heap.cc revision b2ac1ab47f84bd989fb2c94a532f5dc7d177ebe4
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/remembered_set.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/collector/concurrent_copying.h"
39#include "gc/collector/mark_compact.h"
40#include "gc/collector/mark_sweep-inl.h"
41#include "gc/collector/partial_mark_sweep.h"
42#include "gc/collector/semi_space.h"
43#include "gc/collector/sticky_mark_sweep.h"
44#include "gc/reference_processor.h"
45#include "gc/space/bump_pointer_space.h"
46#include "gc/space/dlmalloc_space-inl.h"
47#include "gc/space/image_space.h"
48#include "gc/space/large_object_space.h"
49#include "gc/space/rosalloc_space-inl.h"
50#include "gc/space/space-inl.h"
51#include "gc/space/zygote_space.h"
52#include "entrypoints/quick/quick_alloc_entrypoints.h"
53#include "heap-inl.h"
54#include "image.h"
55#include "mirror/art_field-inl.h"
56#include "mirror/class-inl.h"
57#include "mirror/object.h"
58#include "mirror/object-inl.h"
59#include "mirror/object_array-inl.h"
60#include "mirror/reference-inl.h"
61#include "object_utils.h"
62#include "os.h"
63#include "reflection.h"
64#include "runtime.h"
65#include "ScopedLocalRef.h"
66#include "scoped_thread_state_change.h"
67#include "handle_scope-inl.h"
68#include "thread_list.h"
69#include "well_known_classes.h"
70
71namespace art {
72
73namespace gc {
74
75static constexpr size_t kCollectorTransitionStressIterations = 0;
76static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
77static constexpr bool kGCALotMode = false;
78static constexpr size_t kGcAlotInterval = KB;
79// Minimum amount of remaining bytes before a concurrent GC is triggered.
80static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
81static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
82// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
83// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
84// threads (lower pauses, use less memory bandwidth).
85static constexpr double kStickyGcThroughputAdjustment = 1.0;
86// Whether or not we use the free list large object space.
87static constexpr bool kUseFreeListSpaceForLOS = false;
88// Whether or not we compact the zygote in PreZygoteFork.
89static constexpr bool kCompactZygote = kMovingCollector;
90static constexpr size_t kNonMovingSpaceCapacity = 64 * MB;
91// How many reserve entries are at the end of the allocation stack, these are only needed if the
92// allocation stack overflows.
93static constexpr size_t kAllocationStackReserveSize = 1024;
94// Default mark stack size in bytes.
95static const size_t kDefaultMarkStackSize = 64 * KB;
96// Define space name.
97static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
98static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
99static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
100static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
101
102Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
103           double target_utilization, double foreground_heap_growth_multiplier, size_t capacity,
104           const std::string& image_file_name, const InstructionSet image_instruction_set,
105           CollectorType foreground_collector_type, CollectorType background_collector_type,
106           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
107           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
108           bool ignore_max_footprint, bool use_tlab,
109           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
110           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
111           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
112           uint64_t min_interval_homogeneous_space_compaction_by_oom)
113    : non_moving_space_(nullptr),
114      rosalloc_space_(nullptr),
115      dlmalloc_space_(nullptr),
116      main_space_(nullptr),
117      collector_type_(kCollectorTypeNone),
118      foreground_collector_type_(foreground_collector_type),
119      background_collector_type_(background_collector_type),
120      desired_collector_type_(foreground_collector_type_),
121      heap_trim_request_lock_(nullptr),
122      last_trim_time_(0),
123      heap_transition_or_trim_target_time_(0),
124      heap_trim_request_pending_(false),
125      parallel_gc_threads_(parallel_gc_threads),
126      conc_gc_threads_(conc_gc_threads),
127      low_memory_mode_(low_memory_mode),
128      long_pause_log_threshold_(long_pause_log_threshold),
129      long_gc_log_threshold_(long_gc_log_threshold),
130      ignore_max_footprint_(ignore_max_footprint),
131      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
132      have_zygote_space_(false),
133      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
134      collector_type_running_(kCollectorTypeNone),
135      last_gc_type_(collector::kGcTypeNone),
136      next_gc_type_(collector::kGcTypePartial),
137      capacity_(capacity),
138      growth_limit_(growth_limit),
139      max_allowed_footprint_(initial_size),
140      native_footprint_gc_watermark_(initial_size),
141      native_footprint_limit_(2 * initial_size),
142      native_need_to_run_finalization_(false),
143      // Initially assume we perceive jank in case the process state is never updated.
144      process_state_(kProcessStateJankPerceptible),
145      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
146      total_bytes_freed_ever_(0),
147      total_objects_freed_ever_(0),
148      num_bytes_allocated_(0),
149      native_bytes_allocated_(0),
150      gc_memory_overhead_(0),
151      verify_missing_card_marks_(false),
152      verify_system_weaks_(false),
153      verify_pre_gc_heap_(verify_pre_gc_heap),
154      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
155      verify_post_gc_heap_(verify_post_gc_heap),
156      verify_mod_union_table_(false),
157      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
158      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
159      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
160      last_gc_time_ns_(NanoTime()),
161      allocation_rate_(0),
162      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
163       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
164       * verification is enabled, we limit the size of allocation stacks to speed up their
165       * searching.
166       */
167      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
168          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
169      current_allocator_(kAllocatorTypeDlMalloc),
170      current_non_moving_allocator_(kAllocatorTypeNonMoving),
171      bump_pointer_space_(nullptr),
172      temp_space_(nullptr),
173      min_free_(min_free),
174      max_free_(max_free),
175      target_utilization_(target_utilization),
176      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
177      total_wait_time_(0),
178      total_allocation_time_(0),
179      verify_object_mode_(kVerifyObjectModeDisabled),
180      disable_moving_gc_count_(0),
181      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
182      use_tlab_(use_tlab),
183      main_space_backup_(nullptr),
184      min_interval_homogeneous_space_compaction_by_oom_(
185          min_interval_homogeneous_space_compaction_by_oom),
186      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
187      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
188  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
189    LOG(INFO) << "Heap() entering";
190  }
191  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
192  // entrypoints.
193  if (!Runtime::Current()->IsZygote()) {
194    large_object_threshold_ = kDefaultLargeObjectThreshold;
195    // Background compaction is currently not supported for command line runs.
196    if (background_collector_type_ != foreground_collector_type_) {
197      VLOG(heap) << "Disabling background compaction for non zygote";
198      background_collector_type_ = foreground_collector_type_;
199    }
200  }
201  ChangeCollector(desired_collector_type_);
202  live_bitmap_.reset(new accounting::HeapBitmap(this));
203  mark_bitmap_.reset(new accounting::HeapBitmap(this));
204  // Requested begin for the alloc space, to follow the mapped image and oat files
205  byte* requested_alloc_space_begin = nullptr;
206  if (!image_file_name.empty()) {
207    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
208                                                               image_instruction_set);
209    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
210    AddSpace(image_space);
211    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
212    // isn't going to get in the middle
213    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
214    CHECK_GT(oat_file_end_addr, image_space->End());
215    requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
216  }
217  /*
218  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
219                                     +-  nonmoving space (kNonMovingSpaceCapacity) +-
220                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
221                                     +-main alloc space / bump space 1 (capacity_) +-
222                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
223                                     +-????????????????????????????????????????????+-
224                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
225                                     +-main alloc space2 / bump space 2 (capacity_)+-
226                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
227  */
228  bool support_homogeneous_space_compaction =
229      background_collector_type == gc::kCollectorTypeHomogeneousSpaceCompact ||
230      use_homogeneous_space_compaction_for_oom;
231  // We may use the same space the main space for the non moving space if we don't need to compact
232  // from the main space.
233  // This is not the case if we support homogeneous compaction or have a moving background
234  // collector type.
235  const bool is_zygote = Runtime::Current()->IsZygote();
236  bool separate_non_moving_space = is_zygote ||
237      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
238      IsMovingGc(background_collector_type_);
239  if (foreground_collector_type == kCollectorTypeGSS) {
240    separate_non_moving_space = false;
241  }
242  std::unique_ptr<MemMap> main_mem_map_1;
243  std::unique_ptr<MemMap> main_mem_map_2;
244  byte* request_begin = requested_alloc_space_begin;
245  if (request_begin != nullptr && separate_non_moving_space) {
246    request_begin += kNonMovingSpaceCapacity;
247  }
248  std::string error_str;
249  std::unique_ptr<MemMap> non_moving_space_mem_map;
250  if (separate_non_moving_space) {
251    // Reserve the non moving mem map before the other two since it needs to be at a specific
252    // address.
253    non_moving_space_mem_map.reset(
254        MemMap::MapAnonymous("non moving space", requested_alloc_space_begin,
255                             kNonMovingSpaceCapacity, PROT_READ | PROT_WRITE, true, &error_str));
256    CHECK(non_moving_space_mem_map != nullptr) << error_str;
257  }
258  // Attempt to create 2 mem maps at or after the requested begin.
259  main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
260                                                    PROT_READ | PROT_WRITE, &error_str));
261  CHECK(main_mem_map_1.get() != nullptr) << error_str;
262  if (support_homogeneous_space_compaction ||
263      background_collector_type_ == kCollectorTypeSS ||
264      foreground_collector_type_ == kCollectorTypeSS) {
265    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
266                                                      capacity_, PROT_READ | PROT_WRITE,
267                                                      &error_str));
268    CHECK(main_mem_map_2.get() != nullptr) << error_str;
269  }
270  // Create the non moving space first so that bitmaps don't take up the address range.
271  if (separate_non_moving_space) {
272    // Non moving space is always dlmalloc since we currently don't have support for multiple
273    // active rosalloc spaces.
274    const size_t size = non_moving_space_mem_map->Size();
275    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
276        non_moving_space_mem_map.release(), "zygote / non moving space", initial_size,
277        initial_size, size, size, false);
278    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
279    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
280        << requested_alloc_space_begin;
281    AddSpace(non_moving_space_);
282  }
283  // Create other spaces based on whether or not we have a moving GC.
284  if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
285    // Create bump pointer spaces.
286    // We only to create the bump pointer if the foreground collector is a compacting GC.
287    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
288    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
289                                                                    main_mem_map_1.release());
290    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
291    AddSpace(bump_pointer_space_);
292    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
293                                                            main_mem_map_2.release());
294    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
295    AddSpace(temp_space_);
296    CHECK(separate_non_moving_space);
297  } else {
298    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
299    CHECK(main_space_ != nullptr);
300    AddSpace(main_space_);
301    if (!separate_non_moving_space) {
302      non_moving_space_ = main_space_;
303      CHECK(!non_moving_space_->CanMoveObjects());
304    }
305    if (foreground_collector_type_ == kCollectorTypeGSS) {
306      CHECK_EQ(foreground_collector_type_, background_collector_type_);
307      // Create bump pointer spaces instead of a backup space.
308      main_mem_map_2.release();
309      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
310                                                            kGSSBumpPointerSpaceCapacity, nullptr);
311      CHECK(bump_pointer_space_ != nullptr);
312      AddSpace(bump_pointer_space_);
313      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
314                                                    kGSSBumpPointerSpaceCapacity, nullptr);
315      CHECK(temp_space_ != nullptr);
316      AddSpace(temp_space_);
317    } else if (main_mem_map_2.get() != nullptr) {
318      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
319      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
320                                                           growth_limit_, capacity_, name, true));
321      CHECK(main_space_backup_.get() != nullptr);
322      // Add the space so its accounted for in the heap_begin and heap_end.
323      AddSpace(main_space_backup_.get());
324    }
325  }
326  CHECK(non_moving_space_ != nullptr);
327  CHECK(!non_moving_space_->CanMoveObjects());
328  // Allocate the large object space.
329  if (kUseFreeListSpaceForLOS) {
330    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity_);
331  } else {
332    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
333  }
334  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
335  AddSpace(large_object_space_);
336  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
337  CHECK(!continuous_spaces_.empty());
338  // Relies on the spaces being sorted.
339  byte* heap_begin = continuous_spaces_.front()->Begin();
340  byte* heap_end = continuous_spaces_.back()->Limit();
341  size_t heap_capacity = heap_end - heap_begin;
342  // Remove the main backup space since it slows down the GC to have unused extra spaces.
343  if (main_space_backup_.get() != nullptr) {
344    RemoveSpace(main_space_backup_.get());
345  }
346  // Allocate the card table.
347  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
348  CHECK(card_table_.get() != NULL) << "Failed to create card table";
349  // Card cache for now since it makes it easier for us to update the references to the copying
350  // spaces.
351  accounting::ModUnionTable* mod_union_table =
352      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
353                                                      GetImageSpace());
354  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
355  AddModUnionTable(mod_union_table);
356  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
357    accounting::RememberedSet* non_moving_space_rem_set =
358        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
359    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
360    AddRememberedSet(non_moving_space_rem_set);
361  }
362  // TODO: Count objects in the image space here?
363  num_bytes_allocated_.StoreRelaxed(0);
364  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
365                                                    kDefaultMarkStackSize));
366  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
367  allocation_stack_.reset(accounting::ObjectStack::Create(
368      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
369  live_stack_.reset(accounting::ObjectStack::Create(
370      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
371  // It's still too early to take a lock because there are no threads yet, but we can create locks
372  // now. We don't create it earlier to make it clear that you can't use locks during heap
373  // initialization.
374  gc_complete_lock_ = new Mutex("GC complete lock");
375  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
376                                                *gc_complete_lock_));
377  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
378  last_gc_size_ = GetBytesAllocated();
379  if (ignore_max_footprint_) {
380    SetIdealFootprint(std::numeric_limits<size_t>::max());
381    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
382  }
383  CHECK_NE(max_allowed_footprint_, 0U);
384  // Create our garbage collectors.
385  for (size_t i = 0; i < 2; ++i) {
386    const bool concurrent = i != 0;
387    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
388    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
389    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
390  }
391  if (kMovingCollector) {
392    // TODO: Clean this up.
393    const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
394    semi_space_collector_ = new collector::SemiSpace(this, generational,
395                                                     generational ? "generational" : "");
396    garbage_collectors_.push_back(semi_space_collector_);
397    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
398    garbage_collectors_.push_back(concurrent_copying_collector_);
399    mark_compact_collector_ = new collector::MarkCompact(this);
400    garbage_collectors_.push_back(mark_compact_collector_);
401  }
402  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr) {
403    // Check that there's no gap between the image space and the non moving space so that the
404    // immune region won't break (eg. due to a large object allocated in the gap).
405    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
406                                      non_moving_space_->GetMemMap());
407    if (!no_gap) {
408      MemMap::DumpMaps(LOG(ERROR));
409      LOG(FATAL) << "There's a gap between the image space and the main space";
410    }
411  }
412  if (running_on_valgrind_) {
413    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
414  }
415  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
416    LOG(INFO) << "Heap() exiting";
417  }
418}
419
420MemMap* Heap::MapAnonymousPreferredAddress(const char* name, byte* request_begin, size_t capacity,
421                                           int prot_flags, std::string* out_error_str) {
422  while (true) {
423    MemMap* map = MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity,
424                                       PROT_READ | PROT_WRITE, true, out_error_str);
425    if (map != nullptr || request_begin == nullptr) {
426      return map;
427    }
428    // Retry a  second time with no specified request begin.
429    request_begin = nullptr;
430  }
431  return nullptr;
432}
433
434space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
435                                                      size_t growth_limit, size_t capacity,
436                                                      const char* name, bool can_move_objects) {
437  space::MallocSpace* malloc_space = nullptr;
438  if (kUseRosAlloc) {
439    // Create rosalloc space.
440    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
441                                                          initial_size, growth_limit, capacity,
442                                                          low_memory_mode_, can_move_objects);
443  } else {
444    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
445                                                          initial_size, growth_limit, capacity,
446                                                          can_move_objects);
447  }
448  if (collector::SemiSpace::kUseRememberedSet) {
449    accounting::RememberedSet* rem_set  =
450        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
451    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
452    AddRememberedSet(rem_set);
453  }
454  CHECK(malloc_space != nullptr) << "Failed to create " << name;
455  malloc_space->SetFootprintLimit(malloc_space->Capacity());
456  return malloc_space;
457}
458
459void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
460                                 size_t capacity) {
461  // Is background compaction is enabled?
462  bool can_move_objects = IsMovingGc(background_collector_type_) !=
463      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
464  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
465  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
466  // from the main space to the zygote space. If background compaction is enabled, always pass in
467  // that we can move objets.
468  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
469    // After the zygote we want this to be false if we don't have background compaction enabled so
470    // that getting primitive array elements is faster.
471    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
472    can_move_objects = !have_zygote_space_ && foreground_collector_type_ != kCollectorTypeGSS;
473  }
474  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
475    RemoveRememberedSet(main_space_);
476  }
477  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
478  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
479                                            can_move_objects);
480  SetSpaceAsDefault(main_space_);
481  VLOG(heap) << "Created main space " << main_space_;
482}
483
484void Heap::ChangeAllocator(AllocatorType allocator) {
485  if (current_allocator_ != allocator) {
486    // These two allocators are only used internally and don't have any entrypoints.
487    CHECK_NE(allocator, kAllocatorTypeLOS);
488    CHECK_NE(allocator, kAllocatorTypeNonMoving);
489    current_allocator_ = allocator;
490    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
491    SetQuickAllocEntryPointsAllocator(current_allocator_);
492    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
493  }
494}
495
496void Heap::DisableCompaction() {
497  if (IsMovingGc(foreground_collector_type_)) {
498    foreground_collector_type_  = kCollectorTypeCMS;
499  }
500  if (IsMovingGc(background_collector_type_)) {
501    background_collector_type_ = foreground_collector_type_;
502  }
503  TransitionCollector(foreground_collector_type_);
504}
505
506std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
507  if (!IsValidContinuousSpaceObjectAddress(klass)) {
508    return StringPrintf("<non heap address klass %p>", klass);
509  }
510  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
511  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
512    std::string result("[");
513    result += SafeGetClassDescriptor(component_type);
514    return result;
515  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
516    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
517  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
518    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
519  } else {
520    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
521    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
522      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
523    }
524    const DexFile* dex_file = dex_cache->GetDexFile();
525    uint16_t class_def_idx = klass->GetDexClassDefIndex();
526    if (class_def_idx == DexFile::kDexNoIndex16) {
527      return "<class def not found>";
528    }
529    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
530    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
531    return dex_file->GetTypeDescriptor(type_id);
532  }
533}
534
535std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
536  if (obj == nullptr) {
537    return "null";
538  }
539  mirror::Class* klass = obj->GetClass<kVerifyNone>();
540  if (klass == nullptr) {
541    return "(class=null)";
542  }
543  std::string result(SafeGetClassDescriptor(klass));
544  if (obj->IsClass()) {
545    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
546  }
547  return result;
548}
549
550void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
551  if (obj == nullptr) {
552    stream << "(obj=null)";
553    return;
554  }
555  if (IsAligned<kObjectAlignment>(obj)) {
556    space::Space* space = nullptr;
557    // Don't use find space since it only finds spaces which actually contain objects instead of
558    // spaces which may contain objects (e.g. cleared bump pointer spaces).
559    for (const auto& cur_space : continuous_spaces_) {
560      if (cur_space->HasAddress(obj)) {
561        space = cur_space;
562        break;
563      }
564    }
565    // Unprotect all the spaces.
566    for (const auto& space : continuous_spaces_) {
567      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
568    }
569    stream << "Object " << obj;
570    if (space != nullptr) {
571      stream << " in space " << *space;
572    }
573    mirror::Class* klass = obj->GetClass<kVerifyNone>();
574    stream << "\nclass=" << klass;
575    if (klass != nullptr) {
576      stream << " type= " << SafePrettyTypeOf(obj);
577    }
578    // Re-protect the address we faulted on.
579    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
580  }
581}
582
583bool Heap::IsCompilingBoot() const {
584  for (const auto& space : continuous_spaces_) {
585    if (space->IsImageSpace() || space->IsZygoteSpace()) {
586      return false;
587    }
588  }
589  return true;
590}
591
592bool Heap::HasImageSpace() const {
593  for (const auto& space : continuous_spaces_) {
594    if (space->IsImageSpace()) {
595      return true;
596    }
597  }
598  return false;
599}
600
601void Heap::IncrementDisableMovingGC(Thread* self) {
602  // Need to do this holding the lock to prevent races where the GC is about to run / running when
603  // we attempt to disable it.
604  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
605  MutexLock mu(self, *gc_complete_lock_);
606  ++disable_moving_gc_count_;
607  if (IsMovingGc(collector_type_running_)) {
608    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
609  }
610}
611
612void Heap::DecrementDisableMovingGC(Thread* self) {
613  MutexLock mu(self, *gc_complete_lock_);
614  CHECK_GE(disable_moving_gc_count_, 0U);
615  --disable_moving_gc_count_;
616}
617
618void Heap::UpdateProcessState(ProcessState process_state) {
619  if (process_state_ != process_state) {
620    process_state_ = process_state;
621    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
622      // Start at index 1 to avoid "is always false" warning.
623      // Have iteration 1 always transition the collector.
624      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
625                          ? foreground_collector_type_ : background_collector_type_);
626      usleep(kCollectorTransitionStressWait);
627    }
628    if (process_state_ == kProcessStateJankPerceptible) {
629      // Transition back to foreground right away to prevent jank.
630      RequestCollectorTransition(foreground_collector_type_, 0);
631    } else {
632      // Don't delay for debug builds since we may want to stress test the GC.
633      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
634      // special handling which does a homogenous space compaction once but then doesn't transition
635      // the collector.
636      RequestCollectorTransition(background_collector_type_,
637                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
638    }
639  }
640}
641
642void Heap::CreateThreadPool() {
643  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
644  if (num_threads != 0) {
645    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
646  }
647}
648
649void Heap::VisitObjects(ObjectCallback callback, void* arg) {
650  Thread* self = Thread::Current();
651  // GCs can move objects, so don't allow this.
652  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
653  if (bump_pointer_space_ != nullptr) {
654    // Visit objects in bump pointer space.
655    bump_pointer_space_->Walk(callback, arg);
656  }
657  // TODO: Switch to standard begin and end to use ranged a based loop.
658  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
659      it < end; ++it) {
660    mirror::Object* obj = *it;
661    if (obj != nullptr && obj->GetClass() != nullptr) {
662      // Avoid the race condition caused by the object not yet being written into the allocation
663      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
664      // there can be nulls on the allocation stack.
665      callback(obj, arg);
666    }
667  }
668  GetLiveBitmap()->Walk(callback, arg);
669  self->EndAssertNoThreadSuspension(old_cause);
670}
671
672void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
673  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
674  space::ContinuousSpace* space2 = non_moving_space_;
675  // TODO: Generalize this to n bitmaps?
676  CHECK(space1 != nullptr);
677  CHECK(space2 != nullptr);
678  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
679                 large_object_space_->GetLiveBitmap(), stack);
680}
681
682void Heap::DeleteThreadPool() {
683  thread_pool_.reset(nullptr);
684}
685
686void Heap::AddSpace(space::Space* space) {
687  CHECK(space != nullptr);
688  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
689  if (space->IsContinuousSpace()) {
690    DCHECK(!space->IsDiscontinuousSpace());
691    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
692    // Continuous spaces don't necessarily have bitmaps.
693    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
694    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
695    if (live_bitmap != nullptr) {
696      CHECK(mark_bitmap != nullptr);
697      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
698      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
699    }
700    continuous_spaces_.push_back(continuous_space);
701    // Ensure that spaces remain sorted in increasing order of start address.
702    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
703              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
704      return a->Begin() < b->Begin();
705    });
706  } else {
707    CHECK(space->IsDiscontinuousSpace());
708    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
709    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
710    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
711    discontinuous_spaces_.push_back(discontinuous_space);
712  }
713  if (space->IsAllocSpace()) {
714    alloc_spaces_.push_back(space->AsAllocSpace());
715  }
716}
717
718void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
719  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
720  if (continuous_space->IsDlMallocSpace()) {
721    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
722  } else if (continuous_space->IsRosAllocSpace()) {
723    rosalloc_space_ = continuous_space->AsRosAllocSpace();
724  }
725}
726
727void Heap::RemoveSpace(space::Space* space) {
728  DCHECK(space != nullptr);
729  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
730  if (space->IsContinuousSpace()) {
731    DCHECK(!space->IsDiscontinuousSpace());
732    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
733    // Continuous spaces don't necessarily have bitmaps.
734    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
735    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
736    if (live_bitmap != nullptr) {
737      DCHECK(mark_bitmap != nullptr);
738      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
739      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
740    }
741    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
742    DCHECK(it != continuous_spaces_.end());
743    continuous_spaces_.erase(it);
744  } else {
745    DCHECK(space->IsDiscontinuousSpace());
746    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
747    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
748    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
749    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
750                        discontinuous_space);
751    DCHECK(it != discontinuous_spaces_.end());
752    discontinuous_spaces_.erase(it);
753  }
754  if (space->IsAllocSpace()) {
755    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
756    DCHECK(it != alloc_spaces_.end());
757    alloc_spaces_.erase(it);
758  }
759}
760
761void Heap::RegisterGCAllocation(size_t bytes) {
762  gc_memory_overhead_.FetchAndAddSequentiallyConsistent(bytes);
763}
764
765void Heap::RegisterGCDeAllocation(size_t bytes) {
766  gc_memory_overhead_.FetchAndSubSequentiallyConsistent(bytes);
767}
768
769void Heap::DumpGcPerformanceInfo(std::ostream& os) {
770  // Dump cumulative timings.
771  os << "Dumping cumulative Gc timings\n";
772  uint64_t total_duration = 0;
773  // Dump cumulative loggers for each GC type.
774  uint64_t total_paused_time = 0;
775  for (auto& collector : garbage_collectors_) {
776    const CumulativeLogger& logger = collector->GetCumulativeTimings();
777    const size_t iterations = logger.GetIterations();
778    const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
779    if (iterations != 0 && pause_histogram.SampleSize() != 0) {
780      os << ConstDumpable<CumulativeLogger>(logger);
781      const uint64_t total_ns = logger.GetTotalNs();
782      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
783      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
784      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
785      const uint64_t freed_objects = collector->GetTotalFreedObjects();
786      Histogram<uint64_t>::CumulativeData cumulative_data;
787      pause_histogram.CreateHistogram(&cumulative_data);
788      pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
789      os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
790         << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
791         << collector->GetName() << " freed: " << freed_objects
792         << " objects with total size " << PrettySize(freed_bytes) << "\n"
793         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
794         << PrettySize(freed_bytes / seconds) << "/s\n";
795      total_duration += total_ns;
796      total_paused_time += total_pause_ns;
797    }
798    collector->ResetMeasurements();
799  }
800  uint64_t allocation_time =
801      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
802  if (total_duration != 0) {
803    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
804    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
805    os << "Mean GC size throughput: "
806       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
807    os << "Mean GC object throughput: "
808       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
809  }
810  size_t total_objects_allocated = GetObjectsAllocatedEver();
811  os << "Total number of allocations: " << total_objects_allocated << "\n";
812  size_t total_bytes_allocated = GetBytesAllocatedEver();
813  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
814  if (kMeasureAllocationTime) {
815    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
816    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
817       << "\n";
818  }
819  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
820  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
821  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_.LoadRelaxed();
822  BaseMutex::DumpAll(os);
823}
824
825Heap::~Heap() {
826  VLOG(heap) << "Starting ~Heap()";
827  STLDeleteElements(&garbage_collectors_);
828  // If we don't reset then the mark stack complains in its destructor.
829  allocation_stack_->Reset();
830  live_stack_->Reset();
831  STLDeleteValues(&mod_union_tables_);
832  STLDeleteValues(&remembered_sets_);
833  STLDeleteElements(&continuous_spaces_);
834  STLDeleteElements(&discontinuous_spaces_);
835  delete gc_complete_lock_;
836  delete heap_trim_request_lock_;
837  VLOG(heap) << "Finished ~Heap()";
838}
839
840space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
841                                                            bool fail_ok) const {
842  for (const auto& space : continuous_spaces_) {
843    if (space->Contains(obj)) {
844      return space;
845    }
846  }
847  if (!fail_ok) {
848    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
849  }
850  return NULL;
851}
852
853space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
854                                                                  bool fail_ok) const {
855  for (const auto& space : discontinuous_spaces_) {
856    if (space->Contains(obj)) {
857      return space;
858    }
859  }
860  if (!fail_ok) {
861    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
862  }
863  return NULL;
864}
865
866space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
867  space::Space* result = FindContinuousSpaceFromObject(obj, true);
868  if (result != NULL) {
869    return result;
870  }
871  return FindDiscontinuousSpaceFromObject(obj, true);
872}
873
874space::ImageSpace* Heap::GetImageSpace() const {
875  for (const auto& space : continuous_spaces_) {
876    if (space->IsImageSpace()) {
877      return space->AsImageSpace();
878    }
879  }
880  return NULL;
881}
882
883void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
884  std::ostringstream oss;
885  size_t total_bytes_free = GetFreeMemory();
886  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
887      << " free bytes";
888  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
889  if (total_bytes_free >= byte_count) {
890    space::AllocSpace* space = nullptr;
891    if (allocator_type == kAllocatorTypeNonMoving) {
892      space = non_moving_space_;
893    } else if (allocator_type == kAllocatorTypeRosAlloc ||
894               allocator_type == kAllocatorTypeDlMalloc) {
895      space = main_space_;
896    } else if (allocator_type == kAllocatorTypeBumpPointer ||
897               allocator_type == kAllocatorTypeTLAB) {
898      space = bump_pointer_space_;
899    }
900    if (space != nullptr) {
901      space->LogFragmentationAllocFailure(oss, byte_count);
902    }
903  }
904  self->ThrowOutOfMemoryError(oss.str().c_str());
905}
906
907void Heap::DoPendingTransitionOrTrim() {
908  Thread* self = Thread::Current();
909  CollectorType desired_collector_type;
910  // Wait until we reach the desired transition time.
911  while (true) {
912    uint64_t wait_time;
913    {
914      MutexLock mu(self, *heap_trim_request_lock_);
915      desired_collector_type = desired_collector_type_;
916      uint64_t current_time = NanoTime();
917      if (current_time >= heap_transition_or_trim_target_time_) {
918        break;
919      }
920      wait_time = heap_transition_or_trim_target_time_ - current_time;
921    }
922    ScopedThreadStateChange tsc(self, kSleeping);
923    usleep(wait_time / 1000);  // Usleep takes microseconds.
924  }
925  // Launch homogeneous space compaction if it is desired.
926  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
927    if (!CareAboutPauseTimes()) {
928      PerformHomogeneousSpaceCompact();
929    }
930    // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
931    desired_collector_type = collector_type_;
932    return;
933  }
934  // Transition the collector if the desired collector type is not the same as the current
935  // collector type.
936  TransitionCollector(desired_collector_type);
937  if (!CareAboutPauseTimes()) {
938    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
939    // about pauses.
940    Runtime* runtime = Runtime::Current();
941    runtime->GetThreadList()->SuspendAll();
942    uint64_t start_time = NanoTime();
943    size_t count = runtime->GetMonitorList()->DeflateMonitors();
944    VLOG(heap) << "Deflating " << count << " monitors took "
945        << PrettyDuration(NanoTime() - start_time);
946    runtime->GetThreadList()->ResumeAll();
947  }
948  // Do a heap trim if it is needed.
949  Trim();
950}
951
952void Heap::Trim() {
953  Thread* self = Thread::Current();
954  {
955    MutexLock mu(self, *heap_trim_request_lock_);
956    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
957      return;
958    }
959    last_trim_time_ = NanoTime();
960    heap_trim_request_pending_ = false;
961  }
962  {
963    // Need to do this before acquiring the locks since we don't want to get suspended while
964    // holding any locks.
965    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
966    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
967    // trimming.
968    MutexLock mu(self, *gc_complete_lock_);
969    // Ensure there is only one GC at a time.
970    WaitForGcToCompleteLocked(kGcCauseTrim, self);
971    collector_type_running_ = kCollectorTypeHeapTrim;
972  }
973  uint64_t start_ns = NanoTime();
974  // Trim the managed spaces.
975  uint64_t total_alloc_space_allocated = 0;
976  uint64_t total_alloc_space_size = 0;
977  uint64_t managed_reclaimed = 0;
978  for (const auto& space : continuous_spaces_) {
979    if (space->IsMallocSpace()) {
980      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
981      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
982        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
983        // for a long period of time.
984        managed_reclaimed += malloc_space->Trim();
985      }
986      total_alloc_space_size += malloc_space->Size();
987    }
988  }
989  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
990  if (bump_pointer_space_ != nullptr) {
991    total_alloc_space_allocated -= bump_pointer_space_->Size();
992  }
993  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
994      static_cast<float>(total_alloc_space_size);
995  uint64_t gc_heap_end_ns = NanoTime();
996  // We never move things in the native heap, so we can finish the GC at this point.
997  FinishGC(self, collector::kGcTypeNone);
998  size_t native_reclaimed = 0;
999  // Only trim the native heap if we don't care about pauses.
1000  if (!CareAboutPauseTimes()) {
1001#if defined(USE_DLMALLOC)
1002    // Trim the native heap.
1003    dlmalloc_trim(0);
1004    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1005#elif defined(USE_JEMALLOC)
1006    // Jemalloc does it's own internal trimming.
1007#else
1008    UNIMPLEMENTED(WARNING) << "Add trimming support";
1009#endif
1010  }
1011  uint64_t end_ns = NanoTime();
1012  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1013      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1014      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1015      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1016      << "%.";
1017}
1018
1019bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1020  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1021  // taking the lock.
1022  if (obj == nullptr) {
1023    return true;
1024  }
1025  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1026}
1027
1028bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1029  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1030}
1031
1032bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1033  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1034    return false;
1035  }
1036  for (const auto& space : continuous_spaces_) {
1037    if (space->HasAddress(obj)) {
1038      return true;
1039    }
1040  }
1041  return false;
1042}
1043
1044bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1045                              bool search_live_stack, bool sorted) {
1046  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1047    return false;
1048  }
1049  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1050    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1051    if (obj == klass) {
1052      // This case happens for java.lang.Class.
1053      return true;
1054    }
1055    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1056  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1057    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1058    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1059    return temp_space_->Contains(obj);
1060  }
1061  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1062  space::DiscontinuousSpace* d_space = nullptr;
1063  if (c_space != nullptr) {
1064    if (c_space->GetLiveBitmap()->Test(obj)) {
1065      return true;
1066    }
1067  } else {
1068    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1069    if (d_space != nullptr) {
1070      if (d_space->GetLiveBitmap()->Test(obj)) {
1071        return true;
1072      }
1073    }
1074  }
1075  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1076  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1077    if (i > 0) {
1078      NanoSleep(MsToNs(10));
1079    }
1080    if (search_allocation_stack) {
1081      if (sorted) {
1082        if (allocation_stack_->ContainsSorted(obj)) {
1083          return true;
1084        }
1085      } else if (allocation_stack_->Contains(obj)) {
1086        return true;
1087      }
1088    }
1089
1090    if (search_live_stack) {
1091      if (sorted) {
1092        if (live_stack_->ContainsSorted(obj)) {
1093          return true;
1094        }
1095      } else if (live_stack_->Contains(obj)) {
1096        return true;
1097      }
1098    }
1099  }
1100  // We need to check the bitmaps again since there is a race where we mark something as live and
1101  // then clear the stack containing it.
1102  if (c_space != nullptr) {
1103    if (c_space->GetLiveBitmap()->Test(obj)) {
1104      return true;
1105    }
1106  } else {
1107    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1108    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1109      return true;
1110    }
1111  }
1112  return false;
1113}
1114
1115std::string Heap::DumpSpaces() const {
1116  std::ostringstream oss;
1117  DumpSpaces(oss);
1118  return oss.str();
1119}
1120
1121void Heap::DumpSpaces(std::ostream& stream) const {
1122  for (const auto& space : continuous_spaces_) {
1123    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1124    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1125    stream << space << " " << *space << "\n";
1126    if (live_bitmap != nullptr) {
1127      stream << live_bitmap << " " << *live_bitmap << "\n";
1128    }
1129    if (mark_bitmap != nullptr) {
1130      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1131    }
1132  }
1133  for (const auto& space : discontinuous_spaces_) {
1134    stream << space << " " << *space << "\n";
1135  }
1136}
1137
1138void Heap::VerifyObjectBody(mirror::Object* obj) {
1139  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1140    return;
1141  }
1142
1143  // Ignore early dawn of the universe verifications.
1144  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1145    return;
1146  }
1147  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1148  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1149  CHECK(c != nullptr) << "Null class in object " << obj;
1150  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1151  CHECK(VerifyClassClass(c));
1152
1153  if (verify_object_mode_ > kVerifyObjectModeFast) {
1154    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1155    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1156  }
1157}
1158
1159void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1160  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1161}
1162
1163void Heap::VerifyHeap() {
1164  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1165  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1166}
1167
1168void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1169  // Use signed comparison since freed bytes can be negative when background compaction foreground
1170  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1171  // free list backed space typically increasing memory footprint due to padding and binning.
1172  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1173  // Note: This relies on 2s complement for handling negative freed_bytes.
1174  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1175  if (Runtime::Current()->HasStatsEnabled()) {
1176    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1177    thread_stats->freed_objects += freed_objects;
1178    thread_stats->freed_bytes += freed_bytes;
1179    // TODO: Do this concurrently.
1180    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1181    global_stats->freed_objects += freed_objects;
1182    global_stats->freed_bytes += freed_bytes;
1183  }
1184}
1185
1186space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1187  for (const auto& space : continuous_spaces_) {
1188    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1189      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1190        return space->AsContinuousSpace()->AsRosAllocSpace();
1191      }
1192    }
1193  }
1194  return nullptr;
1195}
1196
1197mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1198                                             size_t alloc_size, size_t* bytes_allocated,
1199                                             size_t* usable_size,
1200                                             mirror::Class** klass) {
1201  bool was_default_allocator = allocator == GetCurrentAllocator();
1202  DCHECK(klass != nullptr);
1203  StackHandleScope<1> hs(self);
1204  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1205  klass = nullptr;  // Invalidate for safety.
1206  // The allocation failed. If the GC is running, block until it completes, and then retry the
1207  // allocation.
1208  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1209  if (last_gc != collector::kGcTypeNone) {
1210    // If we were the default allocator but the allocator changed while we were suspended,
1211    // abort the allocation.
1212    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1213      return nullptr;
1214    }
1215    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1216    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1217                                                     usable_size);
1218    if (ptr != nullptr) {
1219      return ptr;
1220    }
1221  }
1222
1223  collector::GcType tried_type = next_gc_type_;
1224  const bool gc_ran =
1225      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1226  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1227    return nullptr;
1228  }
1229  if (gc_ran) {
1230    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1231                                                     usable_size);
1232    if (ptr != nullptr) {
1233      return ptr;
1234    }
1235  }
1236
1237  // Loop through our different Gc types and try to Gc until we get enough free memory.
1238  for (collector::GcType gc_type : gc_plan_) {
1239    if (gc_type == tried_type) {
1240      continue;
1241    }
1242    // Attempt to run the collector, if we succeed, re-try the allocation.
1243    const bool gc_ran =
1244        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1245    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1246      return nullptr;
1247    }
1248    if (gc_ran) {
1249      // Did we free sufficient memory for the allocation to succeed?
1250      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1251                                                       usable_size);
1252      if (ptr != nullptr) {
1253        return ptr;
1254      }
1255    }
1256  }
1257  // Allocations have failed after GCs;  this is an exceptional state.
1258  // Try harder, growing the heap if necessary.
1259  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1260                                                  usable_size);
1261  if (ptr != nullptr) {
1262    return ptr;
1263  }
1264  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1265  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1266  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1267  // OOME.
1268  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1269           << " allocation";
1270  // TODO: Run finalization, but this may cause more allocations to occur.
1271  // We don't need a WaitForGcToComplete here either.
1272  DCHECK(!gc_plan_.empty());
1273  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1274  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1275    return nullptr;
1276  }
1277  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1278  if (ptr == nullptr && use_homogeneous_space_compaction_for_oom_) {
1279    const uint64_t current_time = NanoTime();
1280    if ((allocator == kAllocatorTypeRosAlloc || allocator == kAllocatorTypeDlMalloc) &&
1281        current_time - last_time_homogeneous_space_compaction_by_oom_ >
1282        min_interval_homogeneous_space_compaction_by_oom_) {
1283      last_time_homogeneous_space_compaction_by_oom_ = current_time;
1284      HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1285      switch (result) {
1286        case HomogeneousSpaceCompactResult::kSuccess:
1287          // If the allocation succeeded, we delayed an oom.
1288          ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1289          if (ptr != nullptr) {
1290            count_delayed_oom_++;
1291          }
1292          break;
1293        case HomogeneousSpaceCompactResult::kErrorReject:
1294          // Reject due to disabled moving GC.
1295          break;
1296        case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1297          // Throw OOM by default.
1298          break;
1299        default: {
1300          LOG(FATAL) << "Unimplemented homogeneous space compaction result " << static_cast<size_t>(result);
1301        }
1302      }
1303      // Always print that we ran homogeneous space compation since this can cause jank.
1304      VLOG(heap) << "Ran heap homogeneous space compaction, "
1305                << " requested defragmentation "
1306                << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1307                << " performed defragmentation "
1308                << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1309                << " ignored homogeneous space compaction "
1310                << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1311                << " delayed count = "
1312                << count_delayed_oom_.LoadSequentiallyConsistent();
1313    }
1314  }
1315  // If the allocation hasn't succeeded by this point, throw an OOM error.
1316  if (ptr == nullptr) {
1317    ThrowOutOfMemoryError(self, alloc_size, allocator);
1318  }
1319  return ptr;
1320}
1321
1322void Heap::SetTargetHeapUtilization(float target) {
1323  DCHECK_GT(target, 0.0f);  // asserted in Java code
1324  DCHECK_LT(target, 1.0f);
1325  target_utilization_ = target;
1326}
1327
1328size_t Heap::GetObjectsAllocated() const {
1329  size_t total = 0;
1330  for (space::AllocSpace* space : alloc_spaces_) {
1331    total += space->GetObjectsAllocated();
1332  }
1333  return total;
1334}
1335
1336size_t Heap::GetObjectsAllocatedEver() const {
1337  return GetObjectsFreedEver() + GetObjectsAllocated();
1338}
1339
1340size_t Heap::GetBytesAllocatedEver() const {
1341  return GetBytesFreedEver() + GetBytesAllocated();
1342}
1343
1344class InstanceCounter {
1345 public:
1346  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1347      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1348      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1349  }
1350  static void Callback(mirror::Object* obj, void* arg)
1351      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1352    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1353    mirror::Class* instance_class = obj->GetClass();
1354    CHECK(instance_class != nullptr);
1355    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1356      if (instance_counter->use_is_assignable_from_) {
1357        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1358          ++instance_counter->counts_[i];
1359        }
1360      } else if (instance_class == instance_counter->classes_[i]) {
1361        ++instance_counter->counts_[i];
1362      }
1363    }
1364  }
1365
1366 private:
1367  const std::vector<mirror::Class*>& classes_;
1368  bool use_is_assignable_from_;
1369  uint64_t* const counts_;
1370  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1371};
1372
1373void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1374                          uint64_t* counts) {
1375  // Can't do any GC in this function since this may move classes.
1376  Thread* self = Thread::Current();
1377  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1378  InstanceCounter counter(classes, use_is_assignable_from, counts);
1379  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1380  VisitObjects(InstanceCounter::Callback, &counter);
1381  self->EndAssertNoThreadSuspension(old_cause);
1382}
1383
1384class InstanceCollector {
1385 public:
1386  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1387      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1388      : class_(c), max_count_(max_count), instances_(instances) {
1389  }
1390  static void Callback(mirror::Object* obj, void* arg)
1391      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1392    DCHECK(arg != nullptr);
1393    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1394    mirror::Class* instance_class = obj->GetClass();
1395    if (instance_class == instance_collector->class_) {
1396      if (instance_collector->max_count_ == 0 ||
1397          instance_collector->instances_.size() < instance_collector->max_count_) {
1398        instance_collector->instances_.push_back(obj);
1399      }
1400    }
1401  }
1402
1403 private:
1404  mirror::Class* class_;
1405  uint32_t max_count_;
1406  std::vector<mirror::Object*>& instances_;
1407  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1408};
1409
1410void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1411                        std::vector<mirror::Object*>& instances) {
1412  // Can't do any GC in this function since this may move classes.
1413  Thread* self = Thread::Current();
1414  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1415  InstanceCollector collector(c, max_count, instances);
1416  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1417  VisitObjects(&InstanceCollector::Callback, &collector);
1418  self->EndAssertNoThreadSuspension(old_cause);
1419}
1420
1421class ReferringObjectsFinder {
1422 public:
1423  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1424                         std::vector<mirror::Object*>& referring_objects)
1425      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1426      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1427  }
1428
1429  static void Callback(mirror::Object* obj, void* arg)
1430      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1431    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1432  }
1433
1434  // For bitmap Visit.
1435  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1436  // annotalysis on visitors.
1437  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1438    o->VisitReferences<true>(*this, VoidFunctor());
1439  }
1440
1441  // For Object::VisitReferences.
1442  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1443      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1444    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1445    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1446      referring_objects_.push_back(obj);
1447    }
1448  }
1449
1450 private:
1451  mirror::Object* object_;
1452  uint32_t max_count_;
1453  std::vector<mirror::Object*>& referring_objects_;
1454  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1455};
1456
1457void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1458                               std::vector<mirror::Object*>& referring_objects) {
1459  // Can't do any GC in this function since this may move the object o.
1460  Thread* self = Thread::Current();
1461  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1462  ReferringObjectsFinder finder(o, max_count, referring_objects);
1463  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1464  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1465  self->EndAssertNoThreadSuspension(old_cause);
1466}
1467
1468void Heap::CollectGarbage(bool clear_soft_references) {
1469  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1470  // last GC will not have necessarily been cleared.
1471  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1472}
1473
1474HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1475  Thread* self = Thread::Current();
1476  // Inc requested homogeneous space compaction.
1477  count_requested_homogeneous_space_compaction_++;
1478  // Store performed homogeneous space compaction at a new request arrival.
1479  ThreadList* tl = Runtime::Current()->GetThreadList();
1480  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1481  Locks::mutator_lock_->AssertNotHeld(self);
1482  {
1483    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1484    MutexLock mu(self, *gc_complete_lock_);
1485    // Ensure there is only one GC at a time.
1486    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1487    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1488    // is non zero.
1489    // If the collecotr type changed to something which doesn't benefit from homogeneous space compaction,
1490    // exit.
1491    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_)) {
1492      return HomogeneousSpaceCompactResult::kErrorReject;
1493    }
1494    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1495  }
1496  if (Runtime::Current()->IsShuttingDown(self)) {
1497    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1498    // cause objects to get finalized.
1499    FinishGC(self, collector::kGcTypeNone);
1500    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1501  }
1502  // Suspend all threads.
1503  tl->SuspendAll();
1504  uint64_t start_time = NanoTime();
1505  // Launch compaction.
1506  space::MallocSpace* to_space = main_space_backup_.release();
1507  space::MallocSpace* from_space = main_space_;
1508  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1509  const uint64_t space_size_before_compaction = from_space->Size();
1510  AddSpace(to_space);
1511  Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1512  // Leave as prot read so that we can still run ROSAlloc verification on this space.
1513  from_space->GetMemMap()->Protect(PROT_READ);
1514  const uint64_t space_size_after_compaction = to_space->Size();
1515  main_space_ = to_space;
1516  main_space_backup_.reset(from_space);
1517  RemoveSpace(from_space);
1518  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1519  // Update performed homogeneous space compaction count.
1520  count_performed_homogeneous_space_compaction_++;
1521  // Print statics log and resume all threads.
1522  uint64_t duration = NanoTime() - start_time;
1523  LOG(INFO) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1524            << PrettySize(space_size_before_compaction) << " -> "
1525            << PrettySize(space_size_after_compaction) << " compact-ratio: "
1526            << std::fixed << static_cast<double>(space_size_after_compaction) /
1527            static_cast<double>(space_size_before_compaction);
1528  tl->ResumeAll();
1529  // Finish GC.
1530  reference_processor_.EnqueueClearedReferences(self);
1531  GrowForUtilization(semi_space_collector_);
1532  FinishGC(self, collector::kGcTypeFull);
1533  return HomogeneousSpaceCompactResult::kSuccess;
1534}
1535
1536
1537void Heap::TransitionCollector(CollectorType collector_type) {
1538  if (collector_type == collector_type_) {
1539    return;
1540  }
1541  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1542             << " -> " << static_cast<int>(collector_type);
1543  uint64_t start_time = NanoTime();
1544  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1545  Runtime* const runtime = Runtime::Current();
1546  ThreadList* const tl = runtime->GetThreadList();
1547  Thread* const self = Thread::Current();
1548  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1549  Locks::mutator_lock_->AssertNotHeld(self);
1550  const bool copying_transition =
1551      IsMovingGc(background_collector_type_) || IsMovingGc(foreground_collector_type_);
1552  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1553  // compacting_gc_disable_count_, this should rarely occurs).
1554  for (;;) {
1555    {
1556      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1557      MutexLock mu(self, *gc_complete_lock_);
1558      // Ensure there is only one GC at a time.
1559      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1560      // If someone else beat us to it and changed the collector before we could, exit.
1561      // This is safe to do before the suspend all since we set the collector_type_running_ before
1562      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1563      // then it would get blocked on WaitForGcToCompleteLocked.
1564      if (collector_type == collector_type_) {
1565        return;
1566      }
1567      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1568      if (!copying_transition || disable_moving_gc_count_ == 0) {
1569        // TODO: Not hard code in semi-space collector?
1570        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1571        break;
1572      }
1573    }
1574    usleep(1000);
1575  }
1576  if (runtime->IsShuttingDown(self)) {
1577    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1578    // cause objects to get finalized.
1579    FinishGC(self, collector::kGcTypeNone);
1580    return;
1581  }
1582  tl->SuspendAll();
1583  switch (collector_type) {
1584    case kCollectorTypeSS: {
1585      if (!IsMovingGc(collector_type_)) {
1586        // Create the bump pointer space from the backup space.
1587        CHECK(main_space_backup_ != nullptr);
1588        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1589        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1590        // pointer space last transition it will be protected.
1591        CHECK(mem_map != nullptr);
1592        mem_map->Protect(PROT_READ | PROT_WRITE);
1593        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1594                                                                        mem_map.release());
1595        AddSpace(bump_pointer_space_);
1596        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1597        // Use the now empty main space mem map for the bump pointer temp space.
1598        mem_map.reset(main_space_->ReleaseMemMap());
1599        // Unset the pointers just in case.
1600        if (dlmalloc_space_ == main_space_) {
1601          dlmalloc_space_ = nullptr;
1602        } else if (rosalloc_space_ == main_space_) {
1603          rosalloc_space_ = nullptr;
1604        }
1605        // Remove the main space so that we don't try to trim it, this doens't work for debug
1606        // builds since RosAlloc attempts to read the magic number from a protected page.
1607        RemoveSpace(main_space_);
1608        RemoveRememberedSet(main_space_);
1609        delete main_space_;  // Delete the space since it has been removed.
1610        main_space_ = nullptr;
1611        RemoveRememberedSet(main_space_backup_.get());
1612        main_space_backup_.reset(nullptr);  // Deletes the space.
1613        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1614                                                                mem_map.release());
1615        AddSpace(temp_space_);
1616      }
1617      break;
1618    }
1619    case kCollectorTypeMS:
1620      // Fall through.
1621    case kCollectorTypeCMS: {
1622      if (IsMovingGc(collector_type_)) {
1623        CHECK(temp_space_ != nullptr);
1624        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1625        RemoveSpace(temp_space_);
1626        temp_space_ = nullptr;
1627        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, mem_map->Size(),
1628                              mem_map->Size());
1629        mem_map.release();
1630        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1631        AddSpace(main_space_);
1632        main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1633        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1634        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1635        RemoveSpace(bump_pointer_space_);
1636        bump_pointer_space_ = nullptr;
1637        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1638        main_space_backup_.reset(CreateMallocSpaceFromMemMap(mem_map.get(), kDefaultInitialSize,
1639                                                             mem_map->Size(), mem_map->Size(),
1640                                                             name, true));
1641        mem_map.release();
1642      }
1643      break;
1644    }
1645    default: {
1646      LOG(FATAL) << "Attempted to transition to invalid collector type "
1647                 << static_cast<size_t>(collector_type);
1648      break;
1649    }
1650  }
1651  ChangeCollector(collector_type);
1652  tl->ResumeAll();
1653  // Can't call into java code with all threads suspended.
1654  reference_processor_.EnqueueClearedReferences(self);
1655  uint64_t duration = NanoTime() - start_time;
1656  GrowForUtilization(semi_space_collector_);
1657  FinishGC(self, collector::kGcTypeFull);
1658  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1659  int32_t delta_allocated = before_allocated - after_allocated;
1660  std::string saved_str;
1661  if (delta_allocated >= 0) {
1662    saved_str = " saved at least " + PrettySize(delta_allocated);
1663  } else {
1664    saved_str = " expanded " + PrettySize(-delta_allocated);
1665  }
1666  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1667      << PrettyDuration(duration) << saved_str;
1668}
1669
1670void Heap::ChangeCollector(CollectorType collector_type) {
1671  // TODO: Only do this with all mutators suspended to avoid races.
1672  if (collector_type != collector_type_) {
1673    if (collector_type == kCollectorTypeMC) {
1674      // Don't allow mark compact unless support is compiled in.
1675      CHECK(kMarkCompactSupport);
1676    }
1677    collector_type_ = collector_type;
1678    gc_plan_.clear();
1679    switch (collector_type_) {
1680      case kCollectorTypeCC:  // Fall-through.
1681      case kCollectorTypeMC:  // Fall-through.
1682      case kCollectorTypeSS:  // Fall-through.
1683      case kCollectorTypeGSS: {
1684        gc_plan_.push_back(collector::kGcTypeFull);
1685        if (use_tlab_) {
1686          ChangeAllocator(kAllocatorTypeTLAB);
1687        } else {
1688          ChangeAllocator(kAllocatorTypeBumpPointer);
1689        }
1690        break;
1691      }
1692      case kCollectorTypeMS: {
1693        gc_plan_.push_back(collector::kGcTypeSticky);
1694        gc_plan_.push_back(collector::kGcTypePartial);
1695        gc_plan_.push_back(collector::kGcTypeFull);
1696        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1697        break;
1698      }
1699      case kCollectorTypeCMS: {
1700        gc_plan_.push_back(collector::kGcTypeSticky);
1701        gc_plan_.push_back(collector::kGcTypePartial);
1702        gc_plan_.push_back(collector::kGcTypeFull);
1703        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1704        break;
1705      }
1706      default: {
1707        LOG(FATAL) << "Unimplemented";
1708      }
1709    }
1710    if (IsGcConcurrent()) {
1711      concurrent_start_bytes_ =
1712          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1713    } else {
1714      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1715    }
1716  }
1717}
1718
1719// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1720class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1721 public:
1722  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1723      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1724  }
1725
1726  void BuildBins(space::ContinuousSpace* space) {
1727    bin_live_bitmap_ = space->GetLiveBitmap();
1728    bin_mark_bitmap_ = space->GetMarkBitmap();
1729    BinContext context;
1730    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1731    context.collector_ = this;
1732    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1733    // Note: This requires traversing the space in increasing order of object addresses.
1734    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1735    // Add the last bin which spans after the last object to the end of the space.
1736    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1737  }
1738
1739 private:
1740  struct BinContext {
1741    uintptr_t prev_;  // The end of the previous object.
1742    ZygoteCompactingCollector* collector_;
1743  };
1744  // Maps from bin sizes to locations.
1745  std::multimap<size_t, uintptr_t> bins_;
1746  // Live bitmap of the space which contains the bins.
1747  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1748  // Mark bitmap of the space which contains the bins.
1749  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1750
1751  static void Callback(mirror::Object* obj, void* arg)
1752      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1753    DCHECK(arg != nullptr);
1754    BinContext* context = reinterpret_cast<BinContext*>(arg);
1755    ZygoteCompactingCollector* collector = context->collector_;
1756    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1757    size_t bin_size = object_addr - context->prev_;
1758    // Add the bin consisting of the end of the previous object to the start of the current object.
1759    collector->AddBin(bin_size, context->prev_);
1760    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1761  }
1762
1763  void AddBin(size_t size, uintptr_t position) {
1764    if (size != 0) {
1765      bins_.insert(std::make_pair(size, position));
1766    }
1767  }
1768
1769  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1770    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1771    // allocator.
1772    return false;
1773  }
1774
1775  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1776      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1777    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1778    mirror::Object* forward_address;
1779    // Find the smallest bin which we can move obj in.
1780    auto it = bins_.lower_bound(object_size);
1781    if (it == bins_.end()) {
1782      // No available space in the bins, place it in the target space instead (grows the zygote
1783      // space).
1784      size_t bytes_allocated;
1785      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1786      if (to_space_live_bitmap_ != nullptr) {
1787        to_space_live_bitmap_->Set(forward_address);
1788      } else {
1789        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1790        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1791      }
1792    } else {
1793      size_t size = it->first;
1794      uintptr_t pos = it->second;
1795      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1796      forward_address = reinterpret_cast<mirror::Object*>(pos);
1797      // Set the live and mark bits so that sweeping system weaks works properly.
1798      bin_live_bitmap_->Set(forward_address);
1799      bin_mark_bitmap_->Set(forward_address);
1800      DCHECK_GE(size, object_size);
1801      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1802    }
1803    // Copy the object over to its new location.
1804    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1805    if (kUseBakerOrBrooksReadBarrier) {
1806      obj->AssertReadBarrierPointer();
1807      if (kUseBrooksReadBarrier) {
1808        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1809        forward_address->SetReadBarrierPointer(forward_address);
1810      }
1811      forward_address->AssertReadBarrierPointer();
1812    }
1813    return forward_address;
1814  }
1815};
1816
1817void Heap::UnBindBitmaps() {
1818  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1819  for (const auto& space : GetContinuousSpaces()) {
1820    if (space->IsContinuousMemMapAllocSpace()) {
1821      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1822      if (alloc_space->HasBoundBitmaps()) {
1823        alloc_space->UnBindBitmaps();
1824      }
1825    }
1826  }
1827}
1828
1829void Heap::PreZygoteFork() {
1830  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1831  Thread* self = Thread::Current();
1832  MutexLock mu(self, zygote_creation_lock_);
1833  // Try to see if we have any Zygote spaces.
1834  if (have_zygote_space_) {
1835    return;
1836  }
1837  VLOG(heap) << "Starting PreZygoteFork";
1838  // Trim the pages at the end of the non moving space.
1839  non_moving_space_->Trim();
1840  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1841  // there.
1842  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1843  // Change the collector to the post zygote one.
1844  bool same_space = non_moving_space_ == main_space_;
1845  if (kCompactZygote) {
1846    DCHECK(semi_space_collector_ != nullptr);
1847    // Temporarily disable rosalloc verification because the zygote
1848    // compaction will mess up the rosalloc internal metadata.
1849    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1850    ZygoteCompactingCollector zygote_collector(this);
1851    zygote_collector.BuildBins(non_moving_space_);
1852    // Create a new bump pointer space which we will compact into.
1853    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1854                                         non_moving_space_->Limit());
1855    // Compact the bump pointer space to a new zygote bump pointer space.
1856    bool reset_main_space = false;
1857    if (IsMovingGc(collector_type_)) {
1858      zygote_collector.SetFromSpace(bump_pointer_space_);
1859    } else {
1860      CHECK(main_space_ != nullptr);
1861      // Copy from the main space.
1862      zygote_collector.SetFromSpace(main_space_);
1863      reset_main_space = true;
1864    }
1865    zygote_collector.SetToSpace(&target_space);
1866    zygote_collector.SetSwapSemiSpaces(false);
1867    zygote_collector.Run(kGcCauseCollectorTransition, false);
1868    if (reset_main_space) {
1869      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1870      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1871      MemMap* mem_map = main_space_->ReleaseMemMap();
1872      RemoveSpace(main_space_);
1873      space::Space* old_main_space = main_space_;
1874      CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1875      delete old_main_space;
1876      AddSpace(main_space_);
1877    } else {
1878      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1879    }
1880    if (temp_space_ != nullptr) {
1881      CHECK(temp_space_->IsEmpty());
1882    }
1883    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1884    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1885    // Update the end and write out image.
1886    non_moving_space_->SetEnd(target_space.End());
1887    non_moving_space_->SetLimit(target_space.Limit());
1888    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1889  }
1890  ChangeCollector(foreground_collector_type_);
1891  // Save the old space so that we can remove it after we complete creating the zygote space.
1892  space::MallocSpace* old_alloc_space = non_moving_space_;
1893  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1894  // the remaining available space.
1895  // Remove the old space before creating the zygote space since creating the zygote space sets
1896  // the old alloc space's bitmaps to nullptr.
1897  RemoveSpace(old_alloc_space);
1898  if (collector::SemiSpace::kUseRememberedSet) {
1899    // Sanity bound check.
1900    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1901    // Remove the remembered set for the now zygote space (the old
1902    // non-moving space). Note now that we have compacted objects into
1903    // the zygote space, the data in the remembered set is no longer
1904    // needed. The zygote space will instead have a mod-union table
1905    // from this point on.
1906    RemoveRememberedSet(old_alloc_space);
1907  }
1908  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1909                                                                        low_memory_mode_,
1910                                                                        &non_moving_space_);
1911  CHECK(!non_moving_space_->CanMoveObjects());
1912  if (same_space) {
1913    main_space_ = non_moving_space_;
1914    SetSpaceAsDefault(main_space_);
1915  }
1916  delete old_alloc_space;
1917  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1918  AddSpace(zygote_space);
1919  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1920  AddSpace(non_moving_space_);
1921  have_zygote_space_ = true;
1922  // Enable large object space allocations.
1923  large_object_threshold_ = kDefaultLargeObjectThreshold;
1924  // Create the zygote space mod union table.
1925  accounting::ModUnionTable* mod_union_table =
1926      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1927  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1928  AddModUnionTable(mod_union_table);
1929  if (collector::SemiSpace::kUseRememberedSet) {
1930    // Add a new remembered set for the post-zygote non-moving space.
1931    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1932        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1933                                      non_moving_space_);
1934    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1935        << "Failed to create post-zygote non-moving space remembered set";
1936    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1937  }
1938}
1939
1940void Heap::FlushAllocStack() {
1941  MarkAllocStackAsLive(allocation_stack_.get());
1942  allocation_stack_->Reset();
1943}
1944
1945void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
1946                          accounting::ContinuousSpaceBitmap* bitmap2,
1947                          accounting::LargeObjectBitmap* large_objects,
1948                          accounting::ObjectStack* stack) {
1949  DCHECK(bitmap1 != nullptr);
1950  DCHECK(bitmap2 != nullptr);
1951  mirror::Object** limit = stack->End();
1952  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1953    const mirror::Object* obj = *it;
1954    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1955      if (bitmap1->HasAddress(obj)) {
1956        bitmap1->Set(obj);
1957      } else if (bitmap2->HasAddress(obj)) {
1958        bitmap2->Set(obj);
1959      } else {
1960        large_objects->Set(obj);
1961      }
1962    }
1963  }
1964}
1965
1966void Heap::SwapSemiSpaces() {
1967  CHECK(bump_pointer_space_ != nullptr);
1968  CHECK(temp_space_ != nullptr);
1969  std::swap(bump_pointer_space_, temp_space_);
1970}
1971
1972void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1973                   space::ContinuousMemMapAllocSpace* source_space,
1974                   GcCause gc_cause) {
1975  CHECK(kMovingCollector);
1976  if (target_space != source_space) {
1977    // Don't swap spaces since this isn't a typical semi space collection.
1978    semi_space_collector_->SetSwapSemiSpaces(false);
1979    semi_space_collector_->SetFromSpace(source_space);
1980    semi_space_collector_->SetToSpace(target_space);
1981    semi_space_collector_->Run(gc_cause, false);
1982  } else {
1983    CHECK(target_space->IsBumpPointerSpace())
1984        << "In-place compaction is only supported for bump pointer spaces";
1985    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
1986    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
1987  }
1988}
1989
1990collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1991                                               bool clear_soft_references) {
1992  Thread* self = Thread::Current();
1993  Runtime* runtime = Runtime::Current();
1994  // If the heap can't run the GC, silently fail and return that no GC was run.
1995  switch (gc_type) {
1996    case collector::kGcTypePartial: {
1997      if (!have_zygote_space_) {
1998        return collector::kGcTypeNone;
1999      }
2000      break;
2001    }
2002    default: {
2003      // Other GC types don't have any special cases which makes them not runnable. The main case
2004      // here is full GC.
2005    }
2006  }
2007  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2008  Locks::mutator_lock_->AssertNotHeld(self);
2009  if (self->IsHandlingStackOverflow()) {
2010    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
2011  }
2012  bool compacting_gc;
2013  {
2014    gc_complete_lock_->AssertNotHeld(self);
2015    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2016    MutexLock mu(self, *gc_complete_lock_);
2017    // Ensure there is only one GC at a time.
2018    WaitForGcToCompleteLocked(gc_cause, self);
2019    compacting_gc = IsMovingGc(collector_type_);
2020    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2021    if (compacting_gc && disable_moving_gc_count_ != 0) {
2022      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2023      return collector::kGcTypeNone;
2024    }
2025    collector_type_running_ = collector_type_;
2026  }
2027
2028  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2029    ++runtime->GetStats()->gc_for_alloc_count;
2030    ++self->GetStats()->gc_for_alloc_count;
2031  }
2032  uint64_t gc_start_time_ns = NanoTime();
2033  uint64_t gc_start_size = GetBytesAllocated();
2034  // Approximate allocation rate in bytes / second.
2035  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
2036  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
2037  if (LIKELY(ms_delta != 0)) {
2038    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
2039    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
2040  }
2041
2042  DCHECK_LT(gc_type, collector::kGcTypeMax);
2043  DCHECK_NE(gc_type, collector::kGcTypeNone);
2044
2045  collector::GarbageCollector* collector = nullptr;
2046  // TODO: Clean this up.
2047  if (compacting_gc) {
2048    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2049           current_allocator_ == kAllocatorTypeTLAB);
2050    switch (collector_type_) {
2051      case kCollectorTypeSS:
2052        // Fall-through.
2053      case kCollectorTypeGSS:
2054        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2055        semi_space_collector_->SetToSpace(temp_space_);
2056        semi_space_collector_->SetSwapSemiSpaces(true);
2057        collector = semi_space_collector_;
2058        break;
2059      case kCollectorTypeCC:
2060        collector = concurrent_copying_collector_;
2061        break;
2062      case kCollectorTypeMC:
2063        mark_compact_collector_->SetSpace(bump_pointer_space_);
2064        collector = mark_compact_collector_;
2065        break;
2066      default:
2067        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2068    }
2069    if (collector != mark_compact_collector_) {
2070      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2071      CHECK(temp_space_->IsEmpty());
2072    }
2073    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2074  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2075      current_allocator_ == kAllocatorTypeDlMalloc) {
2076    collector = FindCollectorByGcType(gc_type);
2077  } else {
2078    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2079  }
2080  CHECK(collector != nullptr)
2081      << "Could not find garbage collector with collector_type="
2082      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2083  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2084  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2085  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2086  RequestHeapTrim();
2087  // Enqueue cleared references.
2088  reference_processor_.EnqueueClearedReferences(self);
2089  // Grow the heap so that we know when to perform the next GC.
2090  GrowForUtilization(collector);
2091  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2092  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2093  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2094  // (mutator time blocked >= long_pause_log_threshold_).
2095  bool log_gc = gc_cause == kGcCauseExplicit;
2096  if (!log_gc && CareAboutPauseTimes()) {
2097    // GC for alloc pauses the allocating thread, so consider it as a pause.
2098    log_gc = duration > long_gc_log_threshold_ ||
2099        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2100    for (uint64_t pause : pause_times) {
2101      log_gc = log_gc || pause >= long_pause_log_threshold_;
2102    }
2103  }
2104  if (log_gc) {
2105    const size_t percent_free = GetPercentFree();
2106    const size_t current_heap_size = GetBytesAllocated();
2107    const size_t total_memory = GetTotalMemory();
2108    std::ostringstream pause_string;
2109    for (size_t i = 0; i < pause_times.size(); ++i) {
2110        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2111                     << ((i != pause_times.size() - 1) ? "," : "");
2112    }
2113    LOG(INFO) << gc_cause << " " << collector->GetName()
2114              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2115              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2116              << current_gc_iteration_.GetFreedLargeObjects() << "("
2117              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2118              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2119              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2120              << " total " << PrettyDuration((duration / 1000) * 1000);
2121    VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2122  }
2123  FinishGC(self, gc_type);
2124  // Inform DDMS that a GC completed.
2125  Dbg::GcDidFinish();
2126  return gc_type;
2127}
2128
2129void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2130  MutexLock mu(self, *gc_complete_lock_);
2131  collector_type_running_ = kCollectorTypeNone;
2132  if (gc_type != collector::kGcTypeNone) {
2133    last_gc_type_ = gc_type;
2134  }
2135  // Wake anyone who may have been waiting for the GC to complete.
2136  gc_complete_cond_->Broadcast(self);
2137}
2138
2139static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2140                                     RootType /*root_type*/) {
2141  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2142  if (*root == obj) {
2143    LOG(INFO) << "Object " << obj << " is a root";
2144  }
2145}
2146
2147class ScanVisitor {
2148 public:
2149  void operator()(const mirror::Object* obj) const {
2150    LOG(ERROR) << "Would have rescanned object " << obj;
2151  }
2152};
2153
2154// Verify a reference from an object.
2155class VerifyReferenceVisitor {
2156 public:
2157  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2158      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2159      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2160
2161  size_t GetFailureCount() const {
2162    return fail_count_->LoadSequentiallyConsistent();
2163  }
2164
2165  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2166      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2167    if (verify_referent_) {
2168      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2169    }
2170  }
2171
2172  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2173      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2174    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2175  }
2176
2177  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2178    return heap_->IsLiveObjectLocked(obj, true, false, true);
2179  }
2180
2181  static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
2182                                 RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2183    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2184    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2185      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2186          << " thread_id= " << thread_id << " root_type= " << root_type;
2187    }
2188  }
2189
2190 private:
2191  // TODO: Fix the no thread safety analysis.
2192  // Returns false on failure.
2193  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2194      NO_THREAD_SAFETY_ANALYSIS {
2195    if (ref == nullptr || IsLive(ref)) {
2196      // Verify that the reference is live.
2197      return true;
2198    }
2199    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2200      // Print message on only on first failure to prevent spam.
2201      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2202    }
2203    if (obj != nullptr) {
2204      // Only do this part for non roots.
2205      accounting::CardTable* card_table = heap_->GetCardTable();
2206      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2207      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2208      byte* card_addr = card_table->CardFromAddr(obj);
2209      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2210                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2211      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2212        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2213      } else {
2214        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2215      }
2216
2217      // Attempt to find the class inside of the recently freed objects.
2218      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2219      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2220        space::MallocSpace* space = ref_space->AsMallocSpace();
2221        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2222        if (ref_class != nullptr) {
2223          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2224                     << PrettyClass(ref_class);
2225        } else {
2226          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2227        }
2228      }
2229
2230      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2231          ref->GetClass()->IsClass()) {
2232        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2233      } else {
2234        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2235                   << ") is not a valid heap address";
2236      }
2237
2238      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2239      void* cover_begin = card_table->AddrFromCard(card_addr);
2240      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2241          accounting::CardTable::kCardSize);
2242      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2243          << "-" << cover_end;
2244      accounting::ContinuousSpaceBitmap* bitmap =
2245          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2246
2247      if (bitmap == nullptr) {
2248        LOG(ERROR) << "Object " << obj << " has no bitmap";
2249        if (!VerifyClassClass(obj->GetClass())) {
2250          LOG(ERROR) << "Object " << obj << " failed class verification!";
2251        }
2252      } else {
2253        // Print out how the object is live.
2254        if (bitmap->Test(obj)) {
2255          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2256        }
2257        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2258          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2259        }
2260        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2261          LOG(ERROR) << "Object " << obj << " found in live stack";
2262        }
2263        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2264          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2265        }
2266        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2267          LOG(ERROR) << "Ref " << ref << " found in live stack";
2268        }
2269        // Attempt to see if the card table missed the reference.
2270        ScanVisitor scan_visitor;
2271        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2272        card_table->Scan(bitmap, byte_cover_begin,
2273                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2274      }
2275
2276      // Search to see if any of the roots reference our object.
2277      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2278      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2279
2280      // Search to see if any of the roots reference our reference.
2281      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2282      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2283    }
2284    return false;
2285  }
2286
2287  Heap* const heap_;
2288  Atomic<size_t>* const fail_count_;
2289  const bool verify_referent_;
2290};
2291
2292// Verify all references within an object, for use with HeapBitmap::Visit.
2293class VerifyObjectVisitor {
2294 public:
2295  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2296      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2297  }
2298
2299  void operator()(mirror::Object* obj) const
2300      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2301    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2302    // be live or else how did we find it in the live bitmap?
2303    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2304    // The class doesn't count as a reference but we should verify it anyways.
2305    obj->VisitReferences<true>(visitor, visitor);
2306  }
2307
2308  static void VisitCallback(mirror::Object* obj, void* arg)
2309      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2310    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2311    visitor->operator()(obj);
2312  }
2313
2314  size_t GetFailureCount() const {
2315    return fail_count_->LoadSequentiallyConsistent();
2316  }
2317
2318 private:
2319  Heap* const heap_;
2320  Atomic<size_t>* const fail_count_;
2321  const bool verify_referent_;
2322};
2323
2324void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2325  // Slow path, the allocation stack push back must have already failed.
2326  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2327  do {
2328    // TODO: Add handle VerifyObject.
2329    StackHandleScope<1> hs(self);
2330    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2331    // Push our object into the reserve region of the allocaiton stack. This is only required due
2332    // to heap verification requiring that roots are live (either in the live bitmap or in the
2333    // allocation stack).
2334    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2335    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2336  } while (!allocation_stack_->AtomicPushBack(*obj));
2337}
2338
2339void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2340  // Slow path, the allocation stack push back must have already failed.
2341  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2342  mirror::Object** start_address;
2343  mirror::Object** end_address;
2344  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2345                                            &end_address)) {
2346    // TODO: Add handle VerifyObject.
2347    StackHandleScope<1> hs(self);
2348    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2349    // Push our object into the reserve region of the allocaiton stack. This is only required due
2350    // to heap verification requiring that roots are live (either in the live bitmap or in the
2351    // allocation stack).
2352    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2353    // Push into the reserve allocation stack.
2354    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2355  }
2356  self->SetThreadLocalAllocationStack(start_address, end_address);
2357  // Retry on the new thread-local allocation stack.
2358  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2359}
2360
2361// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2362size_t Heap::VerifyHeapReferences(bool verify_referents) {
2363  Thread* self = Thread::Current();
2364  Locks::mutator_lock_->AssertExclusiveHeld(self);
2365  // Lets sort our allocation stacks so that we can efficiently binary search them.
2366  allocation_stack_->Sort();
2367  live_stack_->Sort();
2368  // Since we sorted the allocation stack content, need to revoke all
2369  // thread-local allocation stacks.
2370  RevokeAllThreadLocalAllocationStacks(self);
2371  Atomic<size_t> fail_count_(0);
2372  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2373  // Verify objects in the allocation stack since these will be objects which were:
2374  // 1. Allocated prior to the GC (pre GC verification).
2375  // 2. Allocated during the GC (pre sweep GC verification).
2376  // We don't want to verify the objects in the live stack since they themselves may be
2377  // pointing to dead objects if they are not reachable.
2378  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2379  // Verify the roots:
2380  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2381  if (visitor.GetFailureCount() > 0) {
2382    // Dump mod-union tables.
2383    for (const auto& table_pair : mod_union_tables_) {
2384      accounting::ModUnionTable* mod_union_table = table_pair.second;
2385      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2386    }
2387    // Dump remembered sets.
2388    for (const auto& table_pair : remembered_sets_) {
2389      accounting::RememberedSet* remembered_set = table_pair.second;
2390      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2391    }
2392    DumpSpaces(LOG(ERROR));
2393  }
2394  return visitor.GetFailureCount();
2395}
2396
2397class VerifyReferenceCardVisitor {
2398 public:
2399  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2400      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2401                            Locks::heap_bitmap_lock_)
2402      : heap_(heap), failed_(failed) {
2403  }
2404
2405  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2406  // annotalysis on visitors.
2407  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2408      NO_THREAD_SAFETY_ANALYSIS {
2409    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2410    // Filter out class references since changing an object's class does not mark the card as dirty.
2411    // Also handles large objects, since the only reference they hold is a class reference.
2412    if (ref != nullptr && !ref->IsClass()) {
2413      accounting::CardTable* card_table = heap_->GetCardTable();
2414      // If the object is not dirty and it is referencing something in the live stack other than
2415      // class, then it must be on a dirty card.
2416      if (!card_table->AddrIsInCardTable(obj)) {
2417        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2418        *failed_ = true;
2419      } else if (!card_table->IsDirty(obj)) {
2420        // TODO: Check mod-union tables.
2421        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2422        // kCardDirty - 1 if it didnt get touched since we aged it.
2423        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2424        if (live_stack->ContainsSorted(ref)) {
2425          if (live_stack->ContainsSorted(obj)) {
2426            LOG(ERROR) << "Object " << obj << " found in live stack";
2427          }
2428          if (heap_->GetLiveBitmap()->Test(obj)) {
2429            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2430          }
2431          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2432                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2433
2434          // Print which field of the object is dead.
2435          if (!obj->IsObjectArray()) {
2436            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2437            CHECK(klass != NULL);
2438            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2439                                                                      : klass->GetIFields();
2440            CHECK(fields != NULL);
2441            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2442              mirror::ArtField* cur = fields->Get(i);
2443              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2444                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2445                          << PrettyField(cur);
2446                break;
2447              }
2448            }
2449          } else {
2450            mirror::ObjectArray<mirror::Object>* object_array =
2451                obj->AsObjectArray<mirror::Object>();
2452            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2453              if (object_array->Get(i) == ref) {
2454                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2455              }
2456            }
2457          }
2458
2459          *failed_ = true;
2460        }
2461      }
2462    }
2463  }
2464
2465 private:
2466  Heap* const heap_;
2467  bool* const failed_;
2468};
2469
2470class VerifyLiveStackReferences {
2471 public:
2472  explicit VerifyLiveStackReferences(Heap* heap)
2473      : heap_(heap),
2474        failed_(false) {}
2475
2476  void operator()(mirror::Object* obj) const
2477      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2478    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2479    obj->VisitReferences<true>(visitor, VoidFunctor());
2480  }
2481
2482  bool Failed() const {
2483    return failed_;
2484  }
2485
2486 private:
2487  Heap* const heap_;
2488  bool failed_;
2489};
2490
2491bool Heap::VerifyMissingCardMarks() {
2492  Thread* self = Thread::Current();
2493  Locks::mutator_lock_->AssertExclusiveHeld(self);
2494
2495  // We need to sort the live stack since we binary search it.
2496  live_stack_->Sort();
2497  // Since we sorted the allocation stack content, need to revoke all
2498  // thread-local allocation stacks.
2499  RevokeAllThreadLocalAllocationStacks(self);
2500  VerifyLiveStackReferences visitor(this);
2501  GetLiveBitmap()->Visit(visitor);
2502
2503  // We can verify objects in the live stack since none of these should reference dead objects.
2504  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2505    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2506      visitor(*it);
2507    }
2508  }
2509  return !visitor.Failed();
2510}
2511
2512void Heap::SwapStacks(Thread* self) {
2513  if (kUseThreadLocalAllocationStack) {
2514    live_stack_->AssertAllZero();
2515  }
2516  allocation_stack_.swap(live_stack_);
2517}
2518
2519void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2520  // This must be called only during the pause.
2521  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2522  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2523  MutexLock mu2(self, *Locks::thread_list_lock_);
2524  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2525  for (Thread* t : thread_list) {
2526    t->RevokeThreadLocalAllocationStack();
2527  }
2528}
2529
2530void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2531  if (kIsDebugBuild) {
2532    if (bump_pointer_space_ != nullptr) {
2533      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2534    }
2535  }
2536}
2537
2538accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2539  auto it = mod_union_tables_.find(space);
2540  if (it == mod_union_tables_.end()) {
2541    return nullptr;
2542  }
2543  return it->second;
2544}
2545
2546accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2547  auto it = remembered_sets_.find(space);
2548  if (it == remembered_sets_.end()) {
2549    return nullptr;
2550  }
2551  return it->second;
2552}
2553
2554void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2555  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2556  // Clear cards and keep track of cards cleared in the mod-union table.
2557  for (const auto& space : continuous_spaces_) {
2558    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2559    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2560    if (table != nullptr) {
2561      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2562          "ImageModUnionClearCards";
2563      TimingLogger::ScopedTiming t(name, timings);
2564      table->ClearCards();
2565    } else if (use_rem_sets && rem_set != nullptr) {
2566      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2567          << static_cast<int>(collector_type_);
2568      TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
2569      rem_set->ClearCards();
2570    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2571      TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
2572      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2573      // were dirty before the GC started.
2574      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2575      // -> clean(cleaning thread).
2576      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2577      // roots and then we scan / update mod union tables after. We will always scan either card.
2578      // If we end up with the non aged card, we scan it it in the pause.
2579      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2580                                     VoidFunctor());
2581    }
2582  }
2583}
2584
2585static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2586}
2587
2588void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2589  Thread* const self = Thread::Current();
2590  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2591  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2592  if (verify_pre_gc_heap_) {
2593    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
2594    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2595    size_t failures = VerifyHeapReferences();
2596    if (failures > 0) {
2597      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2598          << " failures";
2599    }
2600  }
2601  // Check that all objects which reference things in the live stack are on dirty cards.
2602  if (verify_missing_card_marks_) {
2603    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
2604    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2605    SwapStacks(self);
2606    // Sort the live stack so that we can quickly binary search it later.
2607    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2608                                    << " missing card mark verification failed\n" << DumpSpaces();
2609    SwapStacks(self);
2610  }
2611  if (verify_mod_union_table_) {
2612    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
2613    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2614    for (const auto& table_pair : mod_union_tables_) {
2615      accounting::ModUnionTable* mod_union_table = table_pair.second;
2616      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2617      mod_union_table->Verify();
2618    }
2619  }
2620}
2621
2622void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2623  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2624    collector::GarbageCollector::ScopedPause pause(gc);
2625    PreGcVerificationPaused(gc);
2626  }
2627}
2628
2629void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2630  // TODO: Add a new runtime option for this?
2631  if (verify_pre_gc_rosalloc_) {
2632    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2633  }
2634}
2635
2636void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2637  Thread* const self = Thread::Current();
2638  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2639  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2640  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2641  // reachable objects.
2642  if (verify_pre_sweeping_heap_) {
2643    TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
2644    CHECK_NE(self->GetState(), kRunnable);
2645    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2646    // Swapping bound bitmaps does nothing.
2647    gc->SwapBitmaps();
2648    // Pass in false since concurrent reference processing can mean that the reference referents
2649    // may point to dead objects at the point which PreSweepingGcVerification is called.
2650    size_t failures = VerifyHeapReferences(false);
2651    if (failures > 0) {
2652      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2653          << " failures";
2654    }
2655    gc->SwapBitmaps();
2656  }
2657  if (verify_pre_sweeping_rosalloc_) {
2658    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2659  }
2660}
2661
2662void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2663  // Only pause if we have to do some verification.
2664  Thread* const self = Thread::Current();
2665  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2666  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2667  if (verify_system_weaks_) {
2668    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2669    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2670    mark_sweep->VerifySystemWeaks();
2671  }
2672  if (verify_post_gc_rosalloc_) {
2673    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2674  }
2675  if (verify_post_gc_heap_) {
2676    TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
2677    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2678    size_t failures = VerifyHeapReferences();
2679    if (failures > 0) {
2680      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2681          << " failures";
2682    }
2683  }
2684}
2685
2686void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2687  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2688    collector::GarbageCollector::ScopedPause pause(gc);
2689    PreGcVerificationPaused(gc);
2690  }
2691}
2692
2693void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2694  TimingLogger::ScopedTiming t(name, timings);
2695  for (const auto& space : continuous_spaces_) {
2696    if (space->IsRosAllocSpace()) {
2697      VLOG(heap) << name << " : " << space->GetName();
2698      space->AsRosAllocSpace()->Verify();
2699    }
2700  }
2701}
2702
2703collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2704  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2705  MutexLock mu(self, *gc_complete_lock_);
2706  return WaitForGcToCompleteLocked(cause, self);
2707}
2708
2709collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2710  collector::GcType last_gc_type = collector::kGcTypeNone;
2711  uint64_t wait_start = NanoTime();
2712  while (collector_type_running_ != kCollectorTypeNone) {
2713    ATRACE_BEGIN("GC: Wait For Completion");
2714    // We must wait, change thread state then sleep on gc_complete_cond_;
2715    gc_complete_cond_->Wait(self);
2716    last_gc_type = last_gc_type_;
2717    ATRACE_END();
2718  }
2719  uint64_t wait_time = NanoTime() - wait_start;
2720  total_wait_time_ += wait_time;
2721  if (wait_time > long_pause_log_threshold_) {
2722    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2723        << " for cause " << cause;
2724  }
2725  return last_gc_type;
2726}
2727
2728void Heap::DumpForSigQuit(std::ostream& os) {
2729  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2730     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2731  DumpGcPerformanceInfo(os);
2732}
2733
2734size_t Heap::GetPercentFree() {
2735  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2736}
2737
2738void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2739  if (max_allowed_footprint > GetMaxMemory()) {
2740    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2741             << PrettySize(GetMaxMemory());
2742    max_allowed_footprint = GetMaxMemory();
2743  }
2744  max_allowed_footprint_ = max_allowed_footprint;
2745}
2746
2747bool Heap::IsMovableObject(const mirror::Object* obj) const {
2748  if (kMovingCollector) {
2749    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2750    if (space != nullptr) {
2751      // TODO: Check large object?
2752      return space->CanMoveObjects();
2753    }
2754  }
2755  return false;
2756}
2757
2758void Heap::UpdateMaxNativeFootprint() {
2759  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2760  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2761  size_t target_size = native_size / GetTargetHeapUtilization();
2762  if (target_size > native_size + max_free_) {
2763    target_size = native_size + max_free_;
2764  } else if (target_size < native_size + min_free_) {
2765    target_size = native_size + min_free_;
2766  }
2767  native_footprint_gc_watermark_ = target_size;
2768  native_footprint_limit_ = 2 * target_size - native_size;
2769}
2770
2771collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2772  for (const auto& collector : garbage_collectors_) {
2773    if (collector->GetCollectorType() == collector_type_ &&
2774        collector->GetGcType() == gc_type) {
2775      return collector;
2776    }
2777  }
2778  return nullptr;
2779}
2780
2781double Heap::HeapGrowthMultiplier() const {
2782  // If we don't care about pause times we are background, so return 1.0.
2783  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2784    return 1.0;
2785  }
2786  return foreground_heap_growth_multiplier_;
2787}
2788
2789void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2790  // We know what our utilization is at this moment.
2791  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2792  const uint64_t bytes_allocated = GetBytesAllocated();
2793  last_gc_size_ = bytes_allocated;
2794  last_gc_time_ns_ = NanoTime();
2795  uint64_t target_size;
2796  collector::GcType gc_type = collector_ran->GetGcType();
2797  if (gc_type != collector::kGcTypeSticky) {
2798    // Grow the heap for non sticky GC.
2799    const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2800    // foreground.
2801    intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2802    CHECK_GE(delta, 0);
2803    target_size = bytes_allocated + delta * multiplier;
2804    target_size = std::min(target_size,
2805                           bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2806    target_size = std::max(target_size,
2807                           bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2808    native_need_to_run_finalization_ = true;
2809    next_gc_type_ = collector::kGcTypeSticky;
2810  } else {
2811    collector::GcType non_sticky_gc_type =
2812        have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2813    // Find what the next non sticky collector will be.
2814    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2815    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2816    // do another sticky collection next.
2817    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2818    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2819    // if the sticky GC throughput always remained >= the full/partial throughput.
2820    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2821        non_sticky_collector->GetEstimatedMeanThroughput() &&
2822        non_sticky_collector->NumberOfIterations() > 0 &&
2823        bytes_allocated <= max_allowed_footprint_) {
2824      next_gc_type_ = collector::kGcTypeSticky;
2825    } else {
2826      next_gc_type_ = non_sticky_gc_type;
2827    }
2828    // If we have freed enough memory, shrink the heap back down.
2829    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2830      target_size = bytes_allocated + max_free_;
2831    } else {
2832      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2833    }
2834  }
2835  if (!ignore_max_footprint_) {
2836    SetIdealFootprint(target_size);
2837    if (IsGcConcurrent()) {
2838      // Calculate when to perform the next ConcurrentGC.
2839      // Calculate the estimated GC duration.
2840      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2841      // Estimate how many remaining bytes we will have when we need to start the next GC.
2842      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2843      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2844      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2845      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2846        // A never going to happen situation that from the estimated allocation rate we will exceed
2847        // the applications entire footprint with the given estimated allocation rate. Schedule
2848        // another GC nearly straight away.
2849        remaining_bytes = kMinConcurrentRemainingBytes;
2850      }
2851      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2852      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2853      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2854      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2855      // right away.
2856      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2857                                         static_cast<size_t>(bytes_allocated));
2858    }
2859  }
2860}
2861
2862void Heap::ClearGrowthLimit() {
2863  growth_limit_ = capacity_;
2864  non_moving_space_->ClearGrowthLimit();
2865}
2866
2867void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
2868  ScopedObjectAccess soa(self);
2869  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
2870  jvalue args[1];
2871  args[0].l = arg.get();
2872  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2873  // Restore object in case it gets moved.
2874  *object = soa.Decode<mirror::Object*>(arg.get());
2875}
2876
2877void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
2878  StackHandleScope<1> hs(self);
2879  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2880  RequestConcurrentGC(self);
2881}
2882
2883void Heap::RequestConcurrentGC(Thread* self) {
2884  // Make sure that we can do a concurrent GC.
2885  Runtime* runtime = Runtime::Current();
2886  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2887      self->IsHandlingStackOverflow()) {
2888    return;
2889  }
2890  // We already have a request pending, no reason to start more until we update
2891  // concurrent_start_bytes_.
2892  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2893  JNIEnv* env = self->GetJniEnv();
2894  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2895  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2896  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2897                            WellKnownClasses::java_lang_Daemons_requestGC);
2898  CHECK(!env->ExceptionCheck());
2899}
2900
2901void Heap::ConcurrentGC(Thread* self) {
2902  if (Runtime::Current()->IsShuttingDown(self)) {
2903    return;
2904  }
2905  // Wait for any GCs currently running to finish.
2906  if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
2907    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2908    // instead. E.g. can't do partial, so do full instead.
2909    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2910        collector::kGcTypeNone) {
2911      for (collector::GcType gc_type : gc_plan_) {
2912        // Attempt to run the collector, if we succeed, we are done.
2913        if (gc_type > next_gc_type_ &&
2914            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2915          break;
2916        }
2917      }
2918    }
2919  }
2920}
2921
2922void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2923  Thread* self = Thread::Current();
2924  {
2925    MutexLock mu(self, *heap_trim_request_lock_);
2926    if (desired_collector_type_ == desired_collector_type) {
2927      return;
2928    }
2929    heap_transition_or_trim_target_time_ =
2930        std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
2931    desired_collector_type_ = desired_collector_type;
2932  }
2933  SignalHeapTrimDaemon(self);
2934}
2935
2936void Heap::RequestHeapTrim() {
2937  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2938  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2939  // a space it will hold its lock and can become a cause of jank.
2940  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2941  // forking.
2942
2943  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2944  // because that only marks object heads, so a large array looks like lots of empty space. We
2945  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2946  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2947  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2948  // not how much use we're making of those pages.
2949
2950  Thread* self = Thread::Current();
2951  Runtime* runtime = Runtime::Current();
2952  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2953    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2954    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2955    // as we don't hold the lock while requesting the trim).
2956    return;
2957  }
2958  {
2959    MutexLock mu(self, *heap_trim_request_lock_);
2960    if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2961      // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2962      // just yet.
2963      return;
2964    }
2965    heap_trim_request_pending_ = true;
2966    uint64_t current_time = NanoTime();
2967    if (heap_transition_or_trim_target_time_ < current_time) {
2968      heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
2969    }
2970  }
2971  // Notify the daemon thread which will actually do the heap trim.
2972  SignalHeapTrimDaemon(self);
2973}
2974
2975void Heap::SignalHeapTrimDaemon(Thread* self) {
2976  JNIEnv* env = self->GetJniEnv();
2977  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2978  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2979  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2980                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2981  CHECK(!env->ExceptionCheck());
2982}
2983
2984void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2985  if (rosalloc_space_ != nullptr) {
2986    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2987  }
2988  if (bump_pointer_space_ != nullptr) {
2989    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2990  }
2991}
2992
2993void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
2994  if (rosalloc_space_ != nullptr) {
2995    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2996  }
2997}
2998
2999void Heap::RevokeAllThreadLocalBuffers() {
3000  if (rosalloc_space_ != nullptr) {
3001    rosalloc_space_->RevokeAllThreadLocalBuffers();
3002  }
3003  if (bump_pointer_space_ != nullptr) {
3004    bump_pointer_space_->RevokeAllThreadLocalBuffers();
3005  }
3006}
3007
3008bool Heap::IsGCRequestPending() const {
3009  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
3010}
3011
3012void Heap::RunFinalization(JNIEnv* env) {
3013  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3014  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3015    CHECK(WellKnownClasses::java_lang_System != nullptr);
3016    WellKnownClasses::java_lang_System_runFinalization =
3017        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3018    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3019  }
3020  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3021                            WellKnownClasses::java_lang_System_runFinalization);
3022}
3023
3024void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
3025  Thread* self = ThreadForEnv(env);
3026  if (native_need_to_run_finalization_) {
3027    RunFinalization(env);
3028    UpdateMaxNativeFootprint();
3029    native_need_to_run_finalization_ = false;
3030  }
3031  // Total number of native bytes allocated.
3032  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3033  new_native_bytes_allocated += bytes;
3034  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3035    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
3036        collector::kGcTypeFull;
3037
3038    // The second watermark is higher than the gc watermark. If you hit this it means you are
3039    // allocating native objects faster than the GC can keep up with.
3040    if (new_native_bytes_allocated > native_footprint_limit_) {
3041      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3042        // Just finished a GC, attempt to run finalizers.
3043        RunFinalization(env);
3044        CHECK(!env->ExceptionCheck());
3045      }
3046      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3047      if (new_native_bytes_allocated > native_footprint_limit_) {
3048        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3049        RunFinalization(env);
3050        native_need_to_run_finalization_ = false;
3051        CHECK(!env->ExceptionCheck());
3052      }
3053      // We have just run finalizers, update the native watermark since it is very likely that
3054      // finalizers released native managed allocations.
3055      UpdateMaxNativeFootprint();
3056    } else if (!IsGCRequestPending()) {
3057      if (IsGcConcurrent()) {
3058        RequestConcurrentGC(self);
3059      } else {
3060        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3061      }
3062    }
3063  }
3064}
3065
3066void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
3067  int expected_size, new_size;
3068  do {
3069    expected_size = native_bytes_allocated_.LoadRelaxed();
3070    new_size = expected_size - bytes;
3071    if (UNLIKELY(new_size < 0)) {
3072      ScopedObjectAccess soa(env);
3073      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3074                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
3075                                 "registered as allocated", bytes, expected_size).c_str());
3076      break;
3077    }
3078  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size, new_size));
3079}
3080
3081size_t Heap::GetTotalMemory() const {
3082  size_t ret = 0;
3083  for (const auto& space : continuous_spaces_) {
3084    // Currently don't include the image space.
3085    if (!space->IsImageSpace()) {
3086      ret += space->Size();
3087    }
3088  }
3089  for (const auto& space : discontinuous_spaces_) {
3090    if (space->IsLargeObjectSpace()) {
3091      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
3092    }
3093  }
3094  return ret;
3095}
3096
3097void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3098  DCHECK(mod_union_table != nullptr);
3099  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3100}
3101
3102void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3103  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3104        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
3105        c->GetDescriptor().empty());
3106  CHECK_GE(byte_count, sizeof(mirror::Object));
3107}
3108
3109void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3110  CHECK(remembered_set != nullptr);
3111  space::Space* space = remembered_set->GetSpace();
3112  CHECK(space != nullptr);
3113  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3114  remembered_sets_.Put(space, remembered_set);
3115  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3116}
3117
3118void Heap::RemoveRememberedSet(space::Space* space) {
3119  CHECK(space != nullptr);
3120  auto it = remembered_sets_.find(space);
3121  CHECK(it != remembered_sets_.end());
3122  remembered_sets_.erase(it);
3123  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3124}
3125
3126void Heap::ClearMarkedObjects() {
3127  // Clear all of the spaces' mark bitmaps.
3128  for (const auto& space : GetContinuousSpaces()) {
3129    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3130    if (space->GetLiveBitmap() != mark_bitmap) {
3131      mark_bitmap->Clear();
3132    }
3133  }
3134  // Clear the marked objects in the discontinous space object sets.
3135  for (const auto& space : GetDiscontinuousSpaces()) {
3136    space->GetMarkBitmap()->Clear();
3137  }
3138}
3139
3140}  // namespace gc
3141}  // namespace art
3142