAllocatorTypeTLAB) {
909      space = bump_pointer_space_;
910    }
911    if (space != nullptr) {
912      space->LogFragmentationAllocFailure(oss, byte_count);
913    }
914  }
915  self->ThrowOutOfMemoryError(oss.str().c_str());
916}
917
918void Heap::DoPendingTransitionOrTrim() {
919  Thread* self = Thread::Current();
920  CollectorType desired_collector_type;
921  // Wait until we reach the desired transition time.
922  while (true) {
923    uint64_t wait_time;
924    {
925      MutexLock mu(self, *heap_trim_request_lock_);
926      desired_collector_type = desired_collector_type_;
927      uint64_t current_time = NanoTime();
928      if (current_time >= heap_transition_or_trim_target_time_) {
929        break;
930      }
931      wait_time = heap_transition_or_trim_target_time_ - current_time;
932    }
933    ScopedThreadStateChange tsc(self, kSleeping);
934    usleep(wait_time / 1000);  // Usleep takes microseconds.
935  }
936  // Launch homogeneous space compaction if it is desired.
937  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
938    if (!CareAboutPauseTimes()) {
939      PerformHomogeneousSpaceCompact();
940    }
941    // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
942    desired_collector_type = collector_type_;
943    return;
944  }
945  // Transition the collector if the desired collector type is not the same as the current
946  // collector type.
947  TransitionCollector(desired_collector_type);
948  if (!CareAboutPauseTimes()) {
949    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
950    // about pauses.
951    Runtime* runtime = Runtime::Current();
952    runtime->GetThreadList()->SuspendAll();
953    uint64_t start_time = NanoTime();
954    size_t count = runtime->GetMonitorList()->DeflateMonitors();
955    VLOG(heap) << "Deflating " << count << " monitors took "
956        << PrettyDuration(NanoTime() - start_time);
957    runtime->GetThreadList()->ResumeAll();
958  }
959  // Do a heap trim if it is needed.
960  Trim();
961}
962
963void Heap::Trim() {
964  Thread* self = Thread::Current();
965  {
966    MutexLock mu(self, *heap_trim_request_lock_);
967    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
968      return;
969    }
970    last_trim_time_ = NanoTime();
971    heap_trim_request_pending_ = false;
972  }
973  {
974    // Need to do this before acquiring the locks since we don't want to get suspended while
975    // holding any locks.
976    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
977    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
978    // trimming.
979    MutexLock mu(self, *gc_complete_lock_);
980    // Ensure there is only one GC at a time.
981    WaitForGcToCompleteLocked(kGcCauseTrim, self);
982    collector_type_running_ = kCollectorTypeHeapTrim;
983  }
984  uint64_t start_ns = NanoTime();
985  // Trim the managed spaces.
986  uint64_t total_alloc_space_allocated = 0;
987  uint64_t total_alloc_space_size = 0;
988  uint64_t managed_reclaimed = 0;
989  for (const auto& space : continuous_spaces_) {
990    if (space->IsMallocSpace()) {
991      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
992      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
993        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
994        // for a long period of time.
995        managed_reclaimed += malloc_space->Trim();
996      }
997      total_alloc_space_size += malloc_space->Size();
998    }
999  }
1000  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
1001  if (bump_pointer_space_ != nullptr) {
1002    total_alloc_space_allocated -= bump_pointer_space_->Size();
1003  }
1004  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1005      static_cast<float>(total_alloc_space_size);
1006  uint64_t gc_heap_end_ns = NanoTime();
1007  // We never move things in the native heap, so we can finish the GC at this point.
1008  FinishGC(self, collector::kGcTypeNone);
1009  size_t native_reclaimed = 0;
1010  // Only trim the native heap if we don't care about pauses.
1011  if (!CareAboutPauseTimes()) {
1012#if defined(USE_DLMALLOC)
1013    // Trim the native heap.
1014    dlmalloc_trim(0);
1015    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1016#elif defined(USE_JEMALLOC)
1017    // Jemalloc does it's own internal trimming.
1018#else
1019    UNIMPLEMENTED(WARNING) << "Add trimming support";
1020#endif
1021  }
1022  uint64_t end_ns = NanoTime();
1023  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1024      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1025      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1026      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1027      << "%.";
1028}
1029
1030bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1031  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1032  // taking the lock.
1033  if (obj == nullptr) {
1034    return true;
1035  }
1036  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1037}
1038
1039bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1040  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1041}
1042
1043bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1044  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1045    return false;
1046  }
1047  for (const auto& space : continuous_spaces_) {
1048    if (space->HasAddress(obj)) {
1049      return true;
1050    }
1051  }
1052  return false;
1053}
1054
1055bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1056                              bool search_live_stack, bool sorted) {
1057  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1058    return false;
1059  }
1060  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1061    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1062    if (obj == klass) {
1063      // This case happens for java.lang.Class.
1064      return true;
1065    }
1066    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1067  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1068    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1069    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1070    return temp_space_->Contains(obj);
1071  }
1072  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1073  space::DiscontinuousSpace* d_space = nullptr;
1074  if (c_space != nullptr) {
1075    if (c_space->GetLiveBitmap()->Test(obj)) {
1076      return true;
1077    }
1078  } else {
1079    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1080    if (d_space != nullptr) {
1081      if (d_space->GetLiveBitmap()->Test(obj)) {
1082        return true;
1083      }
1084    }
1085  }
1086  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1087  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1088    if (i > 0) {
1089      NanoSleep(MsToNs(10));
1090    }
1091    if (search_allocation_stack) {
1092      if (sorted) {
1093        if (allocation_stack_->ContainsSorted(obj)) {
1094          return true;
1095        }
1096      } else if (allocation_stack_->Contains(obj)) {
1097        return true;
1098      }
1099    }
1100
1101    if (search_live_stack) {
1102      if (sorted) {
1103        if (live_stack_->ContainsSorted(obj)) {
1104          return true;
1105        }
1106      } else if (live_stack_->Contains(obj)) {
1107        return true;
1108      }
1109    }
1110  }
1111  // We need to check the bitmaps again since there is a race where we mark something as live and
1112  // then clear the stack containing it.
1113  if (c_space != nullptr) {
1114    if (c_space->GetLiveBitmap()->Test(obj)) {
1115      return true;
1116    }
1117  } else {
1118    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1119    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1120      return true;
1121    }
1122  }
1123  return false;
1124}
1125
1126std::string Heap::DumpSpaces() const {
1127  std::ostringstream oss;
1128  DumpSpaces(oss);
1129  return oss.str();
1130}
1131
1132void Heap::DumpSpaces(std::ostream& stream) const {
1133  for (const auto& space : continuous_spaces_) {
1134    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1135    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1136    stream << space << " " << *space << "\n";
1137    if (live_bitmap != nullptr) {
1138      stream << live_bitmap << " " << *live_bitmap << "\n";
1139    }
1140    if (mark_bitmap != nullptr) {
1141      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1142    }
1143  }
1144  for (const auto& space : discontinuous_spaces_) {
1145    stream << space << " " << *space << "\n";
1146  }
1147}
1148
1149void Heap::VerifyObjectBody(mirror::Object* obj) {
1150  if (this == nullptr && verify_object_mode_ == kVerifyObjectModeDisabled) {
1151    return;
1152  }
1153  // Ignore early dawn of the universe verifications.
1154  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1155    return;
1156  }
1157  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1158  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1159  CHECK(c != nullptr) << "Null class in object " << obj;
1160  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1161  CHECK(VerifyClassClass(c));
1162
1163  if (verify_object_mode_ > kVerifyObjectModeFast) {
1164    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1165    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1166  }
1167}
1168
1169void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1170  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1171}
1172
1173void Heap::VerifyHeap() {
1174  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1175  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1176}
1177
1178void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1179  // Use signed comparison since freed bytes can be negative when background compaction foreground
1180  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1181  // free list backed space typically increasing memory footprint due to padding and binning.
1182  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1183  // Note: This relies on 2s complement for handling negative freed_bytes.
1184  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1185  if (Runtime::Current()->HasStatsEnabled()) {
1186    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1187    thread_stats->freed_objects += freed_objects;
1188    thread_stats->freed_bytes += freed_bytes;
1189    // TODO: Do this concurrently.
1190    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1191    global_stats->freed_objects += freed_objects;
1192    global_stats->freed_bytes += freed_bytes;
1193  }
1194}
1195
1196space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1197  for (const auto& space : continuous_spaces_) {
1198    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1199      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1200        return space->AsContinuousSpace()->AsRosAllocSpace();
1201      }
1202    }
1203  }
1204  return nullptr;
1205}
1206
1207mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1208                                             size_t alloc_size, size_t* bytes_allocated,
1209                                             size_t* usable_size,
1210                                             mirror::Class** klass) {
1211  bool was_default_allocator = allocator == GetCurrentAllocator();
1212  DCHECK(klass != nullptr);
1213  StackHandleScope<1> hs(self);
1214  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1215  klass = nullptr;  // Invalidate for safety.
1216  // The allocation failed. If the GC is running, block until it completes, and then retry the
1217  // allocation.
1218  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1219  if (last_gc != collector::kGcTypeNone) {
1220    // If we were the default allocator but the allocator changed while we were suspended,
1221    // abort the allocation.
1222    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1223      return nullptr;
1224    }
1225    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1226    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1227                                                     usable_size);
1228    if (ptr != nullptr) {
1229      return ptr;
1230    }
1231  }
1232
1233  collector::GcType tried_type = next_gc_type_;
1234  const bool gc_ran =
1235      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1236  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1237    return nullptr;
1238  }
1239  if (gc_ran) {
1240    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1241                                                     usable_size);
1242    if (ptr != nullptr) {
1243      return ptr;
1244    }
1245  }
1246
1247  // Loop through our different Gc types and try to Gc until we get enough free memory.
1248  for (collector::GcType gc_type : gc_plan_) {
1249    if (gc_type == tried_type) {
1250      continue;
1251    }
1252    // Attempt to run the collector, if we succeed, re-try the allocation.
1253    const bool gc_ran =
1254        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1255    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1256      return nullptr;
1257    }
1258    if (gc_ran) {
1259      // Did we free sufficient memory for the allocation to succeed?
1260      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1261                                                       usable_size);
1262      if (ptr != nullptr) {
1263        return ptr;
1264      }
1265    }
1266  }
1267  // Allocations have failed after GCs;  this is an exceptional state.
1268  // Try harder, growing the heap if necessary.
1269  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1270                                                  usable_size);
1271  if (ptr != nullptr) {
1272    return ptr;
1273  }
1274  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1275  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1276  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1277  // OOME.
1278  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1279           << " allocation";
1280  // TODO: Run finalization, but this may cause more allocations to occur.
1281  // We don't need a WaitForGcToComplete here either.
1282  DCHECK(!gc_plan_.empty());
1283  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1284  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1285    return nullptr;
1286  }
1287  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1288  if (ptr == nullptr && use_homogeneous_space_compaction_for_oom_) {
1289    const uint64_t current_time = NanoTime();
1290    if ((allocator == kAllocatorTypeRosAlloc || allocator == kAllocatorTypeDlMalloc) &&
1291        current_time - last_time_homogeneous_space_compaction_by_oom_ >
1292        min_interval_homogeneous_space_compaction_by_oom_) {
1293      last_time_homogeneous_space_compaction_by_oom_ = current_time;
1294      HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1295      switch (result) {
1296        case HomogeneousSpaceCompactResult::kSuccess:
1297          // If the allocation succeeded, we delayed an oom.
1298          ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1299          if (ptr != nullptr) {
1300            count_delayed_oom_++;
1301          }
1302          break;
1303        case HomogeneousSpaceCompactResult::kErrorReject:
1304          // Reject due to disabled moving GC.
1305          break;
1306        case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1307          // Throw OOM by default.
1308          break;
1309        default: {
1310          LOG(FATAL) << "Unimplemented homogeneous space compaction result " << static_cast<size_t>(result);
1311        }
1312      }
1313      // Always print that we ran homogeneous space compation since this can cause jank.
1314      VLOG(heap) << "Ran heap homogeneous space compaction, "
1315                << " requested defragmentation "
1316                << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1317                << " performed defragmentation "
1318                << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1319                << " ignored homogeneous space compaction "
1320                << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1321                << " delayed count = "
1322                << count_delayed_oom_.LoadSequentiallyConsistent();
1323    }
1324  }
1325  // If the allocation hasn't succeeded by this point, throw an OOM error.
1326  if (ptr == nullptr) {
1327    ThrowOutOfMemoryError(self, alloc_size, allocator);
1328  }
1329  return ptr;
1330}
1331
1332void Heap::SetTargetHeapUtilization(float target) {
1333  DCHECK_GT(target, 0.0f);  // asserted in Java code
1334  DCHECK_LT(target, 1.0f);
1335  target_utilization_ = target;
1336}
1337
1338size_t Heap::GetObjectsAllocated() const {
1339  size_t total = 0;
1340  for (space::AllocSpace* space : alloc_spaces_) {
1341    total += space->GetObjectsAllocated();
1342  }
1343  return total;
1344}
1345
1346size_t Heap::GetObjectsAllocatedEver() const {
1347  return GetObjectsFreedEver() + GetObjectsAllocated();
1348}
1349
1350size_t Heap::GetBytesAllocatedEver() const {
1351  return GetBytesFreedEver() + GetBytesAllocated();
1352}
1353
1354class InstanceCounter {
1355 public:
1356  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1357      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1358      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1359  }
1360  static void Callback(mirror::Object* obj, void* arg)
1361      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1362    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1363    mirror::Class* instance_class = obj->GetClass();
1364    CHECK(instance_class != nullptr);
1365    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1366      if (instance_counter->use_is_assignable_from_) {
1367        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1368          ++instance_counter->counts_[i];
1369        }
1370      } else if (instance_class == instance_counter->classes_[i]) {
1371        ++instance_counter->counts_[i];
1372      }
1373    }
1374  }
1375
1376 private:
1377  const std::vector<mirror::Class*>& classes_;
1378  bool use_is_assignable_from_;
1379  uint64_t* const counts_;
1380  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1381};
1382
1383void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1384                          uint64_t* counts) {
1385  // Can't do any GC in this function since this may move classes.
1386  Thread* self = Thread::Current();
1387  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1388  InstanceCounter counter(classes, use_is_assignable_from, counts);
1389  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1390  VisitObjects(InstanceCounter::Callback, &counter);
1391  self->EndAssertNoThreadSuspension(old_cause);
1392}
1393
1394class InstanceCollector {
1395 public:
1396  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1397      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1398      : class_(c), max_count_(max_count), instances_(instances) {
1399  }
1400  static void Callback(mirror::Object* obj, void* arg)
1401      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1402    DCHECK(arg != nullptr);
1403    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1404    mirror::Class* instance_class = obj->GetClass();
1405    if (instance_class == instance_collector->class_) {
1406      if (instance_collector->max_count_ == 0 ||
1407          instance_collector->instances_.size() < instance_collector->max_count_) {
1408        instance_collector->instances_.push_back(obj);
1409      }
1410    }
1411  }
1412
1413 private:
1414  mirror::Class* class_;
1415  uint32_t max_count_;
1416  std::vector<mirror::Object*>& instances_;
1417  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1418};
1419
1420void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1421                        std::vector<mirror::Object*>& instances) {
1422  // Can't do any GC in this function since this may move classes.
1423  Thread* self = Thread::Current();
1424  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1425  InstanceCollector collector(c, max_count, instances);
1426  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1427  VisitObjects(&InstanceCollector::Callback, &collector);
1428  self->EndAssertNoThreadSuspension(old_cause);
1429}
1430
1431class ReferringObjectsFinder {
1432 public:
1433  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1434                         std::vector<mirror::Object*>& referring_objects)
1435      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1436      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1437  }
1438
1439  static void Callback(mirror::Object* obj, void* arg)
1440      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1441    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1442  }
1443
1444  // For bitmap Visit.
1445  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1446  // annotalysis on visitors.
1447  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1448    o->VisitReferences<true>(*this, VoidFunctor());
1449  }
1450
1451  // For Object::VisitReferences.
1452  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1453      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1454    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1455    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1456      referring_objects_.push_back(obj);
1457    }
1458  }
1459
1460 private:
1461  mirror::Object* object_;
1462  uint32_t max_count_;
1463  std::vector<mirror::Object*>& referring_objects_;
1464  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1465};
1466
1467void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1468                               std::vector<mirror::Object*>& referring_objects) {
1469  // Can't do any GC in this function since this may move the object o.
1470  Thread* self = Thread::Current();
1471  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1472  ReferringObjectsFinder finder(o, max_count, referring_objects);
1473  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1474  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1475  self->EndAssertNoThreadSuspension(old_cause);
1476}
1477
1478void Heap::CollectGarbage(bool clear_soft_references) {
1479  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1480  // last GC will not have necessarily been cleared.
1481  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1482}
1483
1484HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1485  Thread* self = Thread::Current();
1486  // Inc requested homogeneous space compaction.
1487  count_requested_homogeneous_space_compaction_++;
1488  // Store performed homogeneous space compaction at a new request arrival.
1489  ThreadList* tl = Runtime::Current()->GetThreadList();
1490  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1491  Locks::mutator_lock_->AssertNotHeld(self);
1492  {
1493    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1494    MutexLock mu(self, *gc_complete_lock_);
1495    // Ensure there is only one GC at a time.
1496    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1497    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1498    // is non zero.
1499    // If the collecotr type changed to something which doesn't benefit from homogeneous space compaction,
1500    // exit.
1501    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_)) {
1502      return HomogeneousSpaceCompactResult::kErrorReject;
1503    }
1504    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1505  }
1506  if (Runtime::Current()->IsShuttingDown(self)) {
1507    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1508    // cause objects to get finalized.
1509    FinishGC(self, collector::kGcTypeNone);
1510    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1511  }
1512  // Suspend all threads.
1513  tl->SuspendAll();
1514  uint64_t start_time = NanoTime();
1515  // Launch compaction.
1516  space::MallocSpace* to_space = main_space_backup_.release();
1517  space::MallocSpace* from_space = main_space_;
1518  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1519  const uint64_t space_size_before_compaction = from_space->Size();
1520  AddSpace(to_space);
1521  Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1522  // Leave as prot read so that we can still run ROSAlloc verification on this space.
1523  from_space->GetMemMap()->Protect(PROT_READ);
1524  const uint64_t space_size_after_compaction = to_space->Size();
1525  main_space_ = to_space;
1526  main_space_backup_.reset(from_space);
1527  RemoveSpace(from_space);
1528  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1529  // Update performed homogeneous space compaction count.
1530  count_performed_homogeneous_space_compaction_++;
1531  // Print statics log and resume all threads.
1532  uint64_t duration = NanoTime() - start_time;
1533  LOG(INFO) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1534            << PrettySize(space_size_before_compaction) << " -> "
1535            << PrettySize(space_size_after_compaction) << " compact-ratio: "
1536            << std::fixed << static_cast<double>(space_size_after_compaction) /
1537            static_cast<double>(space_size_before_compaction);
1538  tl->ResumeAll();
1539  // Finish GC.
1540  reference_processor_.EnqueueClearedReferences(self);
1541  GrowForUtilization(semi_space_collector_);
1542  FinishGC(self, collector::kGcTypeFull);
1543  return HomogeneousSpaceCompactResult::kSuccess;
1544}
1545
1546
1547void Heap::TransitionCollector(CollectorType collector_type) {
1548  if (collector_type == collector_type_) {
1549    return;
1550  }
1551  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1552             << " -> " << static_cast<int>(collector_type);
1553  uint64_t start_time = NanoTime();
1554  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1555  Runtime* const runtime = Runtime::Current();
1556  ThreadList* const tl = runtime->GetThreadList();
1557  Thread* const self = Thread::Current();
1558  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1559  Locks::mutator_lock_->AssertNotHeld(self);
1560  const bool copying_transition =
1561      IsMovingGc(background_collector_type_) || IsMovingGc(foreground_collector_type_);
1562  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1563  // compacting_gc_disable_count_, this should rarely occurs).
1564  for (;;) {
1565    {
1566      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1567      MutexLock mu(self, *gc_complete_lock_);
1568      // Ensure there is only one GC at a time.
1569      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1570      // If someone else beat us to it and changed the collector before we could, exit.
1571      // This is safe to do before the suspend all since we set the collector_type_running_ before
1572      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1573      // then it would get blocked on WaitForGcToCompleteLocked.
1574      if (collector_type == collector_type_) {
1575        return;
1576      }
1577      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1578      if (!copying_transition || disable_moving_gc_count_ == 0) {
1579        // TODO: Not hard code in semi-space collector?
1580        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1581        break;
1582      }
1583    }
1584    usleep(1000);
1585  }
1586  if (runtime->IsShuttingDown(self)) {
1587    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1588    // cause objects to get finalized.
1589    FinishGC(self, collector::kGcTypeNone);
1590    return;
1591  }
1592  tl->SuspendAll();
1593  switch (collector_type) {
1594    case kCollectorTypeSS: {
1595      if (!IsMovingGc(collector_type_)) {
1596        // Create the bump pointer space from the backup space.
1597        CHECK(main_space_backup_ != nullptr);
1598        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1599        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1600        // pointer space last transition it will be protected.
1601        CHECK(mem_map != nullptr);
1602        mem_map->Protect(PROT_READ | PROT_WRITE);
1603        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1604                                                                        mem_map.release());
1605        AddSpace(bump_pointer_space_);
1606        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1607        // Use the now empty main space mem map for the bump pointer temp space.
1608        mem_map.reset(main_space_->ReleaseMemMap());
1609        // Remove the main space so that we don't try to trim it, this doens't work for debug
1610        // builds since RosAlloc attempts to read the magic number from a protected page.
1611        RemoveSpace(main_space_);
1612        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1613                                                                mem_map.release());
1614        AddSpace(temp_space_);
1615      }
1616      break;
1617    }
1618    case kCollectorTypeMS:
1619      // Fall through.
1620    case kCollectorTypeCMS: {
1621      if (IsMovingGc(collector_type_)) {
1622        CHECK(temp_space_ != nullptr);
1623        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1624        RemoveSpace(temp_space_);
1625        temp_space_ = nullptr;
1626        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, mem_map->Size(),
1627                              mem_map->Size());
1628        mem_map.release();
1629        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1630        AddSpace(main_space_);
1631        main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1632        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1633        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1634        RemoveSpace(bump_pointer_space_);
1635        bump_pointer_space_ = nullptr;
1636        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1637        main_space_backup_.reset(CreateMallocSpaceFromMemMap(mem_map.get(), kDefaultInitialSize,
1638                                                             mem_map->Size(), mem_map->Size(),
1639                                                             name, true));
1640        mem_map.release();
1641      }
1642      break;
1643    }
1644    default: {
1645      LOG(FATAL) << "Attempted to transition to invalid collector type "
1646                 << static_cast<size_t>(collector_type);
1647      break;
1648    }
1649  }
1650  ChangeCollector(collector_type);
1651  tl->ResumeAll();
1652  // Can't call into java code with all threads suspended.
1653  reference_processor_.EnqueueClearedReferences(self);
1654  uint64_t duration = NanoTime() - start_time;
1655  GrowForUtilization(semi_space_collector_);
1656  FinishGC(self, collector::kGcTypeFull);
1657  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1658  int32_t delta_allocated = before_allocated - after_allocated;
1659  std::string saved_str;
1660  if (delta_allocated >= 0) {
1661    saved_str = " saved at least " + PrettySize(delta_allocated);
1662  } else {
1663    saved_str = " expanded " + PrettySize(-delta_allocated);
1664  }
1665  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1666      << PrettyDuration(duration) << saved_str;
1667}
1668
1669void Heap::ChangeCollector(CollectorType collector_type) {
1670  // TODO: Only do this with all mutators suspended to avoid races.
1671  if (collector_type != collector_type_) {
1672    if (collector_type == kCollectorTypeMC) {
1673      // Don't allow mark compact unless support is compiled in.
1674      CHECK(kMarkCompactSupport);
1675    }
1676    collector_type_ = collector_type;
1677    gc_plan_.clear();
1678    switch (collector_type_) {
1679      case kCollectorTypeCC:  // Fall-through.
1680      case kCollectorTypeMC:  // Fall-through.
1681      case kCollectorTypeSS:  // Fall-through.
1682      case kCollectorTypeGSS: {
1683        gc_plan_.push_back(collector::kGcTypeFull);
1684        if (use_tlab_) {
1685          ChangeAllocator(kAllocatorTypeTLAB);
1686        } else {
1687          ChangeAllocator(kAllocatorTypeBumpPointer);
1688        }
1689        break;
1690      }
1691      case kCollectorTypeMS: {
1692        gc_plan_.push_back(collector::kGcTypeSticky);
1693        gc_plan_.push_back(collector::kGcTypePartial);
1694        gc_plan_.push_back(collector::kGcTypeFull);
1695        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1696        break;
1697      }
1698      case kCollectorTypeCMS: {
1699        gc_plan_.push_back(collector::kGcTypeSticky);
1700        gc_plan_.push_back(collector::kGcTypePartial);
1701        gc_plan_.push_back(collector::kGcTypeFull);
1702        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1703        break;
1704      }
1705      default: {
1706        LOG(FATAL) << "Unimplemented";
1707      }
1708    }
1709    if (IsGcConcurrent()) {
1710      concurrent_start_bytes_ =
1711          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1712    } else {
1713      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1714    }
1715  }
1716}
1717
1718// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1719class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1720 public:
1721  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1722      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1723  }
1724
1725  void BuildBins(space::ContinuousSpace* space) {
1726    bin_live_bitmap_ = space->GetLiveBitmap();
1727    bin_mark_bitmap_ = space->GetMarkBitmap();
1728    BinContext context;
1729    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1730    context.collector_ = this;
1731    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1732    // Note: This requires traversing the space in increasing order of object addresses.
1733    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1734    // Add the last bin which spans after the last object to the end of the space.
1735    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1736  }
1737
1738 private:
1739  struct BinContext {
1740    uintptr_t prev_;  // The end of the previous object.
1741    ZygoteCompactingCollector* collector_;
1742  };
1743  // Maps from bin sizes to locations.
1744  std::multimap<size_t, uintptr_t> bins_;
1745  // Live bitmap of the space which contains the bins.
1746  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1747  // Mark bitmap of the space which contains the bins.
1748  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1749
1750  static void Callback(mirror::Object* obj, void* arg)
1751      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1752    DCHECK(arg != nullptr);
1753    BinContext* context = reinterpret_cast<BinContext*>(arg);
1754    ZygoteCompactingCollector* collector = context->collector_;
1755    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1756    size_t bin_size = object_addr - context->prev_;
1757    // Add the bin consisting of the end of the previous object to the start of the current object.
1758    collector->AddBin(bin_size, context->prev_);
1759    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1760  }
1761
1762  void AddBin(size_t size, uintptr_t position) {
1763    if (size != 0) {
1764      bins_.insert(std::make_pair(size, position));
1765    }
1766  }
1767
1768  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1769    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1770    // allocator.
1771    return false;
1772  }
1773
1774  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1775      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1776    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1777    mirror::Object* forward_address;
1778    // Find the smallest bin which we can move obj in.
1779    auto it = bins_.lower_bound(object_size);
1780    if (it == bins_.end()) {
1781      // No available space in the bins, place it in the target space instead (grows the zygote
1782      // space).
1783      size_t bytes_allocated;
1784      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1785      if (to_space_live_bitmap_ != nullptr) {
1786        to_space_live_bitmap_->Set(forward_address);
1787      } else {
1788        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1789        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1790      }
1791    } else {
1792      size_t size = it->first;
1793      uintptr_t pos = it->second;
1794      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1795      forward_address = reinterpret_cast<mirror::Object*>(pos);
1796      // Set the live and mark bits so that sweeping system weaks works properly.
1797      bin_live_bitmap_->Set(forward_address);
1798      bin_mark_bitmap_->Set(forward_address);
1799      DCHECK_GE(size, object_size);
1800      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1801    }
1802    // Copy the object over to its new location.
1803    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1804    if (kUseBakerOrBrooksReadBarrier) {
1805      obj->AssertReadBarrierPointer();
1806      if (kUseBrooksReadBarrier) {
1807        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1808        forward_address->SetReadBarrierPointer(forward_address);
1809      }
1810      forward_address->AssertReadBarrierPointer();
1811    }
1812    return forward_address;
1813  }
1814};
1815
1816void Heap::UnBindBitmaps() {
1817  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1818  for (const auto& space : GetContinuousSpaces()) {
1819    if (space->IsContinuousMemMapAllocSpace()) {
1820      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1821      if (alloc_space->HasBoundBitmaps()) {
1822        alloc_space->UnBindBitmaps();
1823      }
1824    }
1825  }
1826}
1827
1828void Heap::PreZygoteFork() {
1829  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1830  Thread* self = Thread::Current();
1831  MutexLock mu(self, zygote_creation_lock_);
1832  // Try to see if we have any Zygote spaces.
1833  if (have_zygote_space_) {
1834    return;
1835  }
1836  VLOG(heap) << "Starting PreZygoteFork";
1837  // Trim the pages at the end of the non moving space.
1838  non_moving_space_->Trim();
1839  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1840  // there.
1841  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1842  // Change the collector to the post zygote one.
1843  bool same_space = non_moving_space_ == main_space_;
1844  if (kCompactZygote) {
1845    DCHECK(semi_space_collector_ != nullptr);
1846    // Temporarily disable rosalloc verification because the zygote
1847    // compaction will mess up the rosalloc internal metadata.
1848    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1849    ZygoteCompactingCollector zygote_collector(this);
1850    zygote_collector.BuildBins(non_moving_space_);
1851    // Create a new bump pointer space which we will compact into.
1852    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1853                                         non_moving_space_->Limit());
1854    // Compact the bump pointer space to a new zygote bump pointer space.
1855    bool reset_main_space = false;
1856    if (IsMovingGc(collector_type_)) {
1857      zygote_collector.SetFromSpace(bump_pointer_space_);
1858    } else {
1859      CHECK(main_space_ != nullptr);
1860      // Copy from the main space.
1861      zygote_collector.SetFromSpace(main_space_);
1862      reset_main_space = true;
1863    }
1864    zygote_collector.SetToSpace(&target_space);
1865    zygote_collector.SetSwapSemiSpaces(false);
1866    zygote_collector.Run(kGcCauseCollectorTransition, false);
1867    if (reset_main_space) {
1868      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1869      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1870      MemMap* mem_map = main_space_->ReleaseMemMap();
1871      RemoveSpace(main_space_);
1872      space::Space* old_main_space = main_space_;
1873      CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1874      delete old_main_space;
1875      AddSpace(main_space_);
1876    } else {
1877      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1878    }
1879    if (temp_space_ != nullptr) {
1880      CHECK(temp_space_->IsEmpty());
1881    }
1882    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1883    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1884    // Update the end and write out image.
1885    non_moving_space_->SetEnd(target_space.End());
1886    non_moving_space_->SetLimit(target_space.Limit());
1887    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1888  }
1889  ChangeCollector(foreground_collector_type_);
1890  // Save the old space so that we can remove it after we complete creating the zygote space.
1891  space::MallocSpace* old_alloc_space = non_moving_space_;
1892  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1893  // the remaining available space.
1894  // Remove the old space before creating the zygote space since creating the zygote space sets
1895  // the old alloc space's bitmaps to nullptr.
1896  RemoveSpace(old_alloc_space);
1897  if (collector::SemiSpace::kUseRememberedSet) {
1898    // Sanity bound check.
1899    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1900    // Remove the remembered set for the now zygote space (the old
1901    // non-moving space). Note now that we have compacted objects into
1902    // the zygote space, the data in the remembered set is no longer
1903    // needed. The zygote space will instead have a mod-union table
1904    // from this point on.
1905    RemoveRememberedSet(old_alloc_space);
1906  }
1907  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1908                                                                        low_memory_mode_,
1909                                                                        &non_moving_space_);
1910  CHECK(!non_moving_space_->CanMoveObjects());
1911  if (same_space) {
1912    main_space_ = non_moving_space_;
1913    SetSpaceAsDefault(main_space_);
1914  }
1915  delete old_alloc_space;
1916  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1917  AddSpace(zygote_space);
1918  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1919  AddSpace(non_moving_space_);
1920  have_zygote_space_ = true;
1921  // Enable large object space allocations.
1922  large_object_threshold_ = kDefaultLargeObjectThreshold;
1923  // Create the zygote space mod union table.
1924  accounting::ModUnionTable* mod_union_table =
1925      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1926  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1927  AddModUnionTable(mod_union_table);
1928  if (collector::SemiSpace::kUseRememberedSet) {
1929    // Add a new remembered set for the post-zygote non-moving space.
1930    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1931        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1932                                      non_moving_space_);
1933    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1934        << "Failed to create post-zygote non-moving space remembered set";
1935    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1936  }
1937}
1938
1939void Heap::FlushAllocStack() {
1940  MarkAllocStackAsLive(allocation_stack_.get());
1941  allocation_stack_->Reset();
1942}
1943
1944void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
1945                          accounting::ContinuousSpaceBitmap* bitmap2,
1946                          accounting::LargeObjectBitmap* large_objects,
1947                          accounting::ObjectStack* stack) {
1948  DCHECK(bitmap1 != nullptr);
1949  DCHECK(bitmap2 != nullptr);
1950  mirror::Object** limit = stack->End();
1951  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1952    const mirror::Object* obj = *it;
1953    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1954      if (bitmap1->HasAddress(obj)) {
1955        bitmap1->Set(obj);
1956      } else if (bitmap2->HasAddress(obj)) {
1957        bitmap2->Set(obj);
1958      } else {
1959        large_objects->Set(obj);
1960      }
1961    }
1962  }
1963}
1964
1965void Heap::SwapSemiSpaces() {
1966  CHECK(bump_pointer_space_ != nullptr);
1967  CHECK(temp_space_ != nullptr);
1968  std::swap(bump_pointer_space_, temp_space_);
1969}
1970
1971void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1972                   space::ContinuousMemMapAllocSpace* source_space,
1973                   GcCause gc_cause) {
1974  CHECK(kMovingCollector);
1975  if (target_space != source_space) {
1976    // Don't swap spaces since this isn't a typical semi space collection.
1977    semi_space_collector_->SetSwapSemiSpaces(false);
1978    semi_space_collector_->SetFromSpace(source_space);
1979    semi_space_collector_->SetToSpace(target_space);
1980    semi_space_collector_->Run(gc_cause, false);
1981  } else {
1982    CHECK(target_space->IsBumpPointerSpace())
1983        << "In-place compaction is only supported for bump pointer spaces";
1984    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
1985    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
1986  }
1987}
1988
1989collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1990                                               bool clear_soft_references) {
1991  Thread* self = Thread::Current();
1992  Runtime* runtime = Runtime::Current();
1993  // If the heap can't run the GC, silently fail and return that no GC was run.
1994  switch (gc_type) {
1995    case collector::kGcTypePartial: {
1996      if (!have_zygote_space_) {
1997        return collector::kGcTypeNone;
1998      }
1999      break;
2000    }
2001    default: {
2002      // Other GC types don't have any special cases which makes them not runnable. The main case
2003      // here is full GC.
2004    }
2005  }
2006  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2007  Locks::mutator_lock_->AssertNotHeld(self);
2008  if (self->IsHandlingStackOverflow()) {
2009    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
2010  }
2011  bool compacting_gc;
2012  {
2013    gc_complete_lock_->AssertNotHeld(self);
2014    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2015    MutexLock mu(self, *gc_complete_lock_);
2016    // Ensure there is only one GC at a time.
2017    WaitForGcToCompleteLocked(gc_cause, self);
2018    compacting_gc = IsMovingGc(collector_type_);
2019    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2020    if (compacting_gc && disable_moving_gc_count_ != 0) {
2021      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2022      return collector::kGcTypeNone;
2023    }
2024    collector_type_running_ = collector_type_;
2025  }
2026
2027  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2028    ++runtime->GetStats()->gc_for_alloc_count;
2029    ++self->GetStats()->gc_for_alloc_count;
2030  }
2031  uint64_t gc_start_time_ns = NanoTime();
2032  uint64_t gc_start_size = GetBytesAllocated();
2033  // Approximate allocation rate in bytes / second.
2034  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
2035  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
2036  if (LIKELY(ms_delta != 0)) {
2037    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
2038    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
2039  }
2040
2041  DCHECK_LT(gc_type, collector::kGcTypeMax);
2042  DCHECK_NE(gc_type, collector::kGcTypeNone);
2043
2044  collector::GarbageCollector* collector = nullptr;
2045  // TODO: Clean this up.
2046  if (compacting_gc) {
2047    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2048           current_allocator_ == kAllocatorTypeTLAB);
2049    switch (collector_type_) {
2050      case kCollectorTypeSS:
2051        // Fall-through.
2052      case kCollectorTypeGSS:
2053        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2054        semi_space_collector_->SetToSpace(temp_space_);
2055        semi_space_collector_->SetSwapSemiSpaces(true);
2056        collector = semi_space_collector_;
2057        break;
2058      case kCollectorTypeCC:
2059        collector = concurrent_copying_collector_;
2060        break;
2061      case kCollectorTypeMC:
2062        mark_compact_collector_->SetSpace(bump_pointer_space_);
2063        collector = mark_compact_collector_;
2064        break;
2065      default:
2066        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2067    }
2068    if (collector != mark_compact_collector_) {
2069      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2070      CHECK(temp_space_->IsEmpty());
2071    }
2072    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2073  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2074      current_allocator_ == kAllocatorTypeDlMalloc) {
2075    collector = FindCollectorByGcType(gc_type);
2076  } else {
2077    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2078  }
2079  CHECK(collector != nullptr)
2080      << "Could not find garbage collector with collector_type="
2081      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2082  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2083  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2084  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2085  RequestHeapTrim();
2086  // Enqueue cleared references.
2087  reference_processor_.EnqueueClearedReferences(self);
2088  // Grow the heap so that we know when to perform the next GC.
2089  GrowForUtilization(collector);
2090  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2091  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2092  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2093  // (mutator time blocked >= long_pause_log_threshold_).
2094  bool log_gc = gc_cause == kGcCauseExplicit;
2095  if (!log_gc && CareAboutPauseTimes()) {
2096    // GC for alloc pauses the allocating thread, so consider it as a pause.
2097    log_gc = duration > long_gc_log_threshold_ ||
2098        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2099    for (uint64_t pause : pause_times) {
2100      log_gc = log_gc || pause >= long_pause_log_threshold_;
2101    }
2102  }
2103  if (log_gc) {
2104    const size_t percent_free = GetPercentFree();
2105    const size_t current_heap_size = GetBytesAllocated();
2106    const size_t total_memory = GetTotalMemory();
2107    std::ostringstream pause_string;
2108    for (size_t i = 0; i < pause_times.size(); ++i) {
2109        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2110                     << ((i != pause_times.size() - 1) ? "," : "");
2111    }
2112    LOG(INFO) << gc_cause << " " << collector->GetName()
2113              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2114              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2115              << current_gc_iteration_.GetFreedLargeObjects() << "("
2116              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2117              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2118              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2119              << " total " << PrettyDuration((duration / 1000) * 1000);
2120    VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2121  }
2122  FinishGC(self, gc_type);
2123  // Inform DDMS that a GC completed.
2124  Dbg::GcDidFinish();
2125  return gc_type;
2126}
2127
2128void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2129  MutexLock mu(self, *gc_complete_lock_);
2130  collector_type_running_ = kCollectorTypeNone;
2131  if (gc_type != collector::kGcTypeNone) {
2132    last_gc_type_ = gc_type;
2133  }
2134  // Wake anyone who may have been waiting for the GC to complete.
2135  gc_complete_cond_->Broadcast(self);
2136}
2137
2138static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2139                                     RootType /*root_type*/) {
2140  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2141  if (*root == obj) {
2142    LOG(INFO) << "Object " << obj << " is a root";
2143  }
2144}
2145
2146class ScanVisitor {
2147 public:
2148  void operator()(const mirror::Object* obj) const {
2149    LOG(ERROR) << "Would have rescanned object " << obj;
2150  }
2151};
2152
2153// Verify a reference from an object.
2154class VerifyReferenceVisitor {
2155 public:
2156  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2157      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2158      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2159
2160  size_t GetFailureCount() const {
2161    return fail_count_->LoadSequentiallyConsistent();
2162  }
2163
2164  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2165      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2166    if (verify_referent_) {
2167      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2168    }
2169  }
2170
2171  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2172      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2173    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2174  }
2175
2176  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2177    return heap_->IsLiveObjectLocked(obj, true, false, true);
2178  }
2179
2180  static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
2181                                 RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2182    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2183    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2184      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2185          << " thread_id= " << thread_id << " root_type= " << root_type;
2186    }
2187  }
2188
2189 private:
2190  // TODO: Fix the no thread safety analysis.
2191  // Returns false on failure.
2192  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2193      NO_THREAD_SAFETY_ANALYSIS {
2194    if (ref == nullptr || IsLive(ref)) {
2195      // Verify that the reference is live.
2196      return true;
2197    }
2198    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2199      // Print message on only on first failure to prevent spam.
2200      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2201    }
2202    if (obj != nullptr) {
2203      // Only do this part for non roots.
2204      accounting::CardTable* card_table = heap_->GetCardTable();
2205      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2206      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2207      byte* card_addr = card_table->CardFromAddr(obj);
2208      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2209                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2210      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2211        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2212      } else {
2213        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2214      }
2215
2216      // Attempt to find the class inside of the recently freed objects.
2217      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2218      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2219        space::MallocSpace* space = ref_space->AsMallocSpace();
2220        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2221        if (ref_class != nullptr) {
2222          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2223                     << PrettyClass(ref_class);
2224        } else {
2225          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2226        }
2227      }
2228
2229      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2230          ref->GetClass()->IsClass()) {
2231        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2232      } else {
2233        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2234                   << ") is not a valid heap address";
2235      }
2236
2237      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2238      void* cover_begin = card_table->AddrFromCard(card_addr);
2239      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2240          accounting::CardTable::kCardSize);
2241      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2242          << "-" << cover_end;
2243      accounting::ContinuousSpaceBitmap* bitmap =
2244          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2245
2246      if (bitmap == nullptr) {
2247        LOG(ERROR) << "Object " << obj << " has no bitmap";
2248        if (!VerifyClassClass(obj->GetClass())) {
2249          LOG(ERROR) << "Object " << obj << " failed class verification!";
2250        }
2251      } else {
2252        // Print out how the object is live.
2253        if (bitmap->Test(obj)) {
2254          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2255        }
2256        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2257          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2258        }
2259        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2260          LOG(ERROR) << "Object " << obj << " found in live stack";
2261        }
2262        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2263          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2264        }
2265        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2266          LOG(ERROR) << "Ref " << ref << " found in live stack";
2267        }
2268        // Attempt to see if the card table missed the reference.
2269        ScanVisitor scan_visitor;
2270        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2271        card_table->Scan(bitmap, byte_cover_begin,
2272                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2273      }
2274
2275      // Search to see if any of the roots reference our object.
2276      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2277      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2278
2279      // Search to see if any of the roots reference our reference.
2280      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2281      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2282    }
2283    return false;
2284  }
2285
2286  Heap* const heap_;
2287  Atomic<size_t>* const fail_count_;
2288  const bool verify_referent_;
2289};
2290
2291// Verify all references within an object, for use with HeapBitmap::Visit.
2292class VerifyObjectVisitor {
2293 public:
2294  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2295      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2296  }
2297
2298  void operator()(mirror::Object* obj) const
2299      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2300    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2301    // be live or else how did we find it in the live bitmap?
2302    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2303    // The class doesn't count as a reference but we should verify it anyways.
2304    obj->VisitReferences<true>(visitor, visitor);
2305  }
2306
2307  static void VisitCallback(mirror::Object* obj, void* arg)
2308      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2309    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2310    visitor->operator()(obj);
2311  }
2312
2313  size_t GetFailureCount() const {
2314    return fail_count_->LoadSequentiallyConsistent();
2315  }
2316
2317 private:
2318  Heap* const heap_;
2319  Atomic<size_t>* const fail_count_;
2320  const bool verify_referent_;
2321};
2322
2323void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2324  // Slow path, the allocation stack push back must have already failed.
2325  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2326  do {
2327    // TODO: Add handle VerifyObject.
2328    StackHandleScope<1> hs(self);
2329    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2330    // Push our object into the reserve region of the allocaiton stack. This is only required due
2331    // to heap verification requiring that roots are live (either in the live bitmap or in the
2332    // allocation stack).
2333    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2334    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2335  } while (!allocation_stack_->AtomicPushBack(*obj));
2336}
2337
2338void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2339  // Slow path, the allocation stack push back must have already failed.
2340  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2341  mirror::Object** start_address;
2342  mirror::Object** end_address;
2343  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2344                                            &end_address)) {
2345    // TODO: Add handle VerifyObject.
2346    StackHandleScope<1> hs(self);
2347    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2348    // Push our object into the reserve region of the allocaiton stack. This is only required due
2349    // to heap verification requiring that roots are live (either in the live bitmap or in the
2350    // allocation stack).
2351    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2352    // Push into the reserve allocation stack.
2353    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2354  }
2355  self->SetThreadLocalAllocationStack(start_address, end_address);
2356  // Retry on the new thread-local allocation stack.
2357  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2358}
2359
2360// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2361size_t Heap::VerifyHeapReferences(bool verify_referents) {
2362  Thread* self = Thread::Current();
2363  Locks::mutator_lock_->AssertExclusiveHeld(self);
2364  // Lets sort our allocation stacks so that we can efficiently binary search them.
2365  allocation_stack_->Sort();
2366  live_stack_->Sort();
2367  // Since we sorted the allocation stack content, need to revoke all
2368  // thread-local allocation stacks.
2369  RevokeAllThreadLocalAllocationStacks(self);
2370  Atomic<size_t> fail_count_(0);
2371  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2372  // Verify objects in the allocation stack since these will be objects which were:
2373  // 1. Allocated prior to the GC (pre GC verification).
2374  // 2. Allocated during the GC (pre sweep GC verification).
2375  // We don't want to verify the objects in the live stack since they themselves may be
2376  // pointing to dead objects if they are not reachable.
2377  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2378  // Verify the roots:
2379  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2380  if (visitor.GetFailureCount() > 0) {
2381    // Dump mod-union tables.
2382    for (const auto& table_pair : mod_union_tables_) {
2383      accounting::ModUnionTable* mod_union_table = table_pair.second;
2384      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2385    }
2386    // Dump remembered sets.
2387    for (const auto& table_pair : remembered_sets_) {
2388      accounting::RememberedSet* remembered_set = table_pair.second;
2389      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2390    }
2391    DumpSpaces(LOG(ERROR));
2392  }
2393  return visitor.GetFailureCount();
2394}
2395
2396class VerifyReferenceCardVisitor {
2397 public:
2398  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2399      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2400                            Locks::heap_bitmap_lock_)
2401      : heap_(heap), failed_(failed) {
2402  }
2403
2404  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2405  // annotalysis on visitors.
2406  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2407      NO_THREAD_SAFETY_ANALYSIS {
2408    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2409    // Filter out class references since changing an object's class does not mark the card as dirty.
2410    // Also handles large objects, since the only reference they hold is a class reference.
2411    if (ref != nullptr && !ref->IsClass()) {
2412      accounting::CardTable* card_table = heap_->GetCardTable();
2413      // If the object is not dirty and it is referencing something in the live stack other than
2414      // class, then it must be on a dirty card.
2415      if (!card_table->AddrIsInCardTable(obj)) {
2416        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2417        *failed_ = true;
2418      } else if (!card_table->IsDirty(obj)) {
2419        // TODO: Check mod-union tables.
2420        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2421        // kCardDirty - 1 if it didnt get touched since we aged it.
2422        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2423        if (live_stack->ContainsSorted(ref)) {
2424          if (live_stack->ContainsSorted(obj)) {
2425            LOG(ERROR) << "Object " << obj << " found in live stack";
2426          }
2427          if (heap_->GetLiveBitmap()->Test(obj)) {
2428            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2429          }
2430          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2431                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2432
2433          // Print which field of the object is dead.
2434          if (!obj->IsObjectArray()) {
2435            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2436            CHECK(klass != NULL);
2437            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2438                                                                      : klass->GetIFields();
2439            CHECK(fields != NULL);
2440            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2441              mirror::ArtField* cur = fields->Get(i);
2442              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2443                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2444                          << PrettyField(cur);
2445                break;
2446              }
2447            }
2448          } else {
2449            mirror::ObjectArray<mirror::Object>* object_array =
2450                obj->AsObjectArray<mirror::Object>();
2451            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2452              if (object_array->Get(i) == ref) {
2453                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2454              }
2455            }
2456          }
2457
2458          *failed_ = true;
2459        }
2460      }
2461    }
2462  }
2463
2464 private:
2465  Heap* const heap_;
2466  bool* const failed_;
2467};
2468
2469class VerifyLiveStackReferences {
2470 public:
2471  explicit VerifyLiveStackReferences(Heap* heap)
2472      : heap_(heap),
2473        failed_(false) {}
2474
2475  void operator()(mirror::Object* obj) const
2476      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2477    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2478    obj->VisitReferences<true>(visitor, VoidFunctor());
2479  }
2480
2481  bool Failed() const {
2482    return failed_;
2483  }
2484
2485 private:
2486  Heap* const heap_;
2487  bool failed_;
2488};
2489
2490bool Heap::VerifyMissingCardMarks() {
2491  Thread* self = Thread::Current();
2492  Locks::mutator_lock_->AssertExclusiveHeld(self);
2493
2494  // We need to sort the live stack since we binary search it.
2495  live_stack_->Sort();
2496  // Since we sorted the allocation stack content, need to revoke all
2497  // thread-local allocation stacks.
2498  RevokeAllThreadLocalAllocationStacks(self);
2499  VerifyLiveStackReferences visitor(this);
2500  GetLiveBitmap()->Visit(visitor);
2501
2502  // We can verify objects in the live stack since none of these should reference dead objects.
2503  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2504    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2505      visitor(*it);
2506    }
2507  }
2508  return !visitor.Failed();
2509}
2510
2511void Heap::SwapStacks(Thread* self) {
2512  if (kUseThreadLocalAllocationStack) {
2513    live_stack_->AssertAllZero();
2514  }
2515  allocation_stack_.swap(live_stack_);
2516}
2517
2518void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2519  // This must be called only during the pause.
2520  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2521  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2522  MutexLock mu2(self, *Locks::thread_list_lock_);
2523  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2524  for (Thread* t : thread_list) {
2525    t->RevokeThreadLocalAllocationStack();
2526  }
2527}
2528
2529void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2530  if (kIsDebugBuild) {
2531    if (bump_pointer_space_ != nullptr) {
2532      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2533    }
2534  }
2535}
2536
2537accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2538  auto it = mod_union_tables_.find(space);
2539  if (it == mod_union_tables_.end()) {
2540    return nullptr;
2541  }
2542  return it->second;
2543}
2544
2545accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2546  auto it = remembered_sets_.find(space);
2547  if (it == remembered_sets_.end()) {
2548    return nullptr;
2549  }
2550  return it->second;
2551}
2552
2553void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2554  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2555  // Clear cards and keep track of cards cleared in the mod-union table.
2556  for (const auto& space : continuous_spaces_) {
2557    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2558    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2559    if (table != nullptr) {
2560      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2561          "ImageModUnionClearCards";
2562      TimingLogger::ScopedTiming t(name, timings);
2563      table->ClearCards();
2564    } else if (use_rem_sets && rem_set != nullptr) {
2565      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2566          << static_cast<int>(collector_type_);
2567      TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
2568      rem_set->ClearCards();
2569    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2570      TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
2571      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2572      // were dirty before the GC started.
2573      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2574      // -> clean(cleaning thread).
2575      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2576      // roots and then we scan / update mod union tables after. We will always scan either card.
2577      // If we end up with the non aged card, we scan it it in the pause.
2578      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2579                                     VoidFunctor());
2580    }
2581  }
2582}
2583
2584static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2585}
2586
2587void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2588  Thread* const self = Thread::Current();
2589  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2590  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2591  if (verify_pre_gc_heap_) {
2592    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
2593    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2594    size_t failures = VerifyHeapReferences();
2595    if (failures > 0) {
2596      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2597          << " failures";
2598    }
2599  }
2600  // Check that all objects which reference things in the live stack are on dirty cards.
2601  if (verify_missing_card_marks_) {
2602    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
2603    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2604    SwapStacks(self);
2605    // Sort the live stack so that we can quickly binary search it later.
2606    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2607                                    << " missing card mark verification failed\n" << DumpSpaces();
2608    SwapStacks(self);
2609  }
2610  if (verify_mod_union_table_) {
2611    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
2612    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2613    for (const auto& table_pair : mod_union_tables_) {
2614      accounting::ModUnionTable* mod_union_table = table_pair.second;
2615      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2616      mod_union_table->Verify();
2617    }
2618  }
2619}
2620
2621void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2622  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2623    collector::GarbageCollector::ScopedPause pause(gc);
2624    PreGcVerificationPaused(gc);
2625  }
2626}
2627
2628void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2629  // TODO: Add a new runtime option for this?
2630  if (verify_pre_gc_rosalloc_) {
2631    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2632  }
2633}
2634
2635void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2636  Thread* const self = Thread::Current();
2637  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2638  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2639  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2640  // reachable objects.
2641  if (verify_pre_sweeping_heap_) {
2642    TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
2643    CHECK_NE(self->GetState(), kRunnable);
2644    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2645    // Swapping bound bitmaps does nothing.
2646    gc->SwapBitmaps();
2647    // Pass in false since concurrent reference processing can mean that the reference referents
2648    // may point to dead objects at the point which PreSweepingGcVerification is called.
2649    size_t failures = VerifyHeapReferences(false);
2650    if (failures > 0) {
2651      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2652          << " failures";
2653    }
2654    gc->SwapBitmaps();
2655  }
2656  if (verify_pre_sweeping_rosalloc_) {
2657    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2658  }
2659}
2660
2661void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2662  // Only pause if we have to do some verification.
2663  Thread* const self = Thread::Current();
2664  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2665  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2666  if (verify_system_weaks_) {
2667    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2668    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2669    mark_sweep->VerifySystemWeaks();
2670  }
2671  if (verify_post_gc_rosalloc_) {
2672    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2673  }
2674  if (verify_post_gc_heap_) {
2675    TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
2676    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2677    size_t failures = VerifyHeapReferences();
2678    if (failures > 0) {
2679      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2680          << " failures";
2681    }
2682  }
2683}
2684
2685void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2686  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2687    collector::GarbageCollector::ScopedPause pause(gc);
2688    PreGcVerificationPaused(gc);
2689  }
2690}
2691
2692void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2693  TimingLogger::ScopedTiming t(name, timings);
2694  for (const auto& space : continuous_spaces_) {
2695    if (space->IsRosAllocSpace()) {
2696      VLOG(heap) << name << " : " << space->GetName();
2697      space->AsRosAllocSpace()->Verify();
2698    }
2699  }
2700}
2701
2702collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2703  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2704  MutexLock mu(self, *gc_complete_lock_);
2705  return WaitForGcToCompleteLocked(cause, self);
2706}
2707
2708collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2709  collector::GcType last_gc_type = collector::kGcTypeNone;
2710  uint64_t wait_start = NanoTime();
2711  while (collector_type_running_ != kCollectorTypeNone) {
2712    ATRACE_BEGIN("GC: Wait For Completion");
2713    // We must wait, change thread state then sleep on gc_complete_cond_;
2714    gc_complete_cond_->Wait(self);
2715    last_gc_type = last_gc_type_;
2716    ATRACE_END();
2717  }
2718  uint64_t wait_time = NanoTime() - wait_start;
2719  total_wait_time_ += wait_time;
2720  if (wait_time > long_pause_log_threshold_) {
2721    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2722        << " for cause " << cause;
2723  }
2724  return last_gc_type;
2725}
2726
2727void Heap::DumpForSigQuit(std::ostream& os) {
2728  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2729     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2730  DumpGcPerformanceInfo(os);
2731}
2732
2733size_t Heap::GetPercentFree() {
2734  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2735}
2736
2737void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2738  if (max_allowed_footprint > GetMaxMemory()) {
2739    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2740             << PrettySize(GetMaxMemory());
2741    max_allowed_footprint = GetMaxMemory();
2742  }
2743  max_allowed_footprint_ = max_allowed_footprint;
2744}
2745
2746bool Heap::IsMovableObject(const mirror::Object* obj) const {
2747  if (kMovingCollector) {
2748    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2749    if (space != nullptr) {
2750      // TODO: Check large object?
2751      return space->CanMoveObjects();
2752    }
2753  }
2754  return false;
2755}
2756
2757void Heap::UpdateMaxNativeFootprint() {
2758  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2759  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2760  size_t target_size = native_size / GetTargetHeapUtilization();
2761  if (target_size > native_size + max_free_) {
2762    target_size = native_size + max_free_;
2763  } else if (target_size < native_size + min_free_) {
2764    target_size = native_size + min_free_;
2765  }
2766  native_footprint_gc_watermark_ = target_size;
2767  native_footprint_limit_ = 2 * target_size - native_size;
2768}
2769
2770collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2771  for (const auto& collector : garbage_collectors_) {
2772    if (collector->GetCollectorType() == collector_type_ &&
2773        collector->GetGcType() == gc_type) {
2774      return collector;
2775    }
2776  }
2777  return nullptr;
2778}
2779
2780double Heap::HeapGrowthMultiplier() const {
2781  // If we don't care about pause times we are background, so return 1.0.
2782  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2783    return 1.0;
2784  }
2785  return foreground_heap_growth_multiplier_;
2786}
2787
2788void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2789  // We know what our utilization is at this moment.
2790  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2791  const uint64_t bytes_allocated = GetBytesAllocated();
2792  last_gc_size_ = bytes_allocated;
2793  last_gc_time_ns_ = NanoTime();
2794  uint64_t target_size;
2795  collector::GcType gc_type = collector_ran->GetGcType();
2796  if (gc_type != collector::kGcTypeSticky) {
2797    // Grow the heap for non sticky GC.
2798    const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2799    // foreground.
2800    intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2801    CHECK_GE(delta, 0);
2802    target_size = bytes_allocated + delta * multiplier;
2803    target_size = std::min(target_size,
2804                           bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2805    target_size = std::max(target_size,
2806                           bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2807    native_need_to_run_finalization_ = true;
2808    next_gc_type_ = collector::kGcTypeSticky;
2809  } else {
2810    collector::GcType non_sticky_gc_type =
2811        have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2812    // Find what the next non sticky collector will be.
2813    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2814    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2815    // do another sticky collection next.
2816    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2817    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2818    // if the sticky GC throughput always remained >= the full/partial throughput.
2819    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2820        non_sticky_collector->GetEstimatedMeanThroughput() &&
2821        non_sticky_collector->NumberOfIterations() > 0 &&
2822        bytes_allocated <= max_allowed_footprint_) {
2823      next_gc_type_ = collector::kGcTypeSticky;
2824    } else {
2825      next_gc_type_ = non_sticky_gc_type;
2826    }
2827    // If we have freed enough memory, shrink the heap back down.
2828    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2829      target_size = bytes_allocated + max_free_;
2830    } else {
2831      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2832    }
2833  }
2834  if (!ignore_max_footprint_) {
2835    SetIdealFootprint(target_size);
2836    if (IsGcConcurrent()) {
2837      // Calculate when to perform the next ConcurrentGC.
2838      // Calculate the estimated GC duration.
2839      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2840      // Estimate how many remaining bytes we will have when we need to start the next GC.
2841      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2842      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2843      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2844      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2845        // A never going to happen situation that from the estimated allocation rate we will exceed
2846        // the applications entire footprint with the given estimated allocation rate. Schedule
2847        // another GC nearly straight away.
2848        remaining_bytes = kMinConcurrentRemainingBytes;
2849      }
2850      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2851      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2852      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2853      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2854      // right away.
2855      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2856                                         static_cast<size_t>(bytes_allocated));
2857    }
2858  }
2859}
2860
2861void Heap::ClearGrowthLimit() {
2862  growth_limit_ = capacity_;
2863  non_moving_space_->ClearGrowthLimit();
2864}
2865
2866void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
2867  ScopedObjectAccess soa(self);
2868  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
2869  jvalue args[1];
2870  args[0].l = arg.get();
2871  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2872  // Restore object in case it gets moved.
2873  *object = soa.Decode<mirror::Object*>(arg.get());
2874}
2875
2876void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
2877  StackHandleScope<1> hs(self);
2878  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2879  RequestConcurrentGC(self);
2880}
2881
2882void Heap::RequestConcurrentGC(Thread* self) {
2883  // Make sure that we can do a concurrent GC.
2884  Runtime* runtime = Runtime::Current();
2885  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2886      self->IsHandlingStackOverflow()) {
2887    return;
2888  }
2889  // We already have a request pending, no reason to start more until we update
2890  // concurrent_start_bytes_.
2891  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2892  JNIEnv* env = self->GetJniEnv();
2893  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2894  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2895  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2896                            WellKnownClasses::java_lang_Daemons_requestGC);
2897  CHECK(!env->ExceptionCheck());
2898}
2899
2900void Heap::ConcurrentGC(Thread* self) {
2901  if (Runtime::Current()->IsShuttingDown(self)) {
2902    return;
2903  }
2904  // Wait for any GCs currently running to finish.
2905  if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
2906    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2907    // instead. E.g. can't do partial, so do full instead.
2908    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2909        collector::kGcTypeNone) {
2910      for (collector::GcType gc_type : gc_plan_) {
2911        // Attempt to run the collector, if we succeed, we are done.
2912        if (gc_type > next_gc_type_ &&
2913            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2914          break;
2915        }
2916      }
2917    }
2918  }
2919}
2920
2921void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2922  Thread* self = Thread::Current();
2923  {
2924    MutexLock mu(self, *heap_trim_request_lock_);
2925    if (desired_collector_type_ == desired_collector_type) {
2926      return;
2927    }
2928    heap_transition_or_trim_target_time_ =
2929        std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
2930    desired_collector_type_ = desired_collector_type;
2931  }
2932  SignalHeapTrimDaemon(self);
2933}
2934
2935void Heap::RequestHeapTrim() {
2936  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2937  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2938  // a space it will hold its lock and can become a cause of jank.
2939  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2940  // forking.
2941
2942  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2943  // because that only marks object heads, so a large array looks like lots of empty space. We
2944  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2945  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2946  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2947  // not how much use we're making of those pages.
2948
2949  Thread* self = Thread::Current();
2950  Runtime* runtime = Runtime::Current();
2951  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2952    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2953    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2954    // as we don't hold the lock while requesting the trim).
2955    return;
2956  }
2957  {
2958    MutexLock mu(self, *heap_trim_request_lock_);
2959    if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2960      // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2961      // just yet.
2962      return;
2963    }
2964    heap_trim_request_pending_ = true;
2965    uint64_t current_time = NanoTime();
2966    if (heap_transition_or_trim_target_time_ < current_time) {
2967      heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
2968    }
2969  }
2970  // Notify the daemon thread which will actually do the heap trim.
2971  SignalHeapTrimDaemon(self);
2972}
2973
2974void Heap::SignalHeapTrimDaemon(Thread* self) {
2975  JNIEnv* env = self->GetJniEnv();
2976  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2977  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2978  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2979                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2980  CHECK(!env->ExceptionCheck());
2981}
2982
2983void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2984  if (rosalloc_space_ != nullptr) {
2985    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2986  }
2987  if (bump_pointer_space_ != nullptr) {
2988    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2989  }
2990}
2991
2992void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
2993  if (rosalloc_space_ != nullptr) {
2994    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2995  }
2996}
2997
2998void Heap::RevokeAllThreadLocalBuffers() {
2999  if (rosalloc_space_ != nullptr) {
3000    rosalloc_space_->RevokeAllThreadLocalBuffers();
3001  }
3002  if (bump_pointer_space_ != nullptr) {
3003    bump_pointer_space_->RevokeAllThreadLocalBuffers();
3004  }
3005}
3006
3007bool Heap::IsGCRequestPending() const {
3008  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
3009}
3010
3011void Heap::RunFinalization(JNIEnv* env) {
3012  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3013  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3014    CHECK(WellKnownClasses::java_lang_System != nullptr);
3015    WellKnownClasses::java_lang_System_runFinalization =
3016        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3017    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3018  }
3019  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3020                            WellKnownClasses::java_lang_System_runFinalization);
3021}
3022
3023void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
3024  Thread* self = ThreadForEnv(env);
3025  if (native_need_to_run_finalization_) {
3026    RunFinalization(env);
3027    UpdateMaxNativeFootprint();
3028    native_need_to_run_finalization_ = false;
3029  }
3030  // Total number of native bytes allocated.
3031  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3032  new_native_bytes_allocated += bytes;
3033  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3034    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
3035        collector::kGcTypeFull;
3036
3037    // The second watermark is higher than the gc watermark. If you hit this it means you are
3038    // allocating native objects faster than the GC can keep up with.
3039    if (new_native_bytes_allocated > native_footprint_limit_) {
3040      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3041        // Just finished a GC, attempt to run finalizers.
3042        RunFinalization(env);
3043        CHECK(!env->ExceptionCheck());
3044      }
3045      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3046      if (new_native_bytes_allocated > native_footprint_limit_) {
3047        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3048        RunFinalization(env);
3049        native_need_to_run_finalization_ = false;
3050        CHECK(!env->ExceptionCheck());
3051      }
3052      // We have just run finalizers, update the native watermark since it is very likely that
3053      // finalizers released native managed allocations.
3054      UpdateMaxNativeFootprint();
3055    } else if (!IsGCRequestPending()) {
3056      if (IsGcConcurrent()) {
3057        RequestConcurrentGC(self);
3058      } else {
3059        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3060      }
3061    }
3062  }
3063}
3064
3065void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
3066  int expected_size, new_size;
3067  do {
3068    expected_size = native_bytes_allocated_.LoadRelaxed();
3069    new_size = expected_size - bytes;
3070    if (UNLIKELY(new_size < 0)) {
3071      ScopedObjectAccess soa(env);
3072      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3073                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
3074                                 "registered as allocated", bytes, expected_size).c_str());
3075      break;
3076    }
3077  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size, new_size));
3078}
3079
3080size_t Heap::GetTotalMemory() const {
3081  size_t ret = 0;
3082  for (const auto& space : continuous_spaces_) {
3083    // Currently don't include the image space.
3084    if (!space->IsImageSpace()) {
3085      ret += space->Size();
3086    }
3087  }
3088  for (const auto& space : discontinuous_spaces_) {
3089    if (space->IsLargeObjectSpace()) {
3090      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
3091    }
3092  }
3093  return ret;
3094}
3095
3096void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3097  DCHECK(mod_union_table != nullptr);
3098  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3099}
3100
3101void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3102  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3103        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
3104        c->GetDescriptor().empty());
3105  CHECK_GE(byte_count, sizeof(mirror::Object));
3106}
3107
3108void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3109  CHECK(remembered_set != nullptr);
3110  space::Space* space = remembered_set->GetSpace();
3111  CHECK(space != nullptr);
3112  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3113  remembered_sets_.Put(space, remembered_set);
3114  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3115}
3116
3117void Heap::RemoveRememberedSet(space::Space* space) {
3118  CHECK(space != nullptr);
3119  auto it = remembered_sets_.find(space);
3120  CHECK(it != remembered_sets_.end());
3121  remembered_sets_.erase(it);
3122  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3123}
3124
3125void Heap::ClearMarkedObjects() {
3126  // Clear all of the spaces' mark bitmaps.
3127  for (const auto& space : GetContinuousSpaces()) {
3128    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3129    if (space->GetLiveBitmap() != mark_bitmap) {
3130      mark_bitmap->Clear();
3131    }
3132  }
3133  // Clear the marked objects in the discontinous space object sets.
3134  for (const auto& space : GetDiscontinuousSpaces()) {
3135    space->GetMarkBitmap()->Clear();
3136  }
3137}
3138
3139}  // namespace gc
3140}  // namespace art
3141