heap.h revision fc5b528fc46ccff655cfb3578847350f74064e8d
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_HEAP_H_
18#define ART_RUNTIME_GC_HEAP_H_
19
20#include <iosfwd>
21#include <string>
22#include <vector>
23
24#include "atomic_integer.h"
25#include "base/timing_logger.h"
26#include "gc/accounting/atomic_stack.h"
27#include "gc/accounting/card_table.h"
28#include "gc/collector/gc_type.h"
29#include "gc/collector_type.h"
30#include "globals.h"
31#include "gtest/gtest.h"
32#include "jni.h"
33#include "locks.h"
34#include "offsets.h"
35#include "reference_queue.h"
36#include "root_visitor.h"
37#include "safe_map.h"
38#include "thread_pool.h"
39
40namespace art {
41
42class ConditionVariable;
43class Mutex;
44class StackVisitor;
45class Thread;
46class TimingLogger;
47
48namespace mirror {
49  class Class;
50  class Object;
51}  // namespace mirror
52
53namespace gc {
54namespace accounting {
55  class HeapBitmap;
56  class ModUnionTable;
57  class SpaceSetMap;
58}  // namespace accounting
59
60namespace collector {
61  class GarbageCollector;
62  class MarkSweep;
63  class SemiSpace;
64}  // namespace collector
65
66namespace space {
67  class AllocSpace;
68  class BumpPointerSpace;
69  class DiscontinuousSpace;
70  class DlMallocSpace;
71  class ImageSpace;
72  class LargeObjectSpace;
73  class MallocSpace;
74  class RosAllocSpace;
75  class Space;
76  class SpaceTest;
77  class ContinuousMemMapAllocSpace;
78}  // namespace space
79
80class AgeCardVisitor {
81 public:
82  byte operator()(byte card) const {
83    if (card == accounting::CardTable::kCardDirty) {
84      return card - 1;
85    } else {
86      return 0;
87    }
88  }
89};
90
91// Different types of allocators.
92enum AllocatorType {
93  kAllocatorTypeBumpPointer,  // Use BumpPointer allocator, has entrypoints.
94  kAllocatorTypeTLAB,  // Use TLAB allocator, has entrypoints.
95  kAllocatorTypeRosAlloc,  // Use RosAlloc allocator, has entrypoints.
96  kAllocatorTypeDlMalloc,  // Use dlmalloc allocator, has entrypoints.
97  kAllocatorTypeNonMoving,  // Special allocator for non moving objects, doesn't have entrypoints.
98  kAllocatorTypeLOS,  // Large object space, also doesn't have entrypoints.
99};
100
101// What caused the GC?
102enum GcCause {
103  // GC triggered by a failed allocation. Thread doing allocation is blocked waiting for GC before
104  // retrying allocation.
105  kGcCauseForAlloc,
106  // A background GC trying to ensure there is free memory ahead of allocations.
107  kGcCauseBackground,
108  // An explicit System.gc() call.
109  kGcCauseExplicit,
110};
111std::ostream& operator<<(std::ostream& os, const GcCause& policy);
112
113// How we want to sanity check the heap's correctness.
114enum HeapVerificationMode {
115  kHeapVerificationNotPermitted,  // Too early in runtime start-up for heap to be verified.
116  kNoHeapVerification,  // Production default.
117  kVerifyAllFast,  // Sanity check all heap accesses with quick(er) tests.
118  kVerifyAll  // Sanity check all heap accesses.
119};
120static constexpr HeapVerificationMode kDesiredHeapVerification = kNoHeapVerification;
121
122// If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
123static constexpr bool kUseRosAlloc = true;
124
125// The process state passed in from the activity manager, used to determine when to do trimming
126// and compaction.
127enum ProcessState {
128  kProcessStateJankPerceptible = 0,
129  kProcessStateJankImperceptible = 1,
130};
131std::ostream& operator<<(std::ostream& os, const ProcessState& process_state);
132
133class Heap {
134 public:
135  // If true, measure the total allocation time.
136  static constexpr bool kMeasureAllocationTime = false;
137  // Primitive arrays larger than this size are put in the large object space.
138  static constexpr size_t kLargeObjectThreshold = 3 * kPageSize;
139
140  static constexpr size_t kDefaultInitialSize = 2 * MB;
141  static constexpr size_t kDefaultMaximumSize = 32 * MB;
142  static constexpr size_t kDefaultMaxFree = 2 * MB;
143  static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
144  static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
145  static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
146  static constexpr size_t kDefaultTLABSize = 256 * KB;
147
148  // Default target utilization.
149  static constexpr double kDefaultTargetUtilization = 0.5;
150
151  // Used so that we don't overflow the allocation time atomic integer.
152  static constexpr size_t kTimeAdjust = 1024;
153
154  // Create a heap with the requested sizes. The possible empty
155  // image_file_names names specify Spaces to load based on
156  // ImageWriter output.
157  explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free,
158                size_t max_free, double target_utilization, size_t capacity,
159                const std::string& original_image_file_name,
160                CollectorType post_zygote_collector_type, CollectorType background_collector_type,
161                size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
162                size_t long_pause_threshold, size_t long_gc_threshold,
163                bool ignore_max_footprint, bool use_tlab);
164
165  ~Heap();
166
167  // Allocates and initializes storage for an object instance.
168  template <bool kInstrumented>
169  mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes)
170      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
171    return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes,
172                                                         GetCurrentAllocator());
173  }
174  template <bool kInstrumented>
175  mirror::Object* AllocNonMovableObject(Thread* self, mirror::Class* klass, size_t num_bytes)
176      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
177    return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes,
178                                                         GetCurrentNonMovingAllocator());
179  }
180  template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor = VoidFunctor>
181  ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(
182      Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator,
183      const PreFenceVisitor& pre_fence_visitor = VoidFunctor())
184      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
185
186  AllocatorType GetCurrentAllocator() const {
187    return current_allocator_;
188  }
189
190  AllocatorType GetCurrentNonMovingAllocator() const {
191    return current_non_moving_allocator_;
192  }
193
194  // Visit all of the live objects in the heap.
195  void VisitObjects(ObjectVisitorCallback callback, void* arg)
196      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
197
198  void SwapSemiSpaces() EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
199
200  void DebugCheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count)
201      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
202  void ThrowOutOfMemoryError(size_t byte_count, bool large_object_allocation);
203
204  void RegisterNativeAllocation(JNIEnv* env, int bytes);
205  void RegisterNativeFree(JNIEnv* env, int bytes);
206
207  // Change the allocator, updates entrypoints.
208  void ChangeAllocator(AllocatorType allocator);
209
210  // Transition the garbage collector during runtime, may copy objects from one space to another.
211  void TransitionCollector(CollectorType collector_type);
212
213  // Change the collector to be one of the possible options (MS, CMS, SS).
214  void ChangeCollector(CollectorType collector_type);
215
216  // The given reference is believed to be to an object in the Java heap, check the soundness of it.
217  void VerifyObjectImpl(const mirror::Object* o);
218  void VerifyObject(const mirror::Object* o) {
219    if (o != nullptr && this != nullptr && verify_object_mode_ > kNoHeapVerification) {
220      VerifyObjectImpl(o);
221    }
222  }
223
224  // Check sanity of all live references.
225  void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
226  bool VerifyHeapReferences()
227      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_)
228      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
229  bool VerifyMissingCardMarks()
230      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_)
231      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
232
233  // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
234  // and doesn't abort on error, allowing the caller to report more
235  // meaningful diagnostics.
236  bool IsValidObjectAddress(const mirror::Object* obj) const;
237
238  // Returns true if the address passed in is a heap address, doesn't need to be aligned.
239  bool IsHeapAddress(const mirror::Object* obj) const;
240
241  // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
242  // Requires the heap lock to be held.
243  bool IsLiveObjectLocked(const mirror::Object* obj, bool search_allocation_stack = true,
244                          bool search_live_stack = true, bool sorted = false)
245      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
246
247  // Returns true if there is any chance that the object (obj) will move.
248  bool IsMovableObject(const mirror::Object* obj) const;
249
250  // Returns true if an object is in the temp space, if this happens its usually indicative of
251  // compaction related errors.
252  bool IsInTempSpace(const mirror::Object* obj) const;
253
254  // Enables us to prevent GC until objects are released.
255  void IncrementDisableGC(Thread* self);
256  void DecrementDisableGC(Thread* self);
257
258  // Initiates an explicit garbage collection.
259  void CollectGarbage(bool clear_soft_references) LOCKS_EXCLUDED(Locks::mutator_lock_);
260
261  // Does a concurrent GC, should only be called by the GC daemon thread
262  // through runtime.
263  void ConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
264
265  // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
266  // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
267  void CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
268                      uint64_t* counts)
269      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
270      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
271  // Implements JDWP RT_Instances.
272  void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
273      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
274      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
275  // Implements JDWP OR_ReferringObjects.
276  void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects)
277      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_)
278      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
279
280  // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
281  // implement dalvik.system.VMRuntime.clearGrowthLimit.
282  void ClearGrowthLimit();
283
284  // Target ideal heap utilization ratio, implements
285  // dalvik.system.VMRuntime.getTargetHeapUtilization.
286  double GetTargetHeapUtilization() const {
287    return target_utilization_;
288  }
289
290  // Data structure memory usage tracking.
291  void RegisterGCAllocation(size_t bytes);
292  void RegisterGCDeAllocation(size_t bytes);
293
294  // Set target ideal heap utilization ratio, implements
295  // dalvik.system.VMRuntime.setTargetHeapUtilization.
296  void SetTargetHeapUtilization(float target);
297
298  // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
299  // from the system. Doesn't allow the space to exceed its growth limit.
300  void SetIdealFootprint(size_t max_allowed_footprint);
301
302  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
303  // waited for.
304  collector::GcType WaitForGcToComplete(Thread* self) LOCKS_EXCLUDED(gc_complete_lock_);
305
306  // Update the heap's process state to a new value, may cause compaction to occur.
307  void UpdateProcessState(ProcessState process_state);
308
309  const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const {
310    return continuous_spaces_;
311  }
312
313  const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
314    return discontinuous_spaces_;
315  }
316
317  void SetReferenceOffsets(MemberOffset reference_referent_offset,
318                           MemberOffset reference_queue_offset,
319                           MemberOffset reference_queueNext_offset,
320                           MemberOffset reference_pendingNext_offset,
321                           MemberOffset finalizer_reference_zombie_offset);
322  MemberOffset GetReferenceReferentOffset() const {
323    return reference_referent_offset_;
324  }
325  MemberOffset GetReferenceQueueOffset() const {
326    return reference_queue_offset_;
327  }
328  MemberOffset GetReferenceQueueNextOffset() const {
329    return reference_queueNext_offset_;
330  }
331  MemberOffset GetReferencePendingNextOffset() const {
332    return reference_pendingNext_offset_;
333  }
334  MemberOffset GetFinalizerReferenceZombieOffset() const {
335    return finalizer_reference_zombie_offset_;
336  }
337  static mirror::Object* PreserveSoftReferenceCallback(mirror::Object* obj, void* arg);
338  void ProcessReferences(TimingLogger& timings, bool clear_soft, RootVisitor* is_marked_callback,
339                         RootVisitor* recursive_mark_object_callback, void* arg)
340      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
341      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
342
343  // Enable verification of object references when the runtime is sufficiently initialized.
344  void EnableObjectValidation() {
345    verify_object_mode_ = kDesiredHeapVerification;
346    if (verify_object_mode_ > kNoHeapVerification) {
347      VerifyHeap();
348    }
349  }
350
351  // Disable object reference verification for image writing.
352  void DisableObjectValidation() {
353    verify_object_mode_ = kHeapVerificationNotPermitted;
354  }
355
356  // Other checks may be performed if we know the heap should be in a sane state.
357  bool IsObjectValidationEnabled() const {
358    return kDesiredHeapVerification > kNoHeapVerification &&
359        verify_object_mode_ > kHeapVerificationNotPermitted;
360  }
361
362  // Returns true if low memory mode is enabled.
363  bool IsLowMemoryMode() const {
364    return low_memory_mode_;
365  }
366
367  // Freed bytes can be negative in cases where we copy objects from a compacted space to a
368  // free-list backed space.
369  void RecordFree(int64_t freed_objects, int64_t freed_bytes);
370
371  // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
372  // The call is not needed if NULL is stored in the field.
373  void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/,
374                         const mirror::Object* /*new_value*/) {
375    card_table_->MarkCard(dst);
376  }
377
378  // Write barrier for array operations that update many field positions
379  void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/,
380                         size_t /*length TODO: element_count or byte_count?*/) {
381    card_table_->MarkCard(dst);
382  }
383
384  void WriteBarrierEveryFieldOf(const mirror::Object* obj) {
385    card_table_->MarkCard(obj);
386  }
387
388  accounting::CardTable* GetCardTable() const {
389    return card_table_.get();
390  }
391
392  void AddFinalizerReference(Thread* self, mirror::Object* object);
393
394  // Returns the number of bytes currently allocated.
395  size_t GetBytesAllocated() const {
396    return num_bytes_allocated_;
397  }
398
399  // Returns the number of objects currently allocated.
400  size_t GetObjectsAllocated() const LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
401
402  // Returns the total number of objects allocated since the heap was created.
403  size_t GetObjectsAllocatedEver() const;
404
405  // Returns the total number of bytes allocated since the heap was created.
406  size_t GetBytesAllocatedEver() const;
407
408  // Returns the total number of objects freed since the heap was created.
409  size_t GetObjectsFreedEver() const {
410    return total_objects_freed_ever_;
411  }
412
413  // Returns the total number of bytes freed since the heap was created.
414  size_t GetBytesFreedEver() const {
415    return total_bytes_freed_ever_;
416  }
417
418  // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
419  // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
420  // were specified. Android apps start with a growth limit (small heap size) which is
421  // cleared/extended for large apps.
422  int64_t GetMaxMemory() const {
423    return growth_limit_;
424  }
425
426  // Implements java.lang.Runtime.totalMemory, returning the amount of memory consumed by an
427  // application.
428  int64_t GetTotalMemory() const;
429
430  // Implements java.lang.Runtime.freeMemory.
431  int64_t GetFreeMemory() const {
432    return GetTotalMemory() - num_bytes_allocated_;
433  }
434
435  // Get the space that corresponds to an object's address. Current implementation searches all
436  // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
437  // TODO: consider using faster data structure like binary tree.
438  space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const;
439  space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*,
440                                                              bool fail_ok) const;
441  space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const;
442
443  void DumpForSigQuit(std::ostream& os);
444
445  // Trim the managed and native heaps by releasing unused memory back to the OS.
446  void Trim();
447
448  void RevokeThreadLocalBuffers(Thread* thread);
449  void RevokeAllThreadLocalBuffers();
450
451  accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
452    return live_bitmap_.get();
453  }
454
455  accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
456    return mark_bitmap_.get();
457  }
458
459  accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
460    return live_stack_.get();
461  }
462
463  void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
464
465  // Mark and empty stack.
466  void FlushAllocStack()
467      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
468
469  // Mark all the objects in the allocation stack in the specified bitmap.
470  void MarkAllocStack(accounting::SpaceBitmap* bitmap1, accounting::SpaceBitmap* bitmap2,
471                      accounting::SpaceSetMap* large_objects, accounting::ObjectStack* stack)
472      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
473
474  // Mark the specified allocation stack as live.
475  void MarkAllocStackAsLive(accounting::ObjectStack* stack)
476      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_);
477
478  // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added.
479  // Assumes there is only one image space.
480  space::ImageSpace* GetImageSpace() const;
481
482  space::DlMallocSpace* GetDlMallocSpace() const {
483    return dlmalloc_space_;
484  }
485
486  space::RosAllocSpace* GetRosAllocSpace() const {
487    return rosalloc_space_;
488  }
489
490  space::MallocSpace* GetNonMovingSpace() const {
491    return non_moving_space_;
492  }
493
494  space::LargeObjectSpace* GetLargeObjectsSpace() const {
495    return large_object_space_;
496  }
497
498  void DumpSpaces(std::ostream& stream = LOG(INFO));
499
500  // GC performance measuring
501  void DumpGcPerformanceInfo(std::ostream& os);
502
503  // Returns true if we currently care about pause times.
504  bool CareAboutPauseTimes() const {
505    return process_state_ == kProcessStateJankPerceptible;
506  }
507
508  // Thread pool.
509  void CreateThreadPool();
510  void DeleteThreadPool();
511  ThreadPool* GetThreadPool() {
512    return thread_pool_.get();
513  }
514  size_t GetParallelGCThreadCount() const {
515    return parallel_gc_threads_;
516  }
517  size_t GetConcGCThreadCount() const {
518    return conc_gc_threads_;
519  }
520  accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
521  void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
522
523  bool IsCompilingBoot() const;
524  bool HasImageSpace() const;
525
526 private:
527  void Compact(space::ContinuousMemMapAllocSpace* target_space,
528               space::ContinuousMemMapAllocSpace* source_space);
529
530  bool StartGC(Thread* self) LOCKS_EXCLUDED(gc_complete_lock_);
531  void FinishGC(Thread* self, collector::GcType gc_type) LOCKS_EXCLUDED(gc_complete_lock_);
532
533  static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
534    return
535        allocator_type != kAllocatorTypeBumpPointer &&
536        allocator_type != kAllocatorTypeTLAB;
537  }
538  static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
539    return AllocatorHasAllocationStack(allocator_type);
540  }
541  bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const;
542  ALWAYS_INLINE void CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
543                                       mirror::Object* obj);
544
545  // We don't force this to be inlined since it is a slow path.
546  template <bool kInstrumented, typename PreFenceVisitor>
547  mirror::Object* AllocLargeObject(Thread* self, mirror::Class* klass, size_t byte_count,
548                                   const PreFenceVisitor& pre_fence_visitor)
549      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
550
551  // Handles Allocate()'s slow allocation path with GC involved after
552  // an initial allocation attempt failed.
553  mirror::Object* AllocateInternalWithGc(Thread* self, AllocatorType allocator, size_t num_bytes,
554                                         size_t* bytes_allocated, mirror::Class** klass)
555      LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_)
556      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
557
558  // Allocate into a specific space.
559  mirror::Object* AllocateInto(Thread* self, space::AllocSpace* space, mirror::Class* c,
560                               size_t bytes)
561      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
562
563  // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
564  // that the switch statement is constant optimized in the entrypoints.
565  template <const bool kInstrumented, const bool kGrow>
566  ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, AllocatorType allocator_type,
567                                              size_t alloc_size, size_t* bytes_allocated)
568      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
569
570  void ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation)
571      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
572
573  template <bool kGrow>
574  bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size);
575
576  // Pushes a list of cleared references out to the managed heap.
577  void SetReferenceReferent(mirror::Object* reference, mirror::Object* referent)
578      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
579  mirror::Object* GetReferenceReferent(mirror::Object* reference)
580      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
581  void ClearReferenceReferent(mirror::Object* reference)
582      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
583    SetReferenceReferent(reference, nullptr);
584  }
585  void EnqueueClearedReferences();
586  // Returns true if the reference object has not yet been enqueued.
587  bool IsEnqueuable(const mirror::Object* ref) const;
588  bool IsEnqueued(mirror::Object* ref) const;
589  void DelayReferenceReferent(mirror::Class* klass, mirror::Object* obj, RootVisitor mark_visitor,
590                              void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
591
592  // Run the finalizers.
593  void RunFinalization(JNIEnv* env);
594
595  // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
596  // waited for.
597  collector::GcType WaitForGcToCompleteLocked(Thread* self)
598      EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_);
599
600  void RequestHeapTrim() LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
601  void RequestConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_);
602  bool IsGCRequestPending() const;
603
604  size_t RecordAllocationInstrumented(size_t size, mirror::Object* object)
605      LOCKS_EXCLUDED(GlobalSynchronization::heap_bitmap_lock_)
606      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
607
608  size_t RecordAllocationUninstrumented(size_t size, mirror::Object* object)
609      LOCKS_EXCLUDED(GlobalSynchronization::heap_bitmap_lock_)
610      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
611
612  // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
613  // which type of Gc was actually ran.
614  collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause,
615                                           bool clear_soft_references)
616      LOCKS_EXCLUDED(gc_complete_lock_,
617                     Locks::heap_bitmap_lock_,
618                     Locks::thread_suspend_count_lock_);
619
620  void PreGcVerification(collector::GarbageCollector* gc);
621  void PreSweepingGcVerification(collector::GarbageCollector* gc)
622      EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_);
623  void PostGcVerification(collector::GarbageCollector* gc)
624      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
625
626  // Update the watermark for the native allocated bytes based on the current number of native
627  // bytes allocated and the target utilization ratio.
628  void UpdateMaxNativeFootprint();
629
630  // Given the current contents of the alloc space, increase the allowed heap footprint to match
631  // the target utilization ratio.  This should only be called immediately after a full garbage
632  // collection.
633  void GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration);
634
635  size_t GetPercentFree();
636
637  void AddSpace(space::Space* space, bool set_as_default = true)
638      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
639  void RemoveSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_);
640
641  // No thread saftey analysis since we call this everywhere and it is impossible to find a proper
642  // lock ordering for it.
643  void VerifyObjectBody(const mirror::Object *obj) NO_THREAD_SAFETY_ANALYSIS;
644
645  static void VerificationCallback(mirror::Object* obj, void* arg)
646      SHARED_LOCKS_REQUIRED(GlobalSychronization::heap_bitmap_lock_);
647
648  // Swap the allocation stack with the live stack.
649  void SwapStacks();
650
651  // Clear cards and update the mod union table.
652  void ProcessCards(TimingLogger& timings);
653
654  // All-known continuous spaces, where objects lie within fixed bounds.
655  std::vector<space::ContinuousSpace*> continuous_spaces_;
656
657  // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
658  std::vector<space::DiscontinuousSpace*> discontinuous_spaces_;
659
660  // All-known alloc spaces, where objects may be or have been allocated.
661  std::vector<space::AllocSpace*> alloc_spaces_;
662
663  // A space where non-movable objects are allocated, when compaction is enabled it contains
664  // Classes, ArtMethods, ArtFields, and non moving objects.
665  space::MallocSpace* non_moving_space_;
666
667  // Space which we use for the kAllocatorTypeROSAlloc.
668  space::RosAllocSpace* rosalloc_space_;
669
670  // Space which we use for the kAllocatorTypeDlMalloc.
671  space::DlMallocSpace* dlmalloc_space_;
672
673  // The main space is the space which the GC copies to and from on process state updates. This
674  // space is typically either the dlmalloc_space_ or the rosalloc_space_.
675  space::MallocSpace* main_space_;
676
677  // The large object space we are currently allocating into.
678  space::LargeObjectSpace* large_object_space_;
679
680  // The card table, dirtied by the write barrier.
681  UniquePtr<accounting::CardTable> card_table_;
682
683  // A mod-union table remembers all of the references from the it's space to other spaces.
684  SafeMap<space::Space*, accounting::ModUnionTable*> mod_union_tables_;
685
686  // Keep the free list allocator mem map lying around when we transition to background so that we
687  // don't have to worry about virtual address space fragmentation.
688  UniquePtr<MemMap> allocator_mem_map_;
689
690  // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
691  // sweep GC, false for other GC types.
692  bool concurrent_gc_;
693
694  // The current collector type.
695  CollectorType collector_type_;
696  // Which collector we will switch to after zygote fork.
697  CollectorType post_zygote_collector_type_;
698  // Which collector we will use when the app is notified of a transition to background.
699  CollectorType background_collector_type_;
700
701  // How many GC threads we may use for paused parts of garbage collection.
702  const size_t parallel_gc_threads_;
703
704  // How many GC threads we may use for unpaused parts of garbage collection.
705  const size_t conc_gc_threads_;
706
707  // Boolean for if we are in low memory mode.
708  const bool low_memory_mode_;
709
710  // If we get a pause longer than long pause log threshold, then we print out the GC after it
711  // finishes.
712  const size_t long_pause_log_threshold_;
713
714  // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
715  const size_t long_gc_log_threshold_;
716
717  // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is
718  // useful for benchmarking since it reduces time spent in GC to a low %.
719  const bool ignore_max_footprint_;
720
721  // If we have a zygote space.
722  bool have_zygote_space_;
723
724  // Number of pinned primitive arrays in the movable space.
725  // Block all GC until this hits zero, or we hit the timeout!
726  size_t number_gc_blockers_;
727  static constexpr size_t KGCBlockTimeout = 30000;
728
729  // Guards access to the state of GC, associated conditional variable is used to signal when a GC
730  // completes.
731  Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
732  UniquePtr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
733
734  // Reference queues.
735  ReferenceQueue soft_reference_queue_;
736  ReferenceQueue weak_reference_queue_;
737  ReferenceQueue finalizer_reference_queue_;
738  ReferenceQueue phantom_reference_queue_;
739  ReferenceQueue cleared_references_;
740
741  // True while the garbage collector is running.
742  volatile bool is_gc_running_ GUARDED_BY(gc_complete_lock_);
743
744  // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
745  volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
746  collector::GcType next_gc_type_;
747
748  // Maximum size that the heap can reach.
749  const size_t capacity_;
750
751  // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
752  // programs it is "cleared" making it the same as capacity.
753  size_t growth_limit_;
754
755  // When the number of bytes allocated exceeds the footprint TryAllocate returns NULL indicating
756  // a GC should be triggered.
757  size_t max_allowed_footprint_;
758
759  // The watermark at which a concurrent GC is requested by registerNativeAllocation.
760  size_t native_footprint_gc_watermark_;
761
762  // The watermark at which a GC is performed inside of registerNativeAllocation.
763  size_t native_footprint_limit_;
764
765  // Whether or not we need to run finalizers in the next native allocation.
766  bool native_need_to_run_finalization_;
767
768  // Whether or not we currently care about pause times.
769  ProcessState process_state_;
770
771  // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
772  // it completes ahead of an allocation failing.
773  size_t concurrent_start_bytes_;
774
775  // Since the heap was created, how many bytes have been freed.
776  size_t total_bytes_freed_ever_;
777
778  // Since the heap was created, how many objects have been freed.
779  size_t total_objects_freed_ever_;
780
781  // Number of bytes allocated.  Adjusted after each allocation and free.
782  AtomicInteger num_bytes_allocated_;
783
784  // Bytes which are allocated and managed by native code but still need to be accounted for.
785  AtomicInteger native_bytes_allocated_;
786
787  // Data structure GC overhead.
788  AtomicInteger gc_memory_overhead_;
789
790  // Heap verification flags.
791  const bool verify_missing_card_marks_;
792  const bool verify_system_weaks_;
793  const bool verify_pre_gc_heap_;
794  const bool verify_post_gc_heap_;
795  const bool verify_mod_union_table_;
796
797  // Parallel GC data structures.
798  UniquePtr<ThreadPool> thread_pool_;
799
800  // Sticky mark bits GC has some overhead, so if we have less a few megabytes of AllocSpace then
801  // it's probably better to just do a partial GC.
802  const size_t min_alloc_space_size_for_sticky_gc_;
803
804  // Minimum remaining size for sticky GC. Since sticky GC doesn't free up as much memory as a
805  // normal GC, it is important to not use it when we are almost out of memory.
806  const size_t min_remaining_space_for_sticky_gc_;
807
808  // The last time a heap trim occurred.
809  uint64_t last_trim_time_ms_;
810
811  // The nanosecond time at which the last GC ended.
812  uint64_t last_gc_time_ns_;
813
814  // How many bytes were allocated at the end of the last GC.
815  uint64_t last_gc_size_;
816
817  // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle
818  // and the start of the current one.
819  uint64_t allocation_rate_;
820
821  // For a GC cycle, a bitmap that is set corresponding to the
822  UniquePtr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
823  UniquePtr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
824
825  // Mark stack that we reuse to avoid re-allocating the mark stack.
826  UniquePtr<accounting::ObjectStack> mark_stack_;
827
828  // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
829  // to use the live bitmap as the old mark bitmap.
830  const size_t max_allocation_stack_size_;
831  UniquePtr<accounting::ObjectStack> allocation_stack_;
832
833  // Second allocation stack so that we can process allocation with the heap unlocked.
834  UniquePtr<accounting::ObjectStack> live_stack_;
835
836  // Allocator type.
837  AllocatorType current_allocator_;
838  const AllocatorType current_non_moving_allocator_;
839
840  // Which GCs we run in order when we an allocation fails.
841  std::vector<collector::GcType> gc_plan_;
842
843  // Bump pointer spaces.
844  space::BumpPointerSpace* bump_pointer_space_;
845  // Temp space is the space which the semispace collector copies to.
846  space::BumpPointerSpace* temp_space_;
847
848  // offset of java.lang.ref.Reference.referent
849  MemberOffset reference_referent_offset_;
850  // offset of java.lang.ref.Reference.queue
851  MemberOffset reference_queue_offset_;
852  // offset of java.lang.ref.Reference.queueNext
853  MemberOffset reference_queueNext_offset_;
854  // offset of java.lang.ref.Reference.pendingNext
855  MemberOffset reference_pendingNext_offset_;
856  // offset of java.lang.ref.FinalizerReference.zombie
857  MemberOffset finalizer_reference_zombie_offset_;
858
859  // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
860  // utilization, regardless of target utilization ratio.
861  size_t min_free_;
862
863  // The ideal maximum free size, when we grow the heap for utilization.
864  size_t max_free_;
865
866  // Target ideal heap utilization ratio
867  double target_utilization_;
868
869  // Total time which mutators are paused or waiting for GC to complete.
870  uint64_t total_wait_time_;
871
872  // Total number of objects allocated in microseconds.
873  AtomicInteger total_allocation_time_;
874
875  // The current state of heap verification, may be enabled or disabled.
876  HeapVerificationMode verify_object_mode_;
877
878  // GC disable count, error on GC if > 0.
879  size_t gc_disable_count_ GUARDED_BY(gc_complete_lock_);
880
881  std::vector<collector::GarbageCollector*> garbage_collectors_;
882  collector::SemiSpace* semi_space_collector_;
883
884  const bool running_on_valgrind_;
885  const bool use_tlab_;
886
887  friend class collector::MarkSweep;
888  friend class collector::SemiSpace;
889  friend class ReferenceQueue;
890  friend class VerifyReferenceCardVisitor;
891  friend class VerifyReferenceVisitor;
892  friend class VerifyObjectVisitor;
893  friend class ScopedHeapLock;
894  friend class space::SpaceTest;
895
896  class AllocationTimer {
897   private:
898    Heap* heap_;
899    mirror::Object** allocated_obj_ptr_;
900    uint64_t allocation_start_time_;
901   public:
902    AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr);
903    ~AllocationTimer();
904  };
905
906  DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
907};
908
909}  // namespace gc
910}  // namespace art
911
912#endif  // ART_RUNTIME_GC_HEAP_H_
913