array-inl.h revision 94f7b49578b6aaa80de8ffed230648d601393905
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
18#define ART_RUNTIME_MIRROR_ARRAY_INL_H_
19
20#include "array.h"
21
22#include "class.h"
23#include "gc/heap-inl.h"
24#include "thread.h"
25#include "utils.h"
26
27namespace art {
28namespace mirror {
29
30inline uint32_t Array::ClassSize() {
31  uint32_t vtable_entries = Object::kVTableLength;
32  return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0);
33}
34
35template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
36inline size_t Array::SizeOf() {
37  // This is safe from overflow because the array was already allocated, so we know it's sane.
38  size_t component_size =
39      GetClass<kVerifyFlags, kReadBarrierOption>()->template GetComponentSize<kReadBarrierOption>();
40  // Don't need to check this since we already check this in GetClass.
41  int32_t component_count =
42      GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
43  size_t header_size = DataOffset(component_size).SizeValue();
44  size_t data_size = component_count * component_size;
45  return header_size + data_size;
46}
47
48template<VerifyObjectFlags kVerifyFlags>
49inline bool Array::CheckIsValidIndex(int32_t index) {
50  if (UNLIKELY(static_cast<uint32_t>(index) >=
51               static_cast<uint32_t>(GetLength<kVerifyFlags>()))) {
52    ThrowArrayIndexOutOfBoundsException(index);
53    return false;
54  }
55  return true;
56}
57
58static inline size_t ComputeArraySize(Thread* self, Class* array_class, int32_t component_count,
59                                      size_t component_size)
60    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
61  DCHECK(array_class != NULL);
62  DCHECK_GE(component_count, 0);
63  DCHECK(array_class->IsArrayClass());
64
65  size_t header_size = Array::DataOffset(component_size).SizeValue();
66  size_t data_size = component_count * component_size;
67  size_t size = header_size + data_size;
68
69  // Check for overflow and throw OutOfMemoryError if this was an unreasonable request.
70  size_t component_shift = sizeof(size_t) * 8 - 1 - CLZ(component_size);
71  if (UNLIKELY(data_size >> component_shift != size_t(component_count) || size < data_size)) {
72    self->ThrowOutOfMemoryError(StringPrintf("%s of length %d would overflow",
73                                             PrettyDescriptor(array_class).c_str(),
74                                             component_count).c_str());
75    return 0;  // failure
76  }
77  return size;
78}
79
80// Used for setting the array length in the allocation code path to ensure it is guarded by a
81// StoreStore fence.
82class SetLengthVisitor {
83 public:
84  explicit SetLengthVisitor(int32_t length) : length_(length) {
85  }
86
87  void operator()(Object* obj, size_t usable_size) const
88      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
89    UNUSED(usable_size);
90    // Avoid AsArray as object is not yet in live bitmap or allocation stack.
91    Array* array = down_cast<Array*>(obj);
92    // DCHECK(array->IsArrayInstance());
93    array->SetLength(length_);
94  }
95
96 private:
97  const int32_t length_;
98
99  DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
100};
101
102// Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
103// array.
104class SetLengthToUsableSizeVisitor {
105 public:
106  SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size, size_t component_size) :
107      minimum_length_(min_length), header_size_(header_size), component_size_(component_size) {
108  }
109
110  void operator()(Object* obj, size_t usable_size) const
111      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
112    // Avoid AsArray as object is not yet in live bitmap or allocation stack.
113    Array* array = down_cast<Array*>(obj);
114    // DCHECK(array->IsArrayInstance());
115    int32_t length = (usable_size - header_size_) / component_size_;
116    DCHECK_GE(length, minimum_length_);
117    byte* old_end = reinterpret_cast<byte*>(array->GetRawData(component_size_, minimum_length_));
118    byte* new_end = reinterpret_cast<byte*>(array->GetRawData(component_size_, length));
119    // Ensure space beyond original allocation is zeroed.
120    memset(old_end, 0, new_end - old_end);
121    array->SetLength(length);
122  }
123
124 private:
125  const int32_t minimum_length_;
126  const size_t header_size_;
127  const size_t component_size_;
128
129  DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
130};
131
132template <bool kIsInstrumented>
133inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count,
134                           size_t component_size, gc::AllocatorType allocator_type,
135                           bool fill_usable) {
136  DCHECK(allocator_type != gc::kAllocatorTypeLOS);
137  size_t size = ComputeArraySize(self, array_class, component_count, component_size);
138  if (UNLIKELY(size == 0)) {
139    return nullptr;
140  }
141  gc::Heap* heap = Runtime::Current()->GetHeap();
142  Array* result;
143  if (!fill_usable) {
144    SetLengthVisitor visitor(component_count);
145    result = down_cast<Array*>(
146        heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
147                                                              allocator_type, visitor));
148  } else {
149    SetLengthToUsableSizeVisitor visitor(component_count, DataOffset(component_size).SizeValue(),
150                                         component_size);
151    result = down_cast<Array*>(
152        heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
153                                                              allocator_type, visitor));
154  }
155  if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
156    array_class = result->GetClass();  // In case the array class moved.
157    CHECK_EQ(array_class->GetComponentSize(), component_size);
158    if (!fill_usable) {
159      CHECK_EQ(result->SizeOf(), size);
160    } else {
161      CHECK_GE(result->SizeOf(), size);
162    }
163  }
164  return result;
165}
166
167template<class T>
168inline void PrimitiveArray<T>::VisitRoots(RootCallback* callback, void* arg) {
169  if (!array_class_.IsNull()) {
170    array_class_.VisitRoot(callback, arg, 0, kRootStickyClass);
171  }
172}
173
174template<typename T>
175inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
176  Array* raw_array = Array::Alloc<true>(self, GetArrayClass(), length, sizeof(T),
177                                        Runtime::Current()->GetHeap()->GetCurrentAllocator());
178  return down_cast<PrimitiveArray<T>*>(raw_array);
179}
180
181template<typename T>
182inline T PrimitiveArray<T>::Get(int32_t i) {
183  if (!CheckIsValidIndex(i)) {
184    DCHECK(Thread::Current()->IsExceptionPending());
185    return T(0);
186  }
187  return GetWithoutChecks(i);
188}
189
190template<typename T>
191inline void PrimitiveArray<T>::Set(int32_t i, T value) {
192  if (Runtime::Current()->IsActiveTransaction()) {
193    Set<true>(i, value);
194  } else {
195    Set<false>(i, value);
196  }
197}
198
199template<typename T>
200template<bool kTransactionActive, bool kCheckTransaction>
201inline void PrimitiveArray<T>::Set(int32_t i, T value) {
202  if (CheckIsValidIndex(i)) {
203    SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value);
204  } else {
205    DCHECK(Thread::Current()->IsExceptionPending());
206  }
207}
208
209template<typename T>
210template<bool kTransactionActive, bool kCheckTransaction>
211inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) {
212  if (kCheckTransaction) {
213    DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
214  }
215  if (kTransactionActive) {
216    Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i));
217  }
218  DCHECK(CheckIsValidIndex(i));
219  GetData()[i] = value;
220}
221// Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
222// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
223template<typename T>
224static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
225  d += count;
226  s += count;
227  for (int32_t i = 0; i < count; ++i) {
228    d--;
229    s--;
230    *d = *s;
231  }
232}
233
234// Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
235// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
236template<typename T>
237static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
238  for (int32_t i = 0; i < count; ++i) {
239    *d = *s;
240    d++;
241    s++;
242  }
243}
244
245template<class T>
246inline void PrimitiveArray<T>::Memmove(int32_t dst_pos, PrimitiveArray<T>* src, int32_t src_pos,
247                                       int32_t count) {
248  if (UNLIKELY(count == 0)) {
249    return;
250  }
251  DCHECK_GE(dst_pos, 0);
252  DCHECK_GE(src_pos, 0);
253  DCHECK_GT(count, 0);
254  DCHECK(src != nullptr);
255  DCHECK_LT(dst_pos, GetLength());
256  DCHECK_LE(dst_pos, GetLength() - count);
257  DCHECK_LT(src_pos, src->GetLength());
258  DCHECK_LE(src_pos, src->GetLength() - count);
259
260  // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
261  // in our implementation, because they may copy byte-by-byte.
262  if (LIKELY(src != this)) {
263    // Memcpy ok for guaranteed non-overlapping distinct arrays.
264    Memcpy(dst_pos, src, src_pos, count);
265  } else {
266    // Handle copies within the same array using the appropriate direction copy.
267    void* dst_raw = GetRawData(sizeof(T), dst_pos);
268    const void* src_raw = src->GetRawData(sizeof(T), src_pos);
269    if (sizeof(T) == sizeof(uint8_t)) {
270      uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
271      const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
272      memmove(d, s, count);
273    } else {
274      const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
275      if (sizeof(T) == sizeof(uint16_t)) {
276        uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
277        const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
278        if (copy_forward) {
279          ArrayForwardCopy<uint16_t>(d, s, count);
280        } else {
281          ArrayBackwardCopy<uint16_t>(d, s, count);
282        }
283      } else if (sizeof(T) == sizeof(uint32_t)) {
284        uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
285        const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
286        if (copy_forward) {
287          ArrayForwardCopy<uint32_t>(d, s, count);
288        } else {
289          ArrayBackwardCopy<uint32_t>(d, s, count);
290        }
291      } else {
292        DCHECK_EQ(sizeof(T), sizeof(uint64_t));
293        uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
294        const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
295        if (copy_forward) {
296          ArrayForwardCopy<uint64_t>(d, s, count);
297        } else {
298          ArrayBackwardCopy<uint64_t>(d, s, count);
299        }
300      }
301    }
302  }
303}
304
305template<class T>
306inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos, PrimitiveArray<T>* src, int32_t src_pos,
307                                      int32_t count) {
308  if (UNLIKELY(count == 0)) {
309    return;
310  }
311  DCHECK_GE(dst_pos, 0);
312  DCHECK_GE(src_pos, 0);
313  DCHECK_GT(count, 0);
314  DCHECK(src != nullptr);
315  DCHECK_LT(dst_pos, GetLength());
316  DCHECK_LE(dst_pos, GetLength() - count);
317  DCHECK_LT(src_pos, src->GetLength());
318  DCHECK_LE(src_pos, src->GetLength() - count);
319
320  // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
321  // in our implementation, because they may copy byte-by-byte.
322  void* dst_raw = GetRawData(sizeof(T), dst_pos);
323  const void* src_raw = src->GetRawData(sizeof(T), src_pos);
324  if (sizeof(T) == sizeof(uint8_t)) {
325    memcpy(dst_raw, src_raw, count);
326  } else if (sizeof(T) == sizeof(uint16_t)) {
327    uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
328    const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
329    ArrayForwardCopy<uint16_t>(d, s, count);
330  } else if (sizeof(T) == sizeof(uint32_t)) {
331    uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
332    const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
333    ArrayForwardCopy<uint32_t>(d, s, count);
334  } else {
335    DCHECK_EQ(sizeof(T), sizeof(uint64_t));
336    uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
337    const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
338    ArrayForwardCopy<uint64_t>(d, s, count);
339  }
340}
341
342}  // namespace mirror
343}  // namespace art
344
345#endif  // ART_RUNTIME_MIRROR_ARRAY_INL_H_
346