large_object_space.cc revision 38c488bcd41ba632a646d7a1d790ec71a2fcf6fa
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "large_object_space.h"
18
19#include <memory>
20
21#include "gc/accounting/space_bitmap-inl.h"
22#include "base/logging.h"
23#include "base/mutex-inl.h"
24#include "base/stl_util.h"
25#include "image.h"
26#include "os.h"
27#include "space-inl.h"
28#include "thread-inl.h"
29#include "utils.h"
30
31namespace art {
32namespace gc {
33namespace space {
34
35class ValgrindLargeObjectMapSpace FINAL : public LargeObjectMapSpace {
36 public:
37  explicit ValgrindLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
38  }
39
40  virtual mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
41                                size_t* usable_size) OVERRIDE {
42    mirror::Object* obj =
43        LargeObjectMapSpace::Alloc(self, num_bytes + kValgrindRedZoneBytes * 2, bytes_allocated,
44                                   usable_size);
45    mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
46        reinterpret_cast<uintptr_t>(obj) + kValgrindRedZoneBytes);
47    VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<void*>(obj), kValgrindRedZoneBytes);
48    VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<byte*>(object_without_rdz) + num_bytes,
49                               kValgrindRedZoneBytes);
50    if (usable_size != nullptr) {
51      *usable_size = num_bytes;  // Since we have redzones, shrink the usable size.
52    }
53    return object_without_rdz;
54  }
55
56  virtual size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE {
57    mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
58        reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
59    return LargeObjectMapSpace::AllocationSize(object_with_rdz, usable_size);
60  }
61
62  virtual size_t Free(Thread* self, mirror::Object* obj) OVERRIDE {
63    mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
64        reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
65    VALGRIND_MAKE_MEM_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
66    return LargeObjectMapSpace::Free(self, object_with_rdz);
67  }
68
69  bool Contains(const mirror::Object* obj) const OVERRIDE {
70    mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
71        reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
72    return LargeObjectMapSpace::Contains(object_with_rdz);
73  }
74
75 private:
76  static constexpr size_t kValgrindRedZoneBytes = kPageSize;
77};
78
79void LargeObjectSpace::SwapBitmaps() {
80  live_bitmap_.swap(mark_bitmap_);
81  // Swap names to get more descriptive diagnostics.
82  std::string temp_name = live_bitmap_->GetName();
83  live_bitmap_->SetName(mark_bitmap_->GetName());
84  mark_bitmap_->SetName(temp_name);
85}
86
87LargeObjectSpace::LargeObjectSpace(const std::string& name, byte* begin, byte* end)
88    : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
89      num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
90      total_objects_allocated_(0), begin_(begin), end_(end) {
91}
92
93
94void LargeObjectSpace::CopyLiveToMarked() {
95  mark_bitmap_->CopyFrom(live_bitmap_.get());
96}
97
98LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
99    : LargeObjectSpace(name, nullptr, nullptr),
100      lock_("large object map space lock", kAllocSpaceLock) {}
101
102LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
103  if (Runtime::Current()->RunningOnValgrind()) {
104    return new ValgrindLargeObjectMapSpace(name);
105  } else {
106    return new LargeObjectMapSpace(name);
107  }
108}
109
110mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
111                                           size_t* bytes_allocated, size_t* usable_size) {
112  std::string error_msg;
113  MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", NULL, num_bytes,
114                                         PROT_READ | PROT_WRITE, true, &error_msg);
115  if (UNLIKELY(mem_map == NULL)) {
116    LOG(WARNING) << "Large object allocation failed: " << error_msg;
117    return NULL;
118  }
119  MutexLock mu(self, lock_);
120  mirror::Object* obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
121  large_objects_.push_back(obj);
122  mem_maps_.Put(obj, mem_map);
123  size_t allocation_size = mem_map->Size();
124  DCHECK(bytes_allocated != nullptr);
125  begin_ = std::min(begin_, reinterpret_cast<byte*>(obj));
126  byte* obj_end = reinterpret_cast<byte*>(obj) + allocation_size;
127  if (end_ == nullptr || obj_end > end_) {
128    end_ = obj_end;
129  }
130  *bytes_allocated = allocation_size;
131  if (usable_size != nullptr) {
132    *usable_size = allocation_size;
133  }
134  num_bytes_allocated_ += allocation_size;
135  total_bytes_allocated_ += allocation_size;
136  ++num_objects_allocated_;
137  ++total_objects_allocated_;
138  return obj;
139}
140
141size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
142  MutexLock mu(self, lock_);
143  MemMaps::iterator found = mem_maps_.find(ptr);
144  if (UNLIKELY(found == mem_maps_.end())) {
145    Runtime::Current()->GetHeap()->DumpSpaces(LOG(ERROR));
146    LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
147  }
148  DCHECK_GE(num_bytes_allocated_, found->second->Size());
149  size_t allocation_size = found->second->Size();
150  num_bytes_allocated_ -= allocation_size;
151  --num_objects_allocated_;
152  delete found->second;
153  mem_maps_.erase(found);
154  return allocation_size;
155}
156
157size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
158  MutexLock mu(Thread::Current(), lock_);
159  auto found = mem_maps_.find(obj);
160  CHECK(found != mem_maps_.end()) << "Attempted to get size of a large object which is not live";
161  return found->second->Size();
162}
163
164size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
165  size_t total = 0;
166  for (size_t i = 0; i < num_ptrs; ++i) {
167    if (kDebugSpaces) {
168      CHECK(Contains(ptrs[i]));
169    }
170    total += Free(self, ptrs[i]);
171  }
172  return total;
173}
174
175void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
176  MutexLock mu(Thread::Current(), lock_);
177  for (auto it = mem_maps_.begin(); it != mem_maps_.end(); ++it) {
178    MemMap* mem_map = it->second;
179    callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
180    callback(NULL, NULL, 0, arg);
181  }
182}
183
184bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
185  Thread* self = Thread::Current();
186  if (lock_.IsExclusiveHeld(self)) {
187    // We hold lock_ so do the check.
188    return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
189  } else {
190    MutexLock mu(self, lock_);
191    return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
192  }
193}
194
195FreeListSpace* FreeListSpace::Create(const std::string& name, byte* requested_begin, size_t size) {
196  CHECK_EQ(size % kAlignment, 0U);
197  std::string error_msg;
198  MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
199                                         PROT_READ | PROT_WRITE, true, &error_msg);
200  CHECK(mem_map != NULL) << "Failed to allocate large object space mem map: " << error_msg;
201  return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
202}
203
204FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end)
205    : LargeObjectSpace(name, begin, end),
206      mem_map_(mem_map),
207      lock_("free list space lock", kAllocSpaceLock) {
208  free_end_ = end - begin;
209}
210
211FreeListSpace::~FreeListSpace() {}
212
213void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
214  MutexLock mu(Thread::Current(), lock_);
215  uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
216  AllocationHeader* cur_header = reinterpret_cast<AllocationHeader*>(Begin());
217  while (reinterpret_cast<uintptr_t>(cur_header) < free_end_start) {
218    cur_header = cur_header->GetNextNonFree();
219    size_t alloc_size = cur_header->AllocationSize();
220    byte* byte_start = reinterpret_cast<byte*>(cur_header->GetObjectAddress());
221    byte* byte_end = byte_start + alloc_size - sizeof(AllocationHeader);
222    callback(byte_start, byte_end, alloc_size, arg);
223    callback(NULL, NULL, 0, arg);
224    cur_header = reinterpret_cast<AllocationHeader*>(byte_end);
225  }
226}
227
228void FreeListSpace::RemoveFreePrev(AllocationHeader* header) {
229  CHECK(!header->IsFree());
230  CHECK_GT(header->GetPrevFree(), size_t(0));
231  FreeBlocks::iterator found = free_blocks_.lower_bound(header);
232  CHECK(found != free_blocks_.end());
233  CHECK_EQ(*found, header);
234  free_blocks_.erase(found);
235}
236
237FreeListSpace::AllocationHeader* FreeListSpace::GetAllocationHeader(const mirror::Object* obj) {
238  DCHECK(Contains(obj));
239  return reinterpret_cast<AllocationHeader*>(reinterpret_cast<uintptr_t>(obj) -
240      sizeof(AllocationHeader));
241}
242
243FreeListSpace::AllocationHeader* FreeListSpace::AllocationHeader::GetNextNonFree() {
244  // We know that there has to be at least one object after us or else we would have
245  // coalesced with the free end region. May be worth investigating a better way to do this
246  // as it may be expensive for large allocations.
247  for (uintptr_t pos = reinterpret_cast<uintptr_t>(this);; pos += kAlignment) {
248    AllocationHeader* cur = reinterpret_cast<AllocationHeader*>(pos);
249    if (!cur->IsFree()) return cur;
250  }
251}
252
253size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
254  MutexLock mu(self, lock_);
255  DCHECK(Contains(obj));
256  AllocationHeader* header = GetAllocationHeader(obj);
257  CHECK(IsAligned<kAlignment>(header));
258  size_t allocation_size = header->AllocationSize();
259  DCHECK_GT(allocation_size, size_t(0));
260  DCHECK(IsAligned<kAlignment>(allocation_size));
261  // Look at the next chunk.
262  AllocationHeader* next_header = header->GetNextAllocationHeader();
263  // Calculate the start of the end free block.
264  uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
265  size_t header_prev_free = header->GetPrevFree();
266  size_t new_free_size = allocation_size;
267  if (header_prev_free) {
268    new_free_size += header_prev_free;
269    RemoveFreePrev(header);
270  }
271  if (reinterpret_cast<uintptr_t>(next_header) >= free_end_start) {
272    // Easy case, the next chunk is the end free region.
273    CHECK_EQ(reinterpret_cast<uintptr_t>(next_header), free_end_start);
274    free_end_ += new_free_size;
275  } else {
276    AllocationHeader* new_free_header;
277    DCHECK(IsAligned<kAlignment>(next_header));
278    if (next_header->IsFree()) {
279      // Find the next chunk by reading each page until we hit one with non-zero chunk.
280      AllocationHeader* next_next_header = next_header->GetNextNonFree();
281      DCHECK(IsAligned<kAlignment>(next_next_header));
282      DCHECK(IsAligned<kAlignment>(next_next_header->AllocationSize()));
283      RemoveFreePrev(next_next_header);
284      new_free_header = next_next_header;
285      new_free_size += next_next_header->GetPrevFree();
286    } else {
287      new_free_header = next_header;
288    }
289    new_free_header->prev_free_ = new_free_size;
290    free_blocks_.insert(new_free_header);
291  }
292  --num_objects_allocated_;
293  DCHECK_LE(allocation_size, num_bytes_allocated_);
294  num_bytes_allocated_ -= allocation_size;
295  madvise(header, allocation_size, MADV_DONTNEED);
296  if (kIsDebugBuild) {
297    // Can't disallow reads since we use them to find next chunks during coalescing.
298    mprotect(header, allocation_size, PROT_READ);
299  }
300  return allocation_size;
301}
302
303bool FreeListSpace::Contains(const mirror::Object* obj) const {
304  return mem_map_->HasAddress(obj);
305}
306
307size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
308  AllocationHeader* header = GetAllocationHeader(obj);
309  DCHECK(Contains(obj));
310  DCHECK(!header->IsFree());
311  size_t alloc_size = header->AllocationSize();
312  if (usable_size != nullptr) {
313    *usable_size = alloc_size - sizeof(AllocationHeader);
314  }
315  return alloc_size;
316}
317
318mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
319                                     size_t* usable_size) {
320  MutexLock mu(self, lock_);
321  size_t allocation_size = RoundUp(num_bytes + sizeof(AllocationHeader), kAlignment);
322  AllocationHeader temp;
323  temp.SetPrevFree(allocation_size);
324  temp.SetAllocationSize(0);
325  AllocationHeader* new_header;
326  // Find the smallest chunk at least num_bytes in size.
327  FreeBlocks::iterator found = free_blocks_.lower_bound(&temp);
328  if (found != free_blocks_.end()) {
329    AllocationHeader* header = *found;
330    free_blocks_.erase(found);
331
332    // Fit our object in the previous free header space.
333    new_header = header->GetPrevFreeAllocationHeader();
334
335    // Remove the newly allocated block from the header and update the prev_free_.
336    header->prev_free_ -= allocation_size;
337    if (header->prev_free_ > 0) {
338      // If there is remaining space, insert back into the free set.
339      free_blocks_.insert(header);
340    }
341  } else {
342    // Try to steal some memory from the free space at the end of the space.
343    if (LIKELY(free_end_ >= allocation_size)) {
344      // Fit our object at the start of the end free block.
345      new_header = reinterpret_cast<AllocationHeader*>(end_ - free_end_);
346      free_end_ -= allocation_size;
347    } else {
348      return nullptr;
349    }
350  }
351
352  DCHECK(bytes_allocated != nullptr);
353  *bytes_allocated = allocation_size;
354  if (usable_size != nullptr) {
355    *usable_size = allocation_size - sizeof(AllocationHeader);
356  }
357  // Need to do these inside of the lock.
358  ++num_objects_allocated_;
359  ++total_objects_allocated_;
360  num_bytes_allocated_ += allocation_size;
361  total_bytes_allocated_ += allocation_size;
362
363  // We always put our object at the start of the free block, there can not be another free block
364  // before it.
365  if (kIsDebugBuild) {
366    mprotect(new_header, allocation_size, PROT_READ | PROT_WRITE);
367  }
368  new_header->SetPrevFree(0);
369  new_header->SetAllocationSize(allocation_size);
370  return new_header->GetObjectAddress();
371}
372
373void FreeListSpace::Dump(std::ostream& os) const {
374  MutexLock mu(Thread::Current(), const_cast<Mutex&>(lock_));
375  os << GetName() << " -"
376     << " begin: " << reinterpret_cast<void*>(Begin())
377     << " end: " << reinterpret_cast<void*>(End()) << "\n";
378  uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
379  AllocationHeader* cur_header = reinterpret_cast<AllocationHeader*>(Begin());
380  while (reinterpret_cast<uintptr_t>(cur_header) < free_end_start) {
381    byte* free_start = reinterpret_cast<byte*>(cur_header);
382    cur_header = cur_header->GetNextNonFree();
383    byte* free_end = reinterpret_cast<byte*>(cur_header);
384    if (free_start != free_end) {
385      os << "Free block at address: " << reinterpret_cast<const void*>(free_start)
386         << " of length " << free_end - free_start << " bytes\n";
387    }
388    size_t alloc_size = cur_header->AllocationSize();
389    byte* byte_start = reinterpret_cast<byte*>(cur_header->GetObjectAddress());
390    byte* byte_end = byte_start + alloc_size - sizeof(AllocationHeader);
391    os << "Large object at address: " << reinterpret_cast<const void*>(free_start)
392       << " of length " << byte_end - byte_start << " bytes\n";
393    cur_header = reinterpret_cast<AllocationHeader*>(byte_end);
394  }
395  if (free_end_) {
396    os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
397       << " of length " << free_end_ << " bytes\n";
398  }
399}
400
401void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
402  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
403  space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
404  Thread* self = context->self;
405  Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
406  // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
407  // the bitmaps as an optimization.
408  if (!context->swap_bitmaps) {
409    accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
410    for (size_t i = 0; i < num_ptrs; ++i) {
411      bitmap->Clear(ptrs[i]);
412    }
413  }
414  context->freed.objects += num_ptrs;
415  context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
416}
417
418collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
419  if (Begin() >= End()) {
420    return collector::ObjectBytePair(0, 0);
421  }
422  accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
423  accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
424  if (swap_bitmaps) {
425    std::swap(live_bitmap, mark_bitmap);
426  }
427  AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
428  accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
429                                           reinterpret_cast<uintptr_t>(Begin()),
430                                           reinterpret_cast<uintptr_t>(End()), SweepCallback, &scc);
431  return scc.freed;
432}
433
434void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/,
435                                                    size_t /*failed_alloc_bytes*/) {
436  UNIMPLEMENTED(FATAL);
437}
438
439}  // namespace space
440}  // namespace gc
441}  // namespace art
442