large_object_space.cc revision 66e222aa48e6d2fe4c78a1df938364b82bc83e72
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "large_object_space.h"
18
19#include <memory>
20
21#include "gc/accounting/space_bitmap-inl.h"
22#include "base/logging.h"
23#include "base/mutex-inl.h"
24#include "base/stl_util.h"
25#include "image.h"
26#include "os.h"
27#include "space-inl.h"
28#include "thread-inl.h"
29#include "utils.h"
30
31namespace art {
32namespace gc {
33namespace space {
34
35class ValgrindLargeObjectMapSpace FINAL : public LargeObjectMapSpace {
36 public:
37  explicit ValgrindLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
38  }
39
40  virtual mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
41                                size_t* usable_size) OVERRIDE {
42    mirror::Object* obj =
43        LargeObjectMapSpace::Alloc(self, num_bytes + kValgrindRedZoneBytes * 2, bytes_allocated,
44                                   usable_size);
45    mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
46        reinterpret_cast<uintptr_t>(obj) + kValgrindRedZoneBytes);
47    VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<void*>(obj), kValgrindRedZoneBytes);
48    VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<byte*>(object_without_rdz) + num_bytes,
49                               kValgrindRedZoneBytes);
50    if (usable_size != nullptr) {
51      *usable_size = num_bytes;  // Since we have redzones, shrink the usable size.
52    }
53    return object_without_rdz;
54  }
55
56  virtual size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE {
57    mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
58        reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
59    return LargeObjectMapSpace::AllocationSize(object_with_rdz, usable_size);
60  }
61
62  virtual size_t Free(Thread* self, mirror::Object* obj) OVERRIDE {
63    mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
64        reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
65    VALGRIND_MAKE_MEM_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
66    return LargeObjectMapSpace::Free(self, object_with_rdz);
67  }
68
69  bool Contains(const mirror::Object* obj) const OVERRIDE {
70    mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>(
71        reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
72    return LargeObjectMapSpace::Contains(object_with_rdz);
73  }
74
75 private:
76  static constexpr size_t kValgrindRedZoneBytes = kPageSize;
77};
78
79void LargeObjectSpace::SwapBitmaps() {
80  live_bitmap_.swap(mark_bitmap_);
81  // Swap names to get more descriptive diagnostics.
82  std::string temp_name = live_bitmap_->GetName();
83  live_bitmap_->SetName(mark_bitmap_->GetName());
84  mark_bitmap_->SetName(temp_name);
85}
86
87LargeObjectSpace::LargeObjectSpace(const std::string& name, byte* begin, byte* end)
88    : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
89      num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
90      total_objects_allocated_(0), begin_(begin), end_(end) {
91}
92
93
94void LargeObjectSpace::CopyLiveToMarked() {
95  mark_bitmap_->CopyFrom(live_bitmap_.get());
96}
97
98LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
99    : LargeObjectSpace(name, nullptr, nullptr),
100      lock_("large object map space lock", kAllocSpaceLock) {}
101
102LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
103  if (Runtime::Current()->RunningOnValgrind()) {
104    return new ValgrindLargeObjectMapSpace(name);
105  } else {
106    return new LargeObjectMapSpace(name);
107  }
108}
109
110mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
111                                           size_t* bytes_allocated, size_t* usable_size) {
112  std::string error_msg;
113  MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", NULL, num_bytes,
114                                         PROT_READ | PROT_WRITE, true, &error_msg);
115  if (UNLIKELY(mem_map == NULL)) {
116    LOG(WARNING) << "Large object allocation failed: " << error_msg;
117    return NULL;
118  }
119  MutexLock mu(self, lock_);
120  mirror::Object* obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
121  large_objects_.push_back(obj);
122  mem_maps_.Put(obj, mem_map);
123  size_t allocation_size = mem_map->Size();
124  DCHECK(bytes_allocated != nullptr);
125  begin_ = std::min(begin_, reinterpret_cast<byte*>(obj));
126  byte* obj_end = reinterpret_cast<byte*>(obj) + allocation_size;
127  if (end_ == nullptr || obj_end > end_) {
128    end_ = obj_end;
129  }
130  *bytes_allocated = allocation_size;
131  if (usable_size != nullptr) {
132    *usable_size = allocation_size;
133  }
134  num_bytes_allocated_ += allocation_size;
135  total_bytes_allocated_ += allocation_size;
136  ++num_objects_allocated_;
137  ++total_objects_allocated_;
138  return obj;
139}
140
141size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
142  MutexLock mu(self, lock_);
143  MemMaps::iterator found = mem_maps_.find(ptr);
144  if (UNLIKELY(found == mem_maps_.end())) {
145    Runtime::Current()->GetHeap()->DumpSpaces(LOG(ERROR));
146    LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
147  }
148  DCHECK_GE(num_bytes_allocated_, found->second->Size());
149  size_t allocation_size = found->second->Size();
150  num_bytes_allocated_ -= allocation_size;
151  --num_objects_allocated_;
152  delete found->second;
153  mem_maps_.erase(found);
154  return allocation_size;
155}
156
157size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
158  MutexLock mu(Thread::Current(), lock_);
159  auto found = mem_maps_.find(obj);
160  CHECK(found != mem_maps_.end()) << "Attempted to get size of a large object which is not live";
161  return found->second->Size();
162}
163
164size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
165  size_t total = 0;
166  for (size_t i = 0; i < num_ptrs; ++i) {
167    if (kDebugSpaces) {
168      CHECK(Contains(ptrs[i]));
169    }
170    total += Free(self, ptrs[i]);
171  }
172  return total;
173}
174
175void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
176  MutexLock mu(Thread::Current(), lock_);
177  for (auto it = mem_maps_.begin(); it != mem_maps_.end(); ++it) {
178    MemMap* mem_map = it->second;
179    callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
180    callback(NULL, NULL, 0, arg);
181  }
182}
183
184bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
185  Thread* self = Thread::Current();
186  if (lock_.IsExclusiveHeld(self)) {
187    // We hold lock_ so do the check.
188    return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
189  } else {
190    MutexLock mu(self, lock_);
191    return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
192  }
193}
194
195// Keeps track of allocation sizes + whether or not the previous allocation is free.
196// Used to coalesce free blocks and find the best fit block for an allocation.
197class AllocationInfo {
198 public:
199  AllocationInfo() : prev_free_(0), alloc_size_(0) {
200  }
201  // Return the number of pages that the allocation info covers.
202  size_t AlignSize() const {
203    return alloc_size_ & ~kFlagFree;
204  }
205  // Returns the allocation size in bytes.
206  size_t ByteSize() const {
207    return AlignSize() * FreeListSpace::kAlignment;
208  }
209  // Updates the allocation size and whether or not it is free.
210  void SetByteSize(size_t size, bool free) {
211    DCHECK_ALIGNED(size, FreeListSpace::kAlignment);
212    alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0U);
213  }
214  bool IsFree() const {
215    return (alloc_size_ & kFlagFree) != 0;
216  }
217  // Finds and returns the next non free allocation info after ourself.
218  AllocationInfo* GetNextInfo() {
219    return this + AlignSize();
220  }
221  const AllocationInfo* GetNextInfo() const {
222    return this + AlignSize();
223  }
224  // Returns the previous free allocation info by using the prev_free_ member to figure out
225  // where it is. This is only used for coalescing so we only need to be able to do it if the
226  // previous allocation info is free.
227  AllocationInfo* GetPrevFreeInfo() {
228    DCHECK_NE(prev_free_, 0U);
229    return this - prev_free_;
230  }
231  // Returns the address of the object associated with this allocation info.
232  mirror::Object* GetObjectAddress() {
233    return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this));
234  }
235  // Return how many kAlignment units there are before the free block.
236  size_t GetPrevFree() const {
237    return prev_free_;
238  }
239  // Returns how many free bytes there is before the block.
240  size_t GetPrevFreeBytes() const {
241    return GetPrevFree() * FreeListSpace::kAlignment;
242  }
243  // Update the size of the free block prior to the allocation.
244  void SetPrevFreeBytes(size_t bytes) {
245    DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment);
246    prev_free_ = bytes / FreeListSpace::kAlignment;
247  }
248
249 private:
250  // Used to implement best fit object allocation. Each allocation has an AllocationInfo which
251  // contains the size of the previous free block preceding it. Implemented in such a way that we
252  // can also find the iterator for any allocation info pointer.
253  static constexpr uint32_t kFlagFree = 0x8000000;
254  // Contains the size of the previous free block with kAlignment as the unit. If 0 then the
255  // allocation before us is not free.
256  // These variables are undefined in the middle of allocations / free blocks.
257  uint32_t prev_free_;
258  // Allocation size of this object in kAlignment as the unit.
259  uint32_t alloc_size_;
260};
261
262size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const {
263  DCHECK_GE(info, allocation_info_);
264  DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_->End()));
265  return info - allocation_info_;
266}
267
268AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) {
269  return &allocation_info_[GetSlotIndexForAddress(address)];
270}
271
272const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const {
273  return &allocation_info_[GetSlotIndexForAddress(address)];
274}
275
276inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a,
277                                                      const AllocationInfo* b) const {
278  if (a->GetPrevFree() < b->GetPrevFree()) return true;
279  if (a->GetPrevFree() > b->GetPrevFree()) return false;
280  if (a->AlignSize() < b->AlignSize()) return true;
281  if (a->AlignSize() > b->AlignSize()) return false;
282  return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b);
283}
284
285FreeListSpace* FreeListSpace::Create(const std::string& name, byte* requested_begin, size_t size) {
286  CHECK_EQ(size % kAlignment, 0U);
287  std::string error_msg;
288  MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
289                                         PROT_READ | PROT_WRITE, true, &error_msg);
290  CHECK(mem_map != NULL) << "Failed to allocate large object space mem map: " << error_msg;
291  return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
292}
293
294FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end)
295    : LargeObjectSpace(name, begin, end),
296      mem_map_(mem_map),
297      lock_("free list space lock", kAllocSpaceLock) {
298  const size_t space_capacity = end - begin;
299  free_end_ = space_capacity;
300  CHECK_ALIGNED(space_capacity, kAlignment);
301  const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment);
302  std::string error_msg;
303  allocation_info_map_.reset(MemMap::MapAnonymous("large object free list space allocation info map",
304                                                  nullptr, alloc_info_size, PROT_READ | PROT_WRITE,
305                                                  false, &error_msg));
306  CHECK(allocation_info_map_.get() != nullptr) << "Failed to allocate allocation info map"
307      << error_msg;
308  allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_->Begin());
309}
310
311FreeListSpace::~FreeListSpace() {}
312
313void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
314  MutexLock mu(Thread::Current(), lock_);
315  const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
316  AllocationInfo* cur_info = &allocation_info_[0];
317  const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
318  while (cur_info < end_info) {
319    if (!cur_info->IsFree()) {
320      size_t alloc_size = cur_info->ByteSize();
321      byte* byte_start = reinterpret_cast<byte*>(GetAddressForAllocationInfo(cur_info));
322      byte* byte_end = byte_start + alloc_size;
323      callback(byte_start, byte_end, alloc_size, arg);
324      callback(nullptr, nullptr, 0, arg);
325    }
326    cur_info = cur_info->GetNextInfo();
327  }
328  CHECK_EQ(cur_info, end_info);
329}
330
331void FreeListSpace::RemoveFreePrev(AllocationInfo* info) {
332  CHECK_GT(info->GetPrevFree(), 0U);
333  auto it = free_blocks_.lower_bound(info);
334  CHECK(it != free_blocks_.end());
335  CHECK_EQ(*it, info);
336  free_blocks_.erase(it);
337}
338
339size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
340  MutexLock mu(self, lock_);
341  DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " "
342                        << reinterpret_cast<void*>(End());
343  DCHECK_ALIGNED(obj, kAlignment);
344  AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
345  DCHECK(!info->IsFree());
346  const size_t allocation_size = info->ByteSize();
347  DCHECK_GT(allocation_size, 0U);
348  DCHECK_ALIGNED(allocation_size, kAlignment);
349  info->SetByteSize(allocation_size, true);  // Mark as free.
350  // Look at the next chunk.
351  AllocationInfo* next_info = info->GetNextInfo();
352  // Calculate the start of the end free block.
353  uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
354  size_t prev_free_bytes = info->GetPrevFreeBytes();
355  size_t new_free_size = allocation_size;
356  if (prev_free_bytes != 0) {
357    // Coalesce with previous free chunk.
358    new_free_size += prev_free_bytes;
359    RemoveFreePrev(info);
360    info = info->GetPrevFreeInfo();
361    // The previous allocation info must not be free since we are supposed to always coalesce.
362    DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free";
363  }
364  uintptr_t next_addr = GetAddressForAllocationInfo(next_info);
365  if (next_addr >= free_end_start) {
366    // Easy case, the next chunk is the end free region.
367    CHECK_EQ(next_addr, free_end_start);
368    free_end_ += new_free_size;
369  } else {
370    AllocationInfo* new_free_info;
371    if (next_info->IsFree()) {
372      AllocationInfo* next_next_info = next_info->GetNextInfo();
373      // Next next info can't be free since we always coalesce.
374      DCHECK(!next_next_info->IsFree());
375      DCHECK(IsAligned<kAlignment>(next_next_info->ByteSize()));
376      new_free_info = next_next_info;
377      new_free_size += next_next_info->GetPrevFreeBytes();
378      RemoveFreePrev(next_next_info);
379    } else {
380      new_free_info = next_info;
381    }
382    new_free_info->SetPrevFreeBytes(new_free_size);
383    free_blocks_.insert(new_free_info);
384    info->SetByteSize(new_free_size, true);
385    DCHECK_EQ(info->GetNextInfo(), new_free_info);
386  }
387  --num_objects_allocated_;
388  DCHECK_LE(allocation_size, num_bytes_allocated_);
389  num_bytes_allocated_ -= allocation_size;
390  madvise(obj, allocation_size, MADV_DONTNEED);
391  if (kIsDebugBuild) {
392    // Can't disallow reads since we use them to find next chunks during coalescing.
393    mprotect(obj, allocation_size, PROT_READ);
394  }
395  return allocation_size;
396}
397
398size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
399  DCHECK(Contains(obj));
400  AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
401  DCHECK(!info->IsFree());
402  size_t alloc_size = info->ByteSize();
403  if (usable_size != nullptr) {
404    *usable_size = alloc_size;
405  }
406  return alloc_size;
407}
408
409mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
410                                     size_t* usable_size) {
411  MutexLock mu(self, lock_);
412  const size_t allocation_size = RoundUp(num_bytes, kAlignment);
413  AllocationInfo temp_info;
414  temp_info.SetPrevFreeBytes(allocation_size);
415  temp_info.SetByteSize(0, false);
416  AllocationInfo* new_info;
417  // Find the smallest chunk at least num_bytes in size.
418  auto it = free_blocks_.lower_bound(&temp_info);
419  if (it != free_blocks_.end()) {
420    AllocationInfo* info = *it;
421    free_blocks_.erase(it);
422    // Fit our object in the previous allocation info free space.
423    new_info = info->GetPrevFreeInfo();
424    // Remove the newly allocated block from the info and update the prev_free_.
425    info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size);
426    if (info->GetPrevFreeBytes() > 0) {
427      AllocationInfo* new_free = info - info->GetPrevFree();
428      new_free->SetPrevFreeBytes(0);
429      new_free->SetByteSize(info->GetPrevFreeBytes(), true);
430      // If there is remaining space, insert back into the free set.
431      free_blocks_.insert(info);
432    }
433  } else {
434    // Try to steal some memory from the free space at the end of the space.
435    if (LIKELY(free_end_ >= allocation_size)) {
436      // Fit our object at the start of the end free block.
437      new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_);
438      free_end_ -= allocation_size;
439    } else {
440      return nullptr;
441    }
442  }
443  DCHECK(bytes_allocated != nullptr);
444  *bytes_allocated = allocation_size;
445  if (usable_size != nullptr) {
446    *usable_size = allocation_size;
447  }
448  // Need to do these inside of the lock.
449  ++num_objects_allocated_;
450  ++total_objects_allocated_;
451  num_bytes_allocated_ += allocation_size;
452  total_bytes_allocated_ += allocation_size;
453  mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info));
454  // We always put our object at the start of the free block, there can not be another free block
455  // before it.
456  if (kIsDebugBuild) {
457    mprotect(obj, allocation_size, PROT_READ | PROT_WRITE);
458  }
459  new_info->SetPrevFreeBytes(0);
460  new_info->SetByteSize(allocation_size, false);
461  return obj;
462}
463
464void FreeListSpace::Dump(std::ostream& os) const {
465  MutexLock mu(Thread::Current(), const_cast<Mutex&>(lock_));
466  os << GetName() << " -"
467     << " begin: " << reinterpret_cast<void*>(Begin())
468     << " end: " << reinterpret_cast<void*>(End()) << "\n";
469  uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
470  const AllocationInfo* cur_info =
471      GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin()));
472  const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
473  while (cur_info < end_info) {
474    size_t size = cur_info->ByteSize();
475    uintptr_t address = GetAddressForAllocationInfo(cur_info);
476    if (cur_info->IsFree()) {
477      os << "Free block at address: " << reinterpret_cast<const void*>(address)
478         << " of length " << size << " bytes\n";
479    } else {
480      os << "Large object at address: " << reinterpret_cast<const void*>(address)
481         << " of length " << size << " bytes\n";
482    }
483    cur_info = cur_info->GetNextInfo();
484  }
485  if (free_end_) {
486    os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
487       << " of length " << free_end_ << " bytes\n";
488  }
489}
490
491void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
492  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
493  space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
494  Thread* self = context->self;
495  Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
496  // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
497  // the bitmaps as an optimization.
498  if (!context->swap_bitmaps) {
499    accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
500    for (size_t i = 0; i < num_ptrs; ++i) {
501      bitmap->Clear(ptrs[i]);
502    }
503  }
504  context->freed.objects += num_ptrs;
505  context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
506}
507
508collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
509  if (Begin() >= End()) {
510    return collector::ObjectBytePair(0, 0);
511  }
512  accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
513  accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
514  if (swap_bitmaps) {
515    std::swap(live_bitmap, mark_bitmap);
516  }
517  AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
518  accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
519                                           reinterpret_cast<uintptr_t>(Begin()),
520                                           reinterpret_cast<uintptr_t>(End()), SweepCallback, &scc);
521  return scc.freed;
522}
523
524void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/,
525                                                    size_t /*failed_alloc_bytes*/) {
526  UNIMPLEMENTED(FATAL);
527}
528
529}  // namespace space
530}  // namespace gc
531}  // namespace art
532