1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "monitor.h"
18
19#include <vector>
20
21#include "base/mutex.h"
22#include "base/stl_util.h"
23#include "class_linker.h"
24#include "dex_file-inl.h"
25#include "dex_instruction.h"
26#include "lock_word-inl.h"
27#include "mirror/art_method-inl.h"
28#include "mirror/class-inl.h"
29#include "mirror/object-inl.h"
30#include "mirror/object_array-inl.h"
31#include "scoped_thread_state_change.h"
32#include "thread.h"
33#include "thread_list.h"
34#include "verifier/method_verifier.h"
35#include "well_known_classes.h"
36
37namespace art {
38
39static constexpr uint64_t kLongWaitMs = 100;
40
41/*
42 * Every Object has a monitor associated with it, but not every Object is actually locked.  Even
43 * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
44 * or b) wait() is called on the Object.
45 *
46 * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
47 * "Thin locks: featherweight synchronization for Java" (ACM 1998).  Things are even easier for us,
48 * though, because we have a full 32 bits to work with.
49 *
50 * The two states of an Object's lock are referred to as "thin" and "fat".  A lock may transition
51 * from the "thin" state to the "fat" state and this transition is referred to as inflation. Once
52 * a lock has been inflated it remains in the "fat" state indefinitely.
53 *
54 * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
55 * in the LockWord value type.
56 *
57 * Monitors provide:
58 *  - mutually exclusive access to resources
59 *  - a way for multiple threads to wait for notification
60 *
61 * In effect, they fill the role of both mutexes and condition variables.
62 *
63 * Only one thread can own the monitor at any time.  There may be several threads waiting on it
64 * (the wait call unlocks it).  One or more waiting threads may be getting interrupted or notified
65 * at any given time.
66 */
67
68bool (*Monitor::is_sensitive_thread_hook_)() = NULL;
69uint32_t Monitor::lock_profiling_threshold_ = 0;
70
71bool Monitor::IsSensitiveThread() {
72  if (is_sensitive_thread_hook_ != NULL) {
73    return (*is_sensitive_thread_hook_)();
74  }
75  return false;
76}
77
78void Monitor::Init(uint32_t lock_profiling_threshold, bool (*is_sensitive_thread_hook)()) {
79  lock_profiling_threshold_ = lock_profiling_threshold;
80  is_sensitive_thread_hook_ = is_sensitive_thread_hook;
81}
82
83Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code)
84    : monitor_lock_("a monitor lock", kMonitorLock),
85      monitor_contenders_("monitor contenders", monitor_lock_),
86      num_waiters_(0),
87      owner_(owner),
88      lock_count_(0),
89      obj_(GcRoot<mirror::Object>(obj)),
90      wait_set_(NULL),
91      hash_code_(hash_code),
92      locking_method_(NULL),
93      locking_dex_pc_(0),
94      monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
95#ifdef __LP64__
96  DCHECK(false) << "Should not be reached in 64b";
97  next_free_ = nullptr;
98#endif
99  // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
100  // with the owner unlocking the thin-lock.
101  CHECK(owner == nullptr || owner == self || owner->IsSuspended());
102  // The identity hash code is set for the life time of the monitor.
103}
104
105Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code,
106                 MonitorId id)
107    : monitor_lock_("a monitor lock", kMonitorLock),
108      monitor_contenders_("monitor contenders", monitor_lock_),
109      num_waiters_(0),
110      owner_(owner),
111      lock_count_(0),
112      obj_(GcRoot<mirror::Object>(obj)),
113      wait_set_(NULL),
114      hash_code_(hash_code),
115      locking_method_(NULL),
116      locking_dex_pc_(0),
117      monitor_id_(id) {
118#ifdef __LP64__
119  next_free_ = nullptr;
120#endif
121  // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
122  // with the owner unlocking the thin-lock.
123  CHECK(owner == nullptr || owner == self || owner->IsSuspended());
124  // The identity hash code is set for the life time of the monitor.
125}
126
127int32_t Monitor::GetHashCode() {
128  while (!HasHashCode()) {
129    if (hash_code_.CompareExchangeWeakRelaxed(0, mirror::Object::GenerateIdentityHashCode())) {
130      break;
131    }
132  }
133  DCHECK(HasHashCode());
134  return hash_code_.LoadRelaxed();
135}
136
137bool Monitor::Install(Thread* self) {
138  MutexLock mu(self, monitor_lock_);  // Uncontended mutex acquisition as monitor isn't yet public.
139  CHECK(owner_ == nullptr || owner_ == self || owner_->IsSuspended());
140  // Propagate the lock state.
141  LockWord lw(GetObject()->GetLockWord(false));
142  switch (lw.GetState()) {
143    case LockWord::kThinLocked: {
144      CHECK_EQ(owner_->GetThreadId(), lw.ThinLockOwner());
145      lock_count_ = lw.ThinLockCount();
146      break;
147    }
148    case LockWord::kHashCode: {
149      CHECK_EQ(hash_code_.LoadRelaxed(), static_cast<int32_t>(lw.GetHashCode()));
150      break;
151    }
152    case LockWord::kFatLocked: {
153      // The owner_ is suspended but another thread beat us to install a monitor.
154      return false;
155    }
156    case LockWord::kUnlocked: {
157      LOG(FATAL) << "Inflating unlocked lock word";
158      break;
159    }
160    default: {
161      LOG(FATAL) << "Invalid monitor state " << lw.GetState();
162      return false;
163    }
164  }
165  LockWord fat(this);
166  // Publish the updated lock word, which may race with other threads.
167  bool success = GetObject()->CasLockWordWeakSequentiallyConsistent(lw, fat);
168  // Lock profiling.
169  if (success && owner_ != nullptr && lock_profiling_threshold_ != 0) {
170    // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
171    // abort.
172    locking_method_ = owner_->GetCurrentMethod(&locking_dex_pc_, false);
173  }
174  return success;
175}
176
177Monitor::~Monitor() {
178  // Deflated monitors have a null object.
179}
180
181/*
182 * Links a thread into a monitor's wait set.  The monitor lock must be
183 * held by the caller of this routine.
184 */
185void Monitor::AppendToWaitSet(Thread* thread) {
186  DCHECK(owner_ == Thread::Current());
187  DCHECK(thread != NULL);
188  DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
189  if (wait_set_ == NULL) {
190    wait_set_ = thread;
191    return;
192  }
193
194  // push_back.
195  Thread* t = wait_set_;
196  while (t->GetWaitNext() != nullptr) {
197    t = t->GetWaitNext();
198  }
199  t->SetWaitNext(thread);
200}
201
202/*
203 * Unlinks a thread from a monitor's wait set.  The monitor lock must
204 * be held by the caller of this routine.
205 */
206void Monitor::RemoveFromWaitSet(Thread *thread) {
207  DCHECK(owner_ == Thread::Current());
208  DCHECK(thread != NULL);
209  if (wait_set_ == NULL) {
210    return;
211  }
212  if (wait_set_ == thread) {
213    wait_set_ = thread->GetWaitNext();
214    thread->SetWaitNext(nullptr);
215    return;
216  }
217
218  Thread* t = wait_set_;
219  while (t->GetWaitNext() != NULL) {
220    if (t->GetWaitNext() == thread) {
221      t->SetWaitNext(thread->GetWaitNext());
222      thread->SetWaitNext(nullptr);
223      return;
224    }
225    t = t->GetWaitNext();
226  }
227}
228
229void Monitor::SetObject(mirror::Object* object) {
230  obj_ = GcRoot<mirror::Object>(object);
231}
232
233void Monitor::Lock(Thread* self) {
234  MutexLock mu(self, monitor_lock_);
235  while (true) {
236    if (owner_ == nullptr) {  // Unowned.
237      owner_ = self;
238      CHECK_EQ(lock_count_, 0);
239      // When debugging, save the current monitor holder for future
240      // acquisition failures to use in sampled logging.
241      if (lock_profiling_threshold_ != 0) {
242        locking_method_ = self->GetCurrentMethod(&locking_dex_pc_);
243      }
244      return;
245    } else if (owner_ == self) {  // Recursive.
246      lock_count_++;
247      return;
248    }
249    // Contended.
250    const bool log_contention = (lock_profiling_threshold_ != 0);
251    uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
252    mirror::ArtMethod* owners_method = locking_method_;
253    uint32_t owners_dex_pc = locking_dex_pc_;
254    // Do this before releasing the lock so that we don't get deflated.
255    size_t num_waiters = num_waiters_;
256    ++num_waiters_;
257    monitor_lock_.Unlock(self);  // Let go of locks in order.
258    self->SetMonitorEnterObject(GetObject());
259    {
260      ScopedThreadStateChange tsc(self, kBlocked);  // Change to blocked and give up mutator_lock_.
261      MutexLock mu2(self, monitor_lock_);  // Reacquire monitor_lock_ without mutator_lock_ for Wait.
262      if (owner_ != NULL) {  // Did the owner_ give the lock up?
263        monitor_contenders_.Wait(self);  // Still contended so wait.
264        // Woken from contention.
265        if (log_contention) {
266          uint64_t wait_ms = MilliTime() - wait_start_ms;
267          uint32_t sample_percent;
268          if (wait_ms >= lock_profiling_threshold_) {
269            sample_percent = 100;
270          } else {
271            sample_percent = 100 * wait_ms / lock_profiling_threshold_;
272          }
273          if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
274            const char* owners_filename;
275            uint32_t owners_line_number;
276            TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
277            if (wait_ms > kLongWaitMs && owners_method != nullptr) {
278              LOG(WARNING) << "Long monitor contention event with owner method="
279                  << PrettyMethod(owners_method) << " from " << owners_filename << ":"
280                  << owners_line_number << " waiters=" << num_waiters << " for "
281                  << PrettyDuration(MsToNs(wait_ms));
282            }
283            LogContentionEvent(self, wait_ms, sample_percent, owners_filename, owners_line_number);
284          }
285        }
286      }
287    }
288    self->SetMonitorEnterObject(nullptr);
289    monitor_lock_.Lock(self);  // Reacquire locks in order.
290    --num_waiters_;
291  }
292}
293
294static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
295                                              __attribute__((format(printf, 1, 2)));
296
297static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
298    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
299  va_list args;
300  va_start(args, fmt);
301  Thread* self = Thread::Current();
302  ThrowLocation throw_location = self->GetCurrentLocationForThrow();
303  self->ThrowNewExceptionV(throw_location, "Ljava/lang/IllegalMonitorStateException;", fmt, args);
304  if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
305    std::ostringstream ss;
306    self->Dump(ss);
307    LOG(Runtime::Current()->IsStarted() ? INFO : ERROR)
308        << self->GetException(NULL)->Dump() << "\n" << ss.str();
309  }
310  va_end(args);
311}
312
313static std::string ThreadToString(Thread* thread) {
314  if (thread == NULL) {
315    return "NULL";
316  }
317  std::ostringstream oss;
318  // TODO: alternatively, we could just return the thread's name.
319  oss << *thread;
320  return oss.str();
321}
322
323void Monitor::FailedUnlock(mirror::Object* o, Thread* expected_owner, Thread* found_owner,
324                           Monitor* monitor) {
325  Thread* current_owner = NULL;
326  std::string current_owner_string;
327  std::string expected_owner_string;
328  std::string found_owner_string;
329  {
330    // TODO: isn't this too late to prevent threads from disappearing?
331    // Acquire thread list lock so threads won't disappear from under us.
332    MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
333    // Re-read owner now that we hold lock.
334    current_owner = (monitor != NULL) ? monitor->GetOwner() : NULL;
335    // Get short descriptions of the threads involved.
336    current_owner_string = ThreadToString(current_owner);
337    expected_owner_string = ThreadToString(expected_owner);
338    found_owner_string = ThreadToString(found_owner);
339  }
340  if (current_owner == NULL) {
341    if (found_owner == NULL) {
342      ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
343                                         " on thread '%s'",
344                                         PrettyTypeOf(o).c_str(),
345                                         expected_owner_string.c_str());
346    } else {
347      // Race: the original read found an owner but now there is none
348      ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
349                                         " (where now the monitor appears unowned) on thread '%s'",
350                                         found_owner_string.c_str(),
351                                         PrettyTypeOf(o).c_str(),
352                                         expected_owner_string.c_str());
353    }
354  } else {
355    if (found_owner == NULL) {
356      // Race: originally there was no owner, there is now
357      ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
358                                         " (originally believed to be unowned) on thread '%s'",
359                                         current_owner_string.c_str(),
360                                         PrettyTypeOf(o).c_str(),
361                                         expected_owner_string.c_str());
362    } else {
363      if (found_owner != current_owner) {
364        // Race: originally found and current owner have changed
365        ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
366                                           " owned by '%s') on object of type '%s' on thread '%s'",
367                                           found_owner_string.c_str(),
368                                           current_owner_string.c_str(),
369                                           PrettyTypeOf(o).c_str(),
370                                           expected_owner_string.c_str());
371      } else {
372        ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
373                                           " on thread '%s",
374                                           current_owner_string.c_str(),
375                                           PrettyTypeOf(o).c_str(),
376                                           expected_owner_string.c_str());
377      }
378    }
379  }
380}
381
382bool Monitor::Unlock(Thread* self) {
383  DCHECK(self != NULL);
384  MutexLock mu(self, monitor_lock_);
385  Thread* owner = owner_;
386  if (owner == self) {
387    // We own the monitor, so nobody else can be in here.
388    if (lock_count_ == 0) {
389      owner_ = NULL;
390      locking_method_ = NULL;
391      locking_dex_pc_ = 0;
392      // Wake a contender.
393      monitor_contenders_.Signal(self);
394    } else {
395      --lock_count_;
396    }
397  } else {
398    // We don't own this, so we're not allowed to unlock it.
399    // The JNI spec says that we should throw IllegalMonitorStateException
400    // in this case.
401    FailedUnlock(GetObject(), self, owner, this);
402    return false;
403  }
404  return true;
405}
406
407/*
408 * Wait on a monitor until timeout, interrupt, or notification.  Used for
409 * Object.wait() and (somewhat indirectly) Thread.sleep() and Thread.join().
410 *
411 * If another thread calls Thread.interrupt(), we throw InterruptedException
412 * and return immediately if one of the following are true:
413 *  - blocked in wait(), wait(long), or wait(long, int) methods of Object
414 *  - blocked in join(), join(long), or join(long, int) methods of Thread
415 *  - blocked in sleep(long), or sleep(long, int) methods of Thread
416 * Otherwise, we set the "interrupted" flag.
417 *
418 * Checks to make sure that "ns" is in the range 0-999999
419 * (i.e. fractions of a millisecond) and throws the appropriate
420 * exception if it isn't.
421 *
422 * The spec allows "spurious wakeups", and recommends that all code using
423 * Object.wait() do so in a loop.  This appears to derive from concerns
424 * about pthread_cond_wait() on multiprocessor systems.  Some commentary
425 * on the web casts doubt on whether these can/should occur.
426 *
427 * Since we're allowed to wake up "early", we clamp extremely long durations
428 * to return at the end of the 32-bit time epoch.
429 */
430void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
431                   bool interruptShouldThrow, ThreadState why) {
432  DCHECK(self != NULL);
433  DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
434
435  monitor_lock_.Lock(self);
436
437  // Make sure that we hold the lock.
438  if (owner_ != self) {
439    monitor_lock_.Unlock(self);
440    ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
441    return;
442  }
443
444  // We need to turn a zero-length timed wait into a regular wait because
445  // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
446  if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
447    why = kWaiting;
448  }
449
450  // Enforce the timeout range.
451  if (ms < 0 || ns < 0 || ns > 999999) {
452    monitor_lock_.Unlock(self);
453    ThrowLocation throw_location = self->GetCurrentLocationForThrow();
454    self->ThrowNewExceptionF(throw_location, "Ljava/lang/IllegalArgumentException;",
455                             "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
456    return;
457  }
458
459  /*
460   * Add ourselves to the set of threads waiting on this monitor, and
461   * release our hold.  We need to let it go even if we're a few levels
462   * deep in a recursive lock, and we need to restore that later.
463   *
464   * We append to the wait set ahead of clearing the count and owner
465   * fields so the subroutine can check that the calling thread owns
466   * the monitor.  Aside from that, the order of member updates is
467   * not order sensitive as we hold the pthread mutex.
468   */
469  AppendToWaitSet(self);
470  ++num_waiters_;
471  int prev_lock_count = lock_count_;
472  lock_count_ = 0;
473  owner_ = NULL;
474  mirror::ArtMethod* saved_method = locking_method_;
475  locking_method_ = NULL;
476  uintptr_t saved_dex_pc = locking_dex_pc_;
477  locking_dex_pc_ = 0;
478
479  /*
480   * Update thread state. If the GC wakes up, it'll ignore us, knowing
481   * that we won't touch any references in this state, and we'll check
482   * our suspend mode before we transition out.
483   */
484  self->TransitionFromRunnableToSuspended(why);
485
486  bool was_interrupted = false;
487  {
488    // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
489    MutexLock mu(self, *self->GetWaitMutex());
490
491    // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
492    // non-NULL a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
493    // up.
494    DCHECK(self->GetWaitMonitor() == nullptr);
495    self->SetWaitMonitor(this);
496
497    // Release the monitor lock.
498    monitor_contenders_.Signal(self);
499    monitor_lock_.Unlock(self);
500
501    // Handle the case where the thread was interrupted before we called wait().
502    if (self->IsInterruptedLocked()) {
503      was_interrupted = true;
504    } else {
505      // Wait for a notification or a timeout to occur.
506      if (why == kWaiting) {
507        self->GetWaitConditionVariable()->Wait(self);
508      } else {
509        DCHECK(why == kTimedWaiting || why == kSleeping) << why;
510        self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
511      }
512      if (self->IsInterruptedLocked()) {
513        was_interrupted = true;
514      }
515      self->SetInterruptedLocked(false);
516    }
517  }
518
519  // Set self->status back to kRunnable, and self-suspend if needed.
520  self->TransitionFromSuspendedToRunnable();
521
522  {
523    // We reset the thread's wait_monitor_ field after transitioning back to runnable so
524    // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
525    // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
526    // are waiting on "null".)
527    MutexLock mu(self, *self->GetWaitMutex());
528    DCHECK(self->GetWaitMonitor() != nullptr);
529    self->SetWaitMonitor(nullptr);
530  }
531
532  // Re-acquire the monitor and lock.
533  Lock(self);
534  monitor_lock_.Lock(self);
535  self->GetWaitMutex()->AssertNotHeld(self);
536
537  /*
538   * We remove our thread from wait set after restoring the count
539   * and owner fields so the subroutine can check that the calling
540   * thread owns the monitor. Aside from that, the order of member
541   * updates is not order sensitive as we hold the pthread mutex.
542   */
543  owner_ = self;
544  lock_count_ = prev_lock_count;
545  locking_method_ = saved_method;
546  locking_dex_pc_ = saved_dex_pc;
547  --num_waiters_;
548  RemoveFromWaitSet(self);
549
550  monitor_lock_.Unlock(self);
551
552  if (was_interrupted) {
553    /*
554     * We were interrupted while waiting, or somebody interrupted an
555     * un-interruptible thread earlier and we're bailing out immediately.
556     *
557     * The doc sayeth: "The interrupted status of the current thread is
558     * cleared when this exception is thrown."
559     */
560    {
561      MutexLock mu(self, *self->GetWaitMutex());
562      self->SetInterruptedLocked(false);
563    }
564    if (interruptShouldThrow) {
565      ThrowLocation throw_location = self->GetCurrentLocationForThrow();
566      self->ThrowNewException(throw_location, "Ljava/lang/InterruptedException;", NULL);
567    }
568  }
569}
570
571void Monitor::Notify(Thread* self) {
572  DCHECK(self != NULL);
573  MutexLock mu(self, monitor_lock_);
574  // Make sure that we hold the lock.
575  if (owner_ != self) {
576    ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
577    return;
578  }
579  // Signal the first waiting thread in the wait set.
580  while (wait_set_ != NULL) {
581    Thread* thread = wait_set_;
582    wait_set_ = thread->GetWaitNext();
583    thread->SetWaitNext(nullptr);
584
585    // Check to see if the thread is still waiting.
586    MutexLock mu(self, *thread->GetWaitMutex());
587    if (thread->GetWaitMonitor() != nullptr) {
588      thread->GetWaitConditionVariable()->Signal(self);
589      return;
590    }
591  }
592}
593
594void Monitor::NotifyAll(Thread* self) {
595  DCHECK(self != NULL);
596  MutexLock mu(self, monitor_lock_);
597  // Make sure that we hold the lock.
598  if (owner_ != self) {
599    ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
600    return;
601  }
602  // Signal all threads in the wait set.
603  while (wait_set_ != NULL) {
604    Thread* thread = wait_set_;
605    wait_set_ = thread->GetWaitNext();
606    thread->SetWaitNext(nullptr);
607    thread->Notify();
608  }
609}
610
611bool Monitor::Deflate(Thread* self, mirror::Object* obj) {
612  DCHECK(obj != nullptr);
613  // Don't need volatile since we only deflate with mutators suspended.
614  LockWord lw(obj->GetLockWord(false));
615  // If the lock isn't an inflated monitor, then we don't need to deflate anything.
616  if (lw.GetState() == LockWord::kFatLocked) {
617    Monitor* monitor = lw.FatLockMonitor();
618    DCHECK(monitor != nullptr);
619    MutexLock mu(self, monitor->monitor_lock_);
620    // Can't deflate if we have anybody waiting on the CV.
621    if (monitor->num_waiters_ > 0) {
622      return false;
623    }
624    Thread* owner = monitor->owner_;
625    if (owner != nullptr) {
626      // Can't deflate if we are locked and have a hash code.
627      if (monitor->HasHashCode()) {
628        return false;
629      }
630      // Can't deflate if our lock count is too high.
631      if (monitor->lock_count_ > LockWord::kThinLockMaxCount) {
632        return false;
633      }
634      // Deflate to a thin lock.
635      obj->SetLockWord(LockWord::FromThinLockId(owner->GetThreadId(), monitor->lock_count_), false);
636      VLOG(monitor) << "Deflated " << obj << " to thin lock " << owner->GetTid() << " / "
637          << monitor->lock_count_;
638    } else if (monitor->HasHashCode()) {
639      obj->SetLockWord(LockWord::FromHashCode(monitor->GetHashCode()), false);
640      VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
641    } else {
642      // No lock and no hash, just put an empty lock word inside the object.
643      obj->SetLockWord(LockWord(), false);
644      VLOG(monitor) << "Deflated" << obj << " to empty lock word";
645    }
646    // The monitor is deflated, mark the object as nullptr so that we know to delete it during the
647    // next GC.
648    monitor->obj_ = GcRoot<mirror::Object>(nullptr);
649  }
650  return true;
651}
652
653void Monitor::Inflate(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) {
654  DCHECK(self != nullptr);
655  DCHECK(obj != nullptr);
656  // Allocate and acquire a new monitor.
657  Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
658  DCHECK(m != nullptr);
659  if (m->Install(self)) {
660    if (owner != nullptr) {
661      VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
662          << " created monitor " << m << " for object " << obj;
663    } else {
664      VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
665          << " created monitor " << m << " for object " << obj;
666    }
667    Runtime::Current()->GetMonitorList()->Add(m);
668    CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
669  } else {
670    MonitorPool::ReleaseMonitor(self, m);
671  }
672}
673
674void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
675                                uint32_t hash_code) {
676  DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
677  uint32_t owner_thread_id = lock_word.ThinLockOwner();
678  if (owner_thread_id == self->GetThreadId()) {
679    // We own the monitor, we can easily inflate it.
680    Inflate(self, self, obj.Get(), hash_code);
681  } else {
682    ThreadList* thread_list = Runtime::Current()->GetThreadList();
683    // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
684    self->SetMonitorEnterObject(obj.Get());
685    bool timed_out;
686    Thread* owner;
687    {
688      ScopedThreadStateChange tsc(self, kBlocked);
689      // Take suspend thread lock to avoid races with threads trying to suspend this one.
690      MutexLock mu(self, *Locks::thread_list_suspend_thread_lock_);
691      owner = thread_list->SuspendThreadByThreadId(owner_thread_id, false, &timed_out);
692    }
693    if (owner != nullptr) {
694      // We succeeded in suspending the thread, check the lock's status didn't change.
695      lock_word = obj->GetLockWord(true);
696      if (lock_word.GetState() == LockWord::kThinLocked &&
697          lock_word.ThinLockOwner() == owner_thread_id) {
698        // Go ahead and inflate the lock.
699        Inflate(self, owner, obj.Get(), hash_code);
700      }
701      thread_list->Resume(owner, false);
702    }
703    self->SetMonitorEnterObject(nullptr);
704  }
705}
706
707// Fool annotalysis into thinking that the lock on obj is acquired.
708static mirror::Object* FakeLock(mirror::Object* obj)
709    EXCLUSIVE_LOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
710  return obj;
711}
712
713// Fool annotalysis into thinking that the lock on obj is release.
714static mirror::Object* FakeUnlock(mirror::Object* obj)
715    UNLOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
716  return obj;
717}
718
719mirror::Object* Monitor::MonitorEnter(Thread* self, mirror::Object* obj) {
720  DCHECK(self != NULL);
721  DCHECK(obj != NULL);
722  obj = FakeLock(obj);
723  uint32_t thread_id = self->GetThreadId();
724  size_t contention_count = 0;
725  StackHandleScope<1> hs(self);
726  Handle<mirror::Object> h_obj(hs.NewHandle(obj));
727  while (true) {
728    LockWord lock_word = h_obj->GetLockWord(true);
729    switch (lock_word.GetState()) {
730      case LockWord::kUnlocked: {
731        LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0));
732        if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) {
733          // CasLockWord enforces more than the acquire ordering we need here.
734          return h_obj.Get();  // Success!
735        }
736        continue;  // Go again.
737      }
738      case LockWord::kThinLocked: {
739        uint32_t owner_thread_id = lock_word.ThinLockOwner();
740        if (owner_thread_id == thread_id) {
741          // We own the lock, increase the recursion count.
742          uint32_t new_count = lock_word.ThinLockCount() + 1;
743          if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
744            LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count));
745            h_obj->SetLockWord(thin_locked, true);
746            return h_obj.Get();  // Success!
747          } else {
748            // We'd overflow the recursion count, so inflate the monitor.
749            InflateThinLocked(self, h_obj, lock_word, 0);
750          }
751        } else {
752          // Contention.
753          contention_count++;
754          Runtime* runtime = Runtime::Current();
755          if (contention_count <= runtime->GetMaxSpinsBeforeThinkLockInflation()) {
756            // TODO: Consider switching the thread state to kBlocked when we are yielding.
757            // Use sched_yield instead of NanoSleep since NanoSleep can wait much longer than the
758            // parameter you pass in. This can cause thread suspension to take excessively long
759            // and make long pauses. See b/16307460.
760            sched_yield();
761          } else {
762            contention_count = 0;
763            InflateThinLocked(self, h_obj, lock_word, 0);
764          }
765        }
766        continue;  // Start from the beginning.
767      }
768      case LockWord::kFatLocked: {
769        Monitor* mon = lock_word.FatLockMonitor();
770        mon->Lock(self);
771        return h_obj.Get();  // Success!
772      }
773      case LockWord::kHashCode:
774        // Inflate with the existing hashcode.
775        Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
776        continue;  // Start from the beginning.
777      default: {
778        LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
779        return h_obj.Get();
780      }
781    }
782  }
783}
784
785bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) {
786  DCHECK(self != NULL);
787  DCHECK(obj != NULL);
788  obj = FakeUnlock(obj);
789  LockWord lock_word = obj->GetLockWord(true);
790  StackHandleScope<1> hs(self);
791  Handle<mirror::Object> h_obj(hs.NewHandle(obj));
792  switch (lock_word.GetState()) {
793    case LockWord::kHashCode:
794      // Fall-through.
795    case LockWord::kUnlocked:
796      FailedUnlock(h_obj.Get(), self, nullptr, nullptr);
797      return false;  // Failure.
798    case LockWord::kThinLocked: {
799      uint32_t thread_id = self->GetThreadId();
800      uint32_t owner_thread_id = lock_word.ThinLockOwner();
801      if (owner_thread_id != thread_id) {
802        // TODO: there's a race here with the owner dying while we unlock.
803        Thread* owner =
804            Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
805        FailedUnlock(h_obj.Get(), self, owner, nullptr);
806        return false;  // Failure.
807      } else {
808        // We own the lock, decrease the recursion count.
809        if (lock_word.ThinLockCount() != 0) {
810          uint32_t new_count = lock_word.ThinLockCount() - 1;
811          LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count));
812          h_obj->SetLockWord(thin_locked, true);
813        } else {
814          h_obj->SetLockWord(LockWord(), true);
815        }
816        return true;  // Success!
817      }
818    }
819    case LockWord::kFatLocked: {
820      Monitor* mon = lock_word.FatLockMonitor();
821      return mon->Unlock(self);
822    }
823    default: {
824      LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
825      return false;
826    }
827  }
828}
829
830/*
831 * Object.wait().  Also called for class init.
832 */
833void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns,
834                   bool interruptShouldThrow, ThreadState why) {
835  DCHECK(self != nullptr);
836  DCHECK(obj != nullptr);
837  LockWord lock_word = obj->GetLockWord(true);
838  while (lock_word.GetState() != LockWord::kFatLocked) {
839    switch (lock_word.GetState()) {
840      case LockWord::kHashCode:
841        // Fall-through.
842      case LockWord::kUnlocked:
843        ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
844        return;  // Failure.
845      case LockWord::kThinLocked: {
846        uint32_t thread_id = self->GetThreadId();
847        uint32_t owner_thread_id = lock_word.ThinLockOwner();
848        if (owner_thread_id != thread_id) {
849          ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
850          return;  // Failure.
851        } else {
852          // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
853          // re-load.
854          Inflate(self, self, obj, 0);
855          lock_word = obj->GetLockWord(true);
856        }
857        break;
858      }
859      case LockWord::kFatLocked:  // Unreachable given the loop condition above. Fall-through.
860      default: {
861        LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
862        return;
863      }
864    }
865  }
866  Monitor* mon = lock_word.FatLockMonitor();
867  mon->Wait(self, ms, ns, interruptShouldThrow, why);
868}
869
870void Monitor::DoNotify(Thread* self, mirror::Object* obj, bool notify_all) {
871  DCHECK(self != nullptr);
872  DCHECK(obj != nullptr);
873  LockWord lock_word = obj->GetLockWord(true);
874  switch (lock_word.GetState()) {
875    case LockWord::kHashCode:
876      // Fall-through.
877    case LockWord::kUnlocked:
878      ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
879      return;  // Failure.
880    case LockWord::kThinLocked: {
881      uint32_t thread_id = self->GetThreadId();
882      uint32_t owner_thread_id = lock_word.ThinLockOwner();
883      if (owner_thread_id != thread_id) {
884        ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
885        return;  // Failure.
886      } else {
887        // We own the lock but there's no Monitor and therefore no waiters.
888        return;  // Success.
889      }
890    }
891    case LockWord::kFatLocked: {
892      Monitor* mon = lock_word.FatLockMonitor();
893      if (notify_all) {
894        mon->NotifyAll(self);
895      } else {
896        mon->Notify(self);
897      }
898      return;  // Success.
899    }
900    default: {
901      LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
902      return;
903    }
904  }
905}
906
907uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) {
908  DCHECK(obj != nullptr);
909  LockWord lock_word = obj->GetLockWord(true);
910  switch (lock_word.GetState()) {
911    case LockWord::kHashCode:
912      // Fall-through.
913    case LockWord::kUnlocked:
914      return ThreadList::kInvalidThreadId;
915    case LockWord::kThinLocked:
916      return lock_word.ThinLockOwner();
917    case LockWord::kFatLocked: {
918      Monitor* mon = lock_word.FatLockMonitor();
919      return mon->GetOwnerThreadId();
920    }
921    default: {
922      LOG(FATAL) << "Unreachable";
923      return ThreadList::kInvalidThreadId;
924    }
925  }
926}
927
928void Monitor::DescribeWait(std::ostream& os, const Thread* thread) {
929  // Determine the wait message and object we're waiting or blocked upon.
930  mirror::Object* pretty_object = nullptr;
931  const char* wait_message = nullptr;
932  uint32_t lock_owner = ThreadList::kInvalidThreadId;
933  ThreadState state = thread->GetState();
934  if (state == kWaiting || state == kTimedWaiting || state == kSleeping) {
935    wait_message = (state == kSleeping) ? "  - sleeping on " : "  - waiting on ";
936    Thread* self = Thread::Current();
937    MutexLock mu(self, *thread->GetWaitMutex());
938    Monitor* monitor = thread->GetWaitMonitor();
939    if (monitor != nullptr) {
940      pretty_object = monitor->GetObject();
941    }
942  } else if (state == kBlocked) {
943    wait_message = "  - waiting to lock ";
944    pretty_object = thread->GetMonitorEnterObject();
945    if (pretty_object != nullptr) {
946      lock_owner = pretty_object->GetLockOwnerThreadId();
947    }
948  }
949
950  if (wait_message != nullptr) {
951    if (pretty_object == nullptr) {
952      os << wait_message << "an unknown object";
953    } else {
954      if ((pretty_object->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
955          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
956        // Getting the identity hashcode here would result in lock inflation and suspension of the
957        // current thread, which isn't safe if this is the only runnable thread.
958        os << wait_message << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
959                                           reinterpret_cast<intptr_t>(pretty_object),
960                                           PrettyTypeOf(pretty_object).c_str());
961      } else {
962        // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
963        os << wait_message << StringPrintf("<0x%08x> (a %s)", pretty_object->IdentityHashCode(),
964                                           PrettyTypeOf(pretty_object).c_str());
965      }
966    }
967    // - waiting to lock <0x613f83d8> (a java.lang.Object) held by thread 5
968    if (lock_owner != ThreadList::kInvalidThreadId) {
969      os << " held by thread " << lock_owner;
970    }
971    os << "\n";
972  }
973}
974
975mirror::Object* Monitor::GetContendedMonitor(Thread* thread) {
976  // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
977  // definition of contended that includes a monitor a thread is trying to enter...
978  mirror::Object* result = thread->GetMonitorEnterObject();
979  if (result == NULL) {
980    // ...but also a monitor that the thread is waiting on.
981    MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
982    Monitor* monitor = thread->GetWaitMonitor();
983    if (monitor != NULL) {
984      result = monitor->GetObject();
985    }
986  }
987  return result;
988}
989
990void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*),
991                         void* callback_context, bool abort_on_failure) {
992  mirror::ArtMethod* m = stack_visitor->GetMethod();
993  CHECK(m != NULL);
994
995  // Native methods are an easy special case.
996  // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
997  if (m->IsNative()) {
998    if (m->IsSynchronized()) {
999      mirror::Object* jni_this = stack_visitor->GetCurrentHandleScope()->GetReference(0);
1000      callback(jni_this, callback_context);
1001    }
1002    return;
1003  }
1004
1005  // Proxy methods should not be synchronized.
1006  if (m->IsProxyMethod()) {
1007    CHECK(!m->IsSynchronized());
1008    return;
1009  }
1010
1011  // Is there any reason to believe there's any synchronization in this method?
1012  const DexFile::CodeItem* code_item = m->GetCodeItem();
1013  CHECK(code_item != NULL) << PrettyMethod(m);
1014  if (code_item->tries_size_ == 0) {
1015    return;  // No "tries" implies no synchronization, so no held locks to report.
1016  }
1017
1018  // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
1019  // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
1020  // inconsistent stack anyways.
1021  uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
1022  if (!abort_on_failure && dex_pc == DexFile::kDexNoIndex) {
1023    LOG(ERROR) << "Could not find dex_pc for " << PrettyMethod(m);
1024    return;
1025  }
1026
1027  // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
1028  // the locks held in this stack frame.
1029  std::vector<uint32_t> monitor_enter_dex_pcs;
1030  verifier::MethodVerifier::FindLocksAtDexPc(m, dex_pc, &monitor_enter_dex_pcs);
1031  if (monitor_enter_dex_pcs.empty()) {
1032    return;
1033  }
1034
1035  for (size_t i = 0; i < monitor_enter_dex_pcs.size(); ++i) {
1036    // The verifier works in terms of the dex pcs of the monitor-enter instructions.
1037    // We want the registers used by those instructions (so we can read the values out of them).
1038    uint32_t dex_pc = monitor_enter_dex_pcs[i];
1039    uint16_t monitor_enter_instruction = code_item->insns_[dex_pc];
1040
1041    // Quick sanity check.
1042    if ((monitor_enter_instruction & 0xff) != Instruction::MONITOR_ENTER) {
1043      LOG(FATAL) << "expected monitor-enter @" << dex_pc << "; was "
1044                 << reinterpret_cast<void*>(monitor_enter_instruction);
1045    }
1046
1047    uint16_t monitor_register = ((monitor_enter_instruction >> 8) & 0xff);
1048    mirror::Object* o = reinterpret_cast<mirror::Object*>(stack_visitor->GetVReg(m, monitor_register,
1049                                                                                 kReferenceVReg));
1050    callback(o, callback_context);
1051  }
1052}
1053
1054bool Monitor::IsValidLockWord(LockWord lock_word) {
1055  switch (lock_word.GetState()) {
1056    case LockWord::kUnlocked:
1057      // Nothing to check.
1058      return true;
1059    case LockWord::kThinLocked:
1060      // Basic sanity check of owner.
1061      return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
1062    case LockWord::kFatLocked: {
1063      // Check the  monitor appears in the monitor list.
1064      Monitor* mon = lock_word.FatLockMonitor();
1065      MonitorList* list = Runtime::Current()->GetMonitorList();
1066      MutexLock mu(Thread::Current(), list->monitor_list_lock_);
1067      for (Monitor* list_mon : list->list_) {
1068        if (mon == list_mon) {
1069          return true;  // Found our monitor.
1070        }
1071      }
1072      return false;  // Fail - unowned monitor in an object.
1073    }
1074    case LockWord::kHashCode:
1075      return true;
1076    default:
1077      LOG(FATAL) << "Unreachable";
1078      return false;
1079  }
1080}
1081
1082bool Monitor::IsLocked() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1083  MutexLock mu(Thread::Current(), monitor_lock_);
1084  return owner_ != nullptr;
1085}
1086
1087void Monitor::TranslateLocation(mirror::ArtMethod* method, uint32_t dex_pc,
1088                                const char** source_file, uint32_t* line_number) const {
1089  // If method is null, location is unknown
1090  if (method == NULL) {
1091    *source_file = "";
1092    *line_number = 0;
1093    return;
1094  }
1095  *source_file = method->GetDeclaringClassSourceFile();
1096  if (*source_file == NULL) {
1097    *source_file = "";
1098  }
1099  *line_number = method->GetLineNumFromDexPC(dex_pc);
1100}
1101
1102uint32_t Monitor::GetOwnerThreadId() {
1103  MutexLock mu(Thread::Current(), monitor_lock_);
1104  Thread* owner = owner_;
1105  if (owner != NULL) {
1106    return owner->GetThreadId();
1107  } else {
1108    return ThreadList::kInvalidThreadId;
1109  }
1110}
1111
1112MonitorList::MonitorList()
1113    : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
1114      monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
1115}
1116
1117MonitorList::~MonitorList() {
1118  Thread* self = Thread::Current();
1119  MutexLock mu(self, monitor_list_lock_);
1120  // Release all monitors to the pool.
1121  // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
1122  // clear faster in the pool.
1123  MonitorPool::ReleaseMonitors(self, &list_);
1124}
1125
1126void MonitorList::DisallowNewMonitors() {
1127  MutexLock mu(Thread::Current(), monitor_list_lock_);
1128  allow_new_monitors_ = false;
1129}
1130
1131void MonitorList::AllowNewMonitors() {
1132  Thread* self = Thread::Current();
1133  MutexLock mu(self, monitor_list_lock_);
1134  allow_new_monitors_ = true;
1135  monitor_add_condition_.Broadcast(self);
1136}
1137
1138void MonitorList::Add(Monitor* m) {
1139  Thread* self = Thread::Current();
1140  MutexLock mu(self, monitor_list_lock_);
1141  while (UNLIKELY(!allow_new_monitors_)) {
1142    monitor_add_condition_.WaitHoldingLocks(self);
1143  }
1144  list_.push_front(m);
1145}
1146
1147void MonitorList::SweepMonitorList(IsMarkedCallback* callback, void* arg) {
1148  Thread* self = Thread::Current();
1149  MutexLock mu(self, monitor_list_lock_);
1150  for (auto it = list_.begin(); it != list_.end(); ) {
1151    Monitor* m = *it;
1152    // Disable the read barrier in GetObject() as this is called by GC.
1153    mirror::Object* obj = m->GetObject<kWithoutReadBarrier>();
1154    // The object of a monitor can be null if we have deflated it.
1155    mirror::Object* new_obj = obj != nullptr ? callback(obj, arg) : nullptr;
1156    if (new_obj == nullptr) {
1157      VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
1158                    << obj;
1159      MonitorPool::ReleaseMonitor(self, m);
1160      it = list_.erase(it);
1161    } else {
1162      m->SetObject(new_obj);
1163      ++it;
1164    }
1165  }
1166}
1167
1168struct MonitorDeflateArgs {
1169  MonitorDeflateArgs() : self(Thread::Current()), deflate_count(0) {}
1170  Thread* const self;
1171  size_t deflate_count;
1172};
1173
1174static mirror::Object* MonitorDeflateCallback(mirror::Object* object, void* arg)
1175    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1176  MonitorDeflateArgs* args = reinterpret_cast<MonitorDeflateArgs*>(arg);
1177  if (Monitor::Deflate(args->self, object)) {
1178    DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
1179    ++args->deflate_count;
1180    // If we deflated, return nullptr so that the monitor gets removed from the array.
1181    return nullptr;
1182  }
1183  return object;  // Monitor was not deflated.
1184}
1185
1186size_t MonitorList::DeflateMonitors() {
1187  MonitorDeflateArgs args;
1188  Locks::mutator_lock_->AssertExclusiveHeld(args.self);
1189  SweepMonitorList(MonitorDeflateCallback, &args);
1190  return args.deflate_count;
1191}
1192
1193MonitorInfo::MonitorInfo(mirror::Object* obj) : owner_(NULL), entry_count_(0) {
1194  DCHECK(obj != nullptr);
1195  LockWord lock_word = obj->GetLockWord(true);
1196  switch (lock_word.GetState()) {
1197    case LockWord::kUnlocked:
1198      // Fall-through.
1199    case LockWord::kForwardingAddress:
1200      // Fall-through.
1201    case LockWord::kHashCode:
1202      break;
1203    case LockWord::kThinLocked:
1204      owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
1205      entry_count_ = 1 + lock_word.ThinLockCount();
1206      // Thin locks have no waiters.
1207      break;
1208    case LockWord::kFatLocked: {
1209      Monitor* mon = lock_word.FatLockMonitor();
1210      owner_ = mon->owner_;
1211      entry_count_ = 1 + mon->lock_count_;
1212      for (Thread* waiter = mon->wait_set_; waiter != NULL; waiter = waiter->GetWaitNext()) {
1213        waiters_.push_back(waiter);
1214      }
1215      break;
1216    }
1217  }
1218}
1219
1220}  // namespace art
1221