heap.h revision 66e222aa48e6d2fe4c78a1df938364b82bc83e72
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_HEAP_H_
18#define ART_RUNTIME_GC_HEAP_H_
19
20#include <iosfwd>
21#include <string>
22#include <vector>
23
24#include "allocator_type.h"
25#include "atomic.h"
26#include "base/timing_logger.h"
27#include "gc/accounting/atomic_stack.h"
28#include "gc/accounting/card_table.h"
29#include "gc/gc_cause.h"
30#include "gc/collector/garbage_collector.h"
31#include "gc/collector/gc_type.h"
32#include "gc/collector_type.h"
33#include "globals.h"
34#include "gtest/gtest.h"
35#include "instruction_set.h"
36#include "jni.h"
37#include "object_callbacks.h"
38#include "offsets.h"
39#include "reference_processor.h"
40#include "safe_map.h"
41#include "thread_pool.h"
42#include "verify_object.h"
43
44namespace art {
45
46class ConditionVariable;
47class Mutex;
48class StackVisitor;
49class Thread;
50class TimingLogger;
51
52namespace mirror {
53  class Class;
54  class Object;
55}  // namespace mirror
56
57namespace gc {
58
59class ReferenceProcessor;
60
61namespace accounting {
62  class HeapBitmap;
63  class ModUnionTable;
64  class RememberedSet;
65}  // namespace accounting
66
67namespace collector {
68  class ConcurrentCopying;
69  class GarbageCollector;
70  class MarkCompact;
71  class MarkSweep;
72  class SemiSpace;
73}  // namespace collector
74
75namespace allocator {
76  class RosAlloc;
77}  // namespace allocator
78
79namespace space {
80  class AllocSpace;
81  class BumpPointerSpace;
82  class DiscontinuousSpace;
83  class DlMallocSpace;
84  class ImageSpace;
85  class LargeObjectSpace;
86  class MallocSpace;
87  class RosAllocSpace;
88  class Space;
89  class SpaceTest;
90  class ContinuousMemMapAllocSpace;
91}  // namespace space
92
93class AgeCardVisitor {
94 public:
95  byte operator()(byte card) const {
96    if (card == accounting::CardTable::kCardDirty) {
97      return card - 1;
98    } else {
99      return 0;
100    }
101  }
102};
103
104enum HomogeneousSpaceCompactResult {
105  // Success.
106  kSuccess,
107  // Reject due to disabled moving GC.
108  kErrorReject,
109  // System is shutting down.
110  kErrorVMShuttingDown,
111};
112
113// If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
114static constexpr bool kUseRosAlloc = true;
115
116// If true, use thread-local allocation stack.
117static constexpr bool kUseThreadLocalAllocationStack = true;
118
119// The process state passed in from the activity manager, used to determine when to do trimming
120// and compaction.
121enum ProcessState {
122  kProcessStateJankPerceptible = 0,
123  kProcessStateJankImperceptible = 1,
124};
125std::ostream& operator<<(std::ostream& os, const ProcessState& process_state);
126
127class Heap {
128 public:
129  // If true, measure the total allocation time.
130  static constexpr bool kMeasureAllocationTime = false;
131  // Primitive arrays larger than this size are put in the large object space.
132  static constexpr size_t kDefaultLargeObjectThreshold = 3 * kPageSize;
133  static constexpr size_t kDefaultStartingSize = kPageSize;
134  static constexpr size_t kDefaultInitialSize = 2 * MB;
135  static constexpr size_t kDefaultMaximumSize = 256 * MB;
136  static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
137  static constexpr size_t kDefaultMaxFree = 2 * MB;
138  static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
139  static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
140  static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
141  static constexpr size_t kDefaultTLABSize = 256 * KB;
142  static constexpr double kDefaultTargetUtilization = 0.5;
143  static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
144
145  // Used so that we don't overflow the allocation time atomic integer.
146  static constexpr size_t kTimeAdjust = 1024;
147
148  // How often we allow heap trimming to happen (nanoseconds).
149  static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
150  // How long we wait after a transition request to perform a collector transition (nanoseconds).
151  static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);
152
153  // Create a heap with the requested sizes. The possible empty
154  // image_file_names names specify Spaces to load based on
155  // ImageWriter output.
156  explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free,
157                size_t max_free, double target_utilization,
158                double foreground_heap_growth_multiplier, size_t capacity,
159                size_t non_moving_space_capacity,
160                const std::string& original_image_file_name,
161                InstructionSet image_instruction_set,
162                CollectorType foreground_collector_type, CollectorType background_collector_type,
163                size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
164                size_t long_pause_threshold, size_t long_gc_threshold,
165                bool ignore_max_footprint, bool use_tlab,
166                bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
167                bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
168                bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction,
169                uint64_t min_interval_homogeneous_space_compaction_by_oom);
170
171  ~Heap();
172
173  // Allocates and initializes storage for an object instance.
174  template <bool kInstrumented, typename PreFenceVisitor>
175  mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes,
176                              const PreFenceVisitor& pre_fence_visitor)
177      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
178    return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes,
179                                                         GetCurrentAllocator(),
180                                                         pre_fence_visitor);
181  }
182
183  template <bool kInstrumented, typename PreFenceVisitor>
184  mirror::Object* AllocNonMovableObject(Thread* self, mirror::Class* klass, size_t num_bytes,
185                                        const PreFenceVisitor& pre_fence_visitor)
186      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
187    return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes,
188                                                         GetCurrentNonMovingAllocator(),
189                                                         pre_fence_visitor);
190  }
191
192  template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
193  ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(
194      Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator,
195      const PreFenceVisitor& pre_fence_visitor)
196      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
197
198  AllocatorType GetCurrentAllocator() const {
199    return current_allocator_;
200  }
201
202  AllocatorType GetCurrentNonMovingAllocator() const {
203    return current_non_moving_allocator_;
204  }
205
206  // Visit all of the live objects in the heap.
207  void VisitObjects(ObjectCallback callback, void* arg)
208      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
209
210  void CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count)
211      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
212
213  void RegisterNativeAllocation(JNIEnv* env, size_t bytes);
214  void RegisterNativeFree(JNIEnv* env, size_t bytes);
215
216  // Change the allocator, updates entrypoints.
217  void ChangeAllocator(AllocatorType allocator)
218      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
219      LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
220
221  // Transition the garbage collector during runtime, may copy objects from one space to another.
222  void TransitionCollector(CollectorType collector_type);
223
224  // Change the collector to be one of the possible options (MS, CMS, SS).
225  void ChangeCollector(CollectorType collector_type)
226      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
227
228  // The given reference is believed to be to an object in the Java heap, check the soundness of it.
229  // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
230  // proper lock ordering for it.
231  void VerifyObjectBody(mirror::Object* o) NO_THREAD_SAFETY_ANALYSIS;
232
233  // Check sanity of all live references.
234  void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
235  // Returns how many failures occured.
236  size_t VerifyHeapReferences(bool verify_referents = true)
237      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
238  bool VerifyMissingCardMarks()
239      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
240
241  // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
242  // and doesn't abort on error, allowing the caller to report more
243  // meaningful diagnostics.
244  bool IsValidObjectAddress(const mirror::Object* obj) const
245      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
246
247  // Faster alternative to IsHeapAddress since finding if an object is in the large object space is
248  // very slow.
249  bool IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const
250      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
251
252  // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
253  // Requires the heap lock to be held.
254  bool IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack = true,
255                          bool search_live_stack = true, bool sorted = false)
256      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
257
258  // Returns true if there is any chance that the object (obj) will move.
259  bool IsMovableObject(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
260
261  // Enables us to compacting GC until objects are released.
262  void IncrementDisableMovingGC(Thread* self);
263  void DecrementDisableMovingGC(Thread* self);
264
265  // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
266  void ClearMarkedObjects() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
267
268  // Initiates an explicit garbage collection.
269  void CollectGarbage(bool clear_soft_references);
270
271  // Does a concurrent GC, should only be called by the GC daemon thread
272  // through runtime.
273  void ConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
274
275  // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
276  // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
277  void CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
278                      uint64_t* counts)
279      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
280      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
281  // Implements JDWP RT_Instances.
282  void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
283      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
284      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
285  // Implements JDWP OR_ReferringObjects.
286  void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects)
287      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
288      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
289
290  // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
291  // implement dalvik.system.VMRuntime.clearGrowthLimit.
292  void ClearGrowthLimit();
293
294  // Target ideal heap utilization ratio, implements
295  // dalvik.system.VMRuntime.getTargetHeapUtilization.
296  double GetTargetHeapUtilization() const {
297    return target_utilization_;
298  }
299
300  // Data structure memory usage tracking.
301  void RegisterGCAllocation(size_t bytes);
302  void RegisterGCDeAllocation(size_t bytes);
303
304  // Set the heap's private space pointers to be the same as the space based on it's type. Public
305  // due to usage by tests.
306  void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
307      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
308  void AddSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
309  void RemoveSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
310
311  // Set target ideal heap utilization ratio, implements
312  // dalvik.system.VMRuntime.setTargetHeapUtilization.
313  void SetTargetHeapUtilization(float target);
314
315  // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
316  // from the system. Doesn't allow the space to exceed its growth limit.
317  void SetIdealFootprint(size_t max_allowed_footprint);
318
319  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
320  // waited for.
321  collector::GcType WaitForGcToComplete(GcCause cause, Thread* self)
322      LOCKS_EXCLUDED(gc_complete_lock_);
323
324  // Update the heap's process state to a new value, may cause compaction to occur.
325  void UpdateProcessState(ProcessState process_state);
326
327  const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const {
328    return continuous_spaces_;
329  }
330
331  const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
332    return discontinuous_spaces_;
333  }
334
335  const collector::Iteration* GetCurrentGcIteration() const {
336    return &current_gc_iteration_;
337  }
338  collector::Iteration* GetCurrentGcIteration() {
339    return &current_gc_iteration_;
340  }
341
342  // Enable verification of object references when the runtime is sufficiently initialized.
343  void EnableObjectValidation() {
344    verify_object_mode_ = kVerifyObjectSupport;
345    if (verify_object_mode_ > kVerifyObjectModeDisabled) {
346      VerifyHeap();
347    }
348  }
349
350  // Disable object reference verification for image writing.
351  void DisableObjectValidation() {
352    verify_object_mode_ = kVerifyObjectModeDisabled;
353  }
354
355  // Other checks may be performed if we know the heap should be in a sane state.
356  bool IsObjectValidationEnabled() const {
357    return verify_object_mode_ > kVerifyObjectModeDisabled;
358  }
359
360  // Returns true if low memory mode is enabled.
361  bool IsLowMemoryMode() const {
362    return low_memory_mode_;
363  }
364
365  // Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
366  // Scales heap growth, min free, and max free.
367  double HeapGrowthMultiplier() const;
368
369  // Freed bytes can be negative in cases where we copy objects from a compacted space to a
370  // free-list backed space.
371  void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
372
373  // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
374  // The call is not needed if NULL is stored in the field.
375  void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/,
376                         const mirror::Object* /*new_value*/) {
377    card_table_->MarkCard(dst);
378  }
379
380  // Write barrier for array operations that update many field positions
381  void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/,
382                         size_t /*length TODO: element_count or byte_count?*/) {
383    card_table_->MarkCard(dst);
384  }
385
386  void WriteBarrierEveryFieldOf(const mirror::Object* obj) {
387    card_table_->MarkCard(obj);
388  }
389
390  accounting::CardTable* GetCardTable() const {
391    return card_table_.get();
392  }
393
394  void AddFinalizerReference(Thread* self, mirror::Object** object);
395
396  // Returns the number of bytes currently allocated.
397  size_t GetBytesAllocated() const {
398    return num_bytes_allocated_.LoadSequentiallyConsistent();
399  }
400
401  // Returns the number of objects currently allocated.
402  size_t GetObjectsAllocated() const LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
403
404  // Returns the total number of objects allocated since the heap was created.
405  uint64_t GetObjectsAllocatedEver() const;
406
407  // Returns the total number of bytes allocated since the heap was created.
408  uint64_t GetBytesAllocatedEver() const;
409
410  // Returns the total number of objects freed since the heap was created.
411  uint64_t GetObjectsFreedEver() const {
412    return total_objects_freed_ever_;
413  }
414
415  // Returns the total number of bytes freed since the heap was created.
416  uint64_t GetBytesFreedEver() const {
417    return total_bytes_freed_ever_;
418  }
419
420  // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
421  // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
422  // were specified. Android apps start with a growth limit (small heap size) which is
423  // cleared/extended for large apps.
424  size_t GetMaxMemory() const {
425    // There is some race conditions in the allocation code that can cause bytes allocated to
426    // become larger than growth_limit_ in rare cases.
427    return std::max(GetBytesAllocated(), growth_limit_);
428  }
429
430  // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
431  // consumed by an application.
432  size_t GetTotalMemory() const;
433
434  // Returns approximately how much free memory we have until the next GC happens.
435  size_t GetFreeMemoryUntilGC() const {
436    return max_allowed_footprint_ - GetBytesAllocated();
437  }
438
439  // Returns approximately how much free memory we have until the next OOME happens.
440  size_t GetFreeMemoryUntilOOME() const {
441    return growth_limit_ - GetBytesAllocated();
442  }
443
444  // Returns how much free memory we have until we need to grow the heap to perform an allocation.
445  // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
446  size_t GetFreeMemory() const {
447    size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
448    size_t total_memory = GetTotalMemory();
449    // Make sure we don't get a negative number.
450    return total_memory - std::min(total_memory, byte_allocated);
451  }
452
453  // get the space that corresponds to an object's address. Current implementation searches all
454  // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
455  // TODO: consider using faster data structure like binary tree.
456  space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const;
457  space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*,
458                                                              bool fail_ok) const;
459  space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const;
460
461  void DumpForSigQuit(std::ostream& os) EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
462
463  // Do a pending heap transition or trim.
464  void DoPendingTransitionOrTrim() LOCKS_EXCLUDED(heap_trim_request_lock_);
465
466  // Trim the managed and native heaps by releasing unused memory back to the OS.
467  void Trim() LOCKS_EXCLUDED(heap_trim_request_lock_);
468
469  void RevokeThreadLocalBuffers(Thread* thread);
470  void RevokeRosAllocThreadLocalBuffers(Thread* thread);
471  void RevokeAllThreadLocalBuffers();
472  void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
473  void RosAllocVerification(TimingLogger* timings, const char* name)
474      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
475
476  accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
477    return live_bitmap_.get();
478  }
479
480  accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
481    return mark_bitmap_.get();
482  }
483
484  accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
485    return live_stack_.get();
486  }
487
488  void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
489
490  // Mark and empty stack.
491  void FlushAllocStack()
492      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
493
494  // Revoke all the thread-local allocation stacks.
495  void RevokeAllThreadLocalAllocationStacks(Thread* self)
496      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_)
497      LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_, Locks::thread_list_lock_);
498
499  // Mark all the objects in the allocation stack in the specified bitmap.
500  // TODO: Refactor?
501  void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
502                      accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
503                      accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
504                      accounting::ObjectStack* stack)
505      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
506
507  // Mark the specified allocation stack as live.
508  void MarkAllocStackAsLive(accounting::ObjectStack* stack)
509      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
510
511  // Unbind any bound bitmaps.
512  void UnBindBitmaps() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
513
514  // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added.
515  // Assumes there is only one image space.
516  space::ImageSpace* GetImageSpace() const;
517
518  // Permenantly disable moving garbage collection.
519  void DisableMovingGc();
520
521  space::DlMallocSpace* GetDlMallocSpace() const {
522    return dlmalloc_space_;
523  }
524
525  space::RosAllocSpace* GetRosAllocSpace() const {
526    return rosalloc_space_;
527  }
528
529  // Return the corresponding rosalloc space.
530  space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const;
531
532  space::MallocSpace* GetNonMovingSpace() const {
533    return non_moving_space_;
534  }
535
536  space::LargeObjectSpace* GetLargeObjectsSpace() const {
537    return large_object_space_;
538  }
539
540  // Returns the free list space that may contain movable objects (the
541  // one that's not the non-moving space), either rosalloc_space_ or
542  // dlmalloc_space_.
543  space::MallocSpace* GetPrimaryFreeListSpace() {
544    if (kUseRosAlloc) {
545      DCHECK(rosalloc_space_ != nullptr);
546      // reinterpret_cast is necessary as the space class hierarchy
547      // isn't known (#included) yet here.
548      return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
549    } else {
550      DCHECK(dlmalloc_space_ != nullptr);
551      return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
552    }
553  }
554
555  std::string DumpSpaces() const WARN_UNUSED;
556  void DumpSpaces(std::ostream& stream) const;
557
558  // Dump object should only be used by the signal handler.
559  void DumpObject(std::ostream& stream, mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS;
560  // Safe version of pretty type of which check to make sure objects are heap addresses.
561  std::string SafeGetClassDescriptor(mirror::Class* klass) NO_THREAD_SAFETY_ANALYSIS;
562  std::string SafePrettyTypeOf(mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS;
563
564  // GC performance measuring
565  void DumpGcPerformanceInfo(std::ostream& os);
566
567  // Returns true if we currently care about pause times.
568  bool CareAboutPauseTimes() const {
569    return process_state_ == kProcessStateJankPerceptible;
570  }
571
572  // Thread pool.
573  void CreateThreadPool();
574  void DeleteThreadPool();
575  ThreadPool* GetThreadPool() {
576    return thread_pool_.get();
577  }
578  size_t GetParallelGCThreadCount() const {
579    return parallel_gc_threads_;
580  }
581  size_t GetConcGCThreadCount() const {
582    return conc_gc_threads_;
583  }
584  accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
585  void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
586
587  accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
588  void AddRememberedSet(accounting::RememberedSet* remembered_set);
589  // Also deletes the remebered set.
590  void RemoveRememberedSet(space::Space* space);
591
592  bool IsCompilingBoot() const;
593  bool RunningOnValgrind() const {
594    return running_on_valgrind_;
595  }
596  bool HasImageSpace() const;
597
598  ReferenceProcessor* GetReferenceProcessor() {
599    return &reference_processor_;
600  }
601
602 private:
603  // Compact source space to target space.
604  void Compact(space::ContinuousMemMapAllocSpace* target_space,
605               space::ContinuousMemMapAllocSpace* source_space,
606               GcCause gc_cause)
607      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
608
609  void FinishGC(Thread* self, collector::GcType gc_type) LOCKS_EXCLUDED(gc_complete_lock_);
610
611  // Create a mem map with a preferred base address.
612  static MemMap* MapAnonymousPreferredAddress(const char* name, byte* request_begin,
613                                              size_t capacity, int prot_flags,
614                                              std::string* out_error_str);
615
616  bool SupportHSpaceCompaction() const {
617    // Returns true if we can do hspace compaction
618    return main_space_backup_ != nullptr;
619  }
620
621  static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
622    return
623        allocator_type != kAllocatorTypeBumpPointer &&
624        allocator_type != kAllocatorTypeTLAB;
625  }
626  static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
627    return AllocatorHasAllocationStack(allocator_type);
628  }
629  static bool IsMovingGc(CollectorType collector_type) {
630    return collector_type == kCollectorTypeSS || collector_type == kCollectorTypeGSS ||
631        collector_type == kCollectorTypeCC || collector_type == kCollectorTypeMC ||
632        collector_type == kCollectorTypeHomogeneousSpaceCompact;
633  }
634  bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const
635      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
636  ALWAYS_INLINE void CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
637                                       mirror::Object** obj)
638      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
639
640  accounting::ObjectStack* GetMarkStack() {
641    return mark_stack_.get();
642  }
643
644  // We don't force this to be inlined since it is a slow path.
645  template <bool kInstrumented, typename PreFenceVisitor>
646  mirror::Object* AllocLargeObject(Thread* self, mirror::Class* klass, size_t byte_count,
647                                   const PreFenceVisitor& pre_fence_visitor)
648      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
649
650  // Handles Allocate()'s slow allocation path with GC involved after
651  // an initial allocation attempt failed.
652  mirror::Object* AllocateInternalWithGc(Thread* self, AllocatorType allocator, size_t num_bytes,
653                                         size_t* bytes_allocated, size_t* usable_size,
654                                         mirror::Class** klass)
655      LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_)
656      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
657
658  // Allocate into a specific space.
659  mirror::Object* AllocateInto(Thread* self, space::AllocSpace* space, mirror::Class* c,
660                               size_t bytes)
661      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
662
663  // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
664  // wrong space.
665  void SwapSemiSpaces() EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
666
667  // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
668  // that the switch statement is constant optimized in the entrypoints.
669  template <const bool kInstrumented, const bool kGrow>
670  ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, AllocatorType allocator_type,
671                                              size_t alloc_size, size_t* bytes_allocated,
672                                              size_t* usable_size)
673      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
674
675  void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
676      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
677
678  template <bool kGrow>
679  bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size);
680
681  // Returns true if the address passed in is within the address range of a continuous space.
682  bool IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const
683      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
684
685  // Run the finalizers.
686  void RunFinalization(JNIEnv* env);
687
688  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
689  // waited for.
690  collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self)
691      EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_);
692
693  void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
694      LOCKS_EXCLUDED(heap_trim_request_lock_);
695  void RequestHeapTrim() LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
696  void RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj)
697      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
698  void RequestConcurrentGC(Thread* self)
699      LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
700  bool IsGCRequestPending() const;
701
702  // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
703  // which type of Gc was actually ran.
704  collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause,
705                                           bool clear_soft_references)
706      LOCKS_EXCLUDED(gc_complete_lock_,
707                     Locks::heap_bitmap_lock_,
708                     Locks::thread_suspend_count_lock_);
709
710  void PreGcVerification(collector::GarbageCollector* gc)
711      LOCKS_EXCLUDED(Locks::mutator_lock_);
712  void PreGcVerificationPaused(collector::GarbageCollector* gc)
713      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
714  void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
715      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
716  void PreSweepingGcVerification(collector::GarbageCollector* gc)
717      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
718  void PostGcVerification(collector::GarbageCollector* gc)
719      LOCKS_EXCLUDED(Locks::mutator_lock_);
720  void PostGcVerificationPaused(collector::GarbageCollector* gc)
721      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
722
723  // Update the watermark for the native allocated bytes based on the current number of native
724  // bytes allocated and the target utilization ratio.
725  void UpdateMaxNativeFootprint();
726
727  // Find a collector based on GC type.
728  collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
729
730  // Create a new alloc space and compact default alloc space to it.
731  HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact();
732
733  // Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
734  void CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
735                             size_t capacity);
736
737  // Create a malloc space based on a mem map. Does not set the space as default.
738  space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
739                                                  size_t growth_limit, size_t capacity,
740                                                  const char* name, bool can_move_objects);
741
742  // Given the current contents of the alloc space, increase the allowed heap footprint to match
743  // the target utilization ratio.  This should only be called immediately after a full garbage
744  // collection.
745  void GrowForUtilization(collector::GarbageCollector* collector_ran);
746
747  size_t GetPercentFree();
748
749  static void VerificationCallback(mirror::Object* obj, void* arg)
750      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
751
752  // Swap the allocation stack with the live stack.
753  void SwapStacks(Thread* self);
754
755  // Clear cards and update the mod union table.
756  void ProcessCards(TimingLogger* timings, bool use_rem_sets);
757
758  // Signal the heap trim daemon that there is something to do, either a heap transition or heap
759  // trim.
760  void SignalHeapTrimDaemon(Thread* self);
761
762  // Push an object onto the allocation stack.
763  void PushOnAllocationStack(Thread* self, mirror::Object** obj)
764      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
765  void PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj)
766      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
767  void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, mirror::Object** obj)
768      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
769
770  // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
771  // sweep GC, false for other GC types.
772  bool IsGcConcurrent() const ALWAYS_INLINE {
773    return collector_type_ == kCollectorTypeCMS || collector_type_ == kCollectorTypeCC;
774  }
775
776  // All-known continuous spaces, where objects lie within fixed bounds.
777  std::vector<space::ContinuousSpace*> continuous_spaces_;
778
779  // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
780  std::vector<space::DiscontinuousSpace*> discontinuous_spaces_;
781
782  // All-known alloc spaces, where objects may be or have been allocated.
783  std::vector<space::AllocSpace*> alloc_spaces_;
784
785  // A space where non-movable objects are allocated, when compaction is enabled it contains
786  // Classes, ArtMethods, ArtFields, and non moving objects.
787  space::MallocSpace* non_moving_space_;
788
789  // Space which we use for the kAllocatorTypeROSAlloc.
790  space::RosAllocSpace* rosalloc_space_;
791
792  // Space which we use for the kAllocatorTypeDlMalloc.
793  space::DlMallocSpace* dlmalloc_space_;
794
795  // The main space is the space which the GC copies to and from on process state updates. This
796  // space is typically either the dlmalloc_space_ or the rosalloc_space_.
797  space::MallocSpace* main_space_;
798
799  // The large object space we are currently allocating into.
800  space::LargeObjectSpace* large_object_space_;
801
802  // The card table, dirtied by the write barrier.
803  std::unique_ptr<accounting::CardTable> card_table_;
804
805  // A mod-union table remembers all of the references from the it's space to other spaces.
806  AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
807      mod_union_tables_;
808
809  // A remembered set remembers all of the references from the it's space to the target space.
810  AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
811      remembered_sets_;
812
813  // The current collector type.
814  CollectorType collector_type_;
815  // Which collector we use when the app is in the foreground.
816  CollectorType foreground_collector_type_;
817  // Which collector we will use when the app is notified of a transition to background.
818  CollectorType background_collector_type_;
819  // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
820  CollectorType desired_collector_type_;
821
822  // Lock which guards heap trim requests.
823  Mutex* heap_trim_request_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
824  // When we want to perform the next heap trim (nano seconds).
825  uint64_t last_trim_time_ GUARDED_BY(heap_trim_request_lock_);
826  // When we want to perform the next heap transition (nano seconds) or heap trim.
827  uint64_t heap_transition_or_trim_target_time_ GUARDED_BY(heap_trim_request_lock_);
828  // If we have a heap trim request pending.
829  bool heap_trim_request_pending_ GUARDED_BY(heap_trim_request_lock_);
830
831  // How many GC threads we may use for paused parts of garbage collection.
832  const size_t parallel_gc_threads_;
833
834  // How many GC threads we may use for unpaused parts of garbage collection.
835  const size_t conc_gc_threads_;
836
837  // Boolean for if we are in low memory mode.
838  const bool low_memory_mode_;
839
840  // If we get a pause longer than long pause log threshold, then we print out the GC after it
841  // finishes.
842  const size_t long_pause_log_threshold_;
843
844  // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
845  const size_t long_gc_log_threshold_;
846
847  // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is
848  // useful for benchmarking since it reduces time spent in GC to a low %.
849  const bool ignore_max_footprint_;
850
851  // Lock which guards zygote space creation.
852  Mutex zygote_creation_lock_;
853
854  // If we have a zygote space.
855  bool have_zygote_space_;
856
857  // Minimum allocation size of large object.
858  size_t large_object_threshold_;
859
860  // Guards access to the state of GC, associated conditional variable is used to signal when a GC
861  // completes.
862  Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
863  std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
864
865  // Reference processor;
866  ReferenceProcessor reference_processor_;
867
868  // True while the garbage collector is running.
869  volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
870
871  // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
872  volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
873  collector::GcType next_gc_type_;
874
875  // Maximum size that the heap can reach.
876  const size_t capacity_;
877
878  // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
879  // programs it is "cleared" making it the same as capacity.
880  size_t growth_limit_;
881
882  // When the number of bytes allocated exceeds the footprint TryAllocate returns NULL indicating
883  // a GC should be triggered.
884  size_t max_allowed_footprint_;
885
886  // The watermark at which a concurrent GC is requested by registerNativeAllocation.
887  size_t native_footprint_gc_watermark_;
888
889  // Whether or not we need to run finalizers in the next native allocation.
890  bool native_need_to_run_finalization_;
891
892  // Whether or not we currently care about pause times.
893  ProcessState process_state_;
894
895  // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
896  // it completes ahead of an allocation failing.
897  size_t concurrent_start_bytes_;
898
899  // Since the heap was created, how many bytes have been freed.
900  uint64_t total_bytes_freed_ever_;
901
902  // Since the heap was created, how many objects have been freed.
903  uint64_t total_objects_freed_ever_;
904
905  // Number of bytes allocated.  Adjusted after each allocation and free.
906  Atomic<size_t> num_bytes_allocated_;
907
908  // Bytes which are allocated and managed by native code but still need to be accounted for.
909  Atomic<size_t> native_bytes_allocated_;
910
911  // Info related to the current or previous GC iteration.
912  collector::Iteration current_gc_iteration_;
913
914  // Heap verification flags.
915  const bool verify_missing_card_marks_;
916  const bool verify_system_weaks_;
917  const bool verify_pre_gc_heap_;
918  const bool verify_pre_sweeping_heap_;
919  const bool verify_post_gc_heap_;
920  const bool verify_mod_union_table_;
921  bool verify_pre_gc_rosalloc_;
922  bool verify_pre_sweeping_rosalloc_;
923  bool verify_post_gc_rosalloc_;
924
925  // RAII that temporarily disables the rosalloc verification during
926  // the zygote fork.
927  class ScopedDisableRosAllocVerification {
928   private:
929    Heap* const heap_;
930    const bool orig_verify_pre_gc_;
931    const bool orig_verify_pre_sweeping_;
932    const bool orig_verify_post_gc_;
933
934   public:
935    explicit ScopedDisableRosAllocVerification(Heap* heap)
936        : heap_(heap),
937          orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
938          orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
939          orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
940      heap_->verify_pre_gc_rosalloc_ = false;
941      heap_->verify_pre_sweeping_rosalloc_ = false;
942      heap_->verify_post_gc_rosalloc_ = false;
943    }
944    ~ScopedDisableRosAllocVerification() {
945      heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
946      heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
947      heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
948    }
949  };
950
951  // Parallel GC data structures.
952  std::unique_ptr<ThreadPool> thread_pool_;
953
954  // The nanosecond time at which the last GC ended.
955  uint64_t last_gc_time_ns_;
956
957  // How many bytes were allocated at the end of the last GC.
958  uint64_t last_gc_size_;
959
960  // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle
961  // and the start of the current one.
962  uint64_t allocation_rate_;
963
964  // For a GC cycle, a bitmap that is set corresponding to the
965  std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
966  std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
967
968  // Mark stack that we reuse to avoid re-allocating the mark stack.
969  std::unique_ptr<accounting::ObjectStack> mark_stack_;
970
971  // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
972  // to use the live bitmap as the old mark bitmap.
973  const size_t max_allocation_stack_size_;
974  std::unique_ptr<accounting::ObjectStack> allocation_stack_;
975
976  // Second allocation stack so that we can process allocation with the heap unlocked.
977  std::unique_ptr<accounting::ObjectStack> live_stack_;
978
979  // Allocator type.
980  AllocatorType current_allocator_;
981  const AllocatorType current_non_moving_allocator_;
982
983  // Which GCs we run in order when we an allocation fails.
984  std::vector<collector::GcType> gc_plan_;
985
986  // Bump pointer spaces.
987  space::BumpPointerSpace* bump_pointer_space_;
988  // Temp space is the space which the semispace collector copies to.
989  space::BumpPointerSpace* temp_space_;
990
991  // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
992  // utilization, regardless of target utilization ratio.
993  size_t min_free_;
994
995  // The ideal maximum free size, when we grow the heap for utilization.
996  size_t max_free_;
997
998  // Target ideal heap utilization ratio
999  double target_utilization_;
1000
1001  // How much more we grow the heap when we are a foreground app instead of background.
1002  double foreground_heap_growth_multiplier_;
1003
1004  // Total time which mutators are paused or waiting for GC to complete.
1005  uint64_t total_wait_time_;
1006
1007  // Total number of objects allocated in microseconds.
1008  AtomicInteger total_allocation_time_;
1009
1010  // The current state of heap verification, may be enabled or disabled.
1011  VerifyObjectMode verify_object_mode_;
1012
1013  // Compacting GC disable count, prevents compacting GC from running iff > 0.
1014  size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
1015
1016  std::vector<collector::GarbageCollector*> garbage_collectors_;
1017  collector::SemiSpace* semi_space_collector_;
1018  collector::MarkCompact* mark_compact_collector_;
1019  collector::ConcurrentCopying* concurrent_copying_collector_;
1020
1021  const bool running_on_valgrind_;
1022  const bool use_tlab_;
1023
1024  // Pointer to the space which becomes the new main space when we do homogeneous space compaction.
1025  // Use unique_ptr since the space is only added during the homogeneous compaction phase.
1026  std::unique_ptr<space::MallocSpace> main_space_backup_;
1027
1028  // Minimal interval allowed between two homogeneous space compactions caused by OOM.
1029  uint64_t min_interval_homogeneous_space_compaction_by_oom_;
1030
1031  // Times of the last homogeneous space compaction caused by OOM.
1032  uint64_t last_time_homogeneous_space_compaction_by_oom_;
1033
1034  // Saved OOMs by homogeneous space compaction.
1035  Atomic<size_t> count_delayed_oom_;
1036
1037  // Count for requested homogeneous space compaction.
1038  Atomic<size_t> count_requested_homogeneous_space_compaction_;
1039
1040  // Count for ignored homogeneous space compaction.
1041  Atomic<size_t> count_ignored_homogeneous_space_compaction_;
1042
1043  // Count for performed homogeneous space compaction.
1044  Atomic<size_t> count_performed_homogeneous_space_compaction_;
1045
1046  // Whether or not we use homogeneous space compaction to avoid OOM errors.
1047  bool use_homogeneous_space_compaction_for_oom_;
1048
1049  friend class collector::GarbageCollector;
1050  friend class collector::MarkCompact;
1051  friend class collector::MarkSweep;
1052  friend class collector::SemiSpace;
1053  friend class ReferenceQueue;
1054  friend class VerifyReferenceCardVisitor;
1055  friend class VerifyReferenceVisitor;
1056  friend class VerifyObjectVisitor;
1057  friend class ScopedHeapFill;
1058  friend class ScopedHeapLock;
1059  friend class space::SpaceTest;
1060
1061  class AllocationTimer {
1062   private:
1063    Heap* heap_;
1064    mirror::Object** allocated_obj_ptr_;
1065    uint64_t allocation_start_time_;
1066   public:
1067    AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr);
1068    ~AllocationTimer();
1069  };
1070
1071  DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
1072};
1073
1074// ScopedHeapFill changes the bytes allocated counter to be equal to the growth limit. This
1075// causes the next allocation to perform a GC and possibly an OOM. It can be used to ensure that a
1076// GC happens in specific methods such as ThrowIllegalMonitorStateExceptionF in Monitor::Wait.
1077class ScopedHeapFill {
1078 public:
1079  explicit ScopedHeapFill(Heap* heap)
1080      : heap_(heap),
1081        delta_(heap_->GetMaxMemory() - heap_->GetBytesAllocated()) {
1082    heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(delta_);
1083  }
1084  ~ScopedHeapFill() {
1085    heap_->num_bytes_allocated_.FetchAndSubSequentiallyConsistent(delta_);
1086  }
1087
1088 private:
1089  Heap* const heap_;
1090  const int64_t delta_;
1091};
1092
1093}  // namespace gc
1094}  // namespace art
1095
1096#endif  // ART_RUNTIME_GC_HEAP_H_
1097