heap.cc revision e0d6421cdb42508f4d36f28cc9eddc31271bb37a
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/remembered_set.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/collector/concurrent_copying.h"
39#include "gc/collector/mark_compact.h"
40#include "gc/collector/mark_sweep-inl.h"
41#include "gc/collector/partial_mark_sweep.h"
42#include "gc/collector/semi_space.h"
43#include "gc/collector/sticky_mark_sweep.h"
44#include "gc/reference_processor.h"
45#include "gc/space/bump_pointer_space.h"
46#include "gc/space/dlmalloc_space-inl.h"
47#include "gc/space/image_space.h"
48#include "gc/space/large_object_space.h"
49#include "gc/space/rosalloc_space-inl.h"
50#include "gc/space/space-inl.h"
51#include "gc/space/zygote_space.h"
52#include "entrypoints/quick/quick_alloc_entrypoints.h"
53#include "heap-inl.h"
54#include "image.h"
55#include "mirror/art_field-inl.h"
56#include "mirror/class-inl.h"
57#include "mirror/object.h"
58#include "mirror/object-inl.h"
59#include "mirror/object_array-inl.h"
60#include "mirror/reference-inl.h"
61#include "os.h"
62#include "reflection.h"
63#include "runtime.h"
64#include "ScopedLocalRef.h"
65#include "scoped_thread_state_change.h"
66#include "handle_scope-inl.h"
67#include "thread_list.h"
68#include "well_known_classes.h"
69
70namespace art {
71
72namespace gc {
73
74static constexpr size_t kCollectorTransitionStressIterations = 0;
75static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
76static constexpr bool kGCALotMode = false;
77static constexpr size_t kGcAlotInterval = KB;
78// Minimum amount of remaining bytes before a concurrent GC is triggered.
79static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
80static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
81// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
82// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
83// threads (lower pauses, use less memory bandwidth).
84static constexpr double kStickyGcThroughputAdjustment = 1.0;
85// Whether or not we use the free list large object space.
86static constexpr bool kUseFreeListSpaceForLOS = false;
87// Whether or not we compact the zygote in PreZygoteFork.
88static constexpr bool kCompactZygote = kMovingCollector;
89static constexpr size_t kNonMovingSpaceCapacity = 64 * MB;
90// How many reserve entries are at the end of the allocation stack, these are only needed if the
91// allocation stack overflows.
92static constexpr size_t kAllocationStackReserveSize = 1024;
93// Default mark stack size in bytes.
94static const size_t kDefaultMarkStackSize = 64 * KB;
95// Define space name.
96static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
97static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
98static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
99static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
100
101Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
102           double target_utilization, double foreground_heap_growth_multiplier, size_t capacity,
103           const std::string& image_file_name, const InstructionSet image_instruction_set,
104           CollectorType foreground_collector_type, CollectorType background_collector_type,
105           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
106           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
107           bool ignore_max_footprint, bool use_tlab,
108           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
109           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
110           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
111           uint64_t min_interval_homogeneous_space_compaction_by_oom)
112    : non_moving_space_(nullptr),
113      rosalloc_space_(nullptr),
114      dlmalloc_space_(nullptr),
115      main_space_(nullptr),
116      collector_type_(kCollectorTypeNone),
117      foreground_collector_type_(foreground_collector_type),
118      background_collector_type_(background_collector_type),
119      desired_collector_type_(foreground_collector_type_),
120      heap_trim_request_lock_(nullptr),
121      last_trim_time_(0),
122      heap_transition_or_trim_target_time_(0),
123      heap_trim_request_pending_(false),
124      parallel_gc_threads_(parallel_gc_threads),
125      conc_gc_threads_(conc_gc_threads),
126      low_memory_mode_(low_memory_mode),
127      long_pause_log_threshold_(long_pause_log_threshold),
128      long_gc_log_threshold_(long_gc_log_threshold),
129      ignore_max_footprint_(ignore_max_footprint),
130      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
131      have_zygote_space_(false),
132      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
133      collector_type_running_(kCollectorTypeNone),
134      last_gc_type_(collector::kGcTypeNone),
135      next_gc_type_(collector::kGcTypePartial),
136      capacity_(capacity),
137      growth_limit_(growth_limit),
138      max_allowed_footprint_(initial_size),
139      native_footprint_gc_watermark_(initial_size),
140      native_footprint_limit_(2 * initial_size),
141      native_need_to_run_finalization_(false),
142      // Initially assume we perceive jank in case the process state is never updated.
143      process_state_(kProcessStateJankPerceptible),
144      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
145      total_bytes_freed_ever_(0),
146      total_objects_freed_ever_(0),
147      num_bytes_allocated_(0),
148      native_bytes_allocated_(0),
149      gc_memory_overhead_(0),
150      verify_missing_card_marks_(false),
151      verify_system_weaks_(false),
152      verify_pre_gc_heap_(verify_pre_gc_heap),
153      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
154      verify_post_gc_heap_(verify_post_gc_heap),
155      verify_mod_union_table_(false),
156      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
157      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
158      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
159      last_gc_time_ns_(NanoTime()),
160      allocation_rate_(0),
161      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
162       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
163       * verification is enabled, we limit the size of allocation stacks to speed up their
164       * searching.
165       */
166      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
167          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
168      current_allocator_(kAllocatorTypeDlMalloc),
169      current_non_moving_allocator_(kAllocatorTypeNonMoving),
170      bump_pointer_space_(nullptr),
171      temp_space_(nullptr),
172      min_free_(min_free),
173      max_free_(max_free),
174      target_utilization_(target_utilization),
175      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
176      total_wait_time_(0),
177      total_allocation_time_(0),
178      verify_object_mode_(kVerifyObjectModeDisabled),
179      disable_moving_gc_count_(0),
180      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
181      use_tlab_(use_tlab),
182      main_space_backup_(nullptr),
183      min_interval_homogeneous_space_compaction_by_oom_(
184          min_interval_homogeneous_space_compaction_by_oom),
185      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
186      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
187  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
188    LOG(INFO) << "Heap() entering";
189  }
190  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
191  // entrypoints.
192  if (!Runtime::Current()->IsZygote()) {
193    large_object_threshold_ = kDefaultLargeObjectThreshold;
194    // Background compaction is currently not supported for command line runs.
195    if (background_collector_type_ != foreground_collector_type_) {
196      VLOG(heap) << "Disabling background compaction for non zygote";
197      background_collector_type_ = foreground_collector_type_;
198    }
199  }
200  ChangeCollector(desired_collector_type_);
201  live_bitmap_.reset(new accounting::HeapBitmap(this));
202  mark_bitmap_.reset(new accounting::HeapBitmap(this));
203  // Requested begin for the alloc space, to follow the mapped image and oat files
204  byte* requested_alloc_space_begin = nullptr;
205  if (!image_file_name.empty()) {
206    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
207                                                               image_instruction_set);
208    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
209    AddSpace(image_space);
210    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
211    // isn't going to get in the middle
212    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
213    CHECK_GT(oat_file_end_addr, image_space->End());
214    requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
215  }
216  /*
217  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
218                                     +-  nonmoving space (kNonMovingSpaceCapacity) +-
219                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
220                                     +-main alloc space / bump space 1 (capacity_) +-
221                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
222                                     +-????????????????????????????????????????????+-
223                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
224                                     +-main alloc space2 / bump space 2 (capacity_)+-
225                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
226  */
227  bool support_homogeneous_space_compaction =
228      background_collector_type == gc::kCollectorTypeHomogeneousSpaceCompact ||
229      use_homogeneous_space_compaction_for_oom;
230  // We may use the same space the main space for the non moving space if we don't need to compact
231  // from the main space.
232  // This is not the case if we support homogeneous compaction or have a moving background
233  // collector type.
234  const bool is_zygote = Runtime::Current()->IsZygote();
235  bool separate_non_moving_space = is_zygote ||
236      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
237      IsMovingGc(background_collector_type_);
238  if (foreground_collector_type == kCollectorTypeGSS) {
239    separate_non_moving_space = false;
240  }
241  std::unique_ptr<MemMap> main_mem_map_1;
242  std::unique_ptr<MemMap> main_mem_map_2;
243  byte* request_begin = requested_alloc_space_begin;
244  if (request_begin != nullptr && separate_non_moving_space) {
245    request_begin += kNonMovingSpaceCapacity;
246  }
247  std::string error_str;
248  std::unique_ptr<MemMap> non_moving_space_mem_map;
249  if (separate_non_moving_space) {
250    // Reserve the non moving mem map before the other two since it needs to be at a specific
251    // address.
252    non_moving_space_mem_map.reset(
253        MemMap::MapAnonymous("non moving space", requested_alloc_space_begin,
254                             kNonMovingSpaceCapacity, PROT_READ | PROT_WRITE, true, &error_str));
255    CHECK(non_moving_space_mem_map != nullptr) << error_str;
256  }
257  // Attempt to create 2 mem maps at or after the requested begin.
258  main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
259                                                    PROT_READ | PROT_WRITE, &error_str));
260  CHECK(main_mem_map_1.get() != nullptr) << error_str;
261  if (support_homogeneous_space_compaction ||
262      background_collector_type_ == kCollectorTypeSS ||
263      foreground_collector_type_ == kCollectorTypeSS) {
264    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
265                                                      capacity_, PROT_READ | PROT_WRITE,
266                                                      &error_str));
267    CHECK(main_mem_map_2.get() != nullptr) << error_str;
268  }
269  // Create the non moving space first so that bitmaps don't take up the address range.
270  if (separate_non_moving_space) {
271    // Non moving space is always dlmalloc since we currently don't have support for multiple
272    // active rosalloc spaces.
273    const size_t size = non_moving_space_mem_map->Size();
274    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
275        non_moving_space_mem_map.release(), "zygote / non moving space", initial_size,
276        initial_size, size, size, false);
277    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
278    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
279        << requested_alloc_space_begin;
280    AddSpace(non_moving_space_);
281  }
282  // Create other spaces based on whether or not we have a moving GC.
283  if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
284    // Create bump pointer spaces.
285    // We only to create the bump pointer if the foreground collector is a compacting GC.
286    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
287    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
288                                                                    main_mem_map_1.release());
289    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
290    AddSpace(bump_pointer_space_);
291    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
292                                                            main_mem_map_2.release());
293    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
294    AddSpace(temp_space_);
295    CHECK(separate_non_moving_space);
296  } else {
297    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
298    CHECK(main_space_ != nullptr);
299    AddSpace(main_space_);
300    if (!separate_non_moving_space) {
301      non_moving_space_ = main_space_;
302      CHECK(!non_moving_space_->CanMoveObjects());
303    }
304    if (foreground_collector_type_ == kCollectorTypeGSS) {
305      CHECK_EQ(foreground_collector_type_, background_collector_type_);
306      // Create bump pointer spaces instead of a backup space.
307      main_mem_map_2.release();
308      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
309                                                            kGSSBumpPointerSpaceCapacity, nullptr);
310      CHECK(bump_pointer_space_ != nullptr);
311      AddSpace(bump_pointer_space_);
312      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
313                                                    kGSSBumpPointerSpaceCapacity, nullptr);
314      CHECK(temp_space_ != nullptr);
315      AddSpace(temp_space_);
316    } else if (main_mem_map_2.get() != nullptr) {
317      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
318      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
319                                                           growth_limit_, capacity_, name, true));
320      CHECK(main_space_backup_.get() != nullptr);
321      // Add the space so its accounted for in the heap_begin and heap_end.
322      AddSpace(main_space_backup_.get());
323    }
324  }
325  CHECK(non_moving_space_ != nullptr);
326  CHECK(!non_moving_space_->CanMoveObjects());
327  // Allocate the large object space.
328  if (kUseFreeListSpaceForLOS) {
329    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity_);
330  } else {
331    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
332  }
333  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
334  AddSpace(large_object_space_);
335  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
336  CHECK(!continuous_spaces_.empty());
337  // Relies on the spaces being sorted.
338  byte* heap_begin = continuous_spaces_.front()->Begin();
339  byte* heap_end = continuous_spaces_.back()->Limit();
340  size_t heap_capacity = heap_end - heap_begin;
341  // Remove the main backup space since it slows down the GC to have unused extra spaces.
342  if (main_space_backup_.get() != nullptr) {
343    RemoveSpace(main_space_backup_.get());
344  }
345  // Allocate the card table.
346  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
347  CHECK(card_table_.get() != NULL) << "Failed to create card table";
348  // Card cache for now since it makes it easier for us to update the references to the copying
349  // spaces.
350  accounting::ModUnionTable* mod_union_table =
351      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
352                                                      GetImageSpace());
353  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
354  AddModUnionTable(mod_union_table);
355  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
356    accounting::RememberedSet* non_moving_space_rem_set =
357        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
358    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
359    AddRememberedSet(non_moving_space_rem_set);
360  }
361  // TODO: Count objects in the image space here?
362  num_bytes_allocated_.StoreRelaxed(0);
363  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
364                                                    kDefaultMarkStackSize));
365  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
366  allocation_stack_.reset(accounting::ObjectStack::Create(
367      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
368  live_stack_.reset(accounting::ObjectStack::Create(
369      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
370  // It's still too early to take a lock because there are no threads yet, but we can create locks
371  // now. We don't create it earlier to make it clear that you can't use locks during heap
372  // initialization.
373  gc_complete_lock_ = new Mutex("GC complete lock");
374  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
375                                                *gc_complete_lock_));
376  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
377  last_gc_size_ = GetBytesAllocated();
378  if (ignore_max_footprint_) {
379    SetIdealFootprint(std::numeric_limits<size_t>::max());
380    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
381  }
382  CHECK_NE(max_allowed_footprint_, 0U);
383  // Create our garbage collectors.
384  for (size_t i = 0; i < 2; ++i) {
385    const bool concurrent = i != 0;
386    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
387    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
388    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
389  }
390  if (kMovingCollector) {
391    // TODO: Clean this up.
392    const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
393    semi_space_collector_ = new collector::SemiSpace(this, generational,
394                                                     generational ? "generational" : "");
395    garbage_collectors_.push_back(semi_space_collector_);
396    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
397    garbage_collectors_.push_back(concurrent_copying_collector_);
398    mark_compact_collector_ = new collector::MarkCompact(this);
399    garbage_collectors_.push_back(mark_compact_collector_);
400  }
401  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr) {
402    // Check that there's no gap between the image space and the non moving space so that the
403    // immune region won't break (eg. due to a large object allocated in the gap).
404    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
405                                      non_moving_space_->GetMemMap());
406    if (!no_gap) {
407      MemMap::DumpMaps(LOG(ERROR));
408      LOG(FATAL) << "There's a gap between the image space and the main space";
409    }
410  }
411  if (running_on_valgrind_) {
412    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
413  }
414  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
415    LOG(INFO) << "Heap() exiting";
416  }
417}
418
419MemMap* Heap::MapAnonymousPreferredAddress(const char* name, byte* request_begin, size_t capacity,
420                                           int prot_flags, std::string* out_error_str) {
421  while (true) {
422    MemMap* map = MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity,
423                                       PROT_READ | PROT_WRITE, true, out_error_str);
424    if (map != nullptr || request_begin == nullptr) {
425      return map;
426    }
427    // Retry a  second time with no specified request begin.
428    request_begin = nullptr;
429  }
430  return nullptr;
431}
432
433space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
434                                                      size_t growth_limit, size_t capacity,
435                                                      const char* name, bool can_move_objects) {
436  space::MallocSpace* malloc_space = nullptr;
437  if (kUseRosAlloc) {
438    // Create rosalloc space.
439    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
440                                                          initial_size, growth_limit, capacity,
441                                                          low_memory_mode_, can_move_objects);
442  } else {
443    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
444                                                          initial_size, growth_limit, capacity,
445                                                          can_move_objects);
446  }
447  if (collector::SemiSpace::kUseRememberedSet) {
448    accounting::RememberedSet* rem_set  =
449        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
450    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
451    AddRememberedSet(rem_set);
452  }
453  CHECK(malloc_space != nullptr) << "Failed to create " << name;
454  malloc_space->SetFootprintLimit(malloc_space->Capacity());
455  return malloc_space;
456}
457
458void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
459                                 size_t capacity) {
460  // Is background compaction is enabled?
461  bool can_move_objects = IsMovingGc(background_collector_type_) !=
462      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
463  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
464  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
465  // from the main space to the zygote space. If background compaction is enabled, always pass in
466  // that we can move objets.
467  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
468    // After the zygote we want this to be false if we don't have background compaction enabled so
469    // that getting primitive array elements is faster.
470    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
471    can_move_objects = !have_zygote_space_ && foreground_collector_type_ != kCollectorTypeGSS;
472  }
473  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
474    RemoveRememberedSet(main_space_);
475  }
476  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
477  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
478                                            can_move_objects);
479  SetSpaceAsDefault(main_space_);
480  VLOG(heap) << "Created main space " << main_space_;
481}
482
483void Heap::ChangeAllocator(AllocatorType allocator) {
484  if (current_allocator_ != allocator) {
485    // These two allocators are only used internally and don't have any entrypoints.
486    CHECK_NE(allocator, kAllocatorTypeLOS);
487    CHECK_NE(allocator, kAllocatorTypeNonMoving);
488    current_allocator_ = allocator;
489    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
490    SetQuickAllocEntryPointsAllocator(current_allocator_);
491    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
492  }
493}
494
495void Heap::DisableCompaction() {
496  if (IsMovingGc(foreground_collector_type_)) {
497    foreground_collector_type_  = kCollectorTypeCMS;
498  }
499  if (IsMovingGc(background_collector_type_)) {
500    background_collector_type_ = foreground_collector_type_;
501  }
502  TransitionCollector(foreground_collector_type_);
503}
504
505std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
506  if (!IsValidContinuousSpaceObjectAddress(klass)) {
507    return StringPrintf("<non heap address klass %p>", klass);
508  }
509  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
510  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
511    std::string result("[");
512    result += SafeGetClassDescriptor(component_type);
513    return result;
514  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
515    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
516  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
517    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
518  } else {
519    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
520    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
521      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
522    }
523    const DexFile* dex_file = dex_cache->GetDexFile();
524    uint16_t class_def_idx = klass->GetDexClassDefIndex();
525    if (class_def_idx == DexFile::kDexNoIndex16) {
526      return "<class def not found>";
527    }
528    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
529    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
530    return dex_file->GetTypeDescriptor(type_id);
531  }
532}
533
534std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
535  if (obj == nullptr) {
536    return "null";
537  }
538  mirror::Class* klass = obj->GetClass<kVerifyNone>();
539  if (klass == nullptr) {
540    return "(class=null)";
541  }
542  std::string result(SafeGetClassDescriptor(klass));
543  if (obj->IsClass()) {
544    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
545  }
546  return result;
547}
548
549void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
550  if (obj == nullptr) {
551    stream << "(obj=null)";
552    return;
553  }
554  if (IsAligned<kObjectAlignment>(obj)) {
555    space::Space* space = nullptr;
556    // Don't use find space since it only finds spaces which actually contain objects instead of
557    // spaces which may contain objects (e.g. cleared bump pointer spaces).
558    for (const auto& cur_space : continuous_spaces_) {
559      if (cur_space->HasAddress(obj)) {
560        space = cur_space;
561        break;
562      }
563    }
564    // Unprotect all the spaces.
565    for (const auto& space : continuous_spaces_) {
566      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
567    }
568    stream << "Object " << obj;
569    if (space != nullptr) {
570      stream << " in space " << *space;
571    }
572    mirror::Class* klass = obj->GetClass<kVerifyNone>();
573    stream << "\nclass=" << klass;
574    if (klass != nullptr) {
575      stream << " type= " << SafePrettyTypeOf(obj);
576    }
577    // Re-protect the address we faulted on.
578    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
579  }
580}
581
582bool Heap::IsCompilingBoot() const {
583  for (const auto& space : continuous_spaces_) {
584    if (space->IsImageSpace() || space->IsZygoteSpace()) {
585      return false;
586    }
587  }
588  return true;
589}
590
591bool Heap::HasImageSpace() const {
592  for (const auto& space : continuous_spaces_) {
593    if (space->IsImageSpace()) {
594      return true;
595    }
596  }
597  return false;
598}
599
600void Heap::IncrementDisableMovingGC(Thread* self) {
601  // Need to do this holding the lock to prevent races where the GC is about to run / running when
602  // we attempt to disable it.
603  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
604  MutexLock mu(self, *gc_complete_lock_);
605  ++disable_moving_gc_count_;
606  if (IsMovingGc(collector_type_running_)) {
607    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
608  }
609}
610
611void Heap::DecrementDisableMovingGC(Thread* self) {
612  MutexLock mu(self, *gc_complete_lock_);
613  CHECK_GE(disable_moving_gc_count_, 0U);
614  --disable_moving_gc_count_;
615}
616
617void Heap::UpdateProcessState(ProcessState process_state) {
618  if (process_state_ != process_state) {
619    process_state_ = process_state;
620    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
621      // Start at index 1 to avoid "is always false" warning.
622      // Have iteration 1 always transition the collector.
623      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
624                          ? foreground_collector_type_ : background_collector_type_);
625      usleep(kCollectorTransitionStressWait);
626    }
627    if (process_state_ == kProcessStateJankPerceptible) {
628      // Transition back to foreground right away to prevent jank.
629      RequestCollectorTransition(foreground_collector_type_, 0);
630    } else {
631      // Don't delay for debug builds since we may want to stress test the GC.
632      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
633      // special handling which does a homogenous space compaction once but then doesn't transition
634      // the collector.
635      RequestCollectorTransition(background_collector_type_,
636                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
637    }
638  }
639}
640
641void Heap::CreateThreadPool() {
642  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
643  if (num_threads != 0) {
644    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
645  }
646}
647
648void Heap::VisitObjects(ObjectCallback callback, void* arg) {
649  Thread* self = Thread::Current();
650  // GCs can move objects, so don't allow this.
651  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
652  if (bump_pointer_space_ != nullptr) {
653    // Visit objects in bump pointer space.
654    bump_pointer_space_->Walk(callback, arg);
655  }
656  // TODO: Switch to standard begin and end to use ranged a based loop.
657  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
658      it < end; ++it) {
659    mirror::Object* obj = *it;
660    if (obj != nullptr && obj->GetClass() != nullptr) {
661      // Avoid the race condition caused by the object not yet being written into the allocation
662      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
663      // there can be nulls on the allocation stack.
664      callback(obj, arg);
665    }
666  }
667  GetLiveBitmap()->Walk(callback, arg);
668  self->EndAssertNoThreadSuspension(old_cause);
669}
670
671void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
672  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
673  space::ContinuousSpace* space2 = non_moving_space_;
674  // TODO: Generalize this to n bitmaps?
675  CHECK(space1 != nullptr);
676  CHECK(space2 != nullptr);
677  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
678                 large_object_space_->GetLiveBitmap(), stack);
679}
680
681void Heap::DeleteThreadPool() {
682  thread_pool_.reset(nullptr);
683}
684
685void Heap::AddSpace(space::Space* space) {
686  CHECK(space != nullptr);
687  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
688  if (space->IsContinuousSpace()) {
689    DCHECK(!space->IsDiscontinuousSpace());
690    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
691    // Continuous spaces don't necessarily have bitmaps.
692    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
693    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
694    if (live_bitmap != nullptr) {
695      CHECK(mark_bitmap != nullptr);
696      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
697      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
698    }
699    continuous_spaces_.push_back(continuous_space);
700    // Ensure that spaces remain sorted in increasing order of start address.
701    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
702              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
703      return a->Begin() < b->Begin();
704    });
705  } else {
706    CHECK(space->IsDiscontinuousSpace());
707    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
708    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
709    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
710    discontinuous_spaces_.push_back(discontinuous_space);
711  }
712  if (space->IsAllocSpace()) {
713    alloc_spaces_.push_back(space->AsAllocSpace());
714  }
715}
716
717void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
718  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
719  if (continuous_space->IsDlMallocSpace()) {
720    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
721  } else if (continuous_space->IsRosAllocSpace()) {
722    rosalloc_space_ = continuous_space->AsRosAllocSpace();
723  }
724}
725
726void Heap::RemoveSpace(space::Space* space) {
727  DCHECK(space != nullptr);
728  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
729  if (space->IsContinuousSpace()) {
730    DCHECK(!space->IsDiscontinuousSpace());
731    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
732    // Continuous spaces don't necessarily have bitmaps.
733    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
734    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
735    if (live_bitmap != nullptr) {
736      DCHECK(mark_bitmap != nullptr);
737      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
738      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
739    }
740    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
741    DCHECK(it != continuous_spaces_.end());
742    continuous_spaces_.erase(it);
743  } else {
744    DCHECK(space->IsDiscontinuousSpace());
745    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
746    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
747    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
748    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
749                        discontinuous_space);
750    DCHECK(it != discontinuous_spaces_.end());
751    discontinuous_spaces_.erase(it);
752  }
753  if (space->IsAllocSpace()) {
754    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
755    DCHECK(it != alloc_spaces_.end());
756    alloc_spaces_.erase(it);
757  }
758}
759
760void Heap::RegisterGCAllocation(size_t bytes) {
761  gc_memory_overhead_.FetchAndAddSequentiallyConsistent(bytes);
762}
763
764void Heap::RegisterGCDeAllocation(size_t bytes) {
765  gc_memory_overhead_.FetchAndSubSequentiallyConsistent(bytes);
766}
767
768void Heap::DumpGcPerformanceInfo(std::ostream& os) {
769  // Dump cumulative timings.
770  os << "Dumping cumulative Gc timings\n";
771  uint64_t total_duration = 0;
772  // Dump cumulative loggers for each GC type.
773  uint64_t total_paused_time = 0;
774  for (auto& collector : garbage_collectors_) {
775    const CumulativeLogger& logger = collector->GetCumulativeTimings();
776    const size_t iterations = logger.GetIterations();
777    const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
778    if (iterations != 0 && pause_histogram.SampleSize() != 0) {
779      os << ConstDumpable<CumulativeLogger>(logger);
780      const uint64_t total_ns = logger.GetTotalNs();
781      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
782      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
783      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
784      const uint64_t freed_objects = collector->GetTotalFreedObjects();
785      Histogram<uint64_t>::CumulativeData cumulative_data;
786      pause_histogram.CreateHistogram(&cumulative_data);
787      pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
788      os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
789         << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
790         << collector->GetName() << " freed: " << freed_objects
791         << " objects with total size " << PrettySize(freed_bytes) << "\n"
792         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
793         << PrettySize(freed_bytes / seconds) << "/s\n";
794      total_duration += total_ns;
795      total_paused_time += total_pause_ns;
796    }
797    collector->ResetMeasurements();
798  }
799  uint64_t allocation_time =
800      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
801  if (total_duration != 0) {
802    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
803    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
804    os << "Mean GC size throughput: "
805       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
806    os << "Mean GC object throughput: "
807       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
808  }
809  size_t total_objects_allocated = GetObjectsAllocatedEver();
810  os << "Total number of allocations: " << total_objects_allocated << "\n";
811  size_t total_bytes_allocated = GetBytesAllocatedEver();
812  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
813  if (kMeasureAllocationTime) {
814    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
815    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
816       << "\n";
817  }
818  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
819  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
820  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_.LoadRelaxed();
821  BaseMutex::DumpAll(os);
822}
823
824Heap::~Heap() {
825  VLOG(heap) << "Starting ~Heap()";
826  STLDeleteElements(&garbage_collectors_);
827  // If we don't reset then the mark stack complains in its destructor.
828  allocation_stack_->Reset();
829  live_stack_->Reset();
830  STLDeleteValues(&mod_union_tables_);
831  STLDeleteValues(&remembered_sets_);
832  STLDeleteElements(&continuous_spaces_);
833  STLDeleteElements(&discontinuous_spaces_);
834  delete gc_complete_lock_;
835  delete heap_trim_request_lock_;
836  VLOG(heap) << "Finished ~Heap()";
837}
838
839space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
840                                                            bool fail_ok) const {
841  for (const auto& space : continuous_spaces_) {
842    if (space->Contains(obj)) {
843      return space;
844    }
845  }
846  if (!fail_ok) {
847    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
848  }
849  return NULL;
850}
851
852space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
853                                                                  bool fail_ok) const {
854  for (const auto& space : discontinuous_spaces_) {
855    if (space->Contains(obj)) {
856      return space;
857    }
858  }
859  if (!fail_ok) {
860    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
861  }
862  return NULL;
863}
864
865space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
866  space::Space* result = FindContinuousSpaceFromObject(obj, true);
867  if (result != NULL) {
868    return result;
869  }
870  return FindDiscontinuousSpaceFromObject(obj, true);
871}
872
873space::ImageSpace* Heap::GetImageSpace() const {
874  for (const auto& space : continuous_spaces_) {
875    if (space->IsImageSpace()) {
876      return space->AsImageSpace();
877    }
878  }
879  return NULL;
880}
881
882void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
883  std::ostringstream oss;
884  size_t total_bytes_free = GetFreeMemory();
885  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
886      << " free bytes";
887  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
888  if (total_bytes_free >= byte_count) {
889    space::AllocSpace* space = nullptr;
890    if (allocator_type == kAllocatorTypeNonMoving) {
891      space = non_moving_space_;
892    } else if (allocator_type == kAllocatorTypeRosAlloc ||
893               allocator_type == kAllocatorTypeDlMalloc) {
894      space = main_space_;
895    } else if (allocator_type == kAllocatorTypeBumpPointer ||
896               allocator_type == kAllocatorTypeTLAB) {
897      space = bump_pointer_space_;
898    }
899    if (space != nullptr) {
900      space->LogFragmentationAllocFailure(oss, byte_count);
901    }
902  }
903  self->ThrowOutOfMemoryError(oss.str().c_str());
904}
905
906void Heap::DoPendingTransitionOrTrim() {
907  Thread* self = Thread::Current();
908  CollectorType desired_collector_type;
909  // Wait until we reach the desired transition time.
910  while (true) {
911    uint64_t wait_time;
912    {
913      MutexLock mu(self, *heap_trim_request_lock_);
914      desired_collector_type = desired_collector_type_;
915      uint64_t current_time = NanoTime();
916      if (current_time >= heap_transition_or_trim_target_time_) {
917        break;
918      }
919      wait_time = heap_transition_or_trim_target_time_ - current_time;
920    }
921    ScopedThreadStateChange tsc(self, kSleeping);
922    usleep(wait_time / 1000);  // Usleep takes microseconds.
923  }
924  // Launch homogeneous space compaction if it is desired.
925  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
926    if (!CareAboutPauseTimes()) {
927      PerformHomogeneousSpaceCompact();
928    }
929    // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
930    desired_collector_type = collector_type_;
931    return;
932  }
933  // Transition the collector if the desired collector type is not the same as the current
934  // collector type.
935  TransitionCollector(desired_collector_type);
936  if (!CareAboutPauseTimes()) {
937    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
938    // about pauses.
939    Runtime* runtime = Runtime::Current();
940    runtime->GetThreadList()->SuspendAll();
941    uint64_t start_time = NanoTime();
942    size_t count = runtime->GetMonitorList()->DeflateMonitors();
943    VLOG(heap) << "Deflating " << count << " monitors took "
944        << PrettyDuration(NanoTime() - start_time);
945    runtime->GetThreadList()->ResumeAll();
946  }
947  // Do a heap trim if it is needed.
948  Trim();
949}
950
951void Heap::Trim() {
952  Thread* self = Thread::Current();
953  {
954    MutexLock mu(self, *heap_trim_request_lock_);
955    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
956      return;
957    }
958    last_trim_time_ = NanoTime();
959    heap_trim_request_pending_ = false;
960  }
961  {
962    // Need to do this before acquiring the locks since we don't want to get suspended while
963    // holding any locks.
964    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
965    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
966    // trimming.
967    MutexLock mu(self, *gc_complete_lock_);
968    // Ensure there is only one GC at a time.
969    WaitForGcToCompleteLocked(kGcCauseTrim, self);
970    collector_type_running_ = kCollectorTypeHeapTrim;
971  }
972  uint64_t start_ns = NanoTime();
973  // Trim the managed spaces.
974  uint64_t total_alloc_space_allocated = 0;
975  uint64_t total_alloc_space_size = 0;
976  uint64_t managed_reclaimed = 0;
977  for (const auto& space : continuous_spaces_) {
978    if (space->IsMallocSpace()) {
979      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
980      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
981        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
982        // for a long period of time.
983        managed_reclaimed += malloc_space->Trim();
984      }
985      total_alloc_space_size += malloc_space->Size();
986    }
987  }
988  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
989  if (bump_pointer_space_ != nullptr) {
990    total_alloc_space_allocated -= bump_pointer_space_->Size();
991  }
992  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
993      static_cast<float>(total_alloc_space_size);
994  uint64_t gc_heap_end_ns = NanoTime();
995  // We never move things in the native heap, so we can finish the GC at this point.
996  FinishGC(self, collector::kGcTypeNone);
997  size_t native_reclaimed = 0;
998  // Only trim the native heap if we don't care about pauses.
999  if (!CareAboutPauseTimes()) {
1000#if defined(USE_DLMALLOC)
1001    // Trim the native heap.
1002    dlmalloc_trim(0);
1003    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1004#elif defined(USE_JEMALLOC)
1005    // Jemalloc does it's own internal trimming.
1006#else
1007    UNIMPLEMENTED(WARNING) << "Add trimming support";
1008#endif
1009  }
1010  uint64_t end_ns = NanoTime();
1011  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1012      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1013      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1014      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1015      << "%.";
1016}
1017
1018bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1019  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1020  // taking the lock.
1021  if (obj == nullptr) {
1022    return true;
1023  }
1024  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1025}
1026
1027bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1028  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1029}
1030
1031bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1032  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1033    return false;
1034  }
1035  for (const auto& space : continuous_spaces_) {
1036    if (space->HasAddress(obj)) {
1037      return true;
1038    }
1039  }
1040  return false;
1041}
1042
1043bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1044                              bool search_live_stack, bool sorted) {
1045  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1046    return false;
1047  }
1048  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1049    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1050    if (obj == klass) {
1051      // This case happens for java.lang.Class.
1052      return true;
1053    }
1054    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1055  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1056    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1057    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1058    return temp_space_->Contains(obj);
1059  }
1060  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1061  space::DiscontinuousSpace* d_space = nullptr;
1062  if (c_space != nullptr) {
1063    if (c_space->GetLiveBitmap()->Test(obj)) {
1064      return true;
1065    }
1066  } else {
1067    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1068    if (d_space != nullptr) {
1069      if (d_space->GetLiveBitmap()->Test(obj)) {
1070        return true;
1071      }
1072    }
1073  }
1074  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1075  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1076    if (i > 0) {
1077      NanoSleep(MsToNs(10));
1078    }
1079    if (search_allocation_stack) {
1080      if (sorted) {
1081        if (allocation_stack_->ContainsSorted(obj)) {
1082          return true;
1083        }
1084      } else if (allocation_stack_->Contains(obj)) {
1085        return true;
1086      }
1087    }
1088
1089    if (search_live_stack) {
1090      if (sorted) {
1091        if (live_stack_->ContainsSorted(obj)) {
1092          return true;
1093        }
1094      } else if (live_stack_->Contains(obj)) {
1095        return true;
1096      }
1097    }
1098  }
1099  // We need to check the bitmaps again since there is a race where we mark something as live and
1100  // then clear the stack containing it.
1101  if (c_space != nullptr) {
1102    if (c_space->GetLiveBitmap()->Test(obj)) {
1103      return true;
1104    }
1105  } else {
1106    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1107    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1108      return true;
1109    }
1110  }
1111  return false;
1112}
1113
1114std::string Heap::DumpSpaces() const {
1115  std::ostringstream oss;
1116  DumpSpaces(oss);
1117  return oss.str();
1118}
1119
1120void Heap::DumpSpaces(std::ostream& stream) const {
1121  for (const auto& space : continuous_spaces_) {
1122    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1123    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1124    stream << space << " " << *space << "\n";
1125    if (live_bitmap != nullptr) {
1126      stream << live_bitmap << " " << *live_bitmap << "\n";
1127    }
1128    if (mark_bitmap != nullptr) {
1129      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1130    }
1131  }
1132  for (const auto& space : discontinuous_spaces_) {
1133    stream << space << " " << *space << "\n";
1134  }
1135}
1136
1137void Heap::VerifyObjectBody(mirror::Object* obj) {
1138  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1139    return;
1140  }
1141
1142  // Ignore early dawn of the universe verifications.
1143  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1144    return;
1145  }
1146  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1147  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1148  CHECK(c != nullptr) << "Null class in object " << obj;
1149  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1150  CHECK(VerifyClassClass(c));
1151
1152  if (verify_object_mode_ > kVerifyObjectModeFast) {
1153    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1154    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1155  }
1156}
1157
1158void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1159  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1160}
1161
1162void Heap::VerifyHeap() {
1163  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1164  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1165}
1166
1167void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1168  // Use signed comparison since freed bytes can be negative when background compaction foreground
1169  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1170  // free list backed space typically increasing memory footprint due to padding and binning.
1171  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1172  // Note: This relies on 2s complement for handling negative freed_bytes.
1173  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1174  if (Runtime::Current()->HasStatsEnabled()) {
1175    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1176    thread_stats->freed_objects += freed_objects;
1177    thread_stats->freed_bytes += freed_bytes;
1178    // TODO: Do this concurrently.
1179    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1180    global_stats->freed_objects += freed_objects;
1181    global_stats->freed_bytes += freed_bytes;
1182  }
1183}
1184
1185space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1186  for (const auto& space : continuous_spaces_) {
1187    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1188      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1189        return space->AsContinuousSpace()->AsRosAllocSpace();
1190      }
1191    }
1192  }
1193  return nullptr;
1194}
1195
1196mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1197                                             size_t alloc_size, size_t* bytes_allocated,
1198                                             size_t* usable_size,
1199                                             mirror::Class** klass) {
1200  bool was_default_allocator = allocator == GetCurrentAllocator();
1201  DCHECK(klass != nullptr);
1202  StackHandleScope<1> hs(self);
1203  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1204  klass = nullptr;  // Invalidate for safety.
1205  // The allocation failed. If the GC is running, block until it completes, and then retry the
1206  // allocation.
1207  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1208  if (last_gc != collector::kGcTypeNone) {
1209    // If we were the default allocator but the allocator changed while we were suspended,
1210    // abort the allocation.
1211    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1212      return nullptr;
1213    }
1214    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1215    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1216                                                     usable_size);
1217    if (ptr != nullptr) {
1218      return ptr;
1219    }
1220  }
1221
1222  collector::GcType tried_type = next_gc_type_;
1223  const bool gc_ran =
1224      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1225  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1226    return nullptr;
1227  }
1228  if (gc_ran) {
1229    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1230                                                     usable_size);
1231    if (ptr != nullptr) {
1232      return ptr;
1233    }
1234  }
1235
1236  // Loop through our different Gc types and try to Gc until we get enough free memory.
1237  for (collector::GcType gc_type : gc_plan_) {
1238    if (gc_type == tried_type) {
1239      continue;
1240    }
1241    // Attempt to run the collector, if we succeed, re-try the allocation.
1242    const bool gc_ran =
1243        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1244    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1245      return nullptr;
1246    }
1247    if (gc_ran) {
1248      // Did we free sufficient memory for the allocation to succeed?
1249      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1250                                                       usable_size);
1251      if (ptr != nullptr) {
1252        return ptr;
1253      }
1254    }
1255  }
1256  // Allocations have failed after GCs;  this is an exceptional state.
1257  // Try harder, growing the heap if necessary.
1258  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1259                                                  usable_size);
1260  if (ptr != nullptr) {
1261    return ptr;
1262  }
1263  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1264  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1265  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1266  // OOME.
1267  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1268           << " allocation";
1269  // TODO: Run finalization, but this may cause more allocations to occur.
1270  // We don't need a WaitForGcToComplete here either.
1271  DCHECK(!gc_plan_.empty());
1272  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1273  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1274    return nullptr;
1275  }
1276  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1277  if (ptr == nullptr && use_homogeneous_space_compaction_for_oom_) {
1278    const uint64_t current_time = NanoTime();
1279    if ((allocator == kAllocatorTypeRosAlloc || allocator == kAllocatorTypeDlMalloc) &&
1280        current_time - last_time_homogeneous_space_compaction_by_oom_ >
1281        min_interval_homogeneous_space_compaction_by_oom_) {
1282      last_time_homogeneous_space_compaction_by_oom_ = current_time;
1283      HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1284      switch (result) {
1285        case HomogeneousSpaceCompactResult::kSuccess:
1286          // If the allocation succeeded, we delayed an oom.
1287          ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1288          if (ptr != nullptr) {
1289            count_delayed_oom_++;
1290          }
1291          break;
1292        case HomogeneousSpaceCompactResult::kErrorReject:
1293          // Reject due to disabled moving GC.
1294          break;
1295        case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1296          // Throw OOM by default.
1297          break;
1298        default: {
1299          LOG(FATAL) << "Unimplemented homogeneous space compaction result " << static_cast<size_t>(result);
1300        }
1301      }
1302      // Always print that we ran homogeneous space compation since this can cause jank.
1303      VLOG(heap) << "Ran heap homogeneous space compaction, "
1304                << " requested defragmentation "
1305                << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1306                << " performed defragmentation "
1307                << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1308                << " ignored homogeneous space compaction "
1309                << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1310                << " delayed count = "
1311                << count_delayed_oom_.LoadSequentiallyConsistent();
1312    }
1313  }
1314  // If the allocation hasn't succeeded by this point, throw an OOM error.
1315  if (ptr == nullptr) {
1316    ThrowOutOfMemoryError(self, alloc_size, allocator);
1317  }
1318  return ptr;
1319}
1320
1321void Heap::SetTargetHeapUtilization(float target) {
1322  DCHECK_GT(target, 0.0f);  // asserted in Java code
1323  DCHECK_LT(target, 1.0f);
1324  target_utilization_ = target;
1325}
1326
1327size_t Heap::GetObjectsAllocated() const {
1328  size_t total = 0;
1329  for (space::AllocSpace* space : alloc_spaces_) {
1330    total += space->GetObjectsAllocated();
1331  }
1332  return total;
1333}
1334
1335size_t Heap::GetObjectsAllocatedEver() const {
1336  return GetObjectsFreedEver() + GetObjectsAllocated();
1337}
1338
1339size_t Heap::GetBytesAllocatedEver() const {
1340  return GetBytesFreedEver() + GetBytesAllocated();
1341}
1342
1343class InstanceCounter {
1344 public:
1345  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1346      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1347      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1348  }
1349  static void Callback(mirror::Object* obj, void* arg)
1350      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1351    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1352    mirror::Class* instance_class = obj->GetClass();
1353    CHECK(instance_class != nullptr);
1354    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1355      if (instance_counter->use_is_assignable_from_) {
1356        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1357          ++instance_counter->counts_[i];
1358        }
1359      } else if (instance_class == instance_counter->classes_[i]) {
1360        ++instance_counter->counts_[i];
1361      }
1362    }
1363  }
1364
1365 private:
1366  const std::vector<mirror::Class*>& classes_;
1367  bool use_is_assignable_from_;
1368  uint64_t* const counts_;
1369  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1370};
1371
1372void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1373                          uint64_t* counts) {
1374  // Can't do any GC in this function since this may move classes.
1375  Thread* self = Thread::Current();
1376  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1377  InstanceCounter counter(classes, use_is_assignable_from, counts);
1378  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1379  VisitObjects(InstanceCounter::Callback, &counter);
1380  self->EndAssertNoThreadSuspension(old_cause);
1381}
1382
1383class InstanceCollector {
1384 public:
1385  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1386      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1387      : class_(c), max_count_(max_count), instances_(instances) {
1388  }
1389  static void Callback(mirror::Object* obj, void* arg)
1390      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1391    DCHECK(arg != nullptr);
1392    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1393    mirror::Class* instance_class = obj->GetClass();
1394    if (instance_class == instance_collector->class_) {
1395      if (instance_collector->max_count_ == 0 ||
1396          instance_collector->instances_.size() < instance_collector->max_count_) {
1397        instance_collector->instances_.push_back(obj);
1398      }
1399    }
1400  }
1401
1402 private:
1403  mirror::Class* class_;
1404  uint32_t max_count_;
1405  std::vector<mirror::Object*>& instances_;
1406  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1407};
1408
1409void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1410                        std::vector<mirror::Object*>& instances) {
1411  // Can't do any GC in this function since this may move classes.
1412  Thread* self = Thread::Current();
1413  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1414  InstanceCollector collector(c, max_count, instances);
1415  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1416  VisitObjects(&InstanceCollector::Callback, &collector);
1417  self->EndAssertNoThreadSuspension(old_cause);
1418}
1419
1420class ReferringObjectsFinder {
1421 public:
1422  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1423                         std::vector<mirror::Object*>& referring_objects)
1424      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1425      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1426  }
1427
1428  static void Callback(mirror::Object* obj, void* arg)
1429      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1430    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1431  }
1432
1433  // For bitmap Visit.
1434  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1435  // annotalysis on visitors.
1436  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1437    o->VisitReferences<true>(*this, VoidFunctor());
1438  }
1439
1440  // For Object::VisitReferences.
1441  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1442      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1443    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1444    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1445      referring_objects_.push_back(obj);
1446    }
1447  }
1448
1449 private:
1450  mirror::Object* object_;
1451  uint32_t max_count_;
1452  std::vector<mirror::Object*>& referring_objects_;
1453  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1454};
1455
1456void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1457                               std::vector<mirror::Object*>& referring_objects) {
1458  // Can't do any GC in this function since this may move the object o.
1459  Thread* self = Thread::Current();
1460  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1461  ReferringObjectsFinder finder(o, max_count, referring_objects);
1462  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1463  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1464  self->EndAssertNoThreadSuspension(old_cause);
1465}
1466
1467void Heap::CollectGarbage(bool clear_soft_references) {
1468  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1469  // last GC will not have necessarily been cleared.
1470  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1471}
1472
1473HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1474  Thread* self = Thread::Current();
1475  // Inc requested homogeneous space compaction.
1476  count_requested_homogeneous_space_compaction_++;
1477  // Store performed homogeneous space compaction at a new request arrival.
1478  ThreadList* tl = Runtime::Current()->GetThreadList();
1479  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1480  Locks::mutator_lock_->AssertNotHeld(self);
1481  {
1482    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1483    MutexLock mu(self, *gc_complete_lock_);
1484    // Ensure there is only one GC at a time.
1485    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1486    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1487    // is non zero.
1488    // If the collecotr type changed to something which doesn't benefit from homogeneous space compaction,
1489    // exit.
1490    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_)) {
1491      return HomogeneousSpaceCompactResult::kErrorReject;
1492    }
1493    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1494  }
1495  if (Runtime::Current()->IsShuttingDown(self)) {
1496    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1497    // cause objects to get finalized.
1498    FinishGC(self, collector::kGcTypeNone);
1499    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1500  }
1501  // Suspend all threads.
1502  tl->SuspendAll();
1503  uint64_t start_time = NanoTime();
1504  // Launch compaction.
1505  space::MallocSpace* to_space = main_space_backup_.release();
1506  space::MallocSpace* from_space = main_space_;
1507  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1508  const uint64_t space_size_before_compaction = from_space->Size();
1509  AddSpace(to_space);
1510  Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1511  // Leave as prot read so that we can still run ROSAlloc verification on this space.
1512  from_space->GetMemMap()->Protect(PROT_READ);
1513  const uint64_t space_size_after_compaction = to_space->Size();
1514  main_space_ = to_space;
1515  main_space_backup_.reset(from_space);
1516  RemoveSpace(from_space);
1517  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1518  // Update performed homogeneous space compaction count.
1519  count_performed_homogeneous_space_compaction_++;
1520  // Print statics log and resume all threads.
1521  uint64_t duration = NanoTime() - start_time;
1522  LOG(INFO) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1523            << PrettySize(space_size_before_compaction) << " -> "
1524            << PrettySize(space_size_after_compaction) << " compact-ratio: "
1525            << std::fixed << static_cast<double>(space_size_after_compaction) /
1526            static_cast<double>(space_size_before_compaction);
1527  tl->ResumeAll();
1528  // Finish GC.
1529  reference_processor_.EnqueueClearedReferences(self);
1530  GrowForUtilization(semi_space_collector_);
1531  FinishGC(self, collector::kGcTypeFull);
1532  return HomogeneousSpaceCompactResult::kSuccess;
1533}
1534
1535
1536void Heap::TransitionCollector(CollectorType collector_type) {
1537  if (collector_type == collector_type_) {
1538    return;
1539  }
1540  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1541             << " -> " << static_cast<int>(collector_type);
1542  uint64_t start_time = NanoTime();
1543  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1544  Runtime* const runtime = Runtime::Current();
1545  ThreadList* const tl = runtime->GetThreadList();
1546  Thread* const self = Thread::Current();
1547  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1548  Locks::mutator_lock_->AssertNotHeld(self);
1549  const bool copying_transition =
1550      IsMovingGc(background_collector_type_) || IsMovingGc(foreground_collector_type_);
1551  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1552  // compacting_gc_disable_count_, this should rarely occurs).
1553  for (;;) {
1554    {
1555      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1556      MutexLock mu(self, *gc_complete_lock_);
1557      // Ensure there is only one GC at a time.
1558      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1559      // If someone else beat us to it and changed the collector before we could, exit.
1560      // This is safe to do before the suspend all since we set the collector_type_running_ before
1561      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1562      // then it would get blocked on WaitForGcToCompleteLocked.
1563      if (collector_type == collector_type_) {
1564        return;
1565      }
1566      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1567      if (!copying_transition || disable_moving_gc_count_ == 0) {
1568        // TODO: Not hard code in semi-space collector?
1569        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1570        break;
1571      }
1572    }
1573    usleep(1000);
1574  }
1575  if (runtime->IsShuttingDown(self)) {
1576    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1577    // cause objects to get finalized.
1578    FinishGC(self, collector::kGcTypeNone);
1579    return;
1580  }
1581  tl->SuspendAll();
1582  switch (collector_type) {
1583    case kCollectorTypeSS: {
1584      if (!IsMovingGc(collector_type_)) {
1585        // Create the bump pointer space from the backup space.
1586        CHECK(main_space_backup_ != nullptr);
1587        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1588        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1589        // pointer space last transition it will be protected.
1590        CHECK(mem_map != nullptr);
1591        mem_map->Protect(PROT_READ | PROT_WRITE);
1592        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1593                                                                        mem_map.release());
1594        AddSpace(bump_pointer_space_);
1595        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1596        // Use the now empty main space mem map for the bump pointer temp space.
1597        mem_map.reset(main_space_->ReleaseMemMap());
1598        // Unset the pointers just in case.
1599        if (dlmalloc_space_ == main_space_) {
1600          dlmalloc_space_ = nullptr;
1601        } else if (rosalloc_space_ == main_space_) {
1602          rosalloc_space_ = nullptr;
1603        }
1604        // Remove the main space so that we don't try to trim it, this doens't work for debug
1605        // builds since RosAlloc attempts to read the magic number from a protected page.
1606        RemoveSpace(main_space_);
1607        RemoveRememberedSet(main_space_);
1608        delete main_space_;  // Delete the space since it has been removed.
1609        main_space_ = nullptr;
1610        RemoveRememberedSet(main_space_backup_.get());
1611        main_space_backup_.reset(nullptr);  // Deletes the space.
1612        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1613                                                                mem_map.release());
1614        AddSpace(temp_space_);
1615      }
1616      break;
1617    }
1618    case kCollectorTypeMS:
1619      // Fall through.
1620    case kCollectorTypeCMS: {
1621      if (IsMovingGc(collector_type_)) {
1622        CHECK(temp_space_ != nullptr);
1623        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1624        RemoveSpace(temp_space_);
1625        temp_space_ = nullptr;
1626        mem_map->Protect(PROT_READ | PROT_WRITE);
1627        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, mem_map->Size(),
1628                              mem_map->Size());
1629        mem_map.release();
1630        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1631        AddSpace(main_space_);
1632        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1633        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1634        RemoveSpace(bump_pointer_space_);
1635        bump_pointer_space_ = nullptr;
1636        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1637        // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1638        if (kIsDebugBuild && kUseRosAlloc) {
1639          mem_map->Protect(PROT_READ | PROT_WRITE);
1640        }
1641        main_space_backup_.reset(CreateMallocSpaceFromMemMap(mem_map.get(), kDefaultInitialSize,
1642                                                             mem_map->Size(), mem_map->Size(),
1643                                                             name, true));
1644        if (kIsDebugBuild && kUseRosAlloc) {
1645          mem_map->Protect(PROT_NONE);
1646        }
1647        mem_map.release();
1648      }
1649      break;
1650    }
1651    default: {
1652      LOG(FATAL) << "Attempted to transition to invalid collector type "
1653                 << static_cast<size_t>(collector_type);
1654      break;
1655    }
1656  }
1657  ChangeCollector(collector_type);
1658  tl->ResumeAll();
1659  // Can't call into java code with all threads suspended.
1660  reference_processor_.EnqueueClearedReferences(self);
1661  uint64_t duration = NanoTime() - start_time;
1662  GrowForUtilization(semi_space_collector_);
1663  FinishGC(self, collector::kGcTypeFull);
1664  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1665  int32_t delta_allocated = before_allocated - after_allocated;
1666  std::string saved_str;
1667  if (delta_allocated >= 0) {
1668    saved_str = " saved at least " + PrettySize(delta_allocated);
1669  } else {
1670    saved_str = " expanded " + PrettySize(-delta_allocated);
1671  }
1672  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1673      << PrettyDuration(duration) << saved_str;
1674}
1675
1676void Heap::ChangeCollector(CollectorType collector_type) {
1677  // TODO: Only do this with all mutators suspended to avoid races.
1678  if (collector_type != collector_type_) {
1679    if (collector_type == kCollectorTypeMC) {
1680      // Don't allow mark compact unless support is compiled in.
1681      CHECK(kMarkCompactSupport);
1682    }
1683    collector_type_ = collector_type;
1684    gc_plan_.clear();
1685    switch (collector_type_) {
1686      case kCollectorTypeCC:  // Fall-through.
1687      case kCollectorTypeMC:  // Fall-through.
1688      case kCollectorTypeSS:  // Fall-through.
1689      case kCollectorTypeGSS: {
1690        gc_plan_.push_back(collector::kGcTypeFull);
1691        if (use_tlab_) {
1692          ChangeAllocator(kAllocatorTypeTLAB);
1693        } else {
1694          ChangeAllocator(kAllocatorTypeBumpPointer);
1695        }
1696        break;
1697      }
1698      case kCollectorTypeMS: {
1699        gc_plan_.push_back(collector::kGcTypeSticky);
1700        gc_plan_.push_back(collector::kGcTypePartial);
1701        gc_plan_.push_back(collector::kGcTypeFull);
1702        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1703        break;
1704      }
1705      case kCollectorTypeCMS: {
1706        gc_plan_.push_back(collector::kGcTypeSticky);
1707        gc_plan_.push_back(collector::kGcTypePartial);
1708        gc_plan_.push_back(collector::kGcTypeFull);
1709        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1710        break;
1711      }
1712      default: {
1713        LOG(FATAL) << "Unimplemented";
1714      }
1715    }
1716    if (IsGcConcurrent()) {
1717      concurrent_start_bytes_ =
1718          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1719    } else {
1720      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1721    }
1722  }
1723}
1724
1725// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1726class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1727 public:
1728  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1729      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1730  }
1731
1732  void BuildBins(space::ContinuousSpace* space) {
1733    bin_live_bitmap_ = space->GetLiveBitmap();
1734    bin_mark_bitmap_ = space->GetMarkBitmap();
1735    BinContext context;
1736    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1737    context.collector_ = this;
1738    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1739    // Note: This requires traversing the space in increasing order of object addresses.
1740    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1741    // Add the last bin which spans after the last object to the end of the space.
1742    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1743  }
1744
1745 private:
1746  struct BinContext {
1747    uintptr_t prev_;  // The end of the previous object.
1748    ZygoteCompactingCollector* collector_;
1749  };
1750  // Maps from bin sizes to locations.
1751  std::multimap<size_t, uintptr_t> bins_;
1752  // Live bitmap of the space which contains the bins.
1753  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1754  // Mark bitmap of the space which contains the bins.
1755  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1756
1757  static void Callback(mirror::Object* obj, void* arg)
1758      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1759    DCHECK(arg != nullptr);
1760    BinContext* context = reinterpret_cast<BinContext*>(arg);
1761    ZygoteCompactingCollector* collector = context->collector_;
1762    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1763    size_t bin_size = object_addr - context->prev_;
1764    // Add the bin consisting of the end of the previous object to the start of the current object.
1765    collector->AddBin(bin_size, context->prev_);
1766    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1767  }
1768
1769  void AddBin(size_t size, uintptr_t position) {
1770    if (size != 0) {
1771      bins_.insert(std::make_pair(size, position));
1772    }
1773  }
1774
1775  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1776    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1777    // allocator.
1778    return false;
1779  }
1780
1781  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1782      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1783    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1784    mirror::Object* forward_address;
1785    // Find the smallest bin which we can move obj in.
1786    auto it = bins_.lower_bound(object_size);
1787    if (it == bins_.end()) {
1788      // No available space in the bins, place it in the target space instead (grows the zygote
1789      // space).
1790      size_t bytes_allocated;
1791      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1792      if (to_space_live_bitmap_ != nullptr) {
1793        to_space_live_bitmap_->Set(forward_address);
1794      } else {
1795        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1796        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1797      }
1798    } else {
1799      size_t size = it->first;
1800      uintptr_t pos = it->second;
1801      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1802      forward_address = reinterpret_cast<mirror::Object*>(pos);
1803      // Set the live and mark bits so that sweeping system weaks works properly.
1804      bin_live_bitmap_->Set(forward_address);
1805      bin_mark_bitmap_->Set(forward_address);
1806      DCHECK_GE(size, object_size);
1807      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1808    }
1809    // Copy the object over to its new location.
1810    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1811    if (kUseBakerOrBrooksReadBarrier) {
1812      obj->AssertReadBarrierPointer();
1813      if (kUseBrooksReadBarrier) {
1814        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1815        forward_address->SetReadBarrierPointer(forward_address);
1816      }
1817      forward_address->AssertReadBarrierPointer();
1818    }
1819    return forward_address;
1820  }
1821};
1822
1823void Heap::UnBindBitmaps() {
1824  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1825  for (const auto& space : GetContinuousSpaces()) {
1826    if (space->IsContinuousMemMapAllocSpace()) {
1827      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1828      if (alloc_space->HasBoundBitmaps()) {
1829        alloc_space->UnBindBitmaps();
1830      }
1831    }
1832  }
1833}
1834
1835void Heap::PreZygoteFork() {
1836  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1837  Thread* self = Thread::Current();
1838  MutexLock mu(self, zygote_creation_lock_);
1839  // Try to see if we have any Zygote spaces.
1840  if (have_zygote_space_) {
1841    return;
1842  }
1843  VLOG(heap) << "Starting PreZygoteFork";
1844  // Trim the pages at the end of the non moving space.
1845  non_moving_space_->Trim();
1846  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1847  // there.
1848  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1849  // Change the collector to the post zygote one.
1850  bool same_space = non_moving_space_ == main_space_;
1851  if (kCompactZygote) {
1852    DCHECK(semi_space_collector_ != nullptr);
1853    // Temporarily disable rosalloc verification because the zygote
1854    // compaction will mess up the rosalloc internal metadata.
1855    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1856    ZygoteCompactingCollector zygote_collector(this);
1857    zygote_collector.BuildBins(non_moving_space_);
1858    // Create a new bump pointer space which we will compact into.
1859    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1860                                         non_moving_space_->Limit());
1861    // Compact the bump pointer space to a new zygote bump pointer space.
1862    bool reset_main_space = false;
1863    if (IsMovingGc(collector_type_)) {
1864      zygote_collector.SetFromSpace(bump_pointer_space_);
1865    } else {
1866      CHECK(main_space_ != nullptr);
1867      // Copy from the main space.
1868      zygote_collector.SetFromSpace(main_space_);
1869      reset_main_space = true;
1870    }
1871    zygote_collector.SetToSpace(&target_space);
1872    zygote_collector.SetSwapSemiSpaces(false);
1873    zygote_collector.Run(kGcCauseCollectorTransition, false);
1874    if (reset_main_space) {
1875      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1876      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1877      MemMap* mem_map = main_space_->ReleaseMemMap();
1878      RemoveSpace(main_space_);
1879      space::Space* old_main_space = main_space_;
1880      CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1881      delete old_main_space;
1882      AddSpace(main_space_);
1883    } else {
1884      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1885    }
1886    if (temp_space_ != nullptr) {
1887      CHECK(temp_space_->IsEmpty());
1888    }
1889    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1890    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1891    // Update the end and write out image.
1892    non_moving_space_->SetEnd(target_space.End());
1893    non_moving_space_->SetLimit(target_space.Limit());
1894    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1895  }
1896  ChangeCollector(foreground_collector_type_);
1897  // Save the old space so that we can remove it after we complete creating the zygote space.
1898  space::MallocSpace* old_alloc_space = non_moving_space_;
1899  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1900  // the remaining available space.
1901  // Remove the old space before creating the zygote space since creating the zygote space sets
1902  // the old alloc space's bitmaps to nullptr.
1903  RemoveSpace(old_alloc_space);
1904  if (collector::SemiSpace::kUseRememberedSet) {
1905    // Sanity bound check.
1906    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1907    // Remove the remembered set for the now zygote space (the old
1908    // non-moving space). Note now that we have compacted objects into
1909    // the zygote space, the data in the remembered set is no longer
1910    // needed. The zygote space will instead have a mod-union table
1911    // from this point on.
1912    RemoveRememberedSet(old_alloc_space);
1913  }
1914  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1915                                                                        low_memory_mode_,
1916                                                                        &non_moving_space_);
1917  CHECK(!non_moving_space_->CanMoveObjects());
1918  if (same_space) {
1919    main_space_ = non_moving_space_;
1920    SetSpaceAsDefault(main_space_);
1921  }
1922  delete old_alloc_space;
1923  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1924  AddSpace(zygote_space);
1925  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1926  AddSpace(non_moving_space_);
1927  have_zygote_space_ = true;
1928  // Enable large object space allocations.
1929  large_object_threshold_ = kDefaultLargeObjectThreshold;
1930  // Create the zygote space mod union table.
1931  accounting::ModUnionTable* mod_union_table =
1932      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1933  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1934  AddModUnionTable(mod_union_table);
1935  if (collector::SemiSpace::kUseRememberedSet) {
1936    // Add a new remembered set for the post-zygote non-moving space.
1937    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1938        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1939                                      non_moving_space_);
1940    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1941        << "Failed to create post-zygote non-moving space remembered set";
1942    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1943  }
1944}
1945
1946void Heap::FlushAllocStack() {
1947  MarkAllocStackAsLive(allocation_stack_.get());
1948  allocation_stack_->Reset();
1949}
1950
1951void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
1952                          accounting::ContinuousSpaceBitmap* bitmap2,
1953                          accounting::LargeObjectBitmap* large_objects,
1954                          accounting::ObjectStack* stack) {
1955  DCHECK(bitmap1 != nullptr);
1956  DCHECK(bitmap2 != nullptr);
1957  mirror::Object** limit = stack->End();
1958  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1959    const mirror::Object* obj = *it;
1960    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1961      if (bitmap1->HasAddress(obj)) {
1962        bitmap1->Set(obj);
1963      } else if (bitmap2->HasAddress(obj)) {
1964        bitmap2->Set(obj);
1965      } else {
1966        large_objects->Set(obj);
1967      }
1968    }
1969  }
1970}
1971
1972void Heap::SwapSemiSpaces() {
1973  CHECK(bump_pointer_space_ != nullptr);
1974  CHECK(temp_space_ != nullptr);
1975  std::swap(bump_pointer_space_, temp_space_);
1976}
1977
1978void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1979                   space::ContinuousMemMapAllocSpace* source_space,
1980                   GcCause gc_cause) {
1981  CHECK(kMovingCollector);
1982  if (target_space != source_space) {
1983    // Don't swap spaces since this isn't a typical semi space collection.
1984    semi_space_collector_->SetSwapSemiSpaces(false);
1985    semi_space_collector_->SetFromSpace(source_space);
1986    semi_space_collector_->SetToSpace(target_space);
1987    semi_space_collector_->Run(gc_cause, false);
1988  } else {
1989    CHECK(target_space->IsBumpPointerSpace())
1990        << "In-place compaction is only supported for bump pointer spaces";
1991    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
1992    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
1993  }
1994}
1995
1996collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1997                                               bool clear_soft_references) {
1998  Thread* self = Thread::Current();
1999  Runtime* runtime = Runtime::Current();
2000  // If the heap can't run the GC, silently fail and return that no GC was run.
2001  switch (gc_type) {
2002    case collector::kGcTypePartial: {
2003      if (!have_zygote_space_) {
2004        return collector::kGcTypeNone;
2005      }
2006      break;
2007    }
2008    default: {
2009      // Other GC types don't have any special cases which makes them not runnable. The main case
2010      // here is full GC.
2011    }
2012  }
2013  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2014  Locks::mutator_lock_->AssertNotHeld(self);
2015  if (self->IsHandlingStackOverflow()) {
2016    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
2017  }
2018  bool compacting_gc;
2019  {
2020    gc_complete_lock_->AssertNotHeld(self);
2021    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2022    MutexLock mu(self, *gc_complete_lock_);
2023    // Ensure there is only one GC at a time.
2024    WaitForGcToCompleteLocked(gc_cause, self);
2025    compacting_gc = IsMovingGc(collector_type_);
2026    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2027    if (compacting_gc && disable_moving_gc_count_ != 0) {
2028      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2029      return collector::kGcTypeNone;
2030    }
2031    collector_type_running_ = collector_type_;
2032  }
2033
2034  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2035    ++runtime->GetStats()->gc_for_alloc_count;
2036    ++self->GetStats()->gc_for_alloc_count;
2037  }
2038  uint64_t gc_start_time_ns = NanoTime();
2039  uint64_t gc_start_size = GetBytesAllocated();
2040  // Approximate allocation rate in bytes / second.
2041  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
2042  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
2043  if (LIKELY(ms_delta != 0)) {
2044    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
2045    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
2046  }
2047
2048  DCHECK_LT(gc_type, collector::kGcTypeMax);
2049  DCHECK_NE(gc_type, collector::kGcTypeNone);
2050
2051  collector::GarbageCollector* collector = nullptr;
2052  // TODO: Clean this up.
2053  if (compacting_gc) {
2054    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2055           current_allocator_ == kAllocatorTypeTLAB);
2056    switch (collector_type_) {
2057      case kCollectorTypeSS:
2058        // Fall-through.
2059      case kCollectorTypeGSS:
2060        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2061        semi_space_collector_->SetToSpace(temp_space_);
2062        semi_space_collector_->SetSwapSemiSpaces(true);
2063        collector = semi_space_collector_;
2064        break;
2065      case kCollectorTypeCC:
2066        collector = concurrent_copying_collector_;
2067        break;
2068      case kCollectorTypeMC:
2069        mark_compact_collector_->SetSpace(bump_pointer_space_);
2070        collector = mark_compact_collector_;
2071        break;
2072      default:
2073        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2074    }
2075    if (collector != mark_compact_collector_) {
2076      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2077      CHECK(temp_space_->IsEmpty());
2078    }
2079    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2080  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2081      current_allocator_ == kAllocatorTypeDlMalloc) {
2082    collector = FindCollectorByGcType(gc_type);
2083  } else {
2084    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2085  }
2086  CHECK(collector != nullptr)
2087      << "Could not find garbage collector with collector_type="
2088      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2089  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2090  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2091  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2092  RequestHeapTrim();
2093  // Enqueue cleared references.
2094  reference_processor_.EnqueueClearedReferences(self);
2095  // Grow the heap so that we know when to perform the next GC.
2096  GrowForUtilization(collector);
2097  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2098  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2099  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2100  // (mutator time blocked >= long_pause_log_threshold_).
2101  bool log_gc = gc_cause == kGcCauseExplicit;
2102  if (!log_gc && CareAboutPauseTimes()) {
2103    // GC for alloc pauses the allocating thread, so consider it as a pause.
2104    log_gc = duration > long_gc_log_threshold_ ||
2105        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2106    for (uint64_t pause : pause_times) {
2107      log_gc = log_gc || pause >= long_pause_log_threshold_;
2108    }
2109  }
2110  if (log_gc) {
2111    const size_t percent_free = GetPercentFree();
2112    const size_t current_heap_size = GetBytesAllocated();
2113    const size_t total_memory = GetTotalMemory();
2114    std::ostringstream pause_string;
2115    for (size_t i = 0; i < pause_times.size(); ++i) {
2116        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2117                     << ((i != pause_times.size() - 1) ? "," : "");
2118    }
2119    LOG(INFO) << gc_cause << " " << collector->GetName()
2120              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2121              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2122              << current_gc_iteration_.GetFreedLargeObjects() << "("
2123              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2124              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2125              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2126              << " total " << PrettyDuration((duration / 1000) * 1000);
2127    VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2128  }
2129  FinishGC(self, gc_type);
2130  // Inform DDMS that a GC completed.
2131  Dbg::GcDidFinish();
2132  return gc_type;
2133}
2134
2135void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2136  MutexLock mu(self, *gc_complete_lock_);
2137  collector_type_running_ = kCollectorTypeNone;
2138  if (gc_type != collector::kGcTypeNone) {
2139    last_gc_type_ = gc_type;
2140  }
2141  // Wake anyone who may have been waiting for the GC to complete.
2142  gc_complete_cond_->Broadcast(self);
2143}
2144
2145static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2146                                     RootType /*root_type*/) {
2147  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2148  if (*root == obj) {
2149    LOG(INFO) << "Object " << obj << " is a root";
2150  }
2151}
2152
2153class ScanVisitor {
2154 public:
2155  void operator()(const mirror::Object* obj) const {
2156    LOG(ERROR) << "Would have rescanned object " << obj;
2157  }
2158};
2159
2160// Verify a reference from an object.
2161class VerifyReferenceVisitor {
2162 public:
2163  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2164      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2165      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2166
2167  size_t GetFailureCount() const {
2168    return fail_count_->LoadSequentiallyConsistent();
2169  }
2170
2171  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2172      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2173    if (verify_referent_) {
2174      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2175    }
2176  }
2177
2178  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2179      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2180    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2181  }
2182
2183  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2184    return heap_->IsLiveObjectLocked(obj, true, false, true);
2185  }
2186
2187  static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
2188                                 RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2189    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2190    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2191      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2192          << " thread_id= " << thread_id << " root_type= " << root_type;
2193    }
2194  }
2195
2196 private:
2197  // TODO: Fix the no thread safety analysis.
2198  // Returns false on failure.
2199  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2200      NO_THREAD_SAFETY_ANALYSIS {
2201    if (ref == nullptr || IsLive(ref)) {
2202      // Verify that the reference is live.
2203      return true;
2204    }
2205    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2206      // Print message on only on first failure to prevent spam.
2207      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2208    }
2209    if (obj != nullptr) {
2210      // Only do this part for non roots.
2211      accounting::CardTable* card_table = heap_->GetCardTable();
2212      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2213      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2214      byte* card_addr = card_table->CardFromAddr(obj);
2215      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2216                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2217      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2218        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2219      } else {
2220        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2221      }
2222
2223      // Attempt to find the class inside of the recently freed objects.
2224      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2225      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2226        space::MallocSpace* space = ref_space->AsMallocSpace();
2227        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2228        if (ref_class != nullptr) {
2229          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2230                     << PrettyClass(ref_class);
2231        } else {
2232          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2233        }
2234      }
2235
2236      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2237          ref->GetClass()->IsClass()) {
2238        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2239      } else {
2240        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2241                   << ") is not a valid heap address";
2242      }
2243
2244      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2245      void* cover_begin = card_table->AddrFromCard(card_addr);
2246      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2247          accounting::CardTable::kCardSize);
2248      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2249          << "-" << cover_end;
2250      accounting::ContinuousSpaceBitmap* bitmap =
2251          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2252
2253      if (bitmap == nullptr) {
2254        LOG(ERROR) << "Object " << obj << " has no bitmap";
2255        if (!VerifyClassClass(obj->GetClass())) {
2256          LOG(ERROR) << "Object " << obj << " failed class verification!";
2257        }
2258      } else {
2259        // Print out how the object is live.
2260        if (bitmap->Test(obj)) {
2261          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2262        }
2263        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2264          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2265        }
2266        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2267          LOG(ERROR) << "Object " << obj << " found in live stack";
2268        }
2269        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2270          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2271        }
2272        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2273          LOG(ERROR) << "Ref " << ref << " found in live stack";
2274        }
2275        // Attempt to see if the card table missed the reference.
2276        ScanVisitor scan_visitor;
2277        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2278        card_table->Scan(bitmap, byte_cover_begin,
2279                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2280      }
2281
2282      // Search to see if any of the roots reference our object.
2283      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2284      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2285
2286      // Search to see if any of the roots reference our reference.
2287      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2288      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2289    }
2290    return false;
2291  }
2292
2293  Heap* const heap_;
2294  Atomic<size_t>* const fail_count_;
2295  const bool verify_referent_;
2296};
2297
2298// Verify all references within an object, for use with HeapBitmap::Visit.
2299class VerifyObjectVisitor {
2300 public:
2301  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2302      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2303  }
2304
2305  void operator()(mirror::Object* obj) const
2306      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2307    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2308    // be live or else how did we find it in the live bitmap?
2309    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2310    // The class doesn't count as a reference but we should verify it anyways.
2311    obj->VisitReferences<true>(visitor, visitor);
2312  }
2313
2314  static void VisitCallback(mirror::Object* obj, void* arg)
2315      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2316    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2317    visitor->operator()(obj);
2318  }
2319
2320  size_t GetFailureCount() const {
2321    return fail_count_->LoadSequentiallyConsistent();
2322  }
2323
2324 private:
2325  Heap* const heap_;
2326  Atomic<size_t>* const fail_count_;
2327  const bool verify_referent_;
2328};
2329
2330void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2331  // Slow path, the allocation stack push back must have already failed.
2332  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2333  do {
2334    // TODO: Add handle VerifyObject.
2335    StackHandleScope<1> hs(self);
2336    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2337    // Push our object into the reserve region of the allocaiton stack. This is only required due
2338    // to heap verification requiring that roots are live (either in the live bitmap or in the
2339    // allocation stack).
2340    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2341    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2342  } while (!allocation_stack_->AtomicPushBack(*obj));
2343}
2344
2345void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2346  // Slow path, the allocation stack push back must have already failed.
2347  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2348  mirror::Object** start_address;
2349  mirror::Object** end_address;
2350  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2351                                            &end_address)) {
2352    // TODO: Add handle VerifyObject.
2353    StackHandleScope<1> hs(self);
2354    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2355    // Push our object into the reserve region of the allocaiton stack. This is only required due
2356    // to heap verification requiring that roots are live (either in the live bitmap or in the
2357    // allocation stack).
2358    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2359    // Push into the reserve allocation stack.
2360    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2361  }
2362  self->SetThreadLocalAllocationStack(start_address, end_address);
2363  // Retry on the new thread-local allocation stack.
2364  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2365}
2366
2367// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2368size_t Heap::VerifyHeapReferences(bool verify_referents) {
2369  Thread* self = Thread::Current();
2370  Locks::mutator_lock_->AssertExclusiveHeld(self);
2371  // Lets sort our allocation stacks so that we can efficiently binary search them.
2372  allocation_stack_->Sort();
2373  live_stack_->Sort();
2374  // Since we sorted the allocation stack content, need to revoke all
2375  // thread-local allocation stacks.
2376  RevokeAllThreadLocalAllocationStacks(self);
2377  Atomic<size_t> fail_count_(0);
2378  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2379  // Verify objects in the allocation stack since these will be objects which were:
2380  // 1. Allocated prior to the GC (pre GC verification).
2381  // 2. Allocated during the GC (pre sweep GC verification).
2382  // We don't want to verify the objects in the live stack since they themselves may be
2383  // pointing to dead objects if they are not reachable.
2384  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2385  // Verify the roots:
2386  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2387  if (visitor.GetFailureCount() > 0) {
2388    // Dump mod-union tables.
2389    for (const auto& table_pair : mod_union_tables_) {
2390      accounting::ModUnionTable* mod_union_table = table_pair.second;
2391      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2392    }
2393    // Dump remembered sets.
2394    for (const auto& table_pair : remembered_sets_) {
2395      accounting::RememberedSet* remembered_set = table_pair.second;
2396      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2397    }
2398    DumpSpaces(LOG(ERROR));
2399  }
2400  return visitor.GetFailureCount();
2401}
2402
2403class VerifyReferenceCardVisitor {
2404 public:
2405  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2406      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2407                            Locks::heap_bitmap_lock_)
2408      : heap_(heap), failed_(failed) {
2409  }
2410
2411  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2412  // annotalysis on visitors.
2413  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2414      NO_THREAD_SAFETY_ANALYSIS {
2415    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2416    // Filter out class references since changing an object's class does not mark the card as dirty.
2417    // Also handles large objects, since the only reference they hold is a class reference.
2418    if (ref != nullptr && !ref->IsClass()) {
2419      accounting::CardTable* card_table = heap_->GetCardTable();
2420      // If the object is not dirty and it is referencing something in the live stack other than
2421      // class, then it must be on a dirty card.
2422      if (!card_table->AddrIsInCardTable(obj)) {
2423        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2424        *failed_ = true;
2425      } else if (!card_table->IsDirty(obj)) {
2426        // TODO: Check mod-union tables.
2427        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2428        // kCardDirty - 1 if it didnt get touched since we aged it.
2429        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2430        if (live_stack->ContainsSorted(ref)) {
2431          if (live_stack->ContainsSorted(obj)) {
2432            LOG(ERROR) << "Object " << obj << " found in live stack";
2433          }
2434          if (heap_->GetLiveBitmap()->Test(obj)) {
2435            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2436          }
2437          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2438                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2439
2440          // Print which field of the object is dead.
2441          if (!obj->IsObjectArray()) {
2442            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2443            CHECK(klass != NULL);
2444            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2445                                                                      : klass->GetIFields();
2446            CHECK(fields != NULL);
2447            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2448              mirror::ArtField* cur = fields->Get(i);
2449              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2450                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2451                          << PrettyField(cur);
2452                break;
2453              }
2454            }
2455          } else {
2456            mirror::ObjectArray<mirror::Object>* object_array =
2457                obj->AsObjectArray<mirror::Object>();
2458            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2459              if (object_array->Get(i) == ref) {
2460                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2461              }
2462            }
2463          }
2464
2465          *failed_ = true;
2466        }
2467      }
2468    }
2469  }
2470
2471 private:
2472  Heap* const heap_;
2473  bool* const failed_;
2474};
2475
2476class VerifyLiveStackReferences {
2477 public:
2478  explicit VerifyLiveStackReferences(Heap* heap)
2479      : heap_(heap),
2480        failed_(false) {}
2481
2482  void operator()(mirror::Object* obj) const
2483      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2484    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2485    obj->VisitReferences<true>(visitor, VoidFunctor());
2486  }
2487
2488  bool Failed() const {
2489    return failed_;
2490  }
2491
2492 private:
2493  Heap* const heap_;
2494  bool failed_;
2495};
2496
2497bool Heap::VerifyMissingCardMarks() {
2498  Thread* self = Thread::Current();
2499  Locks::mutator_lock_->AssertExclusiveHeld(self);
2500
2501  // We need to sort the live stack since we binary search it.
2502  live_stack_->Sort();
2503  // Since we sorted the allocation stack content, need to revoke all
2504  // thread-local allocation stacks.
2505  RevokeAllThreadLocalAllocationStacks(self);
2506  VerifyLiveStackReferences visitor(this);
2507  GetLiveBitmap()->Visit(visitor);
2508
2509  // We can verify objects in the live stack since none of these should reference dead objects.
2510  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2511    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2512      visitor(*it);
2513    }
2514  }
2515  return !visitor.Failed();
2516}
2517
2518void Heap::SwapStacks(Thread* self) {
2519  if (kUseThreadLocalAllocationStack) {
2520    live_stack_->AssertAllZero();
2521  }
2522  allocation_stack_.swap(live_stack_);
2523}
2524
2525void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2526  // This must be called only during the pause.
2527  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2528  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2529  MutexLock mu2(self, *Locks::thread_list_lock_);
2530  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2531  for (Thread* t : thread_list) {
2532    t->RevokeThreadLocalAllocationStack();
2533  }
2534}
2535
2536void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2537  if (kIsDebugBuild) {
2538    if (bump_pointer_space_ != nullptr) {
2539      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2540    }
2541  }
2542}
2543
2544accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2545  auto it = mod_union_tables_.find(space);
2546  if (it == mod_union_tables_.end()) {
2547    return nullptr;
2548  }
2549  return it->second;
2550}
2551
2552accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2553  auto it = remembered_sets_.find(space);
2554  if (it == remembered_sets_.end()) {
2555    return nullptr;
2556  }
2557  return it->second;
2558}
2559
2560void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2561  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2562  // Clear cards and keep track of cards cleared in the mod-union table.
2563  for (const auto& space : continuous_spaces_) {
2564    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2565    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2566    if (table != nullptr) {
2567      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2568          "ImageModUnionClearCards";
2569      TimingLogger::ScopedTiming t(name, timings);
2570      table->ClearCards();
2571    } else if (use_rem_sets && rem_set != nullptr) {
2572      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2573          << static_cast<int>(collector_type_);
2574      TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
2575      rem_set->ClearCards();
2576    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2577      TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
2578      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2579      // were dirty before the GC started.
2580      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2581      // -> clean(cleaning thread).
2582      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2583      // roots and then we scan / update mod union tables after. We will always scan either card.
2584      // If we end up with the non aged card, we scan it it in the pause.
2585      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2586                                     VoidFunctor());
2587    }
2588  }
2589}
2590
2591static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2592}
2593
2594void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2595  Thread* const self = Thread::Current();
2596  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2597  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2598  if (verify_pre_gc_heap_) {
2599    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
2600    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2601    size_t failures = VerifyHeapReferences();
2602    if (failures > 0) {
2603      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2604          << " failures";
2605    }
2606  }
2607  // Check that all objects which reference things in the live stack are on dirty cards.
2608  if (verify_missing_card_marks_) {
2609    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
2610    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2611    SwapStacks(self);
2612    // Sort the live stack so that we can quickly binary search it later.
2613    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2614                                    << " missing card mark verification failed\n" << DumpSpaces();
2615    SwapStacks(self);
2616  }
2617  if (verify_mod_union_table_) {
2618    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
2619    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2620    for (const auto& table_pair : mod_union_tables_) {
2621      accounting::ModUnionTable* mod_union_table = table_pair.second;
2622      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2623      mod_union_table->Verify();
2624    }
2625  }
2626}
2627
2628void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2629  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2630    collector::GarbageCollector::ScopedPause pause(gc);
2631    PreGcVerificationPaused(gc);
2632  }
2633}
2634
2635void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2636  // TODO: Add a new runtime option for this?
2637  if (verify_pre_gc_rosalloc_) {
2638    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2639  }
2640}
2641
2642void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2643  Thread* const self = Thread::Current();
2644  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2645  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2646  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2647  // reachable objects.
2648  if (verify_pre_sweeping_heap_) {
2649    TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
2650    CHECK_NE(self->GetState(), kRunnable);
2651    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2652    // Swapping bound bitmaps does nothing.
2653    gc->SwapBitmaps();
2654    // Pass in false since concurrent reference processing can mean that the reference referents
2655    // may point to dead objects at the point which PreSweepingGcVerification is called.
2656    size_t failures = VerifyHeapReferences(false);
2657    if (failures > 0) {
2658      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2659          << " failures";
2660    }
2661    gc->SwapBitmaps();
2662  }
2663  if (verify_pre_sweeping_rosalloc_) {
2664    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2665  }
2666}
2667
2668void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2669  // Only pause if we have to do some verification.
2670  Thread* const self = Thread::Current();
2671  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2672  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2673  if (verify_system_weaks_) {
2674    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2675    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2676    mark_sweep->VerifySystemWeaks();
2677  }
2678  if (verify_post_gc_rosalloc_) {
2679    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2680  }
2681  if (verify_post_gc_heap_) {
2682    TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
2683    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2684    size_t failures = VerifyHeapReferences();
2685    if (failures > 0) {
2686      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2687          << " failures";
2688    }
2689  }
2690}
2691
2692void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2693  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2694    collector::GarbageCollector::ScopedPause pause(gc);
2695    PreGcVerificationPaused(gc);
2696  }
2697}
2698
2699void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2700  TimingLogger::ScopedTiming t(name, timings);
2701  for (const auto& space : continuous_spaces_) {
2702    if (space->IsRosAllocSpace()) {
2703      VLOG(heap) << name << " : " << space->GetName();
2704      space->AsRosAllocSpace()->Verify();
2705    }
2706  }
2707}
2708
2709collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2710  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2711  MutexLock mu(self, *gc_complete_lock_);
2712  return WaitForGcToCompleteLocked(cause, self);
2713}
2714
2715collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2716  collector::GcType last_gc_type = collector::kGcTypeNone;
2717  uint64_t wait_start = NanoTime();
2718  while (collector_type_running_ != kCollectorTypeNone) {
2719    ATRACE_BEGIN("GC: Wait For Completion");
2720    // We must wait, change thread state then sleep on gc_complete_cond_;
2721    gc_complete_cond_->Wait(self);
2722    last_gc_type = last_gc_type_;
2723    ATRACE_END();
2724  }
2725  uint64_t wait_time = NanoTime() - wait_start;
2726  total_wait_time_ += wait_time;
2727  if (wait_time > long_pause_log_threshold_) {
2728    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2729        << " for cause " << cause;
2730  }
2731  return last_gc_type;
2732}
2733
2734void Heap::DumpForSigQuit(std::ostream& os) {
2735  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2736     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2737  DumpGcPerformanceInfo(os);
2738}
2739
2740size_t Heap::GetPercentFree() {
2741  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2742}
2743
2744void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2745  if (max_allowed_footprint > GetMaxMemory()) {
2746    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2747             << PrettySize(GetMaxMemory());
2748    max_allowed_footprint = GetMaxMemory();
2749  }
2750  max_allowed_footprint_ = max_allowed_footprint;
2751}
2752
2753bool Heap::IsMovableObject(const mirror::Object* obj) const {
2754  if (kMovingCollector) {
2755    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2756    if (space != nullptr) {
2757      // TODO: Check large object?
2758      return space->CanMoveObjects();
2759    }
2760  }
2761  return false;
2762}
2763
2764void Heap::UpdateMaxNativeFootprint() {
2765  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2766  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2767  size_t target_size = native_size / GetTargetHeapUtilization();
2768  if (target_size > native_size + max_free_) {
2769    target_size = native_size + max_free_;
2770  } else if (target_size < native_size + min_free_) {
2771    target_size = native_size + min_free_;
2772  }
2773  native_footprint_gc_watermark_ = target_size;
2774  native_footprint_limit_ = 2 * target_size - native_size;
2775}
2776
2777collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2778  for (const auto& collector : garbage_collectors_) {
2779    if (collector->GetCollectorType() == collector_type_ &&
2780        collector->GetGcType() == gc_type) {
2781      return collector;
2782    }
2783  }
2784  return nullptr;
2785}
2786
2787double Heap::HeapGrowthMultiplier() const {
2788  // If we don't care about pause times we are background, so return 1.0.
2789  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2790    return 1.0;
2791  }
2792  return foreground_heap_growth_multiplier_;
2793}
2794
2795void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2796  // We know what our utilization is at this moment.
2797  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2798  const uint64_t bytes_allocated = GetBytesAllocated();
2799  last_gc_size_ = bytes_allocated;
2800  last_gc_time_ns_ = NanoTime();
2801  uint64_t target_size;
2802  collector::GcType gc_type = collector_ran->GetGcType();
2803  if (gc_type != collector::kGcTypeSticky) {
2804    // Grow the heap for non sticky GC.
2805    const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2806    // foreground.
2807    intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2808    CHECK_GE(delta, 0);
2809    target_size = bytes_allocated + delta * multiplier;
2810    target_size = std::min(target_size,
2811                           bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2812    target_size = std::max(target_size,
2813                           bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2814    native_need_to_run_finalization_ = true;
2815    next_gc_type_ = collector::kGcTypeSticky;
2816  } else {
2817    collector::GcType non_sticky_gc_type =
2818        have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2819    // Find what the next non sticky collector will be.
2820    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2821    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2822    // do another sticky collection next.
2823    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2824    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2825    // if the sticky GC throughput always remained >= the full/partial throughput.
2826    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2827        non_sticky_collector->GetEstimatedMeanThroughput() &&
2828        non_sticky_collector->NumberOfIterations() > 0 &&
2829        bytes_allocated <= max_allowed_footprint_) {
2830      next_gc_type_ = collector::kGcTypeSticky;
2831    } else {
2832      next_gc_type_ = non_sticky_gc_type;
2833    }
2834    // If we have freed enough memory, shrink the heap back down.
2835    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2836      target_size = bytes_allocated + max_free_;
2837    } else {
2838      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2839    }
2840  }
2841  if (!ignore_max_footprint_) {
2842    SetIdealFootprint(target_size);
2843    if (IsGcConcurrent()) {
2844      // Calculate when to perform the next ConcurrentGC.
2845      // Calculate the estimated GC duration.
2846      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2847      // Estimate how many remaining bytes we will have when we need to start the next GC.
2848      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2849      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2850      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2851      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2852        // A never going to happen situation that from the estimated allocation rate we will exceed
2853        // the applications entire footprint with the given estimated allocation rate. Schedule
2854        // another GC nearly straight away.
2855        remaining_bytes = kMinConcurrentRemainingBytes;
2856      }
2857      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2858      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2859      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2860      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2861      // right away.
2862      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2863                                         static_cast<size_t>(bytes_allocated));
2864    }
2865  }
2866}
2867
2868void Heap::ClearGrowthLimit() {
2869  growth_limit_ = capacity_;
2870  non_moving_space_->ClearGrowthLimit();
2871}
2872
2873void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
2874  ScopedObjectAccess soa(self);
2875  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
2876  jvalue args[1];
2877  args[0].l = arg.get();
2878  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2879  // Restore object in case it gets moved.
2880  *object = soa.Decode<mirror::Object*>(arg.get());
2881}
2882
2883void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
2884  StackHandleScope<1> hs(self);
2885  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2886  RequestConcurrentGC(self);
2887}
2888
2889void Heap::RequestConcurrentGC(Thread* self) {
2890  // Make sure that we can do a concurrent GC.
2891  Runtime* runtime = Runtime::Current();
2892  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2893      self->IsHandlingStackOverflow()) {
2894    return;
2895  }
2896  // We already have a request pending, no reason to start more until we update
2897  // concurrent_start_bytes_.
2898  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2899  JNIEnv* env = self->GetJniEnv();
2900  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2901  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2902  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2903                            WellKnownClasses::java_lang_Daemons_requestGC);
2904  CHECK(!env->ExceptionCheck());
2905}
2906
2907void Heap::ConcurrentGC(Thread* self) {
2908  if (Runtime::Current()->IsShuttingDown(self)) {
2909    return;
2910  }
2911  // Wait for any GCs currently running to finish.
2912  if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
2913    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2914    // instead. E.g. can't do partial, so do full instead.
2915    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2916        collector::kGcTypeNone) {
2917      for (collector::GcType gc_type : gc_plan_) {
2918        // Attempt to run the collector, if we succeed, we are done.
2919        if (gc_type > next_gc_type_ &&
2920            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2921          break;
2922        }
2923      }
2924    }
2925  }
2926}
2927
2928void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2929  Thread* self = Thread::Current();
2930  {
2931    MutexLock mu(self, *heap_trim_request_lock_);
2932    if (desired_collector_type_ == desired_collector_type) {
2933      return;
2934    }
2935    heap_transition_or_trim_target_time_ =
2936        std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
2937    desired_collector_type_ = desired_collector_type;
2938  }
2939  SignalHeapTrimDaemon(self);
2940}
2941
2942void Heap::RequestHeapTrim() {
2943  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2944  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2945  // a space it will hold its lock and can become a cause of jank.
2946  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2947  // forking.
2948
2949  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2950  // because that only marks object heads, so a large array looks like lots of empty space. We
2951  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2952  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2953  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2954  // not how much use we're making of those pages.
2955
2956  Thread* self = Thread::Current();
2957  Runtime* runtime = Runtime::Current();
2958  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2959    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2960    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2961    // as we don't hold the lock while requesting the trim).
2962    return;
2963  }
2964  {
2965    MutexLock mu(self, *heap_trim_request_lock_);
2966    if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2967      // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2968      // just yet.
2969      return;
2970    }
2971    heap_trim_request_pending_ = true;
2972    uint64_t current_time = NanoTime();
2973    if (heap_transition_or_trim_target_time_ < current_time) {
2974      heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
2975    }
2976  }
2977  // Notify the daemon thread which will actually do the heap trim.
2978  SignalHeapTrimDaemon(self);
2979}
2980
2981void Heap::SignalHeapTrimDaemon(Thread* self) {
2982  JNIEnv* env = self->GetJniEnv();
2983  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2984  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2985  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2986                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2987  CHECK(!env->ExceptionCheck());
2988}
2989
2990void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2991  if (rosalloc_space_ != nullptr) {
2992    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2993  }
2994  if (bump_pointer_space_ != nullptr) {
2995    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2996  }
2997}
2998
2999void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3000  if (rosalloc_space_ != nullptr) {
3001    rosalloc_space_->RevokeThreadLocalBuffers(thread);
3002  }
3003}
3004
3005void Heap::RevokeAllThreadLocalBuffers() {
3006  if (rosalloc_space_ != nullptr) {
3007    rosalloc_space_->RevokeAllThreadLocalBuffers();
3008  }
3009  if (bump_pointer_space_ != nullptr) {
3010    bump_pointer_space_->RevokeAllThreadLocalBuffers();
3011  }
3012}
3013
3014bool Heap::IsGCRequestPending() const {
3015  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
3016}
3017
3018void Heap::RunFinalization(JNIEnv* env) {
3019  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3020  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3021    CHECK(WellKnownClasses::java_lang_System != nullptr);
3022    WellKnownClasses::java_lang_System_runFinalization =
3023        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3024    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3025  }
3026  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3027                            WellKnownClasses::java_lang_System_runFinalization);
3028}
3029
3030void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
3031  Thread* self = ThreadForEnv(env);
3032  if (native_need_to_run_finalization_) {
3033    RunFinalization(env);
3034    UpdateMaxNativeFootprint();
3035    native_need_to_run_finalization_ = false;
3036  }
3037  // Total number of native bytes allocated.
3038  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3039  new_native_bytes_allocated += bytes;
3040  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3041    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
3042        collector::kGcTypeFull;
3043
3044    // The second watermark is higher than the gc watermark. If you hit this it means you are
3045    // allocating native objects faster than the GC can keep up with.
3046    if (new_native_bytes_allocated > native_footprint_limit_) {
3047      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3048        // Just finished a GC, attempt to run finalizers.
3049        RunFinalization(env);
3050        CHECK(!env->ExceptionCheck());
3051      }
3052      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3053      if (new_native_bytes_allocated > native_footprint_limit_) {
3054        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3055        RunFinalization(env);
3056        native_need_to_run_finalization_ = false;
3057        CHECK(!env->ExceptionCheck());
3058      }
3059      // We have just run finalizers, update the native watermark since it is very likely that
3060      // finalizers released native managed allocations.
3061      UpdateMaxNativeFootprint();
3062    } else if (!IsGCRequestPending()) {
3063      if (IsGcConcurrent()) {
3064        RequestConcurrentGC(self);
3065      } else {
3066        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3067      }
3068    }
3069  }
3070}
3071
3072void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
3073  int expected_size, new_size;
3074  do {
3075    expected_size = native_bytes_allocated_.LoadRelaxed();
3076    new_size = expected_size - bytes;
3077    if (UNLIKELY(new_size < 0)) {
3078      ScopedObjectAccess soa(env);
3079      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3080                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
3081                                 "registered as allocated", bytes, expected_size).c_str());
3082      break;
3083    }
3084  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size, new_size));
3085}
3086
3087size_t Heap::GetTotalMemory() const {
3088  size_t ret = 0;
3089  for (const auto& space : continuous_spaces_) {
3090    // Currently don't include the image space.
3091    if (!space->IsImageSpace()) {
3092      ret += space->Size();
3093    }
3094  }
3095  for (const auto& space : discontinuous_spaces_) {
3096    if (space->IsLargeObjectSpace()) {
3097      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
3098    }
3099  }
3100  return ret;
3101}
3102
3103void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3104  DCHECK(mod_union_table != nullptr);
3105  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3106}
3107
3108void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3109  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3110        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
3111        c->GetDescriptor().empty());
3112  CHECK_GE(byte_count, sizeof(mirror::Object));
3113}
3114
3115void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3116  CHECK(remembered_set != nullptr);
3117  space::Space* space = remembered_set->GetSpace();
3118  CHECK(space != nullptr);
3119  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3120  remembered_sets_.Put(space, remembered_set);
3121  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3122}
3123
3124void Heap::RemoveRememberedSet(space::Space* space) {
3125  CHECK(space != nullptr);
3126  auto it = remembered_sets_.find(space);
3127  CHECK(it != remembered_sets_.end());
3128  delete it->second;
3129  remembered_sets_.erase(it);
3130  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3131}
3132
3133void Heap::ClearMarkedObjects() {
3134  // Clear all of the spaces' mark bitmaps.
3135  for (const auto& space : GetContinuousSpaces()) {
3136    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3137    if (space->GetLiveBitmap() != mark_bitmap) {
3138      mark_bitmap->Clear();
3139    }
3140  }
3141  // Clear the marked objects in the discontinous space object sets.
3142  for (const auto& space : GetDiscontinuousSpaces()) {
3143    space->GetMarkBitmap()->Clear();
3144  }
3145}
3146
3147}  // namespace gc
3148}  // namespace art
3149