heap.cc revision 837150818af0eee993f7d93c5a50c3c7b46f1dab
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/remembered_set.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/collector/concurrent_copying.h"
39#include "gc/collector/mark_compact.h"
40#include "gc/collector/mark_sweep-inl.h"
41#include "gc/collector/partial_mark_sweep.h"
42#include "gc/collector/semi_space.h"
43#include "gc/collector/sticky_mark_sweep.h"
44#include "gc/reference_processor.h"
45#include "gc/space/bump_pointer_space.h"
46#include "gc/space/dlmalloc_space-inl.h"
47#include "gc/space/image_space.h"
48#include "gc/space/large_object_space.h"
49#include "gc/space/rosalloc_space-inl.h"
50#include "gc/space/space-inl.h"
51#include "gc/space/zygote_space.h"
52#include "entrypoints/quick/quick_alloc_entrypoints.h"
53#include "heap-inl.h"
54#include "image.h"
55#include "mirror/art_field-inl.h"
56#include "mirror/class-inl.h"
57#include "mirror/object.h"
58#include "mirror/object-inl.h"
59#include "mirror/object_array-inl.h"
60#include "mirror/reference-inl.h"
61#include "os.h"
62#include "reflection.h"
63#include "runtime.h"
64#include "ScopedLocalRef.h"
65#include "scoped_thread_state_change.h"
66#include "handle_scope-inl.h"
67#include "thread_list.h"
68#include "well_known_classes.h"
69
70namespace art {
71
72namespace gc {
73
74static constexpr size_t kCollectorTransitionStressIterations = 0;
75static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
76static constexpr bool kGCALotMode = false;
77static constexpr size_t kGcAlotInterval = KB;
78// Minimum amount of remaining bytes before a concurrent GC is triggered.
79static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
80static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
81// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
82// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
83// threads (lower pauses, use less memory bandwidth).
84static constexpr double kStickyGcThroughputAdjustment = 1.0;
85// Whether or not we use the free list large object space.
86static constexpr bool kUseFreeListSpaceForLOS = false;
87// Whether or not we compact the zygote in PreZygoteFork.
88static constexpr bool kCompactZygote = kMovingCollector;
89static constexpr size_t kNonMovingSpaceCapacity = 64 * MB;
90// How many reserve entries are at the end of the allocation stack, these are only needed if the
91// allocation stack overflows.
92static constexpr size_t kAllocationStackReserveSize = 1024;
93// Default mark stack size in bytes.
94static const size_t kDefaultMarkStackSize = 64 * KB;
95// Define space name.
96static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
97static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
98static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
99static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
100
101Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
102           double target_utilization, double foreground_heap_growth_multiplier, size_t capacity,
103           const std::string& image_file_name, const InstructionSet image_instruction_set,
104           CollectorType foreground_collector_type, CollectorType background_collector_type,
105           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
106           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
107           bool ignore_max_footprint, bool use_tlab,
108           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
109           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
110           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
111           uint64_t min_interval_homogeneous_space_compaction_by_oom)
112    : non_moving_space_(nullptr),
113      rosalloc_space_(nullptr),
114      dlmalloc_space_(nullptr),
115      main_space_(nullptr),
116      collector_type_(kCollectorTypeNone),
117      foreground_collector_type_(foreground_collector_type),
118      background_collector_type_(background_collector_type),
119      desired_collector_type_(foreground_collector_type_),
120      heap_trim_request_lock_(nullptr),
121      last_trim_time_(0),
122      heap_transition_or_trim_target_time_(0),
123      heap_trim_request_pending_(false),
124      parallel_gc_threads_(parallel_gc_threads),
125      conc_gc_threads_(conc_gc_threads),
126      low_memory_mode_(low_memory_mode),
127      long_pause_log_threshold_(long_pause_log_threshold),
128      long_gc_log_threshold_(long_gc_log_threshold),
129      ignore_max_footprint_(ignore_max_footprint),
130      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
131      have_zygote_space_(false),
132      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
133      collector_type_running_(kCollectorTypeNone),
134      last_gc_type_(collector::kGcTypeNone),
135      next_gc_type_(collector::kGcTypePartial),
136      capacity_(capacity),
137      growth_limit_(growth_limit),
138      max_allowed_footprint_(initial_size),
139      native_footprint_gc_watermark_(initial_size),
140      native_footprint_limit_(2 * initial_size),
141      native_need_to_run_finalization_(false),
142      // Initially assume we perceive jank in case the process state is never updated.
143      process_state_(kProcessStateJankPerceptible),
144      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
145      total_bytes_freed_ever_(0),
146      total_objects_freed_ever_(0),
147      num_bytes_allocated_(0),
148      native_bytes_allocated_(0),
149      gc_memory_overhead_(0),
150      verify_missing_card_marks_(false),
151      verify_system_weaks_(false),
152      verify_pre_gc_heap_(verify_pre_gc_heap),
153      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
154      verify_post_gc_heap_(verify_post_gc_heap),
155      verify_mod_union_table_(false),
156      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
157      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
158      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
159      last_gc_time_ns_(NanoTime()),
160      allocation_rate_(0),
161      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
162       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
163       * verification is enabled, we limit the size of allocation stacks to speed up their
164       * searching.
165       */
166      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
167          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
168      current_allocator_(kAllocatorTypeDlMalloc),
169      current_non_moving_allocator_(kAllocatorTypeNonMoving),
170      bump_pointer_space_(nullptr),
171      temp_space_(nullptr),
172      min_free_(min_free),
173      max_free_(max_free),
174      target_utilization_(target_utilization),
175      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
176      total_wait_time_(0),
177      total_allocation_time_(0),
178      verify_object_mode_(kVerifyObjectModeDisabled),
179      disable_moving_gc_count_(0),
180      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
181      use_tlab_(use_tlab),
182      main_space_backup_(nullptr),
183      min_interval_homogeneous_space_compaction_by_oom_(
184          min_interval_homogeneous_space_compaction_by_oom),
185      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
186      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
187  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
188    LOG(INFO) << "Heap() entering";
189  }
190  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
191  // entrypoints.
192  if (!Runtime::Current()->IsZygote()) {
193    large_object_threshold_ = kDefaultLargeObjectThreshold;
194    // Background compaction is currently not supported for command line runs.
195    if (background_collector_type_ != foreground_collector_type_) {
196      VLOG(heap) << "Disabling background compaction for non zygote";
197      background_collector_type_ = foreground_collector_type_;
198    }
199  }
200  ChangeCollector(desired_collector_type_);
201  live_bitmap_.reset(new accounting::HeapBitmap(this));
202  mark_bitmap_.reset(new accounting::HeapBitmap(this));
203  // Requested begin for the alloc space, to follow the mapped image and oat files
204  byte* requested_alloc_space_begin = nullptr;
205  if (!image_file_name.empty()) {
206    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
207                                                               image_instruction_set);
208    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
209    AddSpace(image_space);
210    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
211    // isn't going to get in the middle
212    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
213    CHECK_GT(oat_file_end_addr, image_space->End());
214    requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
215  }
216  /*
217  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
218                                     +-  nonmoving space (kNonMovingSpaceCapacity) +-
219                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
220                                     +-main alloc space / bump space 1 (capacity_) +-
221                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
222                                     +-????????????????????????????????????????????+-
223                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
224                                     +-main alloc space2 / bump space 2 (capacity_)+-
225                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
226  */
227  bool support_homogeneous_space_compaction =
228      background_collector_type == gc::kCollectorTypeHomogeneousSpaceCompact ||
229      use_homogeneous_space_compaction_for_oom;
230  // We may use the same space the main space for the non moving space if we don't need to compact
231  // from the main space.
232  // This is not the case if we support homogeneous compaction or have a moving background
233  // collector type.
234  const bool is_zygote = Runtime::Current()->IsZygote();
235  bool separate_non_moving_space = is_zygote ||
236      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
237      IsMovingGc(background_collector_type_);
238  if (foreground_collector_type == kCollectorTypeGSS) {
239    separate_non_moving_space = false;
240  }
241  std::unique_ptr<MemMap> main_mem_map_1;
242  std::unique_ptr<MemMap> main_mem_map_2;
243  byte* request_begin = requested_alloc_space_begin;
244  if (request_begin != nullptr && separate_non_moving_space) {
245    request_begin += kNonMovingSpaceCapacity;
246  }
247  std::string error_str;
248  std::unique_ptr<MemMap> non_moving_space_mem_map;
249  if (separate_non_moving_space) {
250    // Reserve the non moving mem map before the other two since it needs to be at a specific
251    // address.
252    non_moving_space_mem_map.reset(
253        MemMap::MapAnonymous("non moving space", requested_alloc_space_begin,
254                             kNonMovingSpaceCapacity, PROT_READ | PROT_WRITE, true, &error_str));
255    CHECK(non_moving_space_mem_map != nullptr) << error_str;
256  }
257  // Attempt to create 2 mem maps at or after the requested begin.
258  main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
259                                                    PROT_READ | PROT_WRITE, &error_str));
260  CHECK(main_mem_map_1.get() != nullptr) << error_str;
261  if (support_homogeneous_space_compaction ||
262      background_collector_type_ == kCollectorTypeSS ||
263      foreground_collector_type_ == kCollectorTypeSS) {
264    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
265                                                      capacity_, PROT_READ | PROT_WRITE,
266                                                      &error_str));
267    CHECK(main_mem_map_2.get() != nullptr) << error_str;
268  }
269  // Create the non moving space first so that bitmaps don't take up the address range.
270  if (separate_non_moving_space) {
271    // Non moving space is always dlmalloc since we currently don't have support for multiple
272    // active rosalloc spaces.
273    const size_t size = non_moving_space_mem_map->Size();
274    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
275        non_moving_space_mem_map.release(), "zygote / non moving space", initial_size,
276        initial_size, size, size, false);
277    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
278    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
279        << requested_alloc_space_begin;
280    AddSpace(non_moving_space_);
281  }
282  // Create other spaces based on whether or not we have a moving GC.
283  if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
284    // Create bump pointer spaces.
285    // We only to create the bump pointer if the foreground collector is a compacting GC.
286    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
287    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
288                                                                    main_mem_map_1.release());
289    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
290    AddSpace(bump_pointer_space_);
291    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
292                                                            main_mem_map_2.release());
293    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
294    AddSpace(temp_space_);
295    CHECK(separate_non_moving_space);
296  } else {
297    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
298    CHECK(main_space_ != nullptr);
299    AddSpace(main_space_);
300    if (!separate_non_moving_space) {
301      non_moving_space_ = main_space_;
302      CHECK(!non_moving_space_->CanMoveObjects());
303    }
304    if (foreground_collector_type_ == kCollectorTypeGSS) {
305      CHECK_EQ(foreground_collector_type_, background_collector_type_);
306      // Create bump pointer spaces instead of a backup space.
307      main_mem_map_2.release();
308      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
309                                                            kGSSBumpPointerSpaceCapacity, nullptr);
310      CHECK(bump_pointer_space_ != nullptr);
311      AddSpace(bump_pointer_space_);
312      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
313                                                    kGSSBumpPointerSpaceCapacity, nullptr);
314      CHECK(temp_space_ != nullptr);
315      AddSpace(temp_space_);
316    } else if (main_mem_map_2.get() != nullptr) {
317      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
318      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
319                                                           growth_limit_, capacity_, name, true));
320      CHECK(main_space_backup_.get() != nullptr);
321      // Add the space so its accounted for in the heap_begin and heap_end.
322      AddSpace(main_space_backup_.get());
323    }
324  }
325  CHECK(non_moving_space_ != nullptr);
326  CHECK(!non_moving_space_->CanMoveObjects());
327  // Allocate the large object space.
328  if (kUseFreeListSpaceForLOS) {
329    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity_);
330  } else {
331    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
332  }
333  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
334  AddSpace(large_object_space_);
335  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
336  CHECK(!continuous_spaces_.empty());
337  // Relies on the spaces being sorted.
338  byte* heap_begin = continuous_spaces_.front()->Begin();
339  byte* heap_end = continuous_spaces_.back()->Limit();
340  size_t heap_capacity = heap_end - heap_begin;
341  // Remove the main backup space since it slows down the GC to have unused extra spaces.
342  if (main_space_backup_.get() != nullptr) {
343    RemoveSpace(main_space_backup_.get());
344  }
345  // Allocate the card table.
346  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
347  CHECK(card_table_.get() != NULL) << "Failed to create card table";
348  // Card cache for now since it makes it easier for us to update the references to the copying
349  // spaces.
350  accounting::ModUnionTable* mod_union_table =
351      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
352                                                      GetImageSpace());
353  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
354  AddModUnionTable(mod_union_table);
355  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
356    accounting::RememberedSet* non_moving_space_rem_set =
357        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
358    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
359    AddRememberedSet(non_moving_space_rem_set);
360  }
361  // TODO: Count objects in the image space here?
362  num_bytes_allocated_.StoreRelaxed(0);
363  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
364                                                    kDefaultMarkStackSize));
365  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
366  allocation_stack_.reset(accounting::ObjectStack::Create(
367      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
368  live_stack_.reset(accounting::ObjectStack::Create(
369      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
370  // It's still too early to take a lock because there are no threads yet, but we can create locks
371  // now. We don't create it earlier to make it clear that you can't use locks during heap
372  // initialization.
373  gc_complete_lock_ = new Mutex("GC complete lock");
374  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
375                                                *gc_complete_lock_));
376  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
377  last_gc_size_ = GetBytesAllocated();
378  if (ignore_max_footprint_) {
379    SetIdealFootprint(std::numeric_limits<size_t>::max());
380    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
381  }
382  CHECK_NE(max_allowed_footprint_, 0U);
383  // Create our garbage collectors.
384  for (size_t i = 0; i < 2; ++i) {
385    const bool concurrent = i != 0;
386    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
387    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
388    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
389  }
390  if (kMovingCollector) {
391    // TODO: Clean this up.
392    const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
393    semi_space_collector_ = new collector::SemiSpace(this, generational,
394                                                     generational ? "generational" : "");
395    garbage_collectors_.push_back(semi_space_collector_);
396    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
397    garbage_collectors_.push_back(concurrent_copying_collector_);
398    mark_compact_collector_ = new collector::MarkCompact(this);
399    garbage_collectors_.push_back(mark_compact_collector_);
400  }
401  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr) {
402    // Check that there's no gap between the image space and the non moving space so that the
403    // immune region won't break (eg. due to a large object allocated in the gap).
404    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
405                                      non_moving_space_->GetMemMap());
406    if (!no_gap) {
407      MemMap::DumpMaps(LOG(ERROR));
408      LOG(FATAL) << "There's a gap between the image space and the main space";
409    }
410  }
411  if (running_on_valgrind_) {
412    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
413  }
414  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
415    LOG(INFO) << "Heap() exiting";
416  }
417}
418
419MemMap* Heap::MapAnonymousPreferredAddress(const char* name, byte* request_begin, size_t capacity,
420                                           int prot_flags, std::string* out_error_str) {
421  while (true) {
422    MemMap* map = MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity,
423                                       PROT_READ | PROT_WRITE, true, out_error_str);
424    if (map != nullptr || request_begin == nullptr) {
425      return map;
426    }
427    // Retry a  second time with no specified request begin.
428    request_begin = nullptr;
429  }
430  return nullptr;
431}
432
433space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
434                                                      size_t growth_limit, size_t capacity,
435                                                      const char* name, bool can_move_objects) {
436  space::MallocSpace* malloc_space = nullptr;
437  if (kUseRosAlloc) {
438    // Create rosalloc space.
439    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
440                                                          initial_size, growth_limit, capacity,
441                                                          low_memory_mode_, can_move_objects);
442  } else {
443    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
444                                                          initial_size, growth_limit, capacity,
445                                                          can_move_objects);
446  }
447  if (collector::SemiSpace::kUseRememberedSet) {
448    accounting::RememberedSet* rem_set  =
449        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
450    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
451    AddRememberedSet(rem_set);
452  }
453  CHECK(malloc_space != nullptr) << "Failed to create " << name;
454  malloc_space->SetFootprintLimit(malloc_space->Capacity());
455  return malloc_space;
456}
457
458void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
459                                 size_t capacity) {
460  // Is background compaction is enabled?
461  bool can_move_objects = IsMovingGc(background_collector_type_) !=
462      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
463  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
464  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
465  // from the main space to the zygote space. If background compaction is enabled, always pass in
466  // that we can move objets.
467  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
468    // After the zygote we want this to be false if we don't have background compaction enabled so
469    // that getting primitive array elements is faster.
470    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
471    can_move_objects = !have_zygote_space_ && foreground_collector_type_ != kCollectorTypeGSS;
472  }
473  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
474    RemoveRememberedSet(main_space_);
475  }
476  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
477  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
478                                            can_move_objects);
479  SetSpaceAsDefault(main_space_);
480  VLOG(heap) << "Created main space " << main_space_;
481}
482
483void Heap::ChangeAllocator(AllocatorType allocator) {
484  if (current_allocator_ != allocator) {
485    // These two allocators are only used internally and don't have any entrypoints.
486    CHECK_NE(allocator, kAllocatorTypeLOS);
487    CHECK_NE(allocator, kAllocatorTypeNonMoving);
488    current_allocator_ = allocator;
489    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
490    SetQuickAllocEntryPointsAllocator(current_allocator_);
491    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
492  }
493}
494
495void Heap::DisableCompaction() {
496  if (IsMovingGc(foreground_collector_type_)) {
497    foreground_collector_type_  = kCollectorTypeCMS;
498  }
499  if (IsMovingGc(background_collector_type_)) {
500    background_collector_type_ = foreground_collector_type_;
501  }
502  TransitionCollector(foreground_collector_type_);
503}
504
505std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
506  if (!IsValidContinuousSpaceObjectAddress(klass)) {
507    return StringPrintf("<non heap address klass %p>", klass);
508  }
509  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
510  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
511    std::string result("[");
512    result += SafeGetClassDescriptor(component_type);
513    return result;
514  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
515    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
516  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
517    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
518  } else {
519    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
520    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
521      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
522    }
523    const DexFile* dex_file = dex_cache->GetDexFile();
524    uint16_t class_def_idx = klass->GetDexClassDefIndex();
525    if (class_def_idx == DexFile::kDexNoIndex16) {
526      return "<class def not found>";
527    }
528    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
529    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
530    return dex_file->GetTypeDescriptor(type_id);
531  }
532}
533
534std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
535  if (obj == nullptr) {
536    return "null";
537  }
538  mirror::Class* klass = obj->GetClass<kVerifyNone>();
539  if (klass == nullptr) {
540    return "(class=null)";
541  }
542  std::string result(SafeGetClassDescriptor(klass));
543  if (obj->IsClass()) {
544    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
545  }
546  return result;
547}
548
549void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
550  if (obj == nullptr) {
551    stream << "(obj=null)";
552    return;
553  }
554  if (IsAligned<kObjectAlignment>(obj)) {
555    space::Space* space = nullptr;
556    // Don't use find space since it only finds spaces which actually contain objects instead of
557    // spaces which may contain objects (e.g. cleared bump pointer spaces).
558    for (const auto& cur_space : continuous_spaces_) {
559      if (cur_space->HasAddress(obj)) {
560        space = cur_space;
561        break;
562      }
563    }
564    // Unprotect all the spaces.
565    for (const auto& space : continuous_spaces_) {
566      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
567    }
568    stream << "Object " << obj;
569    if (space != nullptr) {
570      stream << " in space " << *space;
571    }
572    mirror::Class* klass = obj->GetClass<kVerifyNone>();
573    stream << "\nclass=" << klass;
574    if (klass != nullptr) {
575      stream << " type= " << SafePrettyTypeOf(obj);
576    }
577    // Re-protect the address we faulted on.
578    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
579  }
580}
581
582bool Heap::IsCompilingBoot() const {
583  for (const auto& space : continuous_spaces_) {
584    if (space->IsImageSpace() || space->IsZygoteSpace()) {
585      return false;
586    }
587  }
588  return true;
589}
590
591bool Heap::HasImageSpace() const {
592  for (const auto& space : continuous_spaces_) {
593    if (space->IsImageSpace()) {
594      return true;
595    }
596  }
597  return false;
598}
599
600void Heap::IncrementDisableMovingGC(Thread* self) {
601  // Need to do this holding the lock to prevent races where the GC is about to run / running when
602  // we attempt to disable it.
603  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
604  MutexLock mu(self, *gc_complete_lock_);
605  ++disable_moving_gc_count_;
606  if (IsMovingGc(collector_type_running_)) {
607    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
608  }
609}
610
611void Heap::DecrementDisableMovingGC(Thread* self) {
612  MutexLock mu(self, *gc_complete_lock_);
613  CHECK_GE(disable_moving_gc_count_, 0U);
614  --disable_moving_gc_count_;
615}
616
617void Heap::UpdateProcessState(ProcessState process_state) {
618  if (process_state_ != process_state) {
619    process_state_ = process_state;
620    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
621      // Start at index 1 to avoid "is always false" warning.
622      // Have iteration 1 always transition the collector.
623      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
624                          ? foreground_collector_type_ : background_collector_type_);
625      usleep(kCollectorTransitionStressWait);
626    }
627    if (process_state_ == kProcessStateJankPerceptible) {
628      // Transition back to foreground right away to prevent jank.
629      RequestCollectorTransition(foreground_collector_type_, 0);
630    } else {
631      // Don't delay for debug builds since we may want to stress test the GC.
632      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
633      // special handling which does a homogenous space compaction once but then doesn't transition
634      // the collector.
635      RequestCollectorTransition(background_collector_type_,
636                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
637    }
638  }
639}
640
641void Heap::CreateThreadPool() {
642  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
643  if (num_threads != 0) {
644    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
645  }
646}
647
648void Heap::VisitObjects(ObjectCallback callback, void* arg) {
649  Thread* self = Thread::Current();
650  // GCs can move objects, so don't allow this.
651  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
652  if (bump_pointer_space_ != nullptr) {
653    // Visit objects in bump pointer space.
654    bump_pointer_space_->Walk(callback, arg);
655  }
656  // TODO: Switch to standard begin and end to use ranged a based loop.
657  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
658      it < end; ++it) {
659    mirror::Object* obj = *it;
660    if (obj != nullptr && obj->GetClass() != nullptr) {
661      // Avoid the race condition caused by the object not yet being written into the allocation
662      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
663      // there can be nulls on the allocation stack.
664      callback(obj, arg);
665    }
666  }
667  GetLiveBitmap()->Walk(callback, arg);
668  self->EndAssertNoThreadSuspension(old_cause);
669}
670
671void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
672  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
673  space::ContinuousSpace* space2 = non_moving_space_;
674  // TODO: Generalize this to n bitmaps?
675  CHECK(space1 != nullptr);
676  CHECK(space2 != nullptr);
677  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
678                 large_object_space_->GetLiveBitmap(), stack);
679}
680
681void Heap::DeleteThreadPool() {
682  thread_pool_.reset(nullptr);
683}
684
685void Heap::AddSpace(space::Space* space) {
686  CHECK(space != nullptr);
687  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
688  if (space->IsContinuousSpace()) {
689    DCHECK(!space->IsDiscontinuousSpace());
690    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
691    // Continuous spaces don't necessarily have bitmaps.
692    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
693    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
694    if (live_bitmap != nullptr) {
695      CHECK(mark_bitmap != nullptr);
696      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
697      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
698    }
699    continuous_spaces_.push_back(continuous_space);
700    // Ensure that spaces remain sorted in increasing order of start address.
701    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
702              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
703      return a->Begin() < b->Begin();
704    });
705  } else {
706    CHECK(space->IsDiscontinuousSpace());
707    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
708    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
709    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
710    discontinuous_spaces_.push_back(discontinuous_space);
711  }
712  if (space->IsAllocSpace()) {
713    alloc_spaces_.push_back(space->AsAllocSpace());
714  }
715}
716
717void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
718  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
719  if (continuous_space->IsDlMallocSpace()) {
720    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
721  } else if (continuous_space->IsRosAllocSpace()) {
722    rosalloc_space_ = continuous_space->AsRosAllocSpace();
723  }
724}
725
726void Heap::RemoveSpace(space::Space* space) {
727  DCHECK(space != nullptr);
728  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
729  if (space->IsContinuousSpace()) {
730    DCHECK(!space->IsDiscontinuousSpace());
731    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
732    // Continuous spaces don't necessarily have bitmaps.
733    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
734    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
735    if (live_bitmap != nullptr) {
736      DCHECK(mark_bitmap != nullptr);
737      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
738      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
739    }
740    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
741    DCHECK(it != continuous_spaces_.end());
742    continuous_spaces_.erase(it);
743  } else {
744    DCHECK(space->IsDiscontinuousSpace());
745    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
746    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
747    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
748    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
749                        discontinuous_space);
750    DCHECK(it != discontinuous_spaces_.end());
751    discontinuous_spaces_.erase(it);
752  }
753  if (space->IsAllocSpace()) {
754    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
755    DCHECK(it != alloc_spaces_.end());
756    alloc_spaces_.erase(it);
757  }
758}
759
760void Heap::RegisterGCAllocation(size_t bytes) {
761  gc_memory_overhead_.FetchAndAddSequentiallyConsistent(bytes);
762}
763
764void Heap::RegisterGCDeAllocation(size_t bytes) {
765  gc_memory_overhead_.FetchAndSubSequentiallyConsistent(bytes);
766}
767
768void Heap::DumpGcPerformanceInfo(std::ostream& os) {
769  // Dump cumulative timings.
770  os << "Dumping cumulative Gc timings\n";
771  uint64_t total_duration = 0;
772  // Dump cumulative loggers for each GC type.
773  uint64_t total_paused_time = 0;
774  for (auto& collector : garbage_collectors_) {
775    const CumulativeLogger& logger = collector->GetCumulativeTimings();
776    const size_t iterations = logger.GetIterations();
777    const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
778    if (iterations != 0 && pause_histogram.SampleSize() != 0) {
779      os << ConstDumpable<CumulativeLogger>(logger);
780      const uint64_t total_ns = logger.GetTotalNs();
781      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
782      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
783      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
784      const uint64_t freed_objects = collector->GetTotalFreedObjects();
785      Histogram<uint64_t>::CumulativeData cumulative_data;
786      pause_histogram.CreateHistogram(&cumulative_data);
787      pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
788      os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
789         << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
790         << collector->GetName() << " freed: " << freed_objects
791         << " objects with total size " << PrettySize(freed_bytes) << "\n"
792         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
793         << PrettySize(freed_bytes / seconds) << "/s\n";
794      total_duration += total_ns;
795      total_paused_time += total_pause_ns;
796    }
797    collector->ResetMeasurements();
798  }
799  uint64_t allocation_time =
800      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
801  if (total_duration != 0) {
802    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
803    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
804    os << "Mean GC size throughput: "
805       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
806    os << "Mean GC object throughput: "
807       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
808  }
809  uint64_t total_objects_allocated = GetObjectsAllocatedEver();
810  os << "Total number of allocations " << total_objects_allocated << "\n";
811  uint64_t total_bytes_allocated = GetBytesAllocatedEver();
812  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
813  os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
814  os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
815  os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
816  os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
817  os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
818  if (kMeasureAllocationTime) {
819    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
820    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
821       << "\n";
822  }
823  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
824  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
825  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_.LoadRelaxed();
826  BaseMutex::DumpAll(os);
827}
828
829Heap::~Heap() {
830  VLOG(heap) << "Starting ~Heap()";
831  STLDeleteElements(&garbage_collectors_);
832  // If we don't reset then the mark stack complains in its destructor.
833  allocation_stack_->Reset();
834  live_stack_->Reset();
835  STLDeleteValues(&mod_union_tables_);
836  STLDeleteValues(&remembered_sets_);
837  STLDeleteElements(&continuous_spaces_);
838  STLDeleteElements(&discontinuous_spaces_);
839  delete gc_complete_lock_;
840  delete heap_trim_request_lock_;
841  VLOG(heap) << "Finished ~Heap()";
842}
843
844space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
845                                                            bool fail_ok) const {
846  for (const auto& space : continuous_spaces_) {
847    if (space->Contains(obj)) {
848      return space;
849    }
850  }
851  if (!fail_ok) {
852    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
853  }
854  return NULL;
855}
856
857space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
858                                                                  bool fail_ok) const {
859  for (const auto& space : discontinuous_spaces_) {
860    if (space->Contains(obj)) {
861      return space;
862    }
863  }
864  if (!fail_ok) {
865    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
866  }
867  return NULL;
868}
869
870space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
871  space::Space* result = FindContinuousSpaceFromObject(obj, true);
872  if (result != NULL) {
873    return result;
874  }
875  return FindDiscontinuousSpaceFromObject(obj, true);
876}
877
878space::ImageSpace* Heap::GetImageSpace() const {
879  for (const auto& space : continuous_spaces_) {
880    if (space->IsImageSpace()) {
881      return space->AsImageSpace();
882    }
883  }
884  return NULL;
885}
886
887void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
888  std::ostringstream oss;
889  size_t total_bytes_free = GetFreeMemory();
890  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
891      << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
892  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
893  if (total_bytes_free >= byte_count) {
894    space::AllocSpace* space = nullptr;
895    if (allocator_type == kAllocatorTypeNonMoving) {
896      space = non_moving_space_;
897    } else if (allocator_type == kAllocatorTypeRosAlloc ||
898               allocator_type == kAllocatorTypeDlMalloc) {
899      space = main_space_;
900    } else if (allocator_type == kAllocatorTypeBumpPointer ||
901               allocator_type == kAllocatorTypeTLAB) {
902      space = bump_pointer_space_;
903    }
904    if (space != nullptr) {
905      space->LogFragmentationAllocFailure(oss, byte_count);
906    }
907  }
908  self->ThrowOutOfMemoryError(oss.str().c_str());
909}
910
911void Heap::DoPendingTransitionOrTrim() {
912  Thread* self = Thread::Current();
913  CollectorType desired_collector_type;
914  // Wait until we reach the desired transition time.
915  while (true) {
916    uint64_t wait_time;
917    {
918      MutexLock mu(self, *heap_trim_request_lock_);
919      desired_collector_type = desired_collector_type_;
920      uint64_t current_time = NanoTime();
921      if (current_time >= heap_transition_or_trim_target_time_) {
922        break;
923      }
924      wait_time = heap_transition_or_trim_target_time_ - current_time;
925    }
926    ScopedThreadStateChange tsc(self, kSleeping);
927    usleep(wait_time / 1000);  // Usleep takes microseconds.
928  }
929  // Launch homogeneous space compaction if it is desired.
930  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
931    if (!CareAboutPauseTimes()) {
932      PerformHomogeneousSpaceCompact();
933    }
934    // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
935    desired_collector_type = collector_type_;
936    return;
937  }
938  // Transition the collector if the desired collector type is not the same as the current
939  // collector type.
940  TransitionCollector(desired_collector_type);
941  if (!CareAboutPauseTimes()) {
942    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
943    // about pauses.
944    Runtime* runtime = Runtime::Current();
945    runtime->GetThreadList()->SuspendAll();
946    uint64_t start_time = NanoTime();
947    size_t count = runtime->GetMonitorList()->DeflateMonitors();
948    VLOG(heap) << "Deflating " << count << " monitors took "
949        << PrettyDuration(NanoTime() - start_time);
950    runtime->GetThreadList()->ResumeAll();
951  }
952  // Do a heap trim if it is needed.
953  Trim();
954}
955
956void Heap::Trim() {
957  Thread* self = Thread::Current();
958  {
959    MutexLock mu(self, *heap_trim_request_lock_);
960    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
961      return;
962    }
963    last_trim_time_ = NanoTime();
964    heap_trim_request_pending_ = false;
965  }
966  {
967    // Need to do this before acquiring the locks since we don't want to get suspended while
968    // holding any locks.
969    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
970    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
971    // trimming.
972    MutexLock mu(self, *gc_complete_lock_);
973    // Ensure there is only one GC at a time.
974    WaitForGcToCompleteLocked(kGcCauseTrim, self);
975    collector_type_running_ = kCollectorTypeHeapTrim;
976  }
977  uint64_t start_ns = NanoTime();
978  // Trim the managed spaces.
979  uint64_t total_alloc_space_allocated = 0;
980  uint64_t total_alloc_space_size = 0;
981  uint64_t managed_reclaimed = 0;
982  for (const auto& space : continuous_spaces_) {
983    if (space->IsMallocSpace()) {
984      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
985      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
986        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
987        // for a long period of time.
988        managed_reclaimed += malloc_space->Trim();
989      }
990      total_alloc_space_size += malloc_space->Size();
991    }
992  }
993  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
994  if (bump_pointer_space_ != nullptr) {
995    total_alloc_space_allocated -= bump_pointer_space_->Size();
996  }
997  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
998      static_cast<float>(total_alloc_space_size);
999  uint64_t gc_heap_end_ns = NanoTime();
1000  // We never move things in the native heap, so we can finish the GC at this point.
1001  FinishGC(self, collector::kGcTypeNone);
1002  size_t native_reclaimed = 0;
1003  // Only trim the native heap if we don't care about pauses.
1004  if (!CareAboutPauseTimes()) {
1005#if defined(USE_DLMALLOC)
1006    // Trim the native heap.
1007    dlmalloc_trim(0);
1008    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1009#elif defined(USE_JEMALLOC)
1010    // Jemalloc does it's own internal trimming.
1011#else
1012    UNIMPLEMENTED(WARNING) << "Add trimming support";
1013#endif
1014  }
1015  uint64_t end_ns = NanoTime();
1016  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1017      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1018      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1019      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1020      << "%.";
1021}
1022
1023bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1024  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1025  // taking the lock.
1026  if (obj == nullptr) {
1027    return true;
1028  }
1029  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1030}
1031
1032bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1033  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1034}
1035
1036bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1037  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1038    return false;
1039  }
1040  for (const auto& space : continuous_spaces_) {
1041    if (space->HasAddress(obj)) {
1042      return true;
1043    }
1044  }
1045  return false;
1046}
1047
1048bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1049                              bool search_live_stack, bool sorted) {
1050  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1051    return false;
1052  }
1053  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1054    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1055    if (obj == klass) {
1056      // This case happens for java.lang.Class.
1057      return true;
1058    }
1059    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1060  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1061    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1062    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1063    return temp_space_->Contains(obj);
1064  }
1065  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1066  space::DiscontinuousSpace* d_space = nullptr;
1067  if (c_space != nullptr) {
1068    if (c_space->GetLiveBitmap()->Test(obj)) {
1069      return true;
1070    }
1071  } else {
1072    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1073    if (d_space != nullptr) {
1074      if (d_space->GetLiveBitmap()->Test(obj)) {
1075        return true;
1076      }
1077    }
1078  }
1079  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1080  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1081    if (i > 0) {
1082      NanoSleep(MsToNs(10));
1083    }
1084    if (search_allocation_stack) {
1085      if (sorted) {
1086        if (allocation_stack_->ContainsSorted(obj)) {
1087          return true;
1088        }
1089      } else if (allocation_stack_->Contains(obj)) {
1090        return true;
1091      }
1092    }
1093
1094    if (search_live_stack) {
1095      if (sorted) {
1096        if (live_stack_->ContainsSorted(obj)) {
1097          return true;
1098        }
1099      } else if (live_stack_->Contains(obj)) {
1100        return true;
1101      }
1102    }
1103  }
1104  // We need to check the bitmaps again since there is a race where we mark something as live and
1105  // then clear the stack containing it.
1106  if (c_space != nullptr) {
1107    if (c_space->GetLiveBitmap()->Test(obj)) {
1108      return true;
1109    }
1110  } else {
1111    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1112    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1113      return true;
1114    }
1115  }
1116  return false;
1117}
1118
1119std::string Heap::DumpSpaces() const {
1120  std::ostringstream oss;
1121  DumpSpaces(oss);
1122  return oss.str();
1123}
1124
1125void Heap::DumpSpaces(std::ostream& stream) const {
1126  for (const auto& space : continuous_spaces_) {
1127    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1128    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1129    stream << space << " " << *space << "\n";
1130    if (live_bitmap != nullptr) {
1131      stream << live_bitmap << " " << *live_bitmap << "\n";
1132    }
1133    if (mark_bitmap != nullptr) {
1134      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1135    }
1136  }
1137  for (const auto& space : discontinuous_spaces_) {
1138    stream << space << " " << *space << "\n";
1139  }
1140}
1141
1142void Heap::VerifyObjectBody(mirror::Object* obj) {
1143  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1144    return;
1145  }
1146
1147  // Ignore early dawn of the universe verifications.
1148  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1149    return;
1150  }
1151  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1152  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1153  CHECK(c != nullptr) << "Null class in object " << obj;
1154  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1155  CHECK(VerifyClassClass(c));
1156
1157  if (verify_object_mode_ > kVerifyObjectModeFast) {
1158    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1159    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1160  }
1161}
1162
1163void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1164  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1165}
1166
1167void Heap::VerifyHeap() {
1168  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1169  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1170}
1171
1172void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1173  // Use signed comparison since freed bytes can be negative when background compaction foreground
1174  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1175  // free list backed space typically increasing memory footprint due to padding and binning.
1176  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1177  // Note: This relies on 2s complement for handling negative freed_bytes.
1178  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1179  if (Runtime::Current()->HasStatsEnabled()) {
1180    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1181    thread_stats->freed_objects += freed_objects;
1182    thread_stats->freed_bytes += freed_bytes;
1183    // TODO: Do this concurrently.
1184    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1185    global_stats->freed_objects += freed_objects;
1186    global_stats->freed_bytes += freed_bytes;
1187  }
1188}
1189
1190space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1191  for (const auto& space : continuous_spaces_) {
1192    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1193      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1194        return space->AsContinuousSpace()->AsRosAllocSpace();
1195      }
1196    }
1197  }
1198  return nullptr;
1199}
1200
1201mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1202                                             size_t alloc_size, size_t* bytes_allocated,
1203                                             size_t* usable_size,
1204                                             mirror::Class** klass) {
1205  bool was_default_allocator = allocator == GetCurrentAllocator();
1206  DCHECK(klass != nullptr);
1207  StackHandleScope<1> hs(self);
1208  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1209  klass = nullptr;  // Invalidate for safety.
1210  // The allocation failed. If the GC is running, block until it completes, and then retry the
1211  // allocation.
1212  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1213  if (last_gc != collector::kGcTypeNone) {
1214    // If we were the default allocator but the allocator changed while we were suspended,
1215    // abort the allocation.
1216    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1217      return nullptr;
1218    }
1219    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1220    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1221                                                     usable_size);
1222    if (ptr != nullptr) {
1223      return ptr;
1224    }
1225  }
1226
1227  collector::GcType tried_type = next_gc_type_;
1228  const bool gc_ran =
1229      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1230  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1231    return nullptr;
1232  }
1233  if (gc_ran) {
1234    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1235                                                     usable_size);
1236    if (ptr != nullptr) {
1237      return ptr;
1238    }
1239  }
1240
1241  // Loop through our different Gc types and try to Gc until we get enough free memory.
1242  for (collector::GcType gc_type : gc_plan_) {
1243    if (gc_type == tried_type) {
1244      continue;
1245    }
1246    // Attempt to run the collector, if we succeed, re-try the allocation.
1247    const bool gc_ran =
1248        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1249    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1250      return nullptr;
1251    }
1252    if (gc_ran) {
1253      // Did we free sufficient memory for the allocation to succeed?
1254      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1255                                                       usable_size);
1256      if (ptr != nullptr) {
1257        return ptr;
1258      }
1259    }
1260  }
1261  // Allocations have failed after GCs;  this is an exceptional state.
1262  // Try harder, growing the heap if necessary.
1263  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1264                                                  usable_size);
1265  if (ptr != nullptr) {
1266    return ptr;
1267  }
1268  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1269  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1270  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1271  // OOME.
1272  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1273           << " allocation";
1274  // TODO: Run finalization, but this may cause more allocations to occur.
1275  // We don't need a WaitForGcToComplete here either.
1276  DCHECK(!gc_plan_.empty());
1277  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1278  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1279    return nullptr;
1280  }
1281  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1282  if (ptr == nullptr && use_homogeneous_space_compaction_for_oom_) {
1283    const uint64_t current_time = NanoTime();
1284    if ((allocator == kAllocatorTypeRosAlloc || allocator == kAllocatorTypeDlMalloc) &&
1285        current_time - last_time_homogeneous_space_compaction_by_oom_ >
1286        min_interval_homogeneous_space_compaction_by_oom_) {
1287      last_time_homogeneous_space_compaction_by_oom_ = current_time;
1288      HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1289      switch (result) {
1290        case HomogeneousSpaceCompactResult::kSuccess:
1291          // If the allocation succeeded, we delayed an oom.
1292          ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1293          if (ptr != nullptr) {
1294            count_delayed_oom_++;
1295          }
1296          break;
1297        case HomogeneousSpaceCompactResult::kErrorReject:
1298          // Reject due to disabled moving GC.
1299          break;
1300        case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1301          // Throw OOM by default.
1302          break;
1303        default: {
1304          LOG(FATAL) << "Unimplemented homogeneous space compaction result " << static_cast<size_t>(result);
1305        }
1306      }
1307      // Always print that we ran homogeneous space compation since this can cause jank.
1308      VLOG(heap) << "Ran heap homogeneous space compaction, "
1309                << " requested defragmentation "
1310                << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1311                << " performed defragmentation "
1312                << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1313                << " ignored homogeneous space compaction "
1314                << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1315                << " delayed count = "
1316                << count_delayed_oom_.LoadSequentiallyConsistent();
1317    }
1318  }
1319  // If the allocation hasn't succeeded by this point, throw an OOM error.
1320  if (ptr == nullptr) {
1321    ThrowOutOfMemoryError(self, alloc_size, allocator);
1322  }
1323  return ptr;
1324}
1325
1326void Heap::SetTargetHeapUtilization(float target) {
1327  DCHECK_GT(target, 0.0f);  // asserted in Java code
1328  DCHECK_LT(target, 1.0f);
1329  target_utilization_ = target;
1330}
1331
1332size_t Heap::GetObjectsAllocated() const {
1333  size_t total = 0;
1334  for (space::AllocSpace* space : alloc_spaces_) {
1335    total += space->GetObjectsAllocated();
1336  }
1337  return total;
1338}
1339
1340uint64_t Heap::GetObjectsAllocatedEver() const {
1341  return GetObjectsFreedEver() + GetObjectsAllocated();
1342}
1343
1344uint64_t Heap::GetBytesAllocatedEver() const {
1345  return GetBytesFreedEver() + GetBytesAllocated();
1346}
1347
1348class InstanceCounter {
1349 public:
1350  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1351      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1352      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1353  }
1354  static void Callback(mirror::Object* obj, void* arg)
1355      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1356    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1357    mirror::Class* instance_class = obj->GetClass();
1358    CHECK(instance_class != nullptr);
1359    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1360      if (instance_counter->use_is_assignable_from_) {
1361        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1362          ++instance_counter->counts_[i];
1363        }
1364      } else if (instance_class == instance_counter->classes_[i]) {
1365        ++instance_counter->counts_[i];
1366      }
1367    }
1368  }
1369
1370 private:
1371  const std::vector<mirror::Class*>& classes_;
1372  bool use_is_assignable_from_;
1373  uint64_t* const counts_;
1374  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1375};
1376
1377void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1378                          uint64_t* counts) {
1379  // Can't do any GC in this function since this may move classes.
1380  Thread* self = Thread::Current();
1381  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1382  InstanceCounter counter(classes, use_is_assignable_from, counts);
1383  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1384  VisitObjects(InstanceCounter::Callback, &counter);
1385  self->EndAssertNoThreadSuspension(old_cause);
1386}
1387
1388class InstanceCollector {
1389 public:
1390  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1391      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1392      : class_(c), max_count_(max_count), instances_(instances) {
1393  }
1394  static void Callback(mirror::Object* obj, void* arg)
1395      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1396    DCHECK(arg != nullptr);
1397    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1398    mirror::Class* instance_class = obj->GetClass();
1399    if (instance_class == instance_collector->class_) {
1400      if (instance_collector->max_count_ == 0 ||
1401          instance_collector->instances_.size() < instance_collector->max_count_) {
1402        instance_collector->instances_.push_back(obj);
1403      }
1404    }
1405  }
1406
1407 private:
1408  mirror::Class* class_;
1409  uint32_t max_count_;
1410  std::vector<mirror::Object*>& instances_;
1411  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1412};
1413
1414void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1415                        std::vector<mirror::Object*>& instances) {
1416  // Can't do any GC in this function since this may move classes.
1417  Thread* self = Thread::Current();
1418  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1419  InstanceCollector collector(c, max_count, instances);
1420  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1421  VisitObjects(&InstanceCollector::Callback, &collector);
1422  self->EndAssertNoThreadSuspension(old_cause);
1423}
1424
1425class ReferringObjectsFinder {
1426 public:
1427  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1428                         std::vector<mirror::Object*>& referring_objects)
1429      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1430      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1431  }
1432
1433  static void Callback(mirror::Object* obj, void* arg)
1434      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1435    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1436  }
1437
1438  // For bitmap Visit.
1439  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1440  // annotalysis on visitors.
1441  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1442    o->VisitReferences<true>(*this, VoidFunctor());
1443  }
1444
1445  // For Object::VisitReferences.
1446  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1447      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1448    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1449    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1450      referring_objects_.push_back(obj);
1451    }
1452  }
1453
1454 private:
1455  mirror::Object* object_;
1456  uint32_t max_count_;
1457  std::vector<mirror::Object*>& referring_objects_;
1458  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1459};
1460
1461void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1462                               std::vector<mirror::Object*>& referring_objects) {
1463  // Can't do any GC in this function since this may move the object o.
1464  Thread* self = Thread::Current();
1465  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1466  ReferringObjectsFinder finder(o, max_count, referring_objects);
1467  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1468  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1469  self->EndAssertNoThreadSuspension(old_cause);
1470}
1471
1472void Heap::CollectGarbage(bool clear_soft_references) {
1473  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1474  // last GC will not have necessarily been cleared.
1475  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1476}
1477
1478HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1479  Thread* self = Thread::Current();
1480  // Inc requested homogeneous space compaction.
1481  count_requested_homogeneous_space_compaction_++;
1482  // Store performed homogeneous space compaction at a new request arrival.
1483  ThreadList* tl = Runtime::Current()->GetThreadList();
1484  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1485  Locks::mutator_lock_->AssertNotHeld(self);
1486  {
1487    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1488    MutexLock mu(self, *gc_complete_lock_);
1489    // Ensure there is only one GC at a time.
1490    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1491    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1492    // is non zero.
1493    // If the collecotr type changed to something which doesn't benefit from homogeneous space compaction,
1494    // exit.
1495    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_)) {
1496      return HomogeneousSpaceCompactResult::kErrorReject;
1497    }
1498    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1499  }
1500  if (Runtime::Current()->IsShuttingDown(self)) {
1501    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1502    // cause objects to get finalized.
1503    FinishGC(self, collector::kGcTypeNone);
1504    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1505  }
1506  // Suspend all threads.
1507  tl->SuspendAll();
1508  uint64_t start_time = NanoTime();
1509  // Launch compaction.
1510  space::MallocSpace* to_space = main_space_backup_.release();
1511  space::MallocSpace* from_space = main_space_;
1512  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1513  const uint64_t space_size_before_compaction = from_space->Size();
1514  AddSpace(to_space);
1515  Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1516  // Leave as prot read so that we can still run ROSAlloc verification on this space.
1517  from_space->GetMemMap()->Protect(PROT_READ);
1518  const uint64_t space_size_after_compaction = to_space->Size();
1519  main_space_ = to_space;
1520  main_space_backup_.reset(from_space);
1521  RemoveSpace(from_space);
1522  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1523  // Update performed homogeneous space compaction count.
1524  count_performed_homogeneous_space_compaction_++;
1525  // Print statics log and resume all threads.
1526  uint64_t duration = NanoTime() - start_time;
1527  LOG(INFO) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1528            << PrettySize(space_size_before_compaction) << " -> "
1529            << PrettySize(space_size_after_compaction) << " compact-ratio: "
1530            << std::fixed << static_cast<double>(space_size_after_compaction) /
1531            static_cast<double>(space_size_before_compaction);
1532  tl->ResumeAll();
1533  // Finish GC.
1534  reference_processor_.EnqueueClearedReferences(self);
1535  GrowForUtilization(semi_space_collector_);
1536  FinishGC(self, collector::kGcTypeFull);
1537  return HomogeneousSpaceCompactResult::kSuccess;
1538}
1539
1540
1541void Heap::TransitionCollector(CollectorType collector_type) {
1542  if (collector_type == collector_type_) {
1543    return;
1544  }
1545  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1546             << " -> " << static_cast<int>(collector_type);
1547  uint64_t start_time = NanoTime();
1548  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1549  Runtime* const runtime = Runtime::Current();
1550  ThreadList* const tl = runtime->GetThreadList();
1551  Thread* const self = Thread::Current();
1552  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1553  Locks::mutator_lock_->AssertNotHeld(self);
1554  const bool copying_transition =
1555      IsMovingGc(background_collector_type_) || IsMovingGc(foreground_collector_type_);
1556  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1557  // compacting_gc_disable_count_, this should rarely occurs).
1558  for (;;) {
1559    {
1560      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1561      MutexLock mu(self, *gc_complete_lock_);
1562      // Ensure there is only one GC at a time.
1563      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1564      // If someone else beat us to it and changed the collector before we could, exit.
1565      // This is safe to do before the suspend all since we set the collector_type_running_ before
1566      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1567      // then it would get blocked on WaitForGcToCompleteLocked.
1568      if (collector_type == collector_type_) {
1569        return;
1570      }
1571      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1572      if (!copying_transition || disable_moving_gc_count_ == 0) {
1573        // TODO: Not hard code in semi-space collector?
1574        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1575        break;
1576      }
1577    }
1578    usleep(1000);
1579  }
1580  if (runtime->IsShuttingDown(self)) {
1581    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1582    // cause objects to get finalized.
1583    FinishGC(self, collector::kGcTypeNone);
1584    return;
1585  }
1586  tl->SuspendAll();
1587  switch (collector_type) {
1588    case kCollectorTypeSS: {
1589      if (!IsMovingGc(collector_type_)) {
1590        // Create the bump pointer space from the backup space.
1591        CHECK(main_space_backup_ != nullptr);
1592        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1593        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1594        // pointer space last transition it will be protected.
1595        CHECK(mem_map != nullptr);
1596        mem_map->Protect(PROT_READ | PROT_WRITE);
1597        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1598                                                                        mem_map.release());
1599        AddSpace(bump_pointer_space_);
1600        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1601        // Use the now empty main space mem map for the bump pointer temp space.
1602        mem_map.reset(main_space_->ReleaseMemMap());
1603        // Unset the pointers just in case.
1604        if (dlmalloc_space_ == main_space_) {
1605          dlmalloc_space_ = nullptr;
1606        } else if (rosalloc_space_ == main_space_) {
1607          rosalloc_space_ = nullptr;
1608        }
1609        // Remove the main space so that we don't try to trim it, this doens't work for debug
1610        // builds since RosAlloc attempts to read the magic number from a protected page.
1611        RemoveSpace(main_space_);
1612        RemoveRememberedSet(main_space_);
1613        delete main_space_;  // Delete the space since it has been removed.
1614        main_space_ = nullptr;
1615        RemoveRememberedSet(main_space_backup_.get());
1616        main_space_backup_.reset(nullptr);  // Deletes the space.
1617        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1618                                                                mem_map.release());
1619        AddSpace(temp_space_);
1620      }
1621      break;
1622    }
1623    case kCollectorTypeMS:
1624      // Fall through.
1625    case kCollectorTypeCMS: {
1626      if (IsMovingGc(collector_type_)) {
1627        CHECK(temp_space_ != nullptr);
1628        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1629        RemoveSpace(temp_space_);
1630        temp_space_ = nullptr;
1631        mem_map->Protect(PROT_READ | PROT_WRITE);
1632        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, mem_map->Size(),
1633                              mem_map->Size());
1634        mem_map.release();
1635        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1636        AddSpace(main_space_);
1637        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1638        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1639        RemoveSpace(bump_pointer_space_);
1640        bump_pointer_space_ = nullptr;
1641        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1642        // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1643        if (kIsDebugBuild && kUseRosAlloc) {
1644          mem_map->Protect(PROT_READ | PROT_WRITE);
1645        }
1646        main_space_backup_.reset(CreateMallocSpaceFromMemMap(mem_map.get(), kDefaultInitialSize,
1647                                                             mem_map->Size(), mem_map->Size(),
1648                                                             name, true));
1649        if (kIsDebugBuild && kUseRosAlloc) {
1650          mem_map->Protect(PROT_NONE);
1651        }
1652        mem_map.release();
1653      }
1654      break;
1655    }
1656    default: {
1657      LOG(FATAL) << "Attempted to transition to invalid collector type "
1658                 << static_cast<size_t>(collector_type);
1659      break;
1660    }
1661  }
1662  ChangeCollector(collector_type);
1663  tl->ResumeAll();
1664  // Can't call into java code with all threads suspended.
1665  reference_processor_.EnqueueClearedReferences(self);
1666  uint64_t duration = NanoTime() - start_time;
1667  GrowForUtilization(semi_space_collector_);
1668  FinishGC(self, collector::kGcTypeFull);
1669  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1670  int32_t delta_allocated = before_allocated - after_allocated;
1671  std::string saved_str;
1672  if (delta_allocated >= 0) {
1673    saved_str = " saved at least " + PrettySize(delta_allocated);
1674  } else {
1675    saved_str = " expanded " + PrettySize(-delta_allocated);
1676  }
1677  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1678      << PrettyDuration(duration) << saved_str;
1679}
1680
1681void Heap::ChangeCollector(CollectorType collector_type) {
1682  // TODO: Only do this with all mutators suspended to avoid races.
1683  if (collector_type != collector_type_) {
1684    if (collector_type == kCollectorTypeMC) {
1685      // Don't allow mark compact unless support is compiled in.
1686      CHECK(kMarkCompactSupport);
1687    }
1688    collector_type_ = collector_type;
1689    gc_plan_.clear();
1690    switch (collector_type_) {
1691      case kCollectorTypeCC:  // Fall-through.
1692      case kCollectorTypeMC:  // Fall-through.
1693      case kCollectorTypeSS:  // Fall-through.
1694      case kCollectorTypeGSS: {
1695        gc_plan_.push_back(collector::kGcTypeFull);
1696        if (use_tlab_) {
1697          ChangeAllocator(kAllocatorTypeTLAB);
1698        } else {
1699          ChangeAllocator(kAllocatorTypeBumpPointer);
1700        }
1701        break;
1702      }
1703      case kCollectorTypeMS: {
1704        gc_plan_.push_back(collector::kGcTypeSticky);
1705        gc_plan_.push_back(collector::kGcTypePartial);
1706        gc_plan_.push_back(collector::kGcTypeFull);
1707        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1708        break;
1709      }
1710      case kCollectorTypeCMS: {
1711        gc_plan_.push_back(collector::kGcTypeSticky);
1712        gc_plan_.push_back(collector::kGcTypePartial);
1713        gc_plan_.push_back(collector::kGcTypeFull);
1714        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1715        break;
1716      }
1717      default: {
1718        LOG(FATAL) << "Unimplemented";
1719      }
1720    }
1721    if (IsGcConcurrent()) {
1722      concurrent_start_bytes_ =
1723          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1724    } else {
1725      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1726    }
1727  }
1728}
1729
1730// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1731class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1732 public:
1733  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1734      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1735  }
1736
1737  void BuildBins(space::ContinuousSpace* space) {
1738    bin_live_bitmap_ = space->GetLiveBitmap();
1739    bin_mark_bitmap_ = space->GetMarkBitmap();
1740    BinContext context;
1741    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1742    context.collector_ = this;
1743    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1744    // Note: This requires traversing the space in increasing order of object addresses.
1745    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1746    // Add the last bin which spans after the last object to the end of the space.
1747    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1748  }
1749
1750 private:
1751  struct BinContext {
1752    uintptr_t prev_;  // The end of the previous object.
1753    ZygoteCompactingCollector* collector_;
1754  };
1755  // Maps from bin sizes to locations.
1756  std::multimap<size_t, uintptr_t> bins_;
1757  // Live bitmap of the space which contains the bins.
1758  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1759  // Mark bitmap of the space which contains the bins.
1760  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1761
1762  static void Callback(mirror::Object* obj, void* arg)
1763      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1764    DCHECK(arg != nullptr);
1765    BinContext* context = reinterpret_cast<BinContext*>(arg);
1766    ZygoteCompactingCollector* collector = context->collector_;
1767    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1768    size_t bin_size = object_addr - context->prev_;
1769    // Add the bin consisting of the end of the previous object to the start of the current object.
1770    collector->AddBin(bin_size, context->prev_);
1771    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1772  }
1773
1774  void AddBin(size_t size, uintptr_t position) {
1775    if (size != 0) {
1776      bins_.insert(std::make_pair(size, position));
1777    }
1778  }
1779
1780  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1781    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1782    // allocator.
1783    return false;
1784  }
1785
1786  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1787      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1788    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1789    mirror::Object* forward_address;
1790    // Find the smallest bin which we can move obj in.
1791    auto it = bins_.lower_bound(object_size);
1792    if (it == bins_.end()) {
1793      // No available space in the bins, place it in the target space instead (grows the zygote
1794      // space).
1795      size_t bytes_allocated;
1796      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1797      if (to_space_live_bitmap_ != nullptr) {
1798        to_space_live_bitmap_->Set(forward_address);
1799      } else {
1800        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1801        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1802      }
1803    } else {
1804      size_t size = it->first;
1805      uintptr_t pos = it->second;
1806      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1807      forward_address = reinterpret_cast<mirror::Object*>(pos);
1808      // Set the live and mark bits so that sweeping system weaks works properly.
1809      bin_live_bitmap_->Set(forward_address);
1810      bin_mark_bitmap_->Set(forward_address);
1811      DCHECK_GE(size, object_size);
1812      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1813    }
1814    // Copy the object over to its new location.
1815    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1816    if (kUseBakerOrBrooksReadBarrier) {
1817      obj->AssertReadBarrierPointer();
1818      if (kUseBrooksReadBarrier) {
1819        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1820        forward_address->SetReadBarrierPointer(forward_address);
1821      }
1822      forward_address->AssertReadBarrierPointer();
1823    }
1824    return forward_address;
1825  }
1826};
1827
1828void Heap::UnBindBitmaps() {
1829  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1830  for (const auto& space : GetContinuousSpaces()) {
1831    if (space->IsContinuousMemMapAllocSpace()) {
1832      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1833      if (alloc_space->HasBoundBitmaps()) {
1834        alloc_space->UnBindBitmaps();
1835      }
1836    }
1837  }
1838}
1839
1840void Heap::PreZygoteFork() {
1841  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1842  Thread* self = Thread::Current();
1843  MutexLock mu(self, zygote_creation_lock_);
1844  // Try to see if we have any Zygote spaces.
1845  if (have_zygote_space_) {
1846    return;
1847  }
1848  VLOG(heap) << "Starting PreZygoteFork";
1849  // Trim the pages at the end of the non moving space.
1850  non_moving_space_->Trim();
1851  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1852  // there.
1853  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1854  // Change the collector to the post zygote one.
1855  bool same_space = non_moving_space_ == main_space_;
1856  if (kCompactZygote) {
1857    DCHECK(semi_space_collector_ != nullptr);
1858    // Temporarily disable rosalloc verification because the zygote
1859    // compaction will mess up the rosalloc internal metadata.
1860    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1861    ZygoteCompactingCollector zygote_collector(this);
1862    zygote_collector.BuildBins(non_moving_space_);
1863    // Create a new bump pointer space which we will compact into.
1864    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1865                                         non_moving_space_->Limit());
1866    // Compact the bump pointer space to a new zygote bump pointer space.
1867    bool reset_main_space = false;
1868    if (IsMovingGc(collector_type_)) {
1869      zygote_collector.SetFromSpace(bump_pointer_space_);
1870    } else {
1871      CHECK(main_space_ != nullptr);
1872      // Copy from the main space.
1873      zygote_collector.SetFromSpace(main_space_);
1874      reset_main_space = true;
1875    }
1876    zygote_collector.SetToSpace(&target_space);
1877    zygote_collector.SetSwapSemiSpaces(false);
1878    zygote_collector.Run(kGcCauseCollectorTransition, false);
1879    if (reset_main_space) {
1880      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1881      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1882      MemMap* mem_map = main_space_->ReleaseMemMap();
1883      RemoveSpace(main_space_);
1884      space::Space* old_main_space = main_space_;
1885      CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1886      delete old_main_space;
1887      AddSpace(main_space_);
1888    } else {
1889      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1890    }
1891    if (temp_space_ != nullptr) {
1892      CHECK(temp_space_->IsEmpty());
1893    }
1894    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1895    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1896    // Update the end and write out image.
1897    non_moving_space_->SetEnd(target_space.End());
1898    non_moving_space_->SetLimit(target_space.Limit());
1899    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1900  }
1901  ChangeCollector(foreground_collector_type_);
1902  // Save the old space so that we can remove it after we complete creating the zygote space.
1903  space::MallocSpace* old_alloc_space = non_moving_space_;
1904  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1905  // the remaining available space.
1906  // Remove the old space before creating the zygote space since creating the zygote space sets
1907  // the old alloc space's bitmaps to nullptr.
1908  RemoveSpace(old_alloc_space);
1909  if (collector::SemiSpace::kUseRememberedSet) {
1910    // Sanity bound check.
1911    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1912    // Remove the remembered set for the now zygote space (the old
1913    // non-moving space). Note now that we have compacted objects into
1914    // the zygote space, the data in the remembered set is no longer
1915    // needed. The zygote space will instead have a mod-union table
1916    // from this point on.
1917    RemoveRememberedSet(old_alloc_space);
1918  }
1919  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1920                                                                        low_memory_mode_,
1921                                                                        &non_moving_space_);
1922  CHECK(!non_moving_space_->CanMoveObjects());
1923  if (same_space) {
1924    main_space_ = non_moving_space_;
1925    SetSpaceAsDefault(main_space_);
1926  }
1927  delete old_alloc_space;
1928  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1929  AddSpace(zygote_space);
1930  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1931  AddSpace(non_moving_space_);
1932  have_zygote_space_ = true;
1933  // Enable large object space allocations.
1934  large_object_threshold_ = kDefaultLargeObjectThreshold;
1935  // Create the zygote space mod union table.
1936  accounting::ModUnionTable* mod_union_table =
1937      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1938  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1939  AddModUnionTable(mod_union_table);
1940  if (collector::SemiSpace::kUseRememberedSet) {
1941    // Add a new remembered set for the post-zygote non-moving space.
1942    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1943        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1944                                      non_moving_space_);
1945    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1946        << "Failed to create post-zygote non-moving space remembered set";
1947    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1948  }
1949}
1950
1951void Heap::FlushAllocStack() {
1952  MarkAllocStackAsLive(allocation_stack_.get());
1953  allocation_stack_->Reset();
1954}
1955
1956void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
1957                          accounting::ContinuousSpaceBitmap* bitmap2,
1958                          accounting::LargeObjectBitmap* large_objects,
1959                          accounting::ObjectStack* stack) {
1960  DCHECK(bitmap1 != nullptr);
1961  DCHECK(bitmap2 != nullptr);
1962  mirror::Object** limit = stack->End();
1963  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1964    const mirror::Object* obj = *it;
1965    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1966      if (bitmap1->HasAddress(obj)) {
1967        bitmap1->Set(obj);
1968      } else if (bitmap2->HasAddress(obj)) {
1969        bitmap2->Set(obj);
1970      } else {
1971        large_objects->Set(obj);
1972      }
1973    }
1974  }
1975}
1976
1977void Heap::SwapSemiSpaces() {
1978  CHECK(bump_pointer_space_ != nullptr);
1979  CHECK(temp_space_ != nullptr);
1980  std::swap(bump_pointer_space_, temp_space_);
1981}
1982
1983void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1984                   space::ContinuousMemMapAllocSpace* source_space,
1985                   GcCause gc_cause) {
1986  CHECK(kMovingCollector);
1987  if (target_space != source_space) {
1988    // Don't swap spaces since this isn't a typical semi space collection.
1989    semi_space_collector_->SetSwapSemiSpaces(false);
1990    semi_space_collector_->SetFromSpace(source_space);
1991    semi_space_collector_->SetToSpace(target_space);
1992    semi_space_collector_->Run(gc_cause, false);
1993  } else {
1994    CHECK(target_space->IsBumpPointerSpace())
1995        << "In-place compaction is only supported for bump pointer spaces";
1996    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
1997    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
1998  }
1999}
2000
2001collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
2002                                               bool clear_soft_references) {
2003  Thread* self = Thread::Current();
2004  Runtime* runtime = Runtime::Current();
2005  // If the heap can't run the GC, silently fail and return that no GC was run.
2006  switch (gc_type) {
2007    case collector::kGcTypePartial: {
2008      if (!have_zygote_space_) {
2009        return collector::kGcTypeNone;
2010      }
2011      break;
2012    }
2013    default: {
2014      // Other GC types don't have any special cases which makes them not runnable. The main case
2015      // here is full GC.
2016    }
2017  }
2018  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2019  Locks::mutator_lock_->AssertNotHeld(self);
2020  if (self->IsHandlingStackOverflow()) {
2021    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
2022  }
2023  bool compacting_gc;
2024  {
2025    gc_complete_lock_->AssertNotHeld(self);
2026    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2027    MutexLock mu(self, *gc_complete_lock_);
2028    // Ensure there is only one GC at a time.
2029    WaitForGcToCompleteLocked(gc_cause, self);
2030    compacting_gc = IsMovingGc(collector_type_);
2031    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2032    if (compacting_gc && disable_moving_gc_count_ != 0) {
2033      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2034      return collector::kGcTypeNone;
2035    }
2036    collector_type_running_ = collector_type_;
2037  }
2038
2039  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2040    ++runtime->GetStats()->gc_for_alloc_count;
2041    ++self->GetStats()->gc_for_alloc_count;
2042  }
2043  uint64_t gc_start_time_ns = NanoTime();
2044  uint64_t gc_start_size = GetBytesAllocated();
2045  // Approximate allocation rate in bytes / second.
2046  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
2047  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
2048  if (LIKELY(ms_delta != 0)) {
2049    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
2050    ATRACE_INT("Allocation rate KB/s", allocation_rate_ / KB);
2051    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
2052  }
2053
2054  DCHECK_LT(gc_type, collector::kGcTypeMax);
2055  DCHECK_NE(gc_type, collector::kGcTypeNone);
2056
2057  collector::GarbageCollector* collector = nullptr;
2058  // TODO: Clean this up.
2059  if (compacting_gc) {
2060    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2061           current_allocator_ == kAllocatorTypeTLAB);
2062    switch (collector_type_) {
2063      case kCollectorTypeSS:
2064        // Fall-through.
2065      case kCollectorTypeGSS:
2066        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2067        semi_space_collector_->SetToSpace(temp_space_);
2068        semi_space_collector_->SetSwapSemiSpaces(true);
2069        collector = semi_space_collector_;
2070        break;
2071      case kCollectorTypeCC:
2072        collector = concurrent_copying_collector_;
2073        break;
2074      case kCollectorTypeMC:
2075        mark_compact_collector_->SetSpace(bump_pointer_space_);
2076        collector = mark_compact_collector_;
2077        break;
2078      default:
2079        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2080    }
2081    if (collector != mark_compact_collector_) {
2082      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2083      CHECK(temp_space_->IsEmpty());
2084    }
2085    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2086  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2087      current_allocator_ == kAllocatorTypeDlMalloc) {
2088    collector = FindCollectorByGcType(gc_type);
2089  } else {
2090    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2091  }
2092  CHECK(collector != nullptr)
2093      << "Could not find garbage collector with collector_type="
2094      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2095  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2096  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2097  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2098  RequestHeapTrim();
2099  // Enqueue cleared references.
2100  reference_processor_.EnqueueClearedReferences(self);
2101  // Grow the heap so that we know when to perform the next GC.
2102  GrowForUtilization(collector);
2103  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2104  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2105  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2106  // (mutator time blocked >= long_pause_log_threshold_).
2107  bool log_gc = gc_cause == kGcCauseExplicit;
2108  if (!log_gc && CareAboutPauseTimes()) {
2109    // GC for alloc pauses the allocating thread, so consider it as a pause.
2110    log_gc = duration > long_gc_log_threshold_ ||
2111        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2112    for (uint64_t pause : pause_times) {
2113      log_gc = log_gc || pause >= long_pause_log_threshold_;
2114    }
2115  }
2116  if (log_gc) {
2117    const size_t percent_free = GetPercentFree();
2118    const size_t current_heap_size = GetBytesAllocated();
2119    const size_t total_memory = GetTotalMemory();
2120    std::ostringstream pause_string;
2121    for (size_t i = 0; i < pause_times.size(); ++i) {
2122        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2123                     << ((i != pause_times.size() - 1) ? "," : "");
2124    }
2125    LOG(INFO) << gc_cause << " " << collector->GetName()
2126              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2127              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2128              << current_gc_iteration_.GetFreedLargeObjects() << "("
2129              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2130              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2131              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2132              << " total " << PrettyDuration((duration / 1000) * 1000);
2133    VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2134  }
2135  FinishGC(self, gc_type);
2136  // Inform DDMS that a GC completed.
2137  Dbg::GcDidFinish();
2138  return gc_type;
2139}
2140
2141void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2142  MutexLock mu(self, *gc_complete_lock_);
2143  collector_type_running_ = kCollectorTypeNone;
2144  if (gc_type != collector::kGcTypeNone) {
2145    last_gc_type_ = gc_type;
2146  }
2147  // Wake anyone who may have been waiting for the GC to complete.
2148  gc_complete_cond_->Broadcast(self);
2149}
2150
2151static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2152                                     RootType /*root_type*/) {
2153  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2154  if (*root == obj) {
2155    LOG(INFO) << "Object " << obj << " is a root";
2156  }
2157}
2158
2159class ScanVisitor {
2160 public:
2161  void operator()(const mirror::Object* obj) const {
2162    LOG(ERROR) << "Would have rescanned object " << obj;
2163  }
2164};
2165
2166// Verify a reference from an object.
2167class VerifyReferenceVisitor {
2168 public:
2169  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2170      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2171      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2172
2173  size_t GetFailureCount() const {
2174    return fail_count_->LoadSequentiallyConsistent();
2175  }
2176
2177  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2178      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2179    if (verify_referent_) {
2180      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2181    }
2182  }
2183
2184  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2185      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2186    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2187  }
2188
2189  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2190    return heap_->IsLiveObjectLocked(obj, true, false, true);
2191  }
2192
2193  static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
2194                                 RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2195    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2196    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2197      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2198          << " thread_id= " << thread_id << " root_type= " << root_type;
2199    }
2200  }
2201
2202 private:
2203  // TODO: Fix the no thread safety analysis.
2204  // Returns false on failure.
2205  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2206      NO_THREAD_SAFETY_ANALYSIS {
2207    if (ref == nullptr || IsLive(ref)) {
2208      // Verify that the reference is live.
2209      return true;
2210    }
2211    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2212      // Print message on only on first failure to prevent spam.
2213      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2214    }
2215    if (obj != nullptr) {
2216      // Only do this part for non roots.
2217      accounting::CardTable* card_table = heap_->GetCardTable();
2218      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2219      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2220      byte* card_addr = card_table->CardFromAddr(obj);
2221      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2222                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2223      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2224        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2225      } else {
2226        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2227      }
2228
2229      // Attempt to find the class inside of the recently freed objects.
2230      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2231      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2232        space::MallocSpace* space = ref_space->AsMallocSpace();
2233        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2234        if (ref_class != nullptr) {
2235          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2236                     << PrettyClass(ref_class);
2237        } else {
2238          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2239        }
2240      }
2241
2242      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2243          ref->GetClass()->IsClass()) {
2244        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2245      } else {
2246        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2247                   << ") is not a valid heap address";
2248      }
2249
2250      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2251      void* cover_begin = card_table->AddrFromCard(card_addr);
2252      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2253          accounting::CardTable::kCardSize);
2254      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2255          << "-" << cover_end;
2256      accounting::ContinuousSpaceBitmap* bitmap =
2257          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2258
2259      if (bitmap == nullptr) {
2260        LOG(ERROR) << "Object " << obj << " has no bitmap";
2261        if (!VerifyClassClass(obj->GetClass())) {
2262          LOG(ERROR) << "Object " << obj << " failed class verification!";
2263        }
2264      } else {
2265        // Print out how the object is live.
2266        if (bitmap->Test(obj)) {
2267          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2268        }
2269        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2270          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2271        }
2272        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2273          LOG(ERROR) << "Object " << obj << " found in live stack";
2274        }
2275        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2276          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2277        }
2278        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2279          LOG(ERROR) << "Ref " << ref << " found in live stack";
2280        }
2281        // Attempt to see if the card table missed the reference.
2282        ScanVisitor scan_visitor;
2283        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2284        card_table->Scan(bitmap, byte_cover_begin,
2285                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2286      }
2287
2288      // Search to see if any of the roots reference our object.
2289      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2290      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2291
2292      // Search to see if any of the roots reference our reference.
2293      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2294      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2295    }
2296    return false;
2297  }
2298
2299  Heap* const heap_;
2300  Atomic<size_t>* const fail_count_;
2301  const bool verify_referent_;
2302};
2303
2304// Verify all references within an object, for use with HeapBitmap::Visit.
2305class VerifyObjectVisitor {
2306 public:
2307  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2308      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2309  }
2310
2311  void operator()(mirror::Object* obj) const
2312      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2313    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2314    // be live or else how did we find it in the live bitmap?
2315    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2316    // The class doesn't count as a reference but we should verify it anyways.
2317    obj->VisitReferences<true>(visitor, visitor);
2318  }
2319
2320  static void VisitCallback(mirror::Object* obj, void* arg)
2321      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2322    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2323    visitor->operator()(obj);
2324  }
2325
2326  size_t GetFailureCount() const {
2327    return fail_count_->LoadSequentiallyConsistent();
2328  }
2329
2330 private:
2331  Heap* const heap_;
2332  Atomic<size_t>* const fail_count_;
2333  const bool verify_referent_;
2334};
2335
2336void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2337  // Slow path, the allocation stack push back must have already failed.
2338  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2339  do {
2340    // TODO: Add handle VerifyObject.
2341    StackHandleScope<1> hs(self);
2342    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2343    // Push our object into the reserve region of the allocaiton stack. This is only required due
2344    // to heap verification requiring that roots are live (either in the live bitmap or in the
2345    // allocation stack).
2346    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2347    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2348  } while (!allocation_stack_->AtomicPushBack(*obj));
2349}
2350
2351void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2352  // Slow path, the allocation stack push back must have already failed.
2353  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2354  mirror::Object** start_address;
2355  mirror::Object** end_address;
2356  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2357                                            &end_address)) {
2358    // TODO: Add handle VerifyObject.
2359    StackHandleScope<1> hs(self);
2360    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2361    // Push our object into the reserve region of the allocaiton stack. This is only required due
2362    // to heap verification requiring that roots are live (either in the live bitmap or in the
2363    // allocation stack).
2364    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2365    // Push into the reserve allocation stack.
2366    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2367  }
2368  self->SetThreadLocalAllocationStack(start_address, end_address);
2369  // Retry on the new thread-local allocation stack.
2370  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2371}
2372
2373// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2374size_t Heap::VerifyHeapReferences(bool verify_referents) {
2375  Thread* self = Thread::Current();
2376  Locks::mutator_lock_->AssertExclusiveHeld(self);
2377  // Lets sort our allocation stacks so that we can efficiently binary search them.
2378  allocation_stack_->Sort();
2379  live_stack_->Sort();
2380  // Since we sorted the allocation stack content, need to revoke all
2381  // thread-local allocation stacks.
2382  RevokeAllThreadLocalAllocationStacks(self);
2383  Atomic<size_t> fail_count_(0);
2384  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2385  // Verify objects in the allocation stack since these will be objects which were:
2386  // 1. Allocated prior to the GC (pre GC verification).
2387  // 2. Allocated during the GC (pre sweep GC verification).
2388  // We don't want to verify the objects in the live stack since they themselves may be
2389  // pointing to dead objects if they are not reachable.
2390  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2391  // Verify the roots:
2392  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2393  if (visitor.GetFailureCount() > 0) {
2394    // Dump mod-union tables.
2395    for (const auto& table_pair : mod_union_tables_) {
2396      accounting::ModUnionTable* mod_union_table = table_pair.second;
2397      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2398    }
2399    // Dump remembered sets.
2400    for (const auto& table_pair : remembered_sets_) {
2401      accounting::RememberedSet* remembered_set = table_pair.second;
2402      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2403    }
2404    DumpSpaces(LOG(ERROR));
2405  }
2406  return visitor.GetFailureCount();
2407}
2408
2409class VerifyReferenceCardVisitor {
2410 public:
2411  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2412      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2413                            Locks::heap_bitmap_lock_)
2414      : heap_(heap), failed_(failed) {
2415  }
2416
2417  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2418  // annotalysis on visitors.
2419  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2420      NO_THREAD_SAFETY_ANALYSIS {
2421    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2422    // Filter out class references since changing an object's class does not mark the card as dirty.
2423    // Also handles large objects, since the only reference they hold is a class reference.
2424    if (ref != nullptr && !ref->IsClass()) {
2425      accounting::CardTable* card_table = heap_->GetCardTable();
2426      // If the object is not dirty and it is referencing something in the live stack other than
2427      // class, then it must be on a dirty card.
2428      if (!card_table->AddrIsInCardTable(obj)) {
2429        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2430        *failed_ = true;
2431      } else if (!card_table->IsDirty(obj)) {
2432        // TODO: Check mod-union tables.
2433        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2434        // kCardDirty - 1 if it didnt get touched since we aged it.
2435        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2436        if (live_stack->ContainsSorted(ref)) {
2437          if (live_stack->ContainsSorted(obj)) {
2438            LOG(ERROR) << "Object " << obj << " found in live stack";
2439          }
2440          if (heap_->GetLiveBitmap()->Test(obj)) {
2441            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2442          }
2443          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2444                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2445
2446          // Print which field of the object is dead.
2447          if (!obj->IsObjectArray()) {
2448            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2449            CHECK(klass != NULL);
2450            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2451                                                                      : klass->GetIFields();
2452            CHECK(fields != NULL);
2453            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2454              mirror::ArtField* cur = fields->Get(i);
2455              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2456                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2457                          << PrettyField(cur);
2458                break;
2459              }
2460            }
2461          } else {
2462            mirror::ObjectArray<mirror::Object>* object_array =
2463                obj->AsObjectArray<mirror::Object>();
2464            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2465              if (object_array->Get(i) == ref) {
2466                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2467              }
2468            }
2469          }
2470
2471          *failed_ = true;
2472        }
2473      }
2474    }
2475  }
2476
2477 private:
2478  Heap* const heap_;
2479  bool* const failed_;
2480};
2481
2482class VerifyLiveStackReferences {
2483 public:
2484  explicit VerifyLiveStackReferences(Heap* heap)
2485      : heap_(heap),
2486        failed_(false) {}
2487
2488  void operator()(mirror::Object* obj) const
2489      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2490    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2491    obj->VisitReferences<true>(visitor, VoidFunctor());
2492  }
2493
2494  bool Failed() const {
2495    return failed_;
2496  }
2497
2498 private:
2499  Heap* const heap_;
2500  bool failed_;
2501};
2502
2503bool Heap::VerifyMissingCardMarks() {
2504  Thread* self = Thread::Current();
2505  Locks::mutator_lock_->AssertExclusiveHeld(self);
2506
2507  // We need to sort the live stack since we binary search it.
2508  live_stack_->Sort();
2509  // Since we sorted the allocation stack content, need to revoke all
2510  // thread-local allocation stacks.
2511  RevokeAllThreadLocalAllocationStacks(self);
2512  VerifyLiveStackReferences visitor(this);
2513  GetLiveBitmap()->Visit(visitor);
2514
2515  // We can verify objects in the live stack since none of these should reference dead objects.
2516  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2517    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2518      visitor(*it);
2519    }
2520  }
2521  return !visitor.Failed();
2522}
2523
2524void Heap::SwapStacks(Thread* self) {
2525  if (kUseThreadLocalAllocationStack) {
2526    live_stack_->AssertAllZero();
2527  }
2528  allocation_stack_.swap(live_stack_);
2529}
2530
2531void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2532  // This must be called only during the pause.
2533  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2534  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2535  MutexLock mu2(self, *Locks::thread_list_lock_);
2536  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2537  for (Thread* t : thread_list) {
2538    t->RevokeThreadLocalAllocationStack();
2539  }
2540}
2541
2542void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2543  if (kIsDebugBuild) {
2544    if (bump_pointer_space_ != nullptr) {
2545      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2546    }
2547  }
2548}
2549
2550accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2551  auto it = mod_union_tables_.find(space);
2552  if (it == mod_union_tables_.end()) {
2553    return nullptr;
2554  }
2555  return it->second;
2556}
2557
2558accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2559  auto it = remembered_sets_.find(space);
2560  if (it == remembered_sets_.end()) {
2561    return nullptr;
2562  }
2563  return it->second;
2564}
2565
2566void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2567  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2568  // Clear cards and keep track of cards cleared in the mod-union table.
2569  for (const auto& space : continuous_spaces_) {
2570    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2571    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2572    if (table != nullptr) {
2573      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2574          "ImageModUnionClearCards";
2575      TimingLogger::ScopedTiming t(name, timings);
2576      table->ClearCards();
2577    } else if (use_rem_sets && rem_set != nullptr) {
2578      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2579          << static_cast<int>(collector_type_);
2580      TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
2581      rem_set->ClearCards();
2582    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2583      TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
2584      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2585      // were dirty before the GC started.
2586      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2587      // -> clean(cleaning thread).
2588      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2589      // roots and then we scan / update mod union tables after. We will always scan either card.
2590      // If we end up with the non aged card, we scan it it in the pause.
2591      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2592                                     VoidFunctor());
2593    }
2594  }
2595}
2596
2597static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2598}
2599
2600void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2601  Thread* const self = Thread::Current();
2602  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2603  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2604  if (verify_pre_gc_heap_) {
2605    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
2606    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2607    size_t failures = VerifyHeapReferences();
2608    if (failures > 0) {
2609      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2610          << " failures";
2611    }
2612  }
2613  // Check that all objects which reference things in the live stack are on dirty cards.
2614  if (verify_missing_card_marks_) {
2615    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
2616    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2617    SwapStacks(self);
2618    // Sort the live stack so that we can quickly binary search it later.
2619    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2620                                    << " missing card mark verification failed\n" << DumpSpaces();
2621    SwapStacks(self);
2622  }
2623  if (verify_mod_union_table_) {
2624    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
2625    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2626    for (const auto& table_pair : mod_union_tables_) {
2627      accounting::ModUnionTable* mod_union_table = table_pair.second;
2628      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2629      mod_union_table->Verify();
2630    }
2631  }
2632}
2633
2634void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2635  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2636    collector::GarbageCollector::ScopedPause pause(gc);
2637    PreGcVerificationPaused(gc);
2638  }
2639}
2640
2641void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2642  // TODO: Add a new runtime option for this?
2643  if (verify_pre_gc_rosalloc_) {
2644    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2645  }
2646}
2647
2648void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2649  Thread* const self = Thread::Current();
2650  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2651  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2652  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2653  // reachable objects.
2654  if (verify_pre_sweeping_heap_) {
2655    TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
2656    CHECK_NE(self->GetState(), kRunnable);
2657    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2658    // Swapping bound bitmaps does nothing.
2659    gc->SwapBitmaps();
2660    // Pass in false since concurrent reference processing can mean that the reference referents
2661    // may point to dead objects at the point which PreSweepingGcVerification is called.
2662    size_t failures = VerifyHeapReferences(false);
2663    if (failures > 0) {
2664      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2665          << " failures";
2666    }
2667    gc->SwapBitmaps();
2668  }
2669  if (verify_pre_sweeping_rosalloc_) {
2670    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2671  }
2672}
2673
2674void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2675  // Only pause if we have to do some verification.
2676  Thread* const self = Thread::Current();
2677  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2678  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2679  if (verify_system_weaks_) {
2680    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2681    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2682    mark_sweep->VerifySystemWeaks();
2683  }
2684  if (verify_post_gc_rosalloc_) {
2685    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2686  }
2687  if (verify_post_gc_heap_) {
2688    TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
2689    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2690    size_t failures = VerifyHeapReferences();
2691    if (failures > 0) {
2692      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2693          << " failures";
2694    }
2695  }
2696}
2697
2698void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2699  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2700    collector::GarbageCollector::ScopedPause pause(gc);
2701    PreGcVerificationPaused(gc);
2702  }
2703}
2704
2705void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2706  TimingLogger::ScopedTiming t(name, timings);
2707  for (const auto& space : continuous_spaces_) {
2708    if (space->IsRosAllocSpace()) {
2709      VLOG(heap) << name << " : " << space->GetName();
2710      space->AsRosAllocSpace()->Verify();
2711    }
2712  }
2713}
2714
2715collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2716  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2717  MutexLock mu(self, *gc_complete_lock_);
2718  return WaitForGcToCompleteLocked(cause, self);
2719}
2720
2721collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2722  collector::GcType last_gc_type = collector::kGcTypeNone;
2723  uint64_t wait_start = NanoTime();
2724  while (collector_type_running_ != kCollectorTypeNone) {
2725    ATRACE_BEGIN("GC: Wait For Completion");
2726    // We must wait, change thread state then sleep on gc_complete_cond_;
2727    gc_complete_cond_->Wait(self);
2728    last_gc_type = last_gc_type_;
2729    ATRACE_END();
2730  }
2731  uint64_t wait_time = NanoTime() - wait_start;
2732  total_wait_time_ += wait_time;
2733  if (wait_time > long_pause_log_threshold_) {
2734    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2735        << " for cause " << cause;
2736  }
2737  return last_gc_type;
2738}
2739
2740void Heap::DumpForSigQuit(std::ostream& os) {
2741  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2742     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2743  DumpGcPerformanceInfo(os);
2744}
2745
2746size_t Heap::GetPercentFree() {
2747  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2748}
2749
2750void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2751  if (max_allowed_footprint > GetMaxMemory()) {
2752    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2753             << PrettySize(GetMaxMemory());
2754    max_allowed_footprint = GetMaxMemory();
2755  }
2756  max_allowed_footprint_ = max_allowed_footprint;
2757}
2758
2759bool Heap::IsMovableObject(const mirror::Object* obj) const {
2760  if (kMovingCollector) {
2761    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2762    if (space != nullptr) {
2763      // TODO: Check large object?
2764      return space->CanMoveObjects();
2765    }
2766  }
2767  return false;
2768}
2769
2770void Heap::UpdateMaxNativeFootprint() {
2771  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2772  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2773  size_t target_size = native_size / GetTargetHeapUtilization();
2774  if (target_size > native_size + max_free_) {
2775    target_size = native_size + max_free_;
2776  } else if (target_size < native_size + min_free_) {
2777    target_size = native_size + min_free_;
2778  }
2779  native_footprint_gc_watermark_ = target_size;
2780  native_footprint_limit_ = 2 * target_size - native_size;
2781}
2782
2783collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2784  for (const auto& collector : garbage_collectors_) {
2785    if (collector->GetCollectorType() == collector_type_ &&
2786        collector->GetGcType() == gc_type) {
2787      return collector;
2788    }
2789  }
2790  return nullptr;
2791}
2792
2793double Heap::HeapGrowthMultiplier() const {
2794  // If we don't care about pause times we are background, so return 1.0.
2795  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2796    return 1.0;
2797  }
2798  return foreground_heap_growth_multiplier_;
2799}
2800
2801void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2802  // We know what our utilization is at this moment.
2803  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2804  const uint64_t bytes_allocated = GetBytesAllocated();
2805  last_gc_size_ = bytes_allocated;
2806  last_gc_time_ns_ = NanoTime();
2807  uint64_t target_size;
2808  collector::GcType gc_type = collector_ran->GetGcType();
2809  if (gc_type != collector::kGcTypeSticky) {
2810    // Grow the heap for non sticky GC.
2811    const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2812    // foreground.
2813    intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2814    CHECK_GE(delta, 0);
2815    target_size = bytes_allocated + delta * multiplier;
2816    target_size = std::min(target_size,
2817                           bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2818    target_size = std::max(target_size,
2819                           bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2820    native_need_to_run_finalization_ = true;
2821    next_gc_type_ = collector::kGcTypeSticky;
2822  } else {
2823    collector::GcType non_sticky_gc_type =
2824        have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2825    // Find what the next non sticky collector will be.
2826    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2827    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2828    // do another sticky collection next.
2829    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2830    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2831    // if the sticky GC throughput always remained >= the full/partial throughput.
2832    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2833        non_sticky_collector->GetEstimatedMeanThroughput() &&
2834        non_sticky_collector->NumberOfIterations() > 0 &&
2835        bytes_allocated <= max_allowed_footprint_) {
2836      next_gc_type_ = collector::kGcTypeSticky;
2837    } else {
2838      next_gc_type_ = non_sticky_gc_type;
2839    }
2840    // If we have freed enough memory, shrink the heap back down.
2841    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2842      target_size = bytes_allocated + max_free_;
2843    } else {
2844      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2845    }
2846  }
2847  if (!ignore_max_footprint_) {
2848    SetIdealFootprint(target_size);
2849    if (IsGcConcurrent()) {
2850      // Calculate when to perform the next ConcurrentGC.
2851      // Calculate the estimated GC duration.
2852      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2853      // Estimate how many remaining bytes we will have when we need to start the next GC.
2854      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2855      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2856      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2857      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2858        // A never going to happen situation that from the estimated allocation rate we will exceed
2859        // the applications entire footprint with the given estimated allocation rate. Schedule
2860        // another GC nearly straight away.
2861        remaining_bytes = kMinConcurrentRemainingBytes;
2862      }
2863      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2864      DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
2865      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2866      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2867      // right away.
2868      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2869                                         static_cast<size_t>(bytes_allocated));
2870    }
2871  }
2872}
2873
2874void Heap::ClearGrowthLimit() {
2875  growth_limit_ = capacity_;
2876  non_moving_space_->ClearGrowthLimit();
2877}
2878
2879void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
2880  ScopedObjectAccess soa(self);
2881  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
2882  jvalue args[1];
2883  args[0].l = arg.get();
2884  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2885  // Restore object in case it gets moved.
2886  *object = soa.Decode<mirror::Object*>(arg.get());
2887}
2888
2889void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
2890  StackHandleScope<1> hs(self);
2891  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2892  RequestConcurrentGC(self);
2893}
2894
2895void Heap::RequestConcurrentGC(Thread* self) {
2896  // Make sure that we can do a concurrent GC.
2897  Runtime* runtime = Runtime::Current();
2898  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2899      self->IsHandlingStackOverflow()) {
2900    return;
2901  }
2902  // We already have a request pending, no reason to start more until we update
2903  // concurrent_start_bytes_.
2904  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2905  JNIEnv* env = self->GetJniEnv();
2906  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2907  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2908  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2909                            WellKnownClasses::java_lang_Daemons_requestGC);
2910  CHECK(!env->ExceptionCheck());
2911}
2912
2913void Heap::ConcurrentGC(Thread* self) {
2914  if (Runtime::Current()->IsShuttingDown(self)) {
2915    return;
2916  }
2917  // Wait for any GCs currently running to finish.
2918  if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
2919    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2920    // instead. E.g. can't do partial, so do full instead.
2921    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2922        collector::kGcTypeNone) {
2923      for (collector::GcType gc_type : gc_plan_) {
2924        // Attempt to run the collector, if we succeed, we are done.
2925        if (gc_type > next_gc_type_ &&
2926            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2927          break;
2928        }
2929      }
2930    }
2931  }
2932}
2933
2934void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2935  Thread* self = Thread::Current();
2936  {
2937    MutexLock mu(self, *heap_trim_request_lock_);
2938    if (desired_collector_type_ == desired_collector_type) {
2939      return;
2940    }
2941    heap_transition_or_trim_target_time_ =
2942        std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
2943    desired_collector_type_ = desired_collector_type;
2944  }
2945  SignalHeapTrimDaemon(self);
2946}
2947
2948void Heap::RequestHeapTrim() {
2949  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2950  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2951  // a space it will hold its lock and can become a cause of jank.
2952  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2953  // forking.
2954
2955  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2956  // because that only marks object heads, so a large array looks like lots of empty space. We
2957  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2958  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2959  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2960  // not how much use we're making of those pages.
2961
2962  Thread* self = Thread::Current();
2963  Runtime* runtime = Runtime::Current();
2964  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2965    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2966    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2967    // as we don't hold the lock while requesting the trim).
2968    return;
2969  }
2970  {
2971    MutexLock mu(self, *heap_trim_request_lock_);
2972    if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2973      // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2974      // just yet.
2975      return;
2976    }
2977    heap_trim_request_pending_ = true;
2978    uint64_t current_time = NanoTime();
2979    if (heap_transition_or_trim_target_time_ < current_time) {
2980      heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
2981    }
2982  }
2983  // Notify the daemon thread which will actually do the heap trim.
2984  SignalHeapTrimDaemon(self);
2985}
2986
2987void Heap::SignalHeapTrimDaemon(Thread* self) {
2988  JNIEnv* env = self->GetJniEnv();
2989  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2990  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2991  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2992                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2993  CHECK(!env->ExceptionCheck());
2994}
2995
2996void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2997  if (rosalloc_space_ != nullptr) {
2998    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2999  }
3000  if (bump_pointer_space_ != nullptr) {
3001    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
3002  }
3003}
3004
3005void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3006  if (rosalloc_space_ != nullptr) {
3007    rosalloc_space_->RevokeThreadLocalBuffers(thread);
3008  }
3009}
3010
3011void Heap::RevokeAllThreadLocalBuffers() {
3012  if (rosalloc_space_ != nullptr) {
3013    rosalloc_space_->RevokeAllThreadLocalBuffers();
3014  }
3015  if (bump_pointer_space_ != nullptr) {
3016    bump_pointer_space_->RevokeAllThreadLocalBuffers();
3017  }
3018}
3019
3020bool Heap::IsGCRequestPending() const {
3021  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
3022}
3023
3024void Heap::RunFinalization(JNIEnv* env) {
3025  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3026  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3027    CHECK(WellKnownClasses::java_lang_System != nullptr);
3028    WellKnownClasses::java_lang_System_runFinalization =
3029        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3030    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3031  }
3032  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3033                            WellKnownClasses::java_lang_System_runFinalization);
3034}
3035
3036void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
3037  Thread* self = ThreadForEnv(env);
3038  if (native_need_to_run_finalization_) {
3039    RunFinalization(env);
3040    UpdateMaxNativeFootprint();
3041    native_need_to_run_finalization_ = false;
3042  }
3043  // Total number of native bytes allocated.
3044  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3045  new_native_bytes_allocated += bytes;
3046  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3047    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
3048        collector::kGcTypeFull;
3049
3050    // The second watermark is higher than the gc watermark. If you hit this it means you are
3051    // allocating native objects faster than the GC can keep up with.
3052    if (new_native_bytes_allocated > native_footprint_limit_) {
3053      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3054        // Just finished a GC, attempt to run finalizers.
3055        RunFinalization(env);
3056        CHECK(!env->ExceptionCheck());
3057      }
3058      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3059      if (new_native_bytes_allocated > native_footprint_limit_) {
3060        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3061        RunFinalization(env);
3062        native_need_to_run_finalization_ = false;
3063        CHECK(!env->ExceptionCheck());
3064      }
3065      // We have just run finalizers, update the native watermark since it is very likely that
3066      // finalizers released native managed allocations.
3067      UpdateMaxNativeFootprint();
3068    } else if (!IsGCRequestPending()) {
3069      if (IsGcConcurrent()) {
3070        RequestConcurrentGC(self);
3071      } else {
3072        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3073      }
3074    }
3075  }
3076}
3077
3078void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
3079  int expected_size, new_size;
3080  do {
3081    expected_size = native_bytes_allocated_.LoadRelaxed();
3082    new_size = expected_size - bytes;
3083    if (UNLIKELY(new_size < 0)) {
3084      ScopedObjectAccess soa(env);
3085      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3086                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
3087                                 "registered as allocated", bytes, expected_size).c_str());
3088      break;
3089    }
3090  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size, new_size));
3091}
3092
3093size_t Heap::GetTotalMemory() const {
3094  return std::max(max_allowed_footprint_, GetBytesAllocated());
3095}
3096
3097void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3098  DCHECK(mod_union_table != nullptr);
3099  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3100}
3101
3102void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3103  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3104        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
3105        c->GetDescriptor().empty());
3106  CHECK_GE(byte_count, sizeof(mirror::Object));
3107}
3108
3109void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3110  CHECK(remembered_set != nullptr);
3111  space::Space* space = remembered_set->GetSpace();
3112  CHECK(space != nullptr);
3113  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3114  remembered_sets_.Put(space, remembered_set);
3115  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3116}
3117
3118void Heap::RemoveRememberedSet(space::Space* space) {
3119  CHECK(space != nullptr);
3120  auto it = remembered_sets_.find(space);
3121  CHECK(it != remembered_sets_.end());
3122  delete it->second;
3123  remembered_sets_.erase(it);
3124  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3125}
3126
3127void Heap::ClearMarkedObjects() {
3128  // Clear all of the spaces' mark bitmaps.
3129  for (const auto& space : GetContinuousSpaces()) {
3130    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3131    if (space->GetLiveBitmap() != mark_bitmap) {
3132      mark_bitmap->Clear();
3133    }
3134  }
3135  // Clear the marked objects in the discontinous space object sets.
3136  for (const auto& space : GetDiscontinuousSpaces()) {
3137    space->GetMarkBitmap()->Clear();
3138  }
3139}
3140
3141}  // namespace gc
3142}  // namespace art
3143