heap.cc revision b363f666883860d40823d5528df3c98c897f74f4
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/remembered_set.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/collector/concurrent_copying.h"
39#include "gc/collector/mark_compact.h"
40#include "gc/collector/mark_sweep-inl.h"
41#include "gc/collector/partial_mark_sweep.h"
42#include "gc/collector/semi_space.h"
43#include "gc/collector/sticky_mark_sweep.h"
44#include "gc/reference_processor.h"
45#include "gc/space/bump_pointer_space.h"
46#include "gc/space/dlmalloc_space-inl.h"
47#include "gc/space/image_space.h"
48#include "gc/space/large_object_space.h"
49#include "gc/space/rosalloc_space-inl.h"
50#include "gc/space/space-inl.h"
51#include "gc/space/zygote_space.h"
52#include "entrypoints/quick/quick_alloc_entrypoints.h"
53#include "heap-inl.h"
54#include "image.h"
55#include "mirror/art_field-inl.h"
56#include "mirror/class-inl.h"
57#include "mirror/object.h"
58#include "mirror/object-inl.h"
59#include "mirror/object_array-inl.h"
60#include "mirror/reference-inl.h"
61#include "os.h"
62#include "reflection.h"
63#include "runtime.h"
64#include "ScopedLocalRef.h"
65#include "scoped_thread_state_change.h"
66#include "handle_scope-inl.h"
67#include "thread_list.h"
68#include "well_known_classes.h"
69
70namespace art {
71
72namespace gc {
73
74static constexpr size_t kCollectorTransitionStressIterations = 0;
75static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
76static constexpr bool kGCALotMode = false;
77static constexpr size_t kGcAlotInterval = KB;
78// Minimum amount of remaining bytes before a concurrent GC is triggered.
79static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
80static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
81// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
82// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
83// threads (lower pauses, use less memory bandwidth).
84static constexpr double kStickyGcThroughputAdjustment = 1.0;
85// Whether or not we use the free list large object space.
86static constexpr bool kUseFreeListSpaceForLOS = false;
87// Whether or not we compact the zygote in PreZygoteFork.
88static constexpr bool kCompactZygote = kMovingCollector;
89static constexpr size_t kNonMovingSpaceCapacity = 64 * MB;
90// How many reserve entries are at the end of the allocation stack, these are only needed if the
91// allocation stack overflows.
92static constexpr size_t kAllocationStackReserveSize = 1024;
93// Default mark stack size in bytes.
94static const size_t kDefaultMarkStackSize = 64 * KB;
95// Define space name.
96static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
97static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
98static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
99static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
100
101Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
102           double target_utilization, double foreground_heap_growth_multiplier, size_t capacity,
103           const std::string& image_file_name, const InstructionSet image_instruction_set,
104           CollectorType foreground_collector_type, CollectorType background_collector_type,
105           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
106           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
107           bool ignore_max_footprint, bool use_tlab,
108           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
109           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
110           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
111           uint64_t min_interval_homogeneous_space_compaction_by_oom)
112    : non_moving_space_(nullptr),
113      rosalloc_space_(nullptr),
114      dlmalloc_space_(nullptr),
115      main_space_(nullptr),
116      collector_type_(kCollectorTypeNone),
117      foreground_collector_type_(foreground_collector_type),
118      background_collector_type_(background_collector_type),
119      desired_collector_type_(foreground_collector_type_),
120      heap_trim_request_lock_(nullptr),
121      last_trim_time_(0),
122      heap_transition_or_trim_target_time_(0),
123      heap_trim_request_pending_(false),
124      parallel_gc_threads_(parallel_gc_threads),
125      conc_gc_threads_(conc_gc_threads),
126      low_memory_mode_(low_memory_mode),
127      long_pause_log_threshold_(long_pause_log_threshold),
128      long_gc_log_threshold_(long_gc_log_threshold),
129      ignore_max_footprint_(ignore_max_footprint),
130      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
131      have_zygote_space_(false),
132      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
133      collector_type_running_(kCollectorTypeNone),
134      last_gc_type_(collector::kGcTypeNone),
135      next_gc_type_(collector::kGcTypePartial),
136      capacity_(capacity),
137      growth_limit_(growth_limit),
138      max_allowed_footprint_(initial_size),
139      native_footprint_gc_watermark_(initial_size),
140      native_footprint_limit_(2 * initial_size),
141      native_need_to_run_finalization_(false),
142      // Initially assume we perceive jank in case the process state is never updated.
143      process_state_(kProcessStateJankPerceptible),
144      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
145      total_bytes_freed_ever_(0),
146      total_objects_freed_ever_(0),
147      num_bytes_allocated_(0),
148      native_bytes_allocated_(0),
149      gc_memory_overhead_(0),
150      verify_missing_card_marks_(false),
151      verify_system_weaks_(false),
152      verify_pre_gc_heap_(verify_pre_gc_heap),
153      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
154      verify_post_gc_heap_(verify_post_gc_heap),
155      verify_mod_union_table_(false),
156      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
157      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
158      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
159      last_gc_time_ns_(NanoTime()),
160      allocation_rate_(0),
161      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
162       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
163       * verification is enabled, we limit the size of allocation stacks to speed up their
164       * searching.
165       */
166      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
167          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
168      current_allocator_(kAllocatorTypeDlMalloc),
169      current_non_moving_allocator_(kAllocatorTypeNonMoving),
170      bump_pointer_space_(nullptr),
171      temp_space_(nullptr),
172      min_free_(min_free),
173      max_free_(max_free),
174      target_utilization_(target_utilization),
175      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
176      total_wait_time_(0),
177      total_allocation_time_(0),
178      verify_object_mode_(kVerifyObjectModeDisabled),
179      disable_moving_gc_count_(0),
180      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
181      use_tlab_(use_tlab),
182      main_space_backup_(nullptr),
183      min_interval_homogeneous_space_compaction_by_oom_(
184          min_interval_homogeneous_space_compaction_by_oom),
185      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
186      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
187  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
188    LOG(INFO) << "Heap() entering";
189  }
190  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
191  // entrypoints.
192  if (!Runtime::Current()->IsZygote()) {
193    large_object_threshold_ = kDefaultLargeObjectThreshold;
194    // Background compaction is currently not supported for command line runs.
195    if (background_collector_type_ != foreground_collector_type_) {
196      VLOG(heap) << "Disabling background compaction for non zygote";
197      background_collector_type_ = foreground_collector_type_;
198    }
199  }
200  ChangeCollector(desired_collector_type_);
201  live_bitmap_.reset(new accounting::HeapBitmap(this));
202  mark_bitmap_.reset(new accounting::HeapBitmap(this));
203  // Requested begin for the alloc space, to follow the mapped image and oat files
204  byte* requested_alloc_space_begin = nullptr;
205  if (!image_file_name.empty()) {
206    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
207                                                               image_instruction_set);
208    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
209    AddSpace(image_space);
210    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
211    // isn't going to get in the middle
212    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
213    CHECK_GT(oat_file_end_addr, image_space->End());
214    requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
215  }
216  /*
217  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
218                                     +-  nonmoving space (kNonMovingSpaceCapacity) +-
219                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
220                                     +-main alloc space / bump space 1 (capacity_) +-
221                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
222                                     +-????????????????????????????????????????????+-
223                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
224                                     +-main alloc space2 / bump space 2 (capacity_)+-
225                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
226  */
227  bool support_homogeneous_space_compaction =
228      background_collector_type == gc::kCollectorTypeHomogeneousSpaceCompact ||
229      use_homogeneous_space_compaction_for_oom;
230  // We may use the same space the main space for the non moving space if we don't need to compact
231  // from the main space.
232  // This is not the case if we support homogeneous compaction or have a moving background
233  // collector type.
234  const bool is_zygote = Runtime::Current()->IsZygote();
235  bool separate_non_moving_space = is_zygote ||
236      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
237      IsMovingGc(background_collector_type_);
238  if (foreground_collector_type == kCollectorTypeGSS) {
239    separate_non_moving_space = false;
240  }
241  std::unique_ptr<MemMap> main_mem_map_1;
242  std::unique_ptr<MemMap> main_mem_map_2;
243  byte* request_begin = requested_alloc_space_begin;
244  if (request_begin != nullptr && separate_non_moving_space) {
245    request_begin += kNonMovingSpaceCapacity;
246  }
247  std::string error_str;
248  std::unique_ptr<MemMap> non_moving_space_mem_map;
249  if (separate_non_moving_space) {
250    // Reserve the non moving mem map before the other two since it needs to be at a specific
251    // address.
252    non_moving_space_mem_map.reset(
253        MemMap::MapAnonymous("non moving space", requested_alloc_space_begin,
254                             kNonMovingSpaceCapacity, PROT_READ | PROT_WRITE, true, &error_str));
255    CHECK(non_moving_space_mem_map != nullptr) << error_str;
256  }
257  // Attempt to create 2 mem maps at or after the requested begin.
258  main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
259                                                    PROT_READ | PROT_WRITE, &error_str));
260  CHECK(main_mem_map_1.get() != nullptr) << error_str;
261  if (support_homogeneous_space_compaction ||
262      background_collector_type_ == kCollectorTypeSS ||
263      foreground_collector_type_ == kCollectorTypeSS) {
264    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
265                                                      capacity_, PROT_READ | PROT_WRITE,
266                                                      &error_str));
267    CHECK(main_mem_map_2.get() != nullptr) << error_str;
268  }
269  // Create the non moving space first so that bitmaps don't take up the address range.
270  if (separate_non_moving_space) {
271    // Non moving space is always dlmalloc since we currently don't have support for multiple
272    // active rosalloc spaces.
273    const size_t size = non_moving_space_mem_map->Size();
274    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
275        non_moving_space_mem_map.release(), "zygote / non moving space", initial_size,
276        initial_size, size, size, false);
277    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
278    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
279        << requested_alloc_space_begin;
280    AddSpace(non_moving_space_);
281  }
282  // Create other spaces based on whether or not we have a moving GC.
283  if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
284    // Create bump pointer spaces.
285    // We only to create the bump pointer if the foreground collector is a compacting GC.
286    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
287    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
288                                                                    main_mem_map_1.release());
289    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
290    AddSpace(bump_pointer_space_);
291    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
292                                                            main_mem_map_2.release());
293    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
294    AddSpace(temp_space_);
295    CHECK(separate_non_moving_space);
296  } else {
297    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
298    CHECK(main_space_ != nullptr);
299    AddSpace(main_space_);
300    if (!separate_non_moving_space) {
301      non_moving_space_ = main_space_;
302      CHECK(!non_moving_space_->CanMoveObjects());
303    }
304    if (foreground_collector_type_ == kCollectorTypeGSS) {
305      CHECK_EQ(foreground_collector_type_, background_collector_type_);
306      // Create bump pointer spaces instead of a backup space.
307      main_mem_map_2.release();
308      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
309                                                            kGSSBumpPointerSpaceCapacity, nullptr);
310      CHECK(bump_pointer_space_ != nullptr);
311      AddSpace(bump_pointer_space_);
312      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
313                                                    kGSSBumpPointerSpaceCapacity, nullptr);
314      CHECK(temp_space_ != nullptr);
315      AddSpace(temp_space_);
316    } else if (main_mem_map_2.get() != nullptr) {
317      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
318      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
319                                                           growth_limit_, capacity_, name, true));
320      CHECK(main_space_backup_.get() != nullptr);
321      // Add the space so its accounted for in the heap_begin and heap_end.
322      AddSpace(main_space_backup_.get());
323    }
324  }
325  CHECK(non_moving_space_ != nullptr);
326  CHECK(!non_moving_space_->CanMoveObjects());
327  // Allocate the large object space.
328  if (kUseFreeListSpaceForLOS) {
329    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity_);
330  } else {
331    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
332  }
333  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
334  AddSpace(large_object_space_);
335  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
336  CHECK(!continuous_spaces_.empty());
337  // Relies on the spaces being sorted.
338  byte* heap_begin = continuous_spaces_.front()->Begin();
339  byte* heap_end = continuous_spaces_.back()->Limit();
340  size_t heap_capacity = heap_end - heap_begin;
341  // Remove the main backup space since it slows down the GC to have unused extra spaces.
342  if (main_space_backup_.get() != nullptr) {
343    RemoveSpace(main_space_backup_.get());
344  }
345  // Allocate the card table.
346  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
347  CHECK(card_table_.get() != NULL) << "Failed to create card table";
348  // Card cache for now since it makes it easier for us to update the references to the copying
349  // spaces.
350  accounting::ModUnionTable* mod_union_table =
351      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
352                                                      GetImageSpace());
353  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
354  AddModUnionTable(mod_union_table);
355  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
356    accounting::RememberedSet* non_moving_space_rem_set =
357        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
358    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
359    AddRememberedSet(non_moving_space_rem_set);
360  }
361  // TODO: Count objects in the image space here?
362  num_bytes_allocated_.StoreRelaxed(0);
363  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
364                                                    kDefaultMarkStackSize));
365  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
366  allocation_stack_.reset(accounting::ObjectStack::Create(
367      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
368  live_stack_.reset(accounting::ObjectStack::Create(
369      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
370  // It's still too early to take a lock because there are no threads yet, but we can create locks
371  // now. We don't create it earlier to make it clear that you can't use locks during heap
372  // initialization.
373  gc_complete_lock_ = new Mutex("GC complete lock");
374  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
375                                                *gc_complete_lock_));
376  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
377  last_gc_size_ = GetBytesAllocated();
378  if (ignore_max_footprint_) {
379    SetIdealFootprint(std::numeric_limits<size_t>::max());
380    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
381  }
382  CHECK_NE(max_allowed_footprint_, 0U);
383  // Create our garbage collectors.
384  for (size_t i = 0; i < 2; ++i) {
385    const bool concurrent = i != 0;
386    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
387    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
388    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
389  }
390  if (kMovingCollector) {
391    // TODO: Clean this up.
392    const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
393    semi_space_collector_ = new collector::SemiSpace(this, generational,
394                                                     generational ? "generational" : "");
395    garbage_collectors_.push_back(semi_space_collector_);
396    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
397    garbage_collectors_.push_back(concurrent_copying_collector_);
398    mark_compact_collector_ = new collector::MarkCompact(this);
399    garbage_collectors_.push_back(mark_compact_collector_);
400  }
401  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr) {
402    // Check that there's no gap between the image space and the non moving space so that the
403    // immune region won't break (eg. due to a large object allocated in the gap).
404    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
405                                      non_moving_space_->GetMemMap());
406    if (!no_gap) {
407      MemMap::DumpMaps(LOG(ERROR));
408      LOG(FATAL) << "There's a gap between the image space and the main space";
409    }
410  }
411  if (running_on_valgrind_) {
412    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
413  }
414  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
415    LOG(INFO) << "Heap() exiting";
416  }
417}
418
419MemMap* Heap::MapAnonymousPreferredAddress(const char* name, byte* request_begin, size_t capacity,
420                                           int prot_flags, std::string* out_error_str) {
421  while (true) {
422    MemMap* map = MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity,
423                                       PROT_READ | PROT_WRITE, true, out_error_str);
424    if (map != nullptr || request_begin == nullptr) {
425      return map;
426    }
427    // Retry a  second time with no specified request begin.
428    request_begin = nullptr;
429  }
430  return nullptr;
431}
432
433space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
434                                                      size_t growth_limit, size_t capacity,
435                                                      const char* name, bool can_move_objects) {
436  space::MallocSpace* malloc_space = nullptr;
437  if (kUseRosAlloc) {
438    // Create rosalloc space.
439    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
440                                                          initial_size, growth_limit, capacity,
441                                                          low_memory_mode_, can_move_objects);
442  } else {
443    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
444                                                          initial_size, growth_limit, capacity,
445                                                          can_move_objects);
446  }
447  if (collector::SemiSpace::kUseRememberedSet) {
448    accounting::RememberedSet* rem_set  =
449        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
450    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
451    AddRememberedSet(rem_set);
452  }
453  CHECK(malloc_space != nullptr) << "Failed to create " << name;
454  malloc_space->SetFootprintLimit(malloc_space->Capacity());
455  return malloc_space;
456}
457
458void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
459                                 size_t capacity) {
460  // Is background compaction is enabled?
461  bool can_move_objects = IsMovingGc(background_collector_type_) !=
462      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
463  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
464  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
465  // from the main space to the zygote space. If background compaction is enabled, always pass in
466  // that we can move objets.
467  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
468    // After the zygote we want this to be false if we don't have background compaction enabled so
469    // that getting primitive array elements is faster.
470    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
471    can_move_objects = !have_zygote_space_ && foreground_collector_type_ != kCollectorTypeGSS;
472  }
473  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
474    RemoveRememberedSet(main_space_);
475  }
476  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
477  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
478                                            can_move_objects);
479  SetSpaceAsDefault(main_space_);
480  VLOG(heap) << "Created main space " << main_space_;
481}
482
483void Heap::ChangeAllocator(AllocatorType allocator) {
484  if (current_allocator_ != allocator) {
485    // These two allocators are only used internally and don't have any entrypoints.
486    CHECK_NE(allocator, kAllocatorTypeLOS);
487    CHECK_NE(allocator, kAllocatorTypeNonMoving);
488    current_allocator_ = allocator;
489    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
490    SetQuickAllocEntryPointsAllocator(current_allocator_);
491    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
492  }
493}
494
495void Heap::DisableCompaction() {
496  if (IsMovingGc(foreground_collector_type_)) {
497    foreground_collector_type_  = kCollectorTypeCMS;
498  }
499  if (IsMovingGc(background_collector_type_)) {
500    background_collector_type_ = foreground_collector_type_;
501  }
502  TransitionCollector(foreground_collector_type_);
503}
504
505std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
506  if (!IsValidContinuousSpaceObjectAddress(klass)) {
507    return StringPrintf("<non heap address klass %p>", klass);
508  }
509  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
510  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
511    std::string result("[");
512    result += SafeGetClassDescriptor(component_type);
513    return result;
514  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
515    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
516  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
517    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
518  } else {
519    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
520    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
521      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
522    }
523    const DexFile* dex_file = dex_cache->GetDexFile();
524    uint16_t class_def_idx = klass->GetDexClassDefIndex();
525    if (class_def_idx == DexFile::kDexNoIndex16) {
526      return "<class def not found>";
527    }
528    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
529    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
530    return dex_file->GetTypeDescriptor(type_id);
531  }
532}
533
534std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
535  if (obj == nullptr) {
536    return "null";
537  }
538  mirror::Class* klass = obj->GetClass<kVerifyNone>();
539  if (klass == nullptr) {
540    return "(class=null)";
541  }
542  std::string result(SafeGetClassDescriptor(klass));
543  if (obj->IsClass()) {
544    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
545  }
546  return result;
547}
548
549void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
550  if (obj == nullptr) {
551    stream << "(obj=null)";
552    return;
553  }
554  if (IsAligned<kObjectAlignment>(obj)) {
555    space::Space* space = nullptr;
556    // Don't use find space since it only finds spaces which actually contain objects instead of
557    // spaces which may contain objects (e.g. cleared bump pointer spaces).
558    for (const auto& cur_space : continuous_spaces_) {
559      if (cur_space->HasAddress(obj)) {
560        space = cur_space;
561        break;
562      }
563    }
564    // Unprotect all the spaces.
565    for (const auto& space : continuous_spaces_) {
566      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
567    }
568    stream << "Object " << obj;
569    if (space != nullptr) {
570      stream << " in space " << *space;
571    }
572    mirror::Class* klass = obj->GetClass<kVerifyNone>();
573    stream << "\nclass=" << klass;
574    if (klass != nullptr) {
575      stream << " type= " << SafePrettyTypeOf(obj);
576    }
577    // Re-protect the address we faulted on.
578    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
579  }
580}
581
582bool Heap::IsCompilingBoot() const {
583  for (const auto& space : continuous_spaces_) {
584    if (space->IsImageSpace() || space->IsZygoteSpace()) {
585      return false;
586    }
587  }
588  return true;
589}
590
591bool Heap::HasImageSpace() const {
592  for (const auto& space : continuous_spaces_) {
593    if (space->IsImageSpace()) {
594      return true;
595    }
596  }
597  return false;
598}
599
600void Heap::IncrementDisableMovingGC(Thread* self) {
601  // Need to do this holding the lock to prevent races where the GC is about to run / running when
602  // we attempt to disable it.
603  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
604  MutexLock mu(self, *gc_complete_lock_);
605  ++disable_moving_gc_count_;
606  if (IsMovingGc(collector_type_running_)) {
607    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
608  }
609}
610
611void Heap::DecrementDisableMovingGC(Thread* self) {
612  MutexLock mu(self, *gc_complete_lock_);
613  CHECK_GE(disable_moving_gc_count_, 0U);
614  --disable_moving_gc_count_;
615}
616
617void Heap::UpdateProcessState(ProcessState process_state) {
618  if (process_state_ != process_state) {
619    process_state_ = process_state;
620    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
621      // Start at index 1 to avoid "is always false" warning.
622      // Have iteration 1 always transition the collector.
623      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
624                          ? foreground_collector_type_ : background_collector_type_);
625      usleep(kCollectorTransitionStressWait);
626    }
627    if (process_state_ == kProcessStateJankPerceptible) {
628      // Transition back to foreground right away to prevent jank.
629      RequestCollectorTransition(foreground_collector_type_, 0);
630    } else {
631      // Don't delay for debug builds since we may want to stress test the GC.
632      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
633      // special handling which does a homogenous space compaction once but then doesn't transition
634      // the collector.
635      RequestCollectorTransition(background_collector_type_,
636                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
637    }
638  }
639}
640
641void Heap::CreateThreadPool() {
642  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
643  if (num_threads != 0) {
644    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
645  }
646}
647
648void Heap::VisitObjects(ObjectCallback callback, void* arg) {
649  Thread* self = Thread::Current();
650  // GCs can move objects, so don't allow this.
651  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
652  if (bump_pointer_space_ != nullptr) {
653    // Visit objects in bump pointer space.
654    bump_pointer_space_->Walk(callback, arg);
655  }
656  // TODO: Switch to standard begin and end to use ranged a based loop.
657  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
658      it < end; ++it) {
659    mirror::Object* obj = *it;
660    if (obj != nullptr && obj->GetClass() != nullptr) {
661      // Avoid the race condition caused by the object not yet being written into the allocation
662      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
663      // there can be nulls on the allocation stack.
664      callback(obj, arg);
665    }
666  }
667  GetLiveBitmap()->Walk(callback, arg);
668  self->EndAssertNoThreadSuspension(old_cause);
669}
670
671void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
672  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
673  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
674  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
675  // TODO: Generalize this to n bitmaps?
676  if (space1 == nullptr) {
677    DCHECK(space2 != nullptr);
678    space1 = space2;
679  }
680  if (space2 == nullptr) {
681    DCHECK(space1 != nullptr);
682    space2 = space1;
683  }
684  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
685                 large_object_space_->GetLiveBitmap(), stack);
686}
687
688void Heap::DeleteThreadPool() {
689  thread_pool_.reset(nullptr);
690}
691
692void Heap::AddSpace(space::Space* space) {
693  CHECK(space != nullptr);
694  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
695  if (space->IsContinuousSpace()) {
696    DCHECK(!space->IsDiscontinuousSpace());
697    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
698    // Continuous spaces don't necessarily have bitmaps.
699    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
700    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
701    if (live_bitmap != nullptr) {
702      DCHECK(mark_bitmap != nullptr);
703      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
704      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
705    }
706    continuous_spaces_.push_back(continuous_space);
707    // Ensure that spaces remain sorted in increasing order of start address.
708    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
709              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
710      return a->Begin() < b->Begin();
711    });
712  } else {
713    DCHECK(space->IsDiscontinuousSpace());
714    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
715    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
716    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
717    discontinuous_spaces_.push_back(discontinuous_space);
718  }
719  if (space->IsAllocSpace()) {
720    alloc_spaces_.push_back(space->AsAllocSpace());
721  }
722}
723
724void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
725  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
726  if (continuous_space->IsDlMallocSpace()) {
727    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
728  } else if (continuous_space->IsRosAllocSpace()) {
729    rosalloc_space_ = continuous_space->AsRosAllocSpace();
730  }
731}
732
733void Heap::RemoveSpace(space::Space* space) {
734  DCHECK(space != nullptr);
735  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
736  if (space->IsContinuousSpace()) {
737    DCHECK(!space->IsDiscontinuousSpace());
738    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
739    // Continuous spaces don't necessarily have bitmaps.
740    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
741    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
742    if (live_bitmap != nullptr) {
743      DCHECK(mark_bitmap != nullptr);
744      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
745      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
746    }
747    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
748    DCHECK(it != continuous_spaces_.end());
749    continuous_spaces_.erase(it);
750  } else {
751    DCHECK(space->IsDiscontinuousSpace());
752    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
753    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
754    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
755    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
756                        discontinuous_space);
757    DCHECK(it != discontinuous_spaces_.end());
758    discontinuous_spaces_.erase(it);
759  }
760  if (space->IsAllocSpace()) {
761    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
762    DCHECK(it != alloc_spaces_.end());
763    alloc_spaces_.erase(it);
764  }
765}
766
767void Heap::RegisterGCAllocation(size_t bytes) {
768  gc_memory_overhead_.FetchAndAddSequentiallyConsistent(bytes);
769}
770
771void Heap::RegisterGCDeAllocation(size_t bytes) {
772  gc_memory_overhead_.FetchAndSubSequentiallyConsistent(bytes);
773}
774
775void Heap::DumpGcPerformanceInfo(std::ostream& os) {
776  // Dump cumulative timings.
777  os << "Dumping cumulative Gc timings\n";
778  uint64_t total_duration = 0;
779  // Dump cumulative loggers for each GC type.
780  uint64_t total_paused_time = 0;
781  for (auto& collector : garbage_collectors_) {
782    const CumulativeLogger& logger = collector->GetCumulativeTimings();
783    const size_t iterations = logger.GetIterations();
784    const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
785    if (iterations != 0 && pause_histogram.SampleSize() != 0) {
786      os << ConstDumpable<CumulativeLogger>(logger);
787      const uint64_t total_ns = logger.GetTotalNs();
788      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
789      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
790      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
791      const uint64_t freed_objects = collector->GetTotalFreedObjects();
792      Histogram<uint64_t>::CumulativeData cumulative_data;
793      pause_histogram.CreateHistogram(&cumulative_data);
794      pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
795      os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
796         << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
797         << collector->GetName() << " freed: " << freed_objects
798         << " objects with total size " << PrettySize(freed_bytes) << "\n"
799         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
800         << PrettySize(freed_bytes / seconds) << "/s\n";
801      total_duration += total_ns;
802      total_paused_time += total_pause_ns;
803    }
804    collector->ResetMeasurements();
805  }
806  uint64_t allocation_time =
807      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
808  if (total_duration != 0) {
809    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
810    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
811    os << "Mean GC size throughput: "
812       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
813    os << "Mean GC object throughput: "
814       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
815  }
816  size_t total_objects_allocated = GetObjectsAllocatedEver();
817  os << "Total number of allocations: " << total_objects_allocated << "\n";
818  size_t total_bytes_allocated = GetBytesAllocatedEver();
819  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
820  if (kMeasureAllocationTime) {
821    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
822    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
823       << "\n";
824  }
825  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
826  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
827  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_.LoadRelaxed();
828  BaseMutex::DumpAll(os);
829}
830
831Heap::~Heap() {
832  VLOG(heap) << "Starting ~Heap()";
833  STLDeleteElements(&garbage_collectors_);
834  // If we don't reset then the mark stack complains in its destructor.
835  allocation_stack_->Reset();
836  live_stack_->Reset();
837  STLDeleteValues(&mod_union_tables_);
838  STLDeleteValues(&remembered_sets_);
839  STLDeleteElements(&continuous_spaces_);
840  STLDeleteElements(&discontinuous_spaces_);
841  delete gc_complete_lock_;
842  delete heap_trim_request_lock_;
843  VLOG(heap) << "Finished ~Heap()";
844}
845
846space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
847                                                            bool fail_ok) const {
848  for (const auto& space : continuous_spaces_) {
849    if (space->Contains(obj)) {
850      return space;
851    }
852  }
853  if (!fail_ok) {
854    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
855  }
856  return NULL;
857}
858
859space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
860                                                                  bool fail_ok) const {
861  for (const auto& space : discontinuous_spaces_) {
862    if (space->Contains(obj)) {
863      return space;
864    }
865  }
866  if (!fail_ok) {
867    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
868  }
869  return NULL;
870}
871
872space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
873  space::Space* result = FindContinuousSpaceFromObject(obj, true);
874  if (result != NULL) {
875    return result;
876  }
877  return FindDiscontinuousSpaceFromObject(obj, true);
878}
879
880space::ImageSpace* Heap::GetImageSpace() const {
881  for (const auto& space : continuous_spaces_) {
882    if (space->IsImageSpace()) {
883      return space->AsImageSpace();
884    }
885  }
886  return NULL;
887}
888
889void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
890  std::ostringstream oss;
891  size_t total_bytes_free = GetFreeMemory();
892  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
893      << " free bytes";
894  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
895  if (total_bytes_free >= byte_count) {
896    space::AllocSpace* space = nullptr;
897    if (allocator_type == kAllocatorTypeNonMoving) {
898      space = non_moving_space_;
899    } else if (allocator_type == kAllocatorTypeRosAlloc ||
900               allocator_type == kAllocatorTypeDlMalloc) {
901      space = main_space_;
902    } else if (allocator_type == kAllocatorTypeBumpPointer ||
903               allocator_type == kAllocatorTypeTLAB) {
904      space = bump_pointer_space_;
905    }
906    if (space != nullptr) {
907      space->LogFragmentationAllocFailure(oss, byte_count);
908    }
909  }
910  self->ThrowOutOfMemoryError(oss.str().c_str());
911}
912
913void Heap::DoPendingTransitionOrTrim() {
914  Thread* self = Thread::Current();
915  CollectorType desired_collector_type;
916  // Wait until we reach the desired transition time.
917  while (true) {
918    uint64_t wait_time;
919    {
920      MutexLock mu(self, *heap_trim_request_lock_);
921      desired_collector_type = desired_collector_type_;
922      uint64_t current_time = NanoTime();
923      if (current_time >= heap_transition_or_trim_target_time_) {
924        break;
925      }
926      wait_time = heap_transition_or_trim_target_time_ - current_time;
927    }
928    ScopedThreadStateChange tsc(self, kSleeping);
929    usleep(wait_time / 1000);  // Usleep takes microseconds.
930  }
931  // Launch homogeneous space compaction if it is desired.
932  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
933    if (!CareAboutPauseTimes()) {
934      PerformHomogeneousSpaceCompact();
935    }
936    // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
937    desired_collector_type = collector_type_;
938    return;
939  }
940  // Transition the collector if the desired collector type is not the same as the current
941  // collector type.
942  TransitionCollector(desired_collector_type);
943  if (!CareAboutPauseTimes()) {
944    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
945    // about pauses.
946    Runtime* runtime = Runtime::Current();
947    runtime->GetThreadList()->SuspendAll();
948    uint64_t start_time = NanoTime();
949    size_t count = runtime->GetMonitorList()->DeflateMonitors();
950    VLOG(heap) << "Deflating " << count << " monitors took "
951        << PrettyDuration(NanoTime() - start_time);
952    runtime->GetThreadList()->ResumeAll();
953  }
954  // Do a heap trim if it is needed.
955  Trim();
956}
957
958void Heap::Trim() {
959  Thread* self = Thread::Current();
960  {
961    MutexLock mu(self, *heap_trim_request_lock_);
962    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
963      return;
964    }
965    last_trim_time_ = NanoTime();
966    heap_trim_request_pending_ = false;
967  }
968  {
969    // Need to do this before acquiring the locks since we don't want to get suspended while
970    // holding any locks.
971    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
972    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
973    // trimming.
974    MutexLock mu(self, *gc_complete_lock_);
975    // Ensure there is only one GC at a time.
976    WaitForGcToCompleteLocked(kGcCauseTrim, self);
977    collector_type_running_ = kCollectorTypeHeapTrim;
978  }
979  uint64_t start_ns = NanoTime();
980  // Trim the managed spaces.
981  uint64_t total_alloc_space_allocated = 0;
982  uint64_t total_alloc_space_size = 0;
983  uint64_t managed_reclaimed = 0;
984  for (const auto& space : continuous_spaces_) {
985    if (space->IsMallocSpace()) {
986      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
987      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
988        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
989        // for a long period of time.
990        managed_reclaimed += malloc_space->Trim();
991      }
992      total_alloc_space_size += malloc_space->Size();
993    }
994  }
995  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
996  if (bump_pointer_space_ != nullptr) {
997    total_alloc_space_allocated -= bump_pointer_space_->Size();
998  }
999  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1000      static_cast<float>(total_alloc_space_size);
1001  uint64_t gc_heap_end_ns = NanoTime();
1002  // We never move things in the native heap, so we can finish the GC at this point.
1003  FinishGC(self, collector::kGcTypeNone);
1004  size_t native_reclaimed = 0;
1005  // Only trim the native heap if we don't care about pauses.
1006  if (!CareAboutPauseTimes()) {
1007#if defined(USE_DLMALLOC)
1008    // Trim the native heap.
1009    dlmalloc_trim(0);
1010    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1011#elif defined(USE_JEMALLOC)
1012    // Jemalloc does it's own internal trimming.
1013#else
1014    UNIMPLEMENTED(WARNING) << "Add trimming support";
1015#endif
1016  }
1017  uint64_t end_ns = NanoTime();
1018  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1019      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1020      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1021      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1022      << "%.";
1023}
1024
1025bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1026  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1027  // taking the lock.
1028  if (obj == nullptr) {
1029    return true;
1030  }
1031  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1032}
1033
1034bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1035  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1036}
1037
1038bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1039  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1040    return false;
1041  }
1042  for (const auto& space : continuous_spaces_) {
1043    if (space->HasAddress(obj)) {
1044      return true;
1045    }
1046  }
1047  return false;
1048}
1049
1050bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1051                              bool search_live_stack, bool sorted) {
1052  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1053    return false;
1054  }
1055  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1056    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1057    if (obj == klass) {
1058      // This case happens for java.lang.Class.
1059      return true;
1060    }
1061    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1062  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1063    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1064    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1065    return temp_space_->Contains(obj);
1066  }
1067  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1068  space::DiscontinuousSpace* d_space = nullptr;
1069  if (c_space != nullptr) {
1070    if (c_space->GetLiveBitmap()->Test(obj)) {
1071      return true;
1072    }
1073  } else {
1074    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1075    if (d_space != nullptr) {
1076      if (d_space->GetLiveBitmap()->Test(obj)) {
1077        return true;
1078      }
1079    }
1080  }
1081  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1082  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1083    if (i > 0) {
1084      NanoSleep(MsToNs(10));
1085    }
1086    if (search_allocation_stack) {
1087      if (sorted) {
1088        if (allocation_stack_->ContainsSorted(obj)) {
1089          return true;
1090        }
1091      } else if (allocation_stack_->Contains(obj)) {
1092        return true;
1093      }
1094    }
1095
1096    if (search_live_stack) {
1097      if (sorted) {
1098        if (live_stack_->ContainsSorted(obj)) {
1099          return true;
1100        }
1101      } else if (live_stack_->Contains(obj)) {
1102        return true;
1103      }
1104    }
1105  }
1106  // We need to check the bitmaps again since there is a race where we mark something as live and
1107  // then clear the stack containing it.
1108  if (c_space != nullptr) {
1109    if (c_space->GetLiveBitmap()->Test(obj)) {
1110      return true;
1111    }
1112  } else {
1113    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1114    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1115      return true;
1116    }
1117  }
1118  return false;
1119}
1120
1121std::string Heap::DumpSpaces() const {
1122  std::ostringstream oss;
1123  DumpSpaces(oss);
1124  return oss.str();
1125}
1126
1127void Heap::DumpSpaces(std::ostream& stream) const {
1128  for (const auto& space : continuous_spaces_) {
1129    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1130    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1131    stream << space << " " << *space << "\n";
1132    if (live_bitmap != nullptr) {
1133      stream << live_bitmap << " " << *live_bitmap << "\n";
1134    }
1135    if (mark_bitmap != nullptr) {
1136      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1137    }
1138  }
1139  for (const auto& space : discontinuous_spaces_) {
1140    stream << space << " " << *space << "\n";
1141  }
1142}
1143
1144void Heap::VerifyObjectBody(mirror::Object* obj) {
1145  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1146    return;
1147  }
1148
1149  // Ignore early dawn of the universe verifications.
1150  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1151    return;
1152  }
1153  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1154  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1155  CHECK(c != nullptr) << "Null class in object " << obj;
1156  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1157  CHECK(VerifyClassClass(c));
1158
1159  if (verify_object_mode_ > kVerifyObjectModeFast) {
1160    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1161    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1162  }
1163}
1164
1165void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1166  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1167}
1168
1169void Heap::VerifyHeap() {
1170  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1171  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1172}
1173
1174void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1175  // Use signed comparison since freed bytes can be negative when background compaction foreground
1176  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1177  // free list backed space typically increasing memory footprint due to padding and binning.
1178  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1179  // Note: This relies on 2s complement for handling negative freed_bytes.
1180  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1181  if (Runtime::Current()->HasStatsEnabled()) {
1182    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1183    thread_stats->freed_objects += freed_objects;
1184    thread_stats->freed_bytes += freed_bytes;
1185    // TODO: Do this concurrently.
1186    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1187    global_stats->freed_objects += freed_objects;
1188    global_stats->freed_bytes += freed_bytes;
1189  }
1190}
1191
1192space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1193  for (const auto& space : continuous_spaces_) {
1194    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1195      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1196        return space->AsContinuousSpace()->AsRosAllocSpace();
1197      }
1198    }
1199  }
1200  return nullptr;
1201}
1202
1203mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1204                                             size_t alloc_size, size_t* bytes_allocated,
1205                                             size_t* usable_size,
1206                                             mirror::Class** klass) {
1207  bool was_default_allocator = allocator == GetCurrentAllocator();
1208  DCHECK(klass != nullptr);
1209  StackHandleScope<1> hs(self);
1210  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1211  klass = nullptr;  // Invalidate for safety.
1212  // The allocation failed. If the GC is running, block until it completes, and then retry the
1213  // allocation.
1214  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1215  if (last_gc != collector::kGcTypeNone) {
1216    // If we were the default allocator but the allocator changed while we were suspended,
1217    // abort the allocation.
1218    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1219      return nullptr;
1220    }
1221    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1222    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1223                                                     usable_size);
1224    if (ptr != nullptr) {
1225      return ptr;
1226    }
1227  }
1228
1229  collector::GcType tried_type = next_gc_type_;
1230  const bool gc_ran =
1231      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1232  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1233    return nullptr;
1234  }
1235  if (gc_ran) {
1236    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1237                                                     usable_size);
1238    if (ptr != nullptr) {
1239      return ptr;
1240    }
1241  }
1242
1243  // Loop through our different Gc types and try to Gc until we get enough free memory.
1244  for (collector::GcType gc_type : gc_plan_) {
1245    if (gc_type == tried_type) {
1246      continue;
1247    }
1248    // Attempt to run the collector, if we succeed, re-try the allocation.
1249    const bool gc_ran =
1250        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1251    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1252      return nullptr;
1253    }
1254    if (gc_ran) {
1255      // Did we free sufficient memory for the allocation to succeed?
1256      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1257                                                       usable_size);
1258      if (ptr != nullptr) {
1259        return ptr;
1260      }
1261    }
1262  }
1263  // Allocations have failed after GCs;  this is an exceptional state.
1264  // Try harder, growing the heap if necessary.
1265  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1266                                                  usable_size);
1267  if (ptr != nullptr) {
1268    return ptr;
1269  }
1270  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1271  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1272  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1273  // OOME.
1274  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1275           << " allocation";
1276  // TODO: Run finalization, but this may cause more allocations to occur.
1277  // We don't need a WaitForGcToComplete here either.
1278  DCHECK(!gc_plan_.empty());
1279  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1280  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1281    return nullptr;
1282  }
1283  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1284  if (ptr == nullptr && use_homogeneous_space_compaction_for_oom_) {
1285    const uint64_t current_time = NanoTime();
1286    if ((allocator == kAllocatorTypeRosAlloc || allocator == kAllocatorTypeDlMalloc) &&
1287        current_time - last_time_homogeneous_space_compaction_by_oom_ >
1288        min_interval_homogeneous_space_compaction_by_oom_) {
1289      last_time_homogeneous_space_compaction_by_oom_ = current_time;
1290      HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1291      switch (result) {
1292        case HomogeneousSpaceCompactResult::kSuccess:
1293          // If the allocation succeeded, we delayed an oom.
1294          ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1295          if (ptr != nullptr) {
1296            count_delayed_oom_++;
1297          }
1298          break;
1299        case HomogeneousSpaceCompactResult::kErrorReject:
1300          // Reject due to disabled moving GC.
1301          break;
1302        case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1303          // Throw OOM by default.
1304          break;
1305        default: {
1306          LOG(FATAL) << "Unimplemented homogeneous space compaction result " << static_cast<size_t>(result);
1307        }
1308      }
1309      // Always print that we ran homogeneous space compation since this can cause jank.
1310      VLOG(heap) << "Ran heap homogeneous space compaction, "
1311                << " requested defragmentation "
1312                << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1313                << " performed defragmentation "
1314                << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1315                << " ignored homogeneous space compaction "
1316                << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1317                << " delayed count = "
1318                << count_delayed_oom_.LoadSequentiallyConsistent();
1319    }
1320  }
1321  // If the allocation hasn't succeeded by this point, throw an OOM error.
1322  if (ptr == nullptr) {
1323    ThrowOutOfMemoryError(self, alloc_size, allocator);
1324  }
1325  return ptr;
1326}
1327
1328void Heap::SetTargetHeapUtilization(float target) {
1329  DCHECK_GT(target, 0.0f);  // asserted in Java code
1330  DCHECK_LT(target, 1.0f);
1331  target_utilization_ = target;
1332}
1333
1334size_t Heap::GetObjectsAllocated() const {
1335  size_t total = 0;
1336  for (space::AllocSpace* space : alloc_spaces_) {
1337    total += space->GetObjectsAllocated();
1338  }
1339  return total;
1340}
1341
1342size_t Heap::GetObjectsAllocatedEver() const {
1343  return GetObjectsFreedEver() + GetObjectsAllocated();
1344}
1345
1346size_t Heap::GetBytesAllocatedEver() const {
1347  return GetBytesFreedEver() + GetBytesAllocated();
1348}
1349
1350class InstanceCounter {
1351 public:
1352  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1353      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1354      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1355  }
1356  static void Callback(mirror::Object* obj, void* arg)
1357      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1358    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1359    mirror::Class* instance_class = obj->GetClass();
1360    CHECK(instance_class != nullptr);
1361    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1362      if (instance_counter->use_is_assignable_from_) {
1363        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1364          ++instance_counter->counts_[i];
1365        }
1366      } else if (instance_class == instance_counter->classes_[i]) {
1367        ++instance_counter->counts_[i];
1368      }
1369    }
1370  }
1371
1372 private:
1373  const std::vector<mirror::Class*>& classes_;
1374  bool use_is_assignable_from_;
1375  uint64_t* const counts_;
1376  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1377};
1378
1379void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1380                          uint64_t* counts) {
1381  // Can't do any GC in this function since this may move classes.
1382  Thread* self = Thread::Current();
1383  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1384  InstanceCounter counter(classes, use_is_assignable_from, counts);
1385  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1386  VisitObjects(InstanceCounter::Callback, &counter);
1387  self->EndAssertNoThreadSuspension(old_cause);
1388}
1389
1390class InstanceCollector {
1391 public:
1392  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1393      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1394      : class_(c), max_count_(max_count), instances_(instances) {
1395  }
1396  static void Callback(mirror::Object* obj, void* arg)
1397      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1398    DCHECK(arg != nullptr);
1399    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1400    mirror::Class* instance_class = obj->GetClass();
1401    if (instance_class == instance_collector->class_) {
1402      if (instance_collector->max_count_ == 0 ||
1403          instance_collector->instances_.size() < instance_collector->max_count_) {
1404        instance_collector->instances_.push_back(obj);
1405      }
1406    }
1407  }
1408
1409 private:
1410  mirror::Class* class_;
1411  uint32_t max_count_;
1412  std::vector<mirror::Object*>& instances_;
1413  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1414};
1415
1416void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1417                        std::vector<mirror::Object*>& instances) {
1418  // Can't do any GC in this function since this may move classes.
1419  Thread* self = Thread::Current();
1420  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1421  InstanceCollector collector(c, max_count, instances);
1422  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1423  VisitObjects(&InstanceCollector::Callback, &collector);
1424  self->EndAssertNoThreadSuspension(old_cause);
1425}
1426
1427class ReferringObjectsFinder {
1428 public:
1429  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1430                         std::vector<mirror::Object*>& referring_objects)
1431      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1432      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1433  }
1434
1435  static void Callback(mirror::Object* obj, void* arg)
1436      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1437    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1438  }
1439
1440  // For bitmap Visit.
1441  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1442  // annotalysis on visitors.
1443  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1444    o->VisitReferences<true>(*this, VoidFunctor());
1445  }
1446
1447  // For Object::VisitReferences.
1448  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1449      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1450    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1451    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1452      referring_objects_.push_back(obj);
1453    }
1454  }
1455
1456 private:
1457  mirror::Object* object_;
1458  uint32_t max_count_;
1459  std::vector<mirror::Object*>& referring_objects_;
1460  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1461};
1462
1463void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1464                               std::vector<mirror::Object*>& referring_objects) {
1465  // Can't do any GC in this function since this may move the object o.
1466  Thread* self = Thread::Current();
1467  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1468  ReferringObjectsFinder finder(o, max_count, referring_objects);
1469  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1470  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1471  self->EndAssertNoThreadSuspension(old_cause);
1472}
1473
1474void Heap::CollectGarbage(bool clear_soft_references) {
1475  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1476  // last GC will not have necessarily been cleared.
1477  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1478}
1479
1480HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1481  Thread* self = Thread::Current();
1482  // Inc requested homogeneous space compaction.
1483  count_requested_homogeneous_space_compaction_++;
1484  // Store performed homogeneous space compaction at a new request arrival.
1485  ThreadList* tl = Runtime::Current()->GetThreadList();
1486  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1487  Locks::mutator_lock_->AssertNotHeld(self);
1488  {
1489    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1490    MutexLock mu(self, *gc_complete_lock_);
1491    // Ensure there is only one GC at a time.
1492    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1493    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1494    // is non zero.
1495    // If the collecotr type changed to something which doesn't benefit from homogeneous space compaction,
1496    // exit.
1497    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_)) {
1498      return HomogeneousSpaceCompactResult::kErrorReject;
1499    }
1500    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1501  }
1502  if (Runtime::Current()->IsShuttingDown(self)) {
1503    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1504    // cause objects to get finalized.
1505    FinishGC(self, collector::kGcTypeNone);
1506    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1507  }
1508  // Suspend all threads.
1509  tl->SuspendAll();
1510  uint64_t start_time = NanoTime();
1511  // Launch compaction.
1512  space::MallocSpace* to_space = main_space_backup_.release();
1513  space::MallocSpace* from_space = main_space_;
1514  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1515  const uint64_t space_size_before_compaction = from_space->Size();
1516  AddSpace(to_space);
1517  Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1518  // Leave as prot read so that we can still run ROSAlloc verification on this space.
1519  from_space->GetMemMap()->Protect(PROT_READ);
1520  const uint64_t space_size_after_compaction = to_space->Size();
1521  main_space_ = to_space;
1522  main_space_backup_.reset(from_space);
1523  RemoveSpace(from_space);
1524  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1525  // Update performed homogeneous space compaction count.
1526  count_performed_homogeneous_space_compaction_++;
1527  // Print statics log and resume all threads.
1528  uint64_t duration = NanoTime() - start_time;
1529  LOG(INFO) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1530            << PrettySize(space_size_before_compaction) << " -> "
1531            << PrettySize(space_size_after_compaction) << " compact-ratio: "
1532            << std::fixed << static_cast<double>(space_size_after_compaction) /
1533            static_cast<double>(space_size_before_compaction);
1534  tl->ResumeAll();
1535  // Finish GC.
1536  reference_processor_.EnqueueClearedReferences(self);
1537  GrowForUtilization(semi_space_collector_);
1538  FinishGC(self, collector::kGcTypeFull);
1539  return HomogeneousSpaceCompactResult::kSuccess;
1540}
1541
1542
1543void Heap::TransitionCollector(CollectorType collector_type) {
1544  if (collector_type == collector_type_) {
1545    return;
1546  }
1547  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1548             << " -> " << static_cast<int>(collector_type);
1549  uint64_t start_time = NanoTime();
1550  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1551  Runtime* const runtime = Runtime::Current();
1552  ThreadList* const tl = runtime->GetThreadList();
1553  Thread* const self = Thread::Current();
1554  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1555  Locks::mutator_lock_->AssertNotHeld(self);
1556  const bool copying_transition =
1557      IsMovingGc(background_collector_type_) || IsMovingGc(foreground_collector_type_);
1558  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1559  // compacting_gc_disable_count_, this should rarely occurs).
1560  for (;;) {
1561    {
1562      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1563      MutexLock mu(self, *gc_complete_lock_);
1564      // Ensure there is only one GC at a time.
1565      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1566      // If someone else beat us to it and changed the collector before we could, exit.
1567      // This is safe to do before the suspend all since we set the collector_type_running_ before
1568      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1569      // then it would get blocked on WaitForGcToCompleteLocked.
1570      if (collector_type == collector_type_) {
1571        return;
1572      }
1573      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1574      if (!copying_transition || disable_moving_gc_count_ == 0) {
1575        // TODO: Not hard code in semi-space collector?
1576        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1577        break;
1578      }
1579    }
1580    usleep(1000);
1581  }
1582  if (runtime->IsShuttingDown(self)) {
1583    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1584    // cause objects to get finalized.
1585    FinishGC(self, collector::kGcTypeNone);
1586    return;
1587  }
1588  tl->SuspendAll();
1589  switch (collector_type) {
1590    case kCollectorTypeSS: {
1591      if (!IsMovingGc(collector_type_)) {
1592        // Create the bump pointer space from the backup space.
1593        CHECK(main_space_backup_ != nullptr);
1594        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1595        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1596        // pointer space last transition it will be protected.
1597        CHECK(mem_map != nullptr);
1598        mem_map->Protect(PROT_READ | PROT_WRITE);
1599        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1600                                                                        mem_map.release());
1601        AddSpace(bump_pointer_space_);
1602        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1603        // Use the now empty main space mem map for the bump pointer temp space.
1604        mem_map.reset(main_space_->ReleaseMemMap());
1605        // Remove the main space so that we don't try to trim it, this doens't work for debug
1606        // builds since RosAlloc attempts to read the magic number from a protected page.
1607        RemoveSpace(main_space_);
1608        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1609                                                                mem_map.release());
1610        AddSpace(temp_space_);
1611      }
1612      break;
1613    }
1614    case kCollectorTypeMS:
1615      // Fall through.
1616    case kCollectorTypeCMS: {
1617      if (IsMovingGc(collector_type_)) {
1618        CHECK(temp_space_ != nullptr);
1619        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1620        RemoveSpace(temp_space_);
1621        temp_space_ = nullptr;
1622        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, mem_map->Size(),
1623                              mem_map->Size());
1624        mem_map.release();
1625        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1626        AddSpace(main_space_);
1627        main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1628        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1629        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1630        RemoveSpace(bump_pointer_space_);
1631        bump_pointer_space_ = nullptr;
1632        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1633        main_space_backup_.reset(CreateMallocSpaceFromMemMap(mem_map.get(), kDefaultInitialSize,
1634                                                             mem_map->Size(), mem_map->Size(),
1635                                                             name, true));
1636        mem_map.release();
1637      }
1638      break;
1639    }
1640    default: {
1641      LOG(FATAL) << "Attempted to transition to invalid collector type "
1642                 << static_cast<size_t>(collector_type);
1643      break;
1644    }
1645  }
1646  ChangeCollector(collector_type);
1647  tl->ResumeAll();
1648  // Can't call into java code with all threads suspended.
1649  reference_processor_.EnqueueClearedReferences(self);
1650  uint64_t duration = NanoTime() - start_time;
1651  GrowForUtilization(semi_space_collector_);
1652  FinishGC(self, collector::kGcTypeFull);
1653  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1654  int32_t delta_allocated = before_allocated - after_allocated;
1655  std::string saved_str;
1656  if (delta_allocated >= 0) {
1657    saved_str = " saved at least " + PrettySize(delta_allocated);
1658  } else {
1659    saved_str = " expanded " + PrettySize(-delta_allocated);
1660  }
1661  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1662      << PrettyDuration(duration) << saved_str;
1663}
1664
1665void Heap::ChangeCollector(CollectorType collector_type) {
1666  // TODO: Only do this with all mutators suspended to avoid races.
1667  if (collector_type != collector_type_) {
1668    if (collector_type == kCollectorTypeMC) {
1669      // Don't allow mark compact unless support is compiled in.
1670      CHECK(kMarkCompactSupport);
1671    }
1672    collector_type_ = collector_type;
1673    gc_plan_.clear();
1674    switch (collector_type_) {
1675      case kCollectorTypeCC:  // Fall-through.
1676      case kCollectorTypeMC:  // Fall-through.
1677      case kCollectorTypeSS:  // Fall-through.
1678      case kCollectorTypeGSS: {
1679        gc_plan_.push_back(collector::kGcTypeFull);
1680        if (use_tlab_) {
1681          ChangeAllocator(kAllocatorTypeTLAB);
1682        } else {
1683          ChangeAllocator(kAllocatorTypeBumpPointer);
1684        }
1685        break;
1686      }
1687      case kCollectorTypeMS: {
1688        gc_plan_.push_back(collector::kGcTypeSticky);
1689        gc_plan_.push_back(collector::kGcTypePartial);
1690        gc_plan_.push_back(collector::kGcTypeFull);
1691        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1692        break;
1693      }
1694      case kCollectorTypeCMS: {
1695        gc_plan_.push_back(collector::kGcTypeSticky);
1696        gc_plan_.push_back(collector::kGcTypePartial);
1697        gc_plan_.push_back(collector::kGcTypeFull);
1698        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1699        break;
1700      }
1701      default: {
1702        LOG(FATAL) << "Unimplemented";
1703      }
1704    }
1705    if (IsGcConcurrent()) {
1706      concurrent_start_bytes_ =
1707          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1708    } else {
1709      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1710    }
1711  }
1712}
1713
1714// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1715class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1716 public:
1717  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1718      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1719  }
1720
1721  void BuildBins(space::ContinuousSpace* space) {
1722    bin_live_bitmap_ = space->GetLiveBitmap();
1723    bin_mark_bitmap_ = space->GetMarkBitmap();
1724    BinContext context;
1725    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1726    context.collector_ = this;
1727    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1728    // Note: This requires traversing the space in increasing order of object addresses.
1729    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1730    // Add the last bin which spans after the last object to the end of the space.
1731    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1732  }
1733
1734 private:
1735  struct BinContext {
1736    uintptr_t prev_;  // The end of the previous object.
1737    ZygoteCompactingCollector* collector_;
1738  };
1739  // Maps from bin sizes to locations.
1740  std::multimap<size_t, uintptr_t> bins_;
1741  // Live bitmap of the space which contains the bins.
1742  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1743  // Mark bitmap of the space which contains the bins.
1744  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1745
1746  static void Callback(mirror::Object* obj, void* arg)
1747      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1748    DCHECK(arg != nullptr);
1749    BinContext* context = reinterpret_cast<BinContext*>(arg);
1750    ZygoteCompactingCollector* collector = context->collector_;
1751    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1752    size_t bin_size = object_addr - context->prev_;
1753    // Add the bin consisting of the end of the previous object to the start of the current object.
1754    collector->AddBin(bin_size, context->prev_);
1755    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1756  }
1757
1758  void AddBin(size_t size, uintptr_t position) {
1759    if (size != 0) {
1760      bins_.insert(std::make_pair(size, position));
1761    }
1762  }
1763
1764  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1765    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1766    // allocator.
1767    return false;
1768  }
1769
1770  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1771      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1772    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1773    mirror::Object* forward_address;
1774    // Find the smallest bin which we can move obj in.
1775    auto it = bins_.lower_bound(object_size);
1776    if (it == bins_.end()) {
1777      // No available space in the bins, place it in the target space instead (grows the zygote
1778      // space).
1779      size_t bytes_allocated;
1780      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1781      if (to_space_live_bitmap_ != nullptr) {
1782        to_space_live_bitmap_->Set(forward_address);
1783      } else {
1784        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1785        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1786      }
1787    } else {
1788      size_t size = it->first;
1789      uintptr_t pos = it->second;
1790      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1791      forward_address = reinterpret_cast<mirror::Object*>(pos);
1792      // Set the live and mark bits so that sweeping system weaks works properly.
1793      bin_live_bitmap_->Set(forward_address);
1794      bin_mark_bitmap_->Set(forward_address);
1795      DCHECK_GE(size, object_size);
1796      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1797    }
1798    // Copy the object over to its new location.
1799    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1800    if (kUseBakerOrBrooksReadBarrier) {
1801      obj->AssertReadBarrierPointer();
1802      if (kUseBrooksReadBarrier) {
1803        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1804        forward_address->SetReadBarrierPointer(forward_address);
1805      }
1806      forward_address->AssertReadBarrierPointer();
1807    }
1808    return forward_address;
1809  }
1810};
1811
1812void Heap::UnBindBitmaps() {
1813  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1814  for (const auto& space : GetContinuousSpaces()) {
1815    if (space->IsContinuousMemMapAllocSpace()) {
1816      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1817      if (alloc_space->HasBoundBitmaps()) {
1818        alloc_space->UnBindBitmaps();
1819      }
1820    }
1821  }
1822}
1823
1824void Heap::PreZygoteFork() {
1825  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1826  Thread* self = Thread::Current();
1827  MutexLock mu(self, zygote_creation_lock_);
1828  // Try to see if we have any Zygote spaces.
1829  if (have_zygote_space_) {
1830    return;
1831  }
1832  VLOG(heap) << "Starting PreZygoteFork";
1833  // Trim the pages at the end of the non moving space.
1834  non_moving_space_->Trim();
1835  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1836  // there.
1837  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1838  // Change the collector to the post zygote one.
1839  bool same_space = non_moving_space_ == main_space_;
1840  if (kCompactZygote) {
1841    DCHECK(semi_space_collector_ != nullptr);
1842    // Temporarily disable rosalloc verification because the zygote
1843    // compaction will mess up the rosalloc internal metadata.
1844    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1845    ZygoteCompactingCollector zygote_collector(this);
1846    zygote_collector.BuildBins(non_moving_space_);
1847    // Create a new bump pointer space which we will compact into.
1848    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1849                                         non_moving_space_->Limit());
1850    // Compact the bump pointer space to a new zygote bump pointer space.
1851    bool reset_main_space = false;
1852    if (IsMovingGc(collector_type_)) {
1853      zygote_collector.SetFromSpace(bump_pointer_space_);
1854    } else {
1855      CHECK(main_space_ != nullptr);
1856      // Copy from the main space.
1857      zygote_collector.SetFromSpace(main_space_);
1858      reset_main_space = true;
1859    }
1860    zygote_collector.SetToSpace(&target_space);
1861    zygote_collector.SetSwapSemiSpaces(false);
1862    zygote_collector.Run(kGcCauseCollectorTransition, false);
1863    if (reset_main_space) {
1864      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1865      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1866      MemMap* mem_map = main_space_->ReleaseMemMap();
1867      RemoveSpace(main_space_);
1868      space::Space* old_main_space = main_space_;
1869      CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1870      delete old_main_space;
1871      AddSpace(main_space_);
1872    } else {
1873      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1874    }
1875    if (temp_space_ != nullptr) {
1876      CHECK(temp_space_->IsEmpty());
1877    }
1878    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1879    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1880    // Update the end and write out image.
1881    non_moving_space_->SetEnd(target_space.End());
1882    non_moving_space_->SetLimit(target_space.Limit());
1883    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1884  }
1885  ChangeCollector(foreground_collector_type_);
1886  // Save the old space so that we can remove it after we complete creating the zygote space.
1887  space::MallocSpace* old_alloc_space = non_moving_space_;
1888  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1889  // the remaining available space.
1890  // Remove the old space before creating the zygote space since creating the zygote space sets
1891  // the old alloc space's bitmaps to nullptr.
1892  RemoveSpace(old_alloc_space);
1893  if (collector::SemiSpace::kUseRememberedSet) {
1894    // Sanity bound check.
1895    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1896    // Remove the remembered set for the now zygote space (the old
1897    // non-moving space). Note now that we have compacted objects into
1898    // the zygote space, the data in the remembered set is no longer
1899    // needed. The zygote space will instead have a mod-union table
1900    // from this point on.
1901    RemoveRememberedSet(old_alloc_space);
1902  }
1903  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1904                                                                        low_memory_mode_,
1905                                                                        &non_moving_space_);
1906  CHECK(!non_moving_space_->CanMoveObjects());
1907  if (same_space) {
1908    main_space_ = non_moving_space_;
1909    SetSpaceAsDefault(main_space_);
1910  }
1911  delete old_alloc_space;
1912  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1913  AddSpace(zygote_space);
1914  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1915  AddSpace(non_moving_space_);
1916  have_zygote_space_ = true;
1917  // Enable large object space allocations.
1918  large_object_threshold_ = kDefaultLargeObjectThreshold;
1919  // Create the zygote space mod union table.
1920  accounting::ModUnionTable* mod_union_table =
1921      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1922  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1923  AddModUnionTable(mod_union_table);
1924  if (collector::SemiSpace::kUseRememberedSet) {
1925    // Add a new remembered set for the post-zygote non-moving space.
1926    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1927        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1928                                      non_moving_space_);
1929    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1930        << "Failed to create post-zygote non-moving space remembered set";
1931    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1932  }
1933}
1934
1935void Heap::FlushAllocStack() {
1936  MarkAllocStackAsLive(allocation_stack_.get());
1937  allocation_stack_->Reset();
1938}
1939
1940void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
1941                          accounting::ContinuousSpaceBitmap* bitmap2,
1942                          accounting::LargeObjectBitmap* large_objects,
1943                          accounting::ObjectStack* stack) {
1944  DCHECK(bitmap1 != nullptr);
1945  DCHECK(bitmap2 != nullptr);
1946  mirror::Object** limit = stack->End();
1947  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1948    const mirror::Object* obj = *it;
1949    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1950      if (bitmap1->HasAddress(obj)) {
1951        bitmap1->Set(obj);
1952      } else if (bitmap2->HasAddress(obj)) {
1953        bitmap2->Set(obj);
1954      } else {
1955        large_objects->Set(obj);
1956      }
1957    }
1958  }
1959}
1960
1961void Heap::SwapSemiSpaces() {
1962  CHECK(bump_pointer_space_ != nullptr);
1963  CHECK(temp_space_ != nullptr);
1964  std::swap(bump_pointer_space_, temp_space_);
1965}
1966
1967void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1968                   space::ContinuousMemMapAllocSpace* source_space,
1969                   GcCause gc_cause) {
1970  CHECK(kMovingCollector);
1971  if (target_space != source_space) {
1972    // Don't swap spaces since this isn't a typical semi space collection.
1973    semi_space_collector_->SetSwapSemiSpaces(false);
1974    semi_space_collector_->SetFromSpace(source_space);
1975    semi_space_collector_->SetToSpace(target_space);
1976    semi_space_collector_->Run(gc_cause, false);
1977  } else {
1978    CHECK(target_space->IsBumpPointerSpace())
1979        << "In-place compaction is only supported for bump pointer spaces";
1980    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
1981    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
1982  }
1983}
1984
1985collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1986                                               bool clear_soft_references) {
1987  Thread* self = Thread::Current();
1988  Runtime* runtime = Runtime::Current();
1989  // If the heap can't run the GC, silently fail and return that no GC was run.
1990  switch (gc_type) {
1991    case collector::kGcTypePartial: {
1992      if (!have_zygote_space_) {
1993        return collector::kGcTypeNone;
1994      }
1995      break;
1996    }
1997    default: {
1998      // Other GC types don't have any special cases which makes them not runnable. The main case
1999      // here is full GC.
2000    }
2001  }
2002  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2003  Locks::mutator_lock_->AssertNotHeld(self);
2004  if (self->IsHandlingStackOverflow()) {
2005    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
2006  }
2007  bool compacting_gc;
2008  {
2009    gc_complete_lock_->AssertNotHeld(self);
2010    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2011    MutexLock mu(self, *gc_complete_lock_);
2012    // Ensure there is only one GC at a time.
2013    WaitForGcToCompleteLocked(gc_cause, self);
2014    compacting_gc = IsMovingGc(collector_type_);
2015    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2016    if (compacting_gc && disable_moving_gc_count_ != 0) {
2017      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2018      return collector::kGcTypeNone;
2019    }
2020    collector_type_running_ = collector_type_;
2021  }
2022
2023  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2024    ++runtime->GetStats()->gc_for_alloc_count;
2025    ++self->GetStats()->gc_for_alloc_count;
2026  }
2027  uint64_t gc_start_time_ns = NanoTime();
2028  uint64_t gc_start_size = GetBytesAllocated();
2029  // Approximate allocation rate in bytes / second.
2030  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
2031  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
2032  if (LIKELY(ms_delta != 0)) {
2033    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
2034    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
2035  }
2036
2037  DCHECK_LT(gc_type, collector::kGcTypeMax);
2038  DCHECK_NE(gc_type, collector::kGcTypeNone);
2039
2040  collector::GarbageCollector* collector = nullptr;
2041  // TODO: Clean this up.
2042  if (compacting_gc) {
2043    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2044           current_allocator_ == kAllocatorTypeTLAB);
2045    switch (collector_type_) {
2046      case kCollectorTypeSS:
2047        // Fall-through.
2048      case kCollectorTypeGSS:
2049        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2050        semi_space_collector_->SetToSpace(temp_space_);
2051        semi_space_collector_->SetSwapSemiSpaces(true);
2052        collector = semi_space_collector_;
2053        break;
2054      case kCollectorTypeCC:
2055        collector = concurrent_copying_collector_;
2056        break;
2057      case kCollectorTypeMC:
2058        mark_compact_collector_->SetSpace(bump_pointer_space_);
2059        collector = mark_compact_collector_;
2060        break;
2061      default:
2062        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2063    }
2064    if (collector != mark_compact_collector_) {
2065      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2066      CHECK(temp_space_->IsEmpty());
2067    }
2068    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2069  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2070      current_allocator_ == kAllocatorTypeDlMalloc) {
2071    collector = FindCollectorByGcType(gc_type);
2072  } else {
2073    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2074  }
2075  CHECK(collector != nullptr)
2076      << "Could not find garbage collector with collector_type="
2077      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2078  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2079  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2080  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2081  RequestHeapTrim();
2082  // Enqueue cleared references.
2083  reference_processor_.EnqueueClearedReferences(self);
2084  // Grow the heap so that we know when to perform the next GC.
2085  GrowForUtilization(collector);
2086  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2087  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2088  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2089  // (mutator time blocked >= long_pause_log_threshold_).
2090  bool log_gc = gc_cause == kGcCauseExplicit;
2091  if (!log_gc && CareAboutPauseTimes()) {
2092    // GC for alloc pauses the allocating thread, so consider it as a pause.
2093    log_gc = duration > long_gc_log_threshold_ ||
2094        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2095    for (uint64_t pause : pause_times) {
2096      log_gc = log_gc || pause >= long_pause_log_threshold_;
2097    }
2098  }
2099  if (log_gc) {
2100    const size_t percent_free = GetPercentFree();
2101    const size_t current_heap_size = GetBytesAllocated();
2102    const size_t total_memory = GetTotalMemory();
2103    std::ostringstream pause_string;
2104    for (size_t i = 0; i < pause_times.size(); ++i) {
2105        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2106                     << ((i != pause_times.size() - 1) ? "," : "");
2107    }
2108    LOG(INFO) << gc_cause << " " << collector->GetName()
2109              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2110              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2111              << current_gc_iteration_.GetFreedLargeObjects() << "("
2112              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2113              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2114              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2115              << " total " << PrettyDuration((duration / 1000) * 1000);
2116    VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2117  }
2118  FinishGC(self, gc_type);
2119  // Inform DDMS that a GC completed.
2120  Dbg::GcDidFinish();
2121  return gc_type;
2122}
2123
2124void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2125  MutexLock mu(self, *gc_complete_lock_);
2126  collector_type_running_ = kCollectorTypeNone;
2127  if (gc_type != collector::kGcTypeNone) {
2128    last_gc_type_ = gc_type;
2129  }
2130  // Wake anyone who may have been waiting for the GC to complete.
2131  gc_complete_cond_->Broadcast(self);
2132}
2133
2134static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2135                                     RootType /*root_type*/) {
2136  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2137  if (*root == obj) {
2138    LOG(INFO) << "Object " << obj << " is a root";
2139  }
2140}
2141
2142class ScanVisitor {
2143 public:
2144  void operator()(const mirror::Object* obj) const {
2145    LOG(ERROR) << "Would have rescanned object " << obj;
2146  }
2147};
2148
2149// Verify a reference from an object.
2150class VerifyReferenceVisitor {
2151 public:
2152  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2153      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2154      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2155
2156  size_t GetFailureCount() const {
2157    return fail_count_->LoadSequentiallyConsistent();
2158  }
2159
2160  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2161      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2162    if (verify_referent_) {
2163      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2164    }
2165  }
2166
2167  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2168      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2169    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2170  }
2171
2172  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2173    return heap_->IsLiveObjectLocked(obj, true, false, true);
2174  }
2175
2176  static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
2177                                 RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2178    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2179    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2180      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2181          << " thread_id= " << thread_id << " root_type= " << root_type;
2182    }
2183  }
2184
2185 private:
2186  // TODO: Fix the no thread safety analysis.
2187  // Returns false on failure.
2188  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2189      NO_THREAD_SAFETY_ANALYSIS {
2190    if (ref == nullptr || IsLive(ref)) {
2191      // Verify that the reference is live.
2192      return true;
2193    }
2194    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2195      // Print message on only on first failure to prevent spam.
2196      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2197    }
2198    if (obj != nullptr) {
2199      // Only do this part for non roots.
2200      accounting::CardTable* card_table = heap_->GetCardTable();
2201      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2202      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2203      byte* card_addr = card_table->CardFromAddr(obj);
2204      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2205                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2206      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2207        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2208      } else {
2209        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2210      }
2211
2212      // Attempt to find the class inside of the recently freed objects.
2213      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2214      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2215        space::MallocSpace* space = ref_space->AsMallocSpace();
2216        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2217        if (ref_class != nullptr) {
2218          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2219                     << PrettyClass(ref_class);
2220        } else {
2221          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2222        }
2223      }
2224
2225      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2226          ref->GetClass()->IsClass()) {
2227        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2228      } else {
2229        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2230                   << ") is not a valid heap address";
2231      }
2232
2233      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2234      void* cover_begin = card_table->AddrFromCard(card_addr);
2235      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2236          accounting::CardTable::kCardSize);
2237      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2238          << "-" << cover_end;
2239      accounting::ContinuousSpaceBitmap* bitmap =
2240          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2241
2242      if (bitmap == nullptr) {
2243        LOG(ERROR) << "Object " << obj << " has no bitmap";
2244        if (!VerifyClassClass(obj->GetClass())) {
2245          LOG(ERROR) << "Object " << obj << " failed class verification!";
2246        }
2247      } else {
2248        // Print out how the object is live.
2249        if (bitmap->Test(obj)) {
2250          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2251        }
2252        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2253          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2254        }
2255        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2256          LOG(ERROR) << "Object " << obj << " found in live stack";
2257        }
2258        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2259          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2260        }
2261        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2262          LOG(ERROR) << "Ref " << ref << " found in live stack";
2263        }
2264        // Attempt to see if the card table missed the reference.
2265        ScanVisitor scan_visitor;
2266        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2267        card_table->Scan(bitmap, byte_cover_begin,
2268                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2269      }
2270
2271      // Search to see if any of the roots reference our object.
2272      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2273      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2274
2275      // Search to see if any of the roots reference our reference.
2276      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2277      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2278    }
2279    return false;
2280  }
2281
2282  Heap* const heap_;
2283  Atomic<size_t>* const fail_count_;
2284  const bool verify_referent_;
2285};
2286
2287// Verify all references within an object, for use with HeapBitmap::Visit.
2288class VerifyObjectVisitor {
2289 public:
2290  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2291      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2292  }
2293
2294  void operator()(mirror::Object* obj) const
2295      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2296    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2297    // be live or else how did we find it in the live bitmap?
2298    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2299    // The class doesn't count as a reference but we should verify it anyways.
2300    obj->VisitReferences<true>(visitor, visitor);
2301  }
2302
2303  static void VisitCallback(mirror::Object* obj, void* arg)
2304      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2305    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2306    visitor->operator()(obj);
2307  }
2308
2309  size_t GetFailureCount() const {
2310    return fail_count_->LoadSequentiallyConsistent();
2311  }
2312
2313 private:
2314  Heap* const heap_;
2315  Atomic<size_t>* const fail_count_;
2316  const bool verify_referent_;
2317};
2318
2319void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2320  // Slow path, the allocation stack push back must have already failed.
2321  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2322  do {
2323    // TODO: Add handle VerifyObject.
2324    StackHandleScope<1> hs(self);
2325    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2326    // Push our object into the reserve region of the allocaiton stack. This is only required due
2327    // to heap verification requiring that roots are live (either in the live bitmap or in the
2328    // allocation stack).
2329    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2330    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2331  } while (!allocation_stack_->AtomicPushBack(*obj));
2332}
2333
2334void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2335  // Slow path, the allocation stack push back must have already failed.
2336  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2337  mirror::Object** start_address;
2338  mirror::Object** end_address;
2339  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2340                                            &end_address)) {
2341    // TODO: Add handle VerifyObject.
2342    StackHandleScope<1> hs(self);
2343    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2344    // Push our object into the reserve region of the allocaiton stack. This is only required due
2345    // to heap verification requiring that roots are live (either in the live bitmap or in the
2346    // allocation stack).
2347    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2348    // Push into the reserve allocation stack.
2349    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2350  }
2351  self->SetThreadLocalAllocationStack(start_address, end_address);
2352  // Retry on the new thread-local allocation stack.
2353  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2354}
2355
2356// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2357size_t Heap::VerifyHeapReferences(bool verify_referents) {
2358  Thread* self = Thread::Current();
2359  Locks::mutator_lock_->AssertExclusiveHeld(self);
2360  // Lets sort our allocation stacks so that we can efficiently binary search them.
2361  allocation_stack_->Sort();
2362  live_stack_->Sort();
2363  // Since we sorted the allocation stack content, need to revoke all
2364  // thread-local allocation stacks.
2365  RevokeAllThreadLocalAllocationStacks(self);
2366  Atomic<size_t> fail_count_(0);
2367  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2368  // Verify objects in the allocation stack since these will be objects which were:
2369  // 1. Allocated prior to the GC (pre GC verification).
2370  // 2. Allocated during the GC (pre sweep GC verification).
2371  // We don't want to verify the objects in the live stack since they themselves may be
2372  // pointing to dead objects if they are not reachable.
2373  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2374  // Verify the roots:
2375  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2376  if (visitor.GetFailureCount() > 0) {
2377    // Dump mod-union tables.
2378    for (const auto& table_pair : mod_union_tables_) {
2379      accounting::ModUnionTable* mod_union_table = table_pair.second;
2380      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2381    }
2382    // Dump remembered sets.
2383    for (const auto& table_pair : remembered_sets_) {
2384      accounting::RememberedSet* remembered_set = table_pair.second;
2385      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2386    }
2387    DumpSpaces(LOG(ERROR));
2388  }
2389  return visitor.GetFailureCount();
2390}
2391
2392class VerifyReferenceCardVisitor {
2393 public:
2394  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2395      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2396                            Locks::heap_bitmap_lock_)
2397      : heap_(heap), failed_(failed) {
2398  }
2399
2400  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2401  // annotalysis on visitors.
2402  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2403      NO_THREAD_SAFETY_ANALYSIS {
2404    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2405    // Filter out class references since changing an object's class does not mark the card as dirty.
2406    // Also handles large objects, since the only reference they hold is a class reference.
2407    if (ref != nullptr && !ref->IsClass()) {
2408      accounting::CardTable* card_table = heap_->GetCardTable();
2409      // If the object is not dirty and it is referencing something in the live stack other than
2410      // class, then it must be on a dirty card.
2411      if (!card_table->AddrIsInCardTable(obj)) {
2412        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2413        *failed_ = true;
2414      } else if (!card_table->IsDirty(obj)) {
2415        // TODO: Check mod-union tables.
2416        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2417        // kCardDirty - 1 if it didnt get touched since we aged it.
2418        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2419        if (live_stack->ContainsSorted(ref)) {
2420          if (live_stack->ContainsSorted(obj)) {
2421            LOG(ERROR) << "Object " << obj << " found in live stack";
2422          }
2423          if (heap_->GetLiveBitmap()->Test(obj)) {
2424            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2425          }
2426          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2427                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2428
2429          // Print which field of the object is dead.
2430          if (!obj->IsObjectArray()) {
2431            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2432            CHECK(klass != NULL);
2433            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2434                                                                      : klass->GetIFields();
2435            CHECK(fields != NULL);
2436            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2437              mirror::ArtField* cur = fields->Get(i);
2438              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2439                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2440                          << PrettyField(cur);
2441                break;
2442              }
2443            }
2444          } else {
2445            mirror::ObjectArray<mirror::Object>* object_array =
2446                obj->AsObjectArray<mirror::Object>();
2447            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2448              if (object_array->Get(i) == ref) {
2449                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2450              }
2451            }
2452          }
2453
2454          *failed_ = true;
2455        }
2456      }
2457    }
2458  }
2459
2460 private:
2461  Heap* const heap_;
2462  bool* const failed_;
2463};
2464
2465class VerifyLiveStackReferences {
2466 public:
2467  explicit VerifyLiveStackReferences(Heap* heap)
2468      : heap_(heap),
2469        failed_(false) {}
2470
2471  void operator()(mirror::Object* obj) const
2472      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2473    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2474    obj->VisitReferences<true>(visitor, VoidFunctor());
2475  }
2476
2477  bool Failed() const {
2478    return failed_;
2479  }
2480
2481 private:
2482  Heap* const heap_;
2483  bool failed_;
2484};
2485
2486bool Heap::VerifyMissingCardMarks() {
2487  Thread* self = Thread::Current();
2488  Locks::mutator_lock_->AssertExclusiveHeld(self);
2489
2490  // We need to sort the live stack since we binary search it.
2491  live_stack_->Sort();
2492  // Since we sorted the allocation stack content, need to revoke all
2493  // thread-local allocation stacks.
2494  RevokeAllThreadLocalAllocationStacks(self);
2495  VerifyLiveStackReferences visitor(this);
2496  GetLiveBitmap()->Visit(visitor);
2497
2498  // We can verify objects in the live stack since none of these should reference dead objects.
2499  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2500    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2501      visitor(*it);
2502    }
2503  }
2504  return !visitor.Failed();
2505}
2506
2507void Heap::SwapStacks(Thread* self) {
2508  if (kUseThreadLocalAllocationStack) {
2509    live_stack_->AssertAllZero();
2510  }
2511  allocation_stack_.swap(live_stack_);
2512}
2513
2514void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2515  // This must be called only during the pause.
2516  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2517  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2518  MutexLock mu2(self, *Locks::thread_list_lock_);
2519  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2520  for (Thread* t : thread_list) {
2521    t->RevokeThreadLocalAllocationStack();
2522  }
2523}
2524
2525void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2526  if (kIsDebugBuild) {
2527    if (bump_pointer_space_ != nullptr) {
2528      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2529    }
2530  }
2531}
2532
2533accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2534  auto it = mod_union_tables_.find(space);
2535  if (it == mod_union_tables_.end()) {
2536    return nullptr;
2537  }
2538  return it->second;
2539}
2540
2541accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2542  auto it = remembered_sets_.find(space);
2543  if (it == remembered_sets_.end()) {
2544    return nullptr;
2545  }
2546  return it->second;
2547}
2548
2549void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2550  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2551  // Clear cards and keep track of cards cleared in the mod-union table.
2552  for (const auto& space : continuous_spaces_) {
2553    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2554    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2555    if (table != nullptr) {
2556      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2557          "ImageModUnionClearCards";
2558      TimingLogger::ScopedTiming t(name, timings);
2559      table->ClearCards();
2560    } else if (use_rem_sets && rem_set != nullptr) {
2561      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2562          << static_cast<int>(collector_type_);
2563      TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
2564      rem_set->ClearCards();
2565    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2566      TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
2567      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2568      // were dirty before the GC started.
2569      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2570      // -> clean(cleaning thread).
2571      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2572      // roots and then we scan / update mod union tables after. We will always scan either card.
2573      // If we end up with the non aged card, we scan it it in the pause.
2574      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2575                                     VoidFunctor());
2576    }
2577  }
2578}
2579
2580static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2581}
2582
2583void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2584  Thread* const self = Thread::Current();
2585  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2586  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2587  if (verify_pre_gc_heap_) {
2588    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
2589    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2590    size_t failures = VerifyHeapReferences();
2591    if (failures > 0) {
2592      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2593          << " failures";
2594    }
2595  }
2596  // Check that all objects which reference things in the live stack are on dirty cards.
2597  if (verify_missing_card_marks_) {
2598    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
2599    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2600    SwapStacks(self);
2601    // Sort the live stack so that we can quickly binary search it later.
2602    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2603                                    << " missing card mark verification failed\n" << DumpSpaces();
2604    SwapStacks(self);
2605  }
2606  if (verify_mod_union_table_) {
2607    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
2608    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2609    for (const auto& table_pair : mod_union_tables_) {
2610      accounting::ModUnionTable* mod_union_table = table_pair.second;
2611      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2612      mod_union_table->Verify();
2613    }
2614  }
2615}
2616
2617void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2618  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2619    collector::GarbageCollector::ScopedPause pause(gc);
2620    PreGcVerificationPaused(gc);
2621  }
2622}
2623
2624void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2625  // TODO: Add a new runtime option for this?
2626  if (verify_pre_gc_rosalloc_) {
2627    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2628  }
2629}
2630
2631void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2632  Thread* const self = Thread::Current();
2633  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2634  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2635  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2636  // reachable objects.
2637  if (verify_pre_sweeping_heap_) {
2638    TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
2639    CHECK_NE(self->GetState(), kRunnable);
2640    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2641    // Swapping bound bitmaps does nothing.
2642    gc->SwapBitmaps();
2643    // Pass in false since concurrent reference processing can mean that the reference referents
2644    // may point to dead objects at the point which PreSweepingGcVerification is called.
2645    size_t failures = VerifyHeapReferences(false);
2646    if (failures > 0) {
2647      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2648          << " failures";
2649    }
2650    gc->SwapBitmaps();
2651  }
2652  if (verify_pre_sweeping_rosalloc_) {
2653    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2654  }
2655}
2656
2657void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2658  // Only pause if we have to do some verification.
2659  Thread* const self = Thread::Current();
2660  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2661  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2662  if (verify_system_weaks_) {
2663    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2664    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2665    mark_sweep->VerifySystemWeaks();
2666  }
2667  if (verify_post_gc_rosalloc_) {
2668    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2669  }
2670  if (verify_post_gc_heap_) {
2671    TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
2672    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2673    size_t failures = VerifyHeapReferences();
2674    if (failures > 0) {
2675      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2676          << " failures";
2677    }
2678  }
2679}
2680
2681void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2682  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2683    collector::GarbageCollector::ScopedPause pause(gc);
2684    PreGcVerificationPaused(gc);
2685  }
2686}
2687
2688void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2689  TimingLogger::ScopedTiming t(name, timings);
2690  for (const auto& space : continuous_spaces_) {
2691    if (space->IsRosAllocSpace()) {
2692      VLOG(heap) << name << " : " << space->GetName();
2693      space->AsRosAllocSpace()->Verify();
2694    }
2695  }
2696}
2697
2698collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2699  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2700  MutexLock mu(self, *gc_complete_lock_);
2701  return WaitForGcToCompleteLocked(cause, self);
2702}
2703
2704collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2705  collector::GcType last_gc_type = collector::kGcTypeNone;
2706  uint64_t wait_start = NanoTime();
2707  while (collector_type_running_ != kCollectorTypeNone) {
2708    ATRACE_BEGIN("GC: Wait For Completion");
2709    // We must wait, change thread state then sleep on gc_complete_cond_;
2710    gc_complete_cond_->Wait(self);
2711    last_gc_type = last_gc_type_;
2712    ATRACE_END();
2713  }
2714  uint64_t wait_time = NanoTime() - wait_start;
2715  total_wait_time_ += wait_time;
2716  if (wait_time > long_pause_log_threshold_) {
2717    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2718        << " for cause " << cause;
2719  }
2720  return last_gc_type;
2721}
2722
2723void Heap::DumpForSigQuit(std::ostream& os) {
2724  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2725     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2726  DumpGcPerformanceInfo(os);
2727}
2728
2729size_t Heap::GetPercentFree() {
2730  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2731}
2732
2733void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2734  if (max_allowed_footprint > GetMaxMemory()) {
2735    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2736             << PrettySize(GetMaxMemory());
2737    max_allowed_footprint = GetMaxMemory();
2738  }
2739  max_allowed_footprint_ = max_allowed_footprint;
2740}
2741
2742bool Heap::IsMovableObject(const mirror::Object* obj) const {
2743  if (kMovingCollector) {
2744    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2745    if (space != nullptr) {
2746      // TODO: Check large object?
2747      return space->CanMoveObjects();
2748    }
2749  }
2750  return false;
2751}
2752
2753void Heap::UpdateMaxNativeFootprint() {
2754  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2755  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2756  size_t target_size = native_size / GetTargetHeapUtilization();
2757  if (target_size > native_size + max_free_) {
2758    target_size = native_size + max_free_;
2759  } else if (target_size < native_size + min_free_) {
2760    target_size = native_size + min_free_;
2761  }
2762  native_footprint_gc_watermark_ = target_size;
2763  native_footprint_limit_ = 2 * target_size - native_size;
2764}
2765
2766collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2767  for (const auto& collector : garbage_collectors_) {
2768    if (collector->GetCollectorType() == collector_type_ &&
2769        collector->GetGcType() == gc_type) {
2770      return collector;
2771    }
2772  }
2773  return nullptr;
2774}
2775
2776double Heap::HeapGrowthMultiplier() const {
2777  // If we don't care about pause times we are background, so return 1.0.
2778  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2779    return 1.0;
2780  }
2781  return foreground_heap_growth_multiplier_;
2782}
2783
2784void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2785  // We know what our utilization is at this moment.
2786  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2787  const uint64_t bytes_allocated = GetBytesAllocated();
2788  last_gc_size_ = bytes_allocated;
2789  last_gc_time_ns_ = NanoTime();
2790  uint64_t target_size;
2791  collector::GcType gc_type = collector_ran->GetGcType();
2792  if (gc_type != collector::kGcTypeSticky) {
2793    // Grow the heap for non sticky GC.
2794    const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2795    // foreground.
2796    intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2797    CHECK_GE(delta, 0);
2798    target_size = bytes_allocated + delta * multiplier;
2799    target_size = std::min(target_size,
2800                           bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2801    target_size = std::max(target_size,
2802                           bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2803    native_need_to_run_finalization_ = true;
2804    next_gc_type_ = collector::kGcTypeSticky;
2805  } else {
2806    collector::GcType non_sticky_gc_type =
2807        have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2808    // Find what the next non sticky collector will be.
2809    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2810    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2811    // do another sticky collection next.
2812    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2813    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2814    // if the sticky GC throughput always remained >= the full/partial throughput.
2815    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2816        non_sticky_collector->GetEstimatedMeanThroughput() &&
2817        non_sticky_collector->NumberOfIterations() > 0 &&
2818        bytes_allocated <= max_allowed_footprint_) {
2819      next_gc_type_ = collector::kGcTypeSticky;
2820    } else {
2821      next_gc_type_ = non_sticky_gc_type;
2822    }
2823    // If we have freed enough memory, shrink the heap back down.
2824    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2825      target_size = bytes_allocated + max_free_;
2826    } else {
2827      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2828    }
2829  }
2830  if (!ignore_max_footprint_) {
2831    SetIdealFootprint(target_size);
2832    if (IsGcConcurrent()) {
2833      // Calculate when to perform the next ConcurrentGC.
2834      // Calculate the estimated GC duration.
2835      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2836      // Estimate how many remaining bytes we will have when we need to start the next GC.
2837      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2838      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2839      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2840      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2841        // A never going to happen situation that from the estimated allocation rate we will exceed
2842        // the applications entire footprint with the given estimated allocation rate. Schedule
2843        // another GC nearly straight away.
2844        remaining_bytes = kMinConcurrentRemainingBytes;
2845      }
2846      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2847      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2848      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2849      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2850      // right away.
2851      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2852                                         static_cast<size_t>(bytes_allocated));
2853    }
2854  }
2855}
2856
2857void Heap::ClearGrowthLimit() {
2858  growth_limit_ = capacity_;
2859  non_moving_space_->ClearGrowthLimit();
2860}
2861
2862void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
2863  ScopedObjectAccess soa(self);
2864  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
2865  jvalue args[1];
2866  args[0].l = arg.get();
2867  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2868  // Restore object in case it gets moved.
2869  *object = soa.Decode<mirror::Object*>(arg.get());
2870}
2871
2872void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
2873  StackHandleScope<1> hs(self);
2874  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2875  RequestConcurrentGC(self);
2876}
2877
2878void Heap::RequestConcurrentGC(Thread* self) {
2879  // Make sure that we can do a concurrent GC.
2880  Runtime* runtime = Runtime::Current();
2881  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2882      self->IsHandlingStackOverflow()) {
2883    return;
2884  }
2885  // We already have a request pending, no reason to start more until we update
2886  // concurrent_start_bytes_.
2887  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2888  JNIEnv* env = self->GetJniEnv();
2889  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2890  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2891  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2892                            WellKnownClasses::java_lang_Daemons_requestGC);
2893  CHECK(!env->ExceptionCheck());
2894}
2895
2896void Heap::ConcurrentGC(Thread* self) {
2897  if (Runtime::Current()->IsShuttingDown(self)) {
2898    return;
2899  }
2900  // Wait for any GCs currently running to finish.
2901  if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
2902    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2903    // instead. E.g. can't do partial, so do full instead.
2904    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2905        collector::kGcTypeNone) {
2906      for (collector::GcType gc_type : gc_plan_) {
2907        // Attempt to run the collector, if we succeed, we are done.
2908        if (gc_type > next_gc_type_ &&
2909            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2910          break;
2911        }
2912      }
2913    }
2914  }
2915}
2916
2917void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2918  Thread* self = Thread::Current();
2919  {
2920    MutexLock mu(self, *heap_trim_request_lock_);
2921    if (desired_collector_type_ == desired_collector_type) {
2922      return;
2923    }
2924    heap_transition_or_trim_target_time_ =
2925        std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
2926    desired_collector_type_ = desired_collector_type;
2927  }
2928  SignalHeapTrimDaemon(self);
2929}
2930
2931void Heap::RequestHeapTrim() {
2932  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2933  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2934  // a space it will hold its lock and can become a cause of jank.
2935  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2936  // forking.
2937
2938  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2939  // because that only marks object heads, so a large array looks like lots of empty space. We
2940  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2941  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2942  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2943  // not how much use we're making of those pages.
2944
2945  Thread* self = Thread::Current();
2946  Runtime* runtime = Runtime::Current();
2947  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2948    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2949    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2950    // as we don't hold the lock while requesting the trim).
2951    return;
2952  }
2953  {
2954    MutexLock mu(self, *heap_trim_request_lock_);
2955    if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2956      // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2957      // just yet.
2958      return;
2959    }
2960    heap_trim_request_pending_ = true;
2961    uint64_t current_time = NanoTime();
2962    if (heap_transition_or_trim_target_time_ < current_time) {
2963      heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
2964    }
2965  }
2966  // Notify the daemon thread which will actually do the heap trim.
2967  SignalHeapTrimDaemon(self);
2968}
2969
2970void Heap::SignalHeapTrimDaemon(Thread* self) {
2971  JNIEnv* env = self->GetJniEnv();
2972  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2973  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2974  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2975                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2976  CHECK(!env->ExceptionCheck());
2977}
2978
2979void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2980  if (rosalloc_space_ != nullptr) {
2981    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2982  }
2983  if (bump_pointer_space_ != nullptr) {
2984    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2985  }
2986}
2987
2988void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
2989  if (rosalloc_space_ != nullptr) {
2990    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2991  }
2992}
2993
2994void Heap::RevokeAllThreadLocalBuffers() {
2995  if (rosalloc_space_ != nullptr) {
2996    rosalloc_space_->RevokeAllThreadLocalBuffers();
2997  }
2998  if (bump_pointer_space_ != nullptr) {
2999    bump_pointer_space_->RevokeAllThreadLocalBuffers();
3000  }
3001}
3002
3003bool Heap::IsGCRequestPending() const {
3004  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
3005}
3006
3007void Heap::RunFinalization(JNIEnv* env) {
3008  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3009  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3010    CHECK(WellKnownClasses::java_lang_System != nullptr);
3011    WellKnownClasses::java_lang_System_runFinalization =
3012        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3013    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3014  }
3015  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3016                            WellKnownClasses::java_lang_System_runFinalization);
3017}
3018
3019void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
3020  Thread* self = ThreadForEnv(env);
3021  if (native_need_to_run_finalization_) {
3022    RunFinalization(env);
3023    UpdateMaxNativeFootprint();
3024    native_need_to_run_finalization_ = false;
3025  }
3026  // Total number of native bytes allocated.
3027  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3028  new_native_bytes_allocated += bytes;
3029  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3030    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
3031        collector::kGcTypeFull;
3032
3033    // The second watermark is higher than the gc watermark. If you hit this it means you are
3034    // allocating native objects faster than the GC can keep up with.
3035    if (new_native_bytes_allocated > native_footprint_limit_) {
3036      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3037        // Just finished a GC, attempt to run finalizers.
3038        RunFinalization(env);
3039        CHECK(!env->ExceptionCheck());
3040      }
3041      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3042      if (new_native_bytes_allocated > native_footprint_limit_) {
3043        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3044        RunFinalization(env);
3045        native_need_to_run_finalization_ = false;
3046        CHECK(!env->ExceptionCheck());
3047      }
3048      // We have just run finalizers, update the native watermark since it is very likely that
3049      // finalizers released native managed allocations.
3050      UpdateMaxNativeFootprint();
3051    } else if (!IsGCRequestPending()) {
3052      if (IsGcConcurrent()) {
3053        RequestConcurrentGC(self);
3054      } else {
3055        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3056      }
3057    }
3058  }
3059}
3060
3061void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
3062  int expected_size, new_size;
3063  do {
3064    expected_size = native_bytes_allocated_.LoadRelaxed();
3065    new_size = expected_size - bytes;
3066    if (UNLIKELY(new_size < 0)) {
3067      ScopedObjectAccess soa(env);
3068      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3069                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
3070                                 "registered as allocated", bytes, expected_size).c_str());
3071      break;
3072    }
3073  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size, new_size));
3074}
3075
3076size_t Heap::GetTotalMemory() const {
3077  size_t ret = 0;
3078  for (const auto& space : continuous_spaces_) {
3079    // Currently don't include the image space.
3080    if (!space->IsImageSpace()) {
3081      ret += space->Size();
3082    }
3083  }
3084  for (const auto& space : discontinuous_spaces_) {
3085    if (space->IsLargeObjectSpace()) {
3086      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
3087    }
3088  }
3089  return ret;
3090}
3091
3092void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3093  DCHECK(mod_union_table != nullptr);
3094  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3095}
3096
3097void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3098  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3099        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
3100        c->GetDescriptor().empty());
3101  CHECK_GE(byte_count, sizeof(mirror::Object));
3102}
3103
3104void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3105  CHECK(remembered_set != nullptr);
3106  space::Space* space = remembered_set->GetSpace();
3107  CHECK(space != nullptr);
3108  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3109  remembered_sets_.Put(space, remembered_set);
3110  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3111}
3112
3113void Heap::RemoveRememberedSet(space::Space* space) {
3114  CHECK(space != nullptr);
3115  auto it = remembered_sets_.find(space);
3116  CHECK(it != remembered_sets_.end());
3117  remembered_sets_.erase(it);
3118  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3119}
3120
3121void Heap::ClearMarkedObjects() {
3122  // Clear all of the spaces' mark bitmaps.
3123  for (const auto& space : GetContinuousSpaces()) {
3124    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3125    if (space->GetLiveBitmap() != mark_bitmap) {
3126      mark_bitmap->Clear();
3127    }
3128  }
3129  // Clear the marked objects in the discontinous space object sets.
3130  for (const auto& space : GetDiscontinuousSpaces()) {
3131    space->GetMarkBitmap()->Clear();
3132  }
3133}
3134
3135}  // namespace gc
3136}  // namespace art
3137