monitor.cc revision b363f666883860d40823d5528df3c98c897f74f4
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "monitor.h"
18
19#include <vector>
20
21#include "base/mutex.h"
22#include "base/stl_util.h"
23#include "class_linker.h"
24#include "dex_file-inl.h"
25#include "dex_instruction.h"
26#include "lock_word-inl.h"
27#include "mirror/art_method-inl.h"
28#include "mirror/class-inl.h"
29#include "mirror/object-inl.h"
30#include "mirror/object_array-inl.h"
31#include "scoped_thread_state_change.h"
32#include "thread.h"
33#include "thread_list.h"
34#include "verifier/method_verifier.h"
35#include "well_known_classes.h"
36
37namespace art {
38
39/*
40 * Every Object has a monitor associated with it, but not every Object is actually locked.  Even
41 * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
42 * or b) wait() is called on the Object.
43 *
44 * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
45 * "Thin locks: featherweight synchronization for Java" (ACM 1998).  Things are even easier for us,
46 * though, because we have a full 32 bits to work with.
47 *
48 * The two states of an Object's lock are referred to as "thin" and "fat".  A lock may transition
49 * from the "thin" state to the "fat" state and this transition is referred to as inflation. Once
50 * a lock has been inflated it remains in the "fat" state indefinitely.
51 *
52 * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
53 * in the LockWord value type.
54 *
55 * Monitors provide:
56 *  - mutually exclusive access to resources
57 *  - a way for multiple threads to wait for notification
58 *
59 * In effect, they fill the role of both mutexes and condition variables.
60 *
61 * Only one thread can own the monitor at any time.  There may be several threads waiting on it
62 * (the wait call unlocks it).  One or more waiting threads may be getting interrupted or notified
63 * at any given time.
64 */
65
66bool (*Monitor::is_sensitive_thread_hook_)() = NULL;
67uint32_t Monitor::lock_profiling_threshold_ = 0;
68
69bool Monitor::IsSensitiveThread() {
70  if (is_sensitive_thread_hook_ != NULL) {
71    return (*is_sensitive_thread_hook_)();
72  }
73  return false;
74}
75
76void Monitor::Init(uint32_t lock_profiling_threshold, bool (*is_sensitive_thread_hook)()) {
77  lock_profiling_threshold_ = lock_profiling_threshold;
78  is_sensitive_thread_hook_ = is_sensitive_thread_hook;
79}
80
81Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code)
82    : monitor_lock_("a monitor lock", kMonitorLock),
83      monitor_contenders_("monitor contenders", monitor_lock_),
84      num_waiters_(0),
85      owner_(owner),
86      lock_count_(0),
87      obj_(obj),
88      wait_set_(NULL),
89      hash_code_(hash_code),
90      locking_method_(NULL),
91      locking_dex_pc_(0),
92      monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
93#ifdef __LP64__
94  DCHECK(false) << "Should not be reached in 64b";
95  next_free_ = nullptr;
96#endif
97  // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
98  // with the owner unlocking the thin-lock.
99  CHECK(owner == nullptr || owner == self || owner->IsSuspended());
100  // The identity hash code is set for the life time of the monitor.
101}
102
103Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code,
104                 MonitorId id)
105    : monitor_lock_("a monitor lock", kMonitorLock),
106      monitor_contenders_("monitor contenders", monitor_lock_),
107      num_waiters_(0),
108      owner_(owner),
109      lock_count_(0),
110      obj_(obj),
111      wait_set_(NULL),
112      hash_code_(hash_code),
113      locking_method_(NULL),
114      locking_dex_pc_(0),
115      monitor_id_(id) {
116#ifdef __LP64__
117  next_free_ = nullptr;
118#endif
119  // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
120  // with the owner unlocking the thin-lock.
121  CHECK(owner == nullptr || owner == self || owner->IsSuspended());
122  // The identity hash code is set for the life time of the monitor.
123}
124
125int32_t Monitor::GetHashCode() {
126  while (!HasHashCode()) {
127    if (hash_code_.CompareExchangeWeakRelaxed(0, mirror::Object::GenerateIdentityHashCode())) {
128      break;
129    }
130  }
131  DCHECK(HasHashCode());
132  return hash_code_.LoadRelaxed();
133}
134
135bool Monitor::Install(Thread* self) {
136  MutexLock mu(self, monitor_lock_);  // Uncontended mutex acquisition as monitor isn't yet public.
137  CHECK(owner_ == nullptr || owner_ == self || owner_->IsSuspended());
138  // Propagate the lock state.
139  LockWord lw(GetObject()->GetLockWord(false));
140  switch (lw.GetState()) {
141    case LockWord::kThinLocked: {
142      CHECK_EQ(owner_->GetThreadId(), lw.ThinLockOwner());
143      lock_count_ = lw.ThinLockCount();
144      break;
145    }
146    case LockWord::kHashCode: {
147      CHECK_EQ(hash_code_.LoadRelaxed(), static_cast<int32_t>(lw.GetHashCode()));
148      break;
149    }
150    case LockWord::kFatLocked: {
151      // The owner_ is suspended but another thread beat us to install a monitor.
152      return false;
153    }
154    case LockWord::kUnlocked: {
155      LOG(FATAL) << "Inflating unlocked lock word";
156      break;
157    }
158    default: {
159      LOG(FATAL) << "Invalid monitor state " << lw.GetState();
160      return false;
161    }
162  }
163  LockWord fat(this);
164  // Publish the updated lock word, which may race with other threads.
165  bool success = GetObject()->CasLockWordWeakSequentiallyConsistent(lw, fat);
166  // Lock profiling.
167  if (success && owner_ != nullptr && lock_profiling_threshold_ != 0) {
168    locking_method_ = owner_->GetCurrentMethod(&locking_dex_pc_);
169  }
170  return success;
171}
172
173Monitor::~Monitor() {
174  // Deflated monitors have a null object.
175}
176
177/*
178 * Links a thread into a monitor's wait set.  The monitor lock must be
179 * held by the caller of this routine.
180 */
181void Monitor::AppendToWaitSet(Thread* thread) {
182  DCHECK(owner_ == Thread::Current());
183  DCHECK(thread != NULL);
184  DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
185  if (wait_set_ == NULL) {
186    wait_set_ = thread;
187    return;
188  }
189
190  // push_back.
191  Thread* t = wait_set_;
192  while (t->GetWaitNext() != nullptr) {
193    t = t->GetWaitNext();
194  }
195  t->SetWaitNext(thread);
196}
197
198/*
199 * Unlinks a thread from a monitor's wait set.  The monitor lock must
200 * be held by the caller of this routine.
201 */
202void Monitor::RemoveFromWaitSet(Thread *thread) {
203  DCHECK(owner_ == Thread::Current());
204  DCHECK(thread != NULL);
205  if (wait_set_ == NULL) {
206    return;
207  }
208  if (wait_set_ == thread) {
209    wait_set_ = thread->GetWaitNext();
210    thread->SetWaitNext(nullptr);
211    return;
212  }
213
214  Thread* t = wait_set_;
215  while (t->GetWaitNext() != NULL) {
216    if (t->GetWaitNext() == thread) {
217      t->SetWaitNext(thread->GetWaitNext());
218      thread->SetWaitNext(nullptr);
219      return;
220    }
221    t = t->GetWaitNext();
222  }
223}
224
225void Monitor::SetObject(mirror::Object* object) {
226  obj_ = object;
227}
228
229void Monitor::Lock(Thread* self) {
230  MutexLock mu(self, monitor_lock_);
231  while (true) {
232    if (owner_ == nullptr) {  // Unowned.
233      owner_ = self;
234      CHECK_EQ(lock_count_, 0);
235      // When debugging, save the current monitor holder for future
236      // acquisition failures to use in sampled logging.
237      if (lock_profiling_threshold_ != 0) {
238        locking_method_ = self->GetCurrentMethod(&locking_dex_pc_);
239      }
240      return;
241    } else if (owner_ == self) {  // Recursive.
242      lock_count_++;
243      return;
244    }
245    // Contended.
246    const bool log_contention = (lock_profiling_threshold_ != 0);
247    uint64_t wait_start_ms = log_contention ? 0 : MilliTime();
248    mirror::ArtMethod* owners_method = locking_method_;
249    uint32_t owners_dex_pc = locking_dex_pc_;
250    // Do this before releasing the lock so that we don't get deflated.
251    ++num_waiters_;
252    monitor_lock_.Unlock(self);  // Let go of locks in order.
253    self->SetMonitorEnterObject(GetObject());
254    {
255      ScopedThreadStateChange tsc(self, kBlocked);  // Change to blocked and give up mutator_lock_.
256      MutexLock mu2(self, monitor_lock_);  // Reacquire monitor_lock_ without mutator_lock_ for Wait.
257      if (owner_ != NULL) {  // Did the owner_ give the lock up?
258        monitor_contenders_.Wait(self);  // Still contended so wait.
259        // Woken from contention.
260        if (log_contention) {
261          uint64_t wait_ms = MilliTime() - wait_start_ms;
262          uint32_t sample_percent;
263          if (wait_ms >= lock_profiling_threshold_) {
264            sample_percent = 100;
265          } else {
266            sample_percent = 100 * wait_ms / lock_profiling_threshold_;
267          }
268          if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
269            const char* owners_filename;
270            uint32_t owners_line_number;
271            TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
272            LogContentionEvent(self, wait_ms, sample_percent, owners_filename, owners_line_number);
273          }
274        }
275      }
276    }
277    self->SetMonitorEnterObject(nullptr);
278    monitor_lock_.Lock(self);  // Reacquire locks in order.
279    --num_waiters_;
280  }
281}
282
283static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
284                                              __attribute__((format(printf, 1, 2)));
285
286static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
287    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
288  va_list args;
289  va_start(args, fmt);
290  Thread* self = Thread::Current();
291  ThrowLocation throw_location = self->GetCurrentLocationForThrow();
292  self->ThrowNewExceptionV(throw_location, "Ljava/lang/IllegalMonitorStateException;", fmt, args);
293  if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
294    std::ostringstream ss;
295    self->Dump(ss);
296    LOG(Runtime::Current()->IsStarted() ? INFO : ERROR)
297        << self->GetException(NULL)->Dump() << "\n" << ss.str();
298  }
299  va_end(args);
300}
301
302static std::string ThreadToString(Thread* thread) {
303  if (thread == NULL) {
304    return "NULL";
305  }
306  std::ostringstream oss;
307  // TODO: alternatively, we could just return the thread's name.
308  oss << *thread;
309  return oss.str();
310}
311
312void Monitor::FailedUnlock(mirror::Object* o, Thread* expected_owner, Thread* found_owner,
313                           Monitor* monitor) {
314  Thread* current_owner = NULL;
315  std::string current_owner_string;
316  std::string expected_owner_string;
317  std::string found_owner_string;
318  {
319    // TODO: isn't this too late to prevent threads from disappearing?
320    // Acquire thread list lock so threads won't disappear from under us.
321    MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
322    // Re-read owner now that we hold lock.
323    current_owner = (monitor != NULL) ? monitor->GetOwner() : NULL;
324    // Get short descriptions of the threads involved.
325    current_owner_string = ThreadToString(current_owner);
326    expected_owner_string = ThreadToString(expected_owner);
327    found_owner_string = ThreadToString(found_owner);
328  }
329  if (current_owner == NULL) {
330    if (found_owner == NULL) {
331      ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
332                                         " on thread '%s'",
333                                         PrettyTypeOf(o).c_str(),
334                                         expected_owner_string.c_str());
335    } else {
336      // Race: the original read found an owner but now there is none
337      ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
338                                         " (where now the monitor appears unowned) on thread '%s'",
339                                         found_owner_string.c_str(),
340                                         PrettyTypeOf(o).c_str(),
341                                         expected_owner_string.c_str());
342    }
343  } else {
344    if (found_owner == NULL) {
345      // Race: originally there was no owner, there is now
346      ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
347                                         " (originally believed to be unowned) on thread '%s'",
348                                         current_owner_string.c_str(),
349                                         PrettyTypeOf(o).c_str(),
350                                         expected_owner_string.c_str());
351    } else {
352      if (found_owner != current_owner) {
353        // Race: originally found and current owner have changed
354        ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
355                                           " owned by '%s') on object of type '%s' on thread '%s'",
356                                           found_owner_string.c_str(),
357                                           current_owner_string.c_str(),
358                                           PrettyTypeOf(o).c_str(),
359                                           expected_owner_string.c_str());
360      } else {
361        ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
362                                           " on thread '%s",
363                                           current_owner_string.c_str(),
364                                           PrettyTypeOf(o).c_str(),
365                                           expected_owner_string.c_str());
366      }
367    }
368  }
369}
370
371bool Monitor::Unlock(Thread* self) {
372  DCHECK(self != NULL);
373  MutexLock mu(self, monitor_lock_);
374  Thread* owner = owner_;
375  if (owner == self) {
376    // We own the monitor, so nobody else can be in here.
377    if (lock_count_ == 0) {
378      owner_ = NULL;
379      locking_method_ = NULL;
380      locking_dex_pc_ = 0;
381      // Wake a contender.
382      monitor_contenders_.Signal(self);
383    } else {
384      --lock_count_;
385    }
386  } else {
387    // We don't own this, so we're not allowed to unlock it.
388    // The JNI spec says that we should throw IllegalMonitorStateException
389    // in this case.
390    FailedUnlock(GetObject(), self, owner, this);
391    return false;
392  }
393  return true;
394}
395
396/*
397 * Wait on a monitor until timeout, interrupt, or notification.  Used for
398 * Object.wait() and (somewhat indirectly) Thread.sleep() and Thread.join().
399 *
400 * If another thread calls Thread.interrupt(), we throw InterruptedException
401 * and return immediately if one of the following are true:
402 *  - blocked in wait(), wait(long), or wait(long, int) methods of Object
403 *  - blocked in join(), join(long), or join(long, int) methods of Thread
404 *  - blocked in sleep(long), or sleep(long, int) methods of Thread
405 * Otherwise, we set the "interrupted" flag.
406 *
407 * Checks to make sure that "ns" is in the range 0-999999
408 * (i.e. fractions of a millisecond) and throws the appropriate
409 * exception if it isn't.
410 *
411 * The spec allows "spurious wakeups", and recommends that all code using
412 * Object.wait() do so in a loop.  This appears to derive from concerns
413 * about pthread_cond_wait() on multiprocessor systems.  Some commentary
414 * on the web casts doubt on whether these can/should occur.
415 *
416 * Since we're allowed to wake up "early", we clamp extremely long durations
417 * to return at the end of the 32-bit time epoch.
418 */
419void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
420                   bool interruptShouldThrow, ThreadState why) {
421  DCHECK(self != NULL);
422  DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
423
424  monitor_lock_.Lock(self);
425
426  // Make sure that we hold the lock.
427  if (owner_ != self) {
428    monitor_lock_.Unlock(self);
429    ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
430    return;
431  }
432
433  // We need to turn a zero-length timed wait into a regular wait because
434  // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
435  if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
436    why = kWaiting;
437  }
438
439  // Enforce the timeout range.
440  if (ms < 0 || ns < 0 || ns > 999999) {
441    monitor_lock_.Unlock(self);
442    ThrowLocation throw_location = self->GetCurrentLocationForThrow();
443    self->ThrowNewExceptionF(throw_location, "Ljava/lang/IllegalArgumentException;",
444                             "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
445    return;
446  }
447
448  /*
449   * Add ourselves to the set of threads waiting on this monitor, and
450   * release our hold.  We need to let it go even if we're a few levels
451   * deep in a recursive lock, and we need to restore that later.
452   *
453   * We append to the wait set ahead of clearing the count and owner
454   * fields so the subroutine can check that the calling thread owns
455   * the monitor.  Aside from that, the order of member updates is
456   * not order sensitive as we hold the pthread mutex.
457   */
458  AppendToWaitSet(self);
459  ++num_waiters_;
460  int prev_lock_count = lock_count_;
461  lock_count_ = 0;
462  owner_ = NULL;
463  mirror::ArtMethod* saved_method = locking_method_;
464  locking_method_ = NULL;
465  uintptr_t saved_dex_pc = locking_dex_pc_;
466  locking_dex_pc_ = 0;
467
468  /*
469   * Update thread state. If the GC wakes up, it'll ignore us, knowing
470   * that we won't touch any references in this state, and we'll check
471   * our suspend mode before we transition out.
472   */
473  self->TransitionFromRunnableToSuspended(why);
474
475  bool was_interrupted = false;
476  {
477    // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
478    MutexLock mu(self, *self->GetWaitMutex());
479
480    // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
481    // non-NULL a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
482    // up.
483    DCHECK(self->GetWaitMonitor() == nullptr);
484    self->SetWaitMonitor(this);
485
486    // Release the monitor lock.
487    monitor_contenders_.Signal(self);
488    monitor_lock_.Unlock(self);
489
490    // Handle the case where the thread was interrupted before we called wait().
491    if (self->IsInterruptedLocked()) {
492      was_interrupted = true;
493    } else {
494      // Wait for a notification or a timeout to occur.
495      if (why == kWaiting) {
496        self->GetWaitConditionVariable()->Wait(self);
497      } else {
498        DCHECK(why == kTimedWaiting || why == kSleeping) << why;
499        self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
500      }
501      if (self->IsInterruptedLocked()) {
502        was_interrupted = true;
503      }
504      self->SetInterruptedLocked(false);
505    }
506  }
507
508  // Set self->status back to kRunnable, and self-suspend if needed.
509  self->TransitionFromSuspendedToRunnable();
510
511  {
512    // We reset the thread's wait_monitor_ field after transitioning back to runnable so
513    // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
514    // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
515    // are waiting on "null".)
516    MutexLock mu(self, *self->GetWaitMutex());
517    DCHECK(self->GetWaitMonitor() != nullptr);
518    self->SetWaitMonitor(nullptr);
519  }
520
521  // Re-acquire the monitor and lock.
522  Lock(self);
523  monitor_lock_.Lock(self);
524  self->GetWaitMutex()->AssertNotHeld(self);
525
526  /*
527   * We remove our thread from wait set after restoring the count
528   * and owner fields so the subroutine can check that the calling
529   * thread owns the monitor. Aside from that, the order of member
530   * updates is not order sensitive as we hold the pthread mutex.
531   */
532  owner_ = self;
533  lock_count_ = prev_lock_count;
534  locking_method_ = saved_method;
535  locking_dex_pc_ = saved_dex_pc;
536  --num_waiters_;
537  RemoveFromWaitSet(self);
538
539  monitor_lock_.Unlock(self);
540
541  if (was_interrupted) {
542    /*
543     * We were interrupted while waiting, or somebody interrupted an
544     * un-interruptible thread earlier and we're bailing out immediately.
545     *
546     * The doc sayeth: "The interrupted status of the current thread is
547     * cleared when this exception is thrown."
548     */
549    {
550      MutexLock mu(self, *self->GetWaitMutex());
551      self->SetInterruptedLocked(false);
552    }
553    if (interruptShouldThrow) {
554      ThrowLocation throw_location = self->GetCurrentLocationForThrow();
555      self->ThrowNewException(throw_location, "Ljava/lang/InterruptedException;", NULL);
556    }
557  }
558}
559
560void Monitor::Notify(Thread* self) {
561  DCHECK(self != NULL);
562  MutexLock mu(self, monitor_lock_);
563  // Make sure that we hold the lock.
564  if (owner_ != self) {
565    ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
566    return;
567  }
568  // Signal the first waiting thread in the wait set.
569  while (wait_set_ != NULL) {
570    Thread* thread = wait_set_;
571    wait_set_ = thread->GetWaitNext();
572    thread->SetWaitNext(nullptr);
573
574    // Check to see if the thread is still waiting.
575    MutexLock mu(self, *thread->GetWaitMutex());
576    if (thread->GetWaitMonitor() != nullptr) {
577      thread->GetWaitConditionVariable()->Signal(self);
578      return;
579    }
580  }
581}
582
583void Monitor::NotifyAll(Thread* self) {
584  DCHECK(self != NULL);
585  MutexLock mu(self, monitor_lock_);
586  // Make sure that we hold the lock.
587  if (owner_ != self) {
588    ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
589    return;
590  }
591  // Signal all threads in the wait set.
592  while (wait_set_ != NULL) {
593    Thread* thread = wait_set_;
594    wait_set_ = thread->GetWaitNext();
595    thread->SetWaitNext(nullptr);
596    thread->Notify();
597  }
598}
599
600bool Monitor::Deflate(Thread* self, mirror::Object* obj) {
601  DCHECK(obj != nullptr);
602  // Don't need volatile since we only deflate with mutators suspended.
603  LockWord lw(obj->GetLockWord(false));
604  // If the lock isn't an inflated monitor, then we don't need to deflate anything.
605  if (lw.GetState() == LockWord::kFatLocked) {
606    Monitor* monitor = lw.FatLockMonitor();
607    DCHECK(monitor != nullptr);
608    MutexLock mu(self, monitor->monitor_lock_);
609    // Can't deflate if we have anybody waiting on the CV.
610    if (monitor->num_waiters_ > 0) {
611      return false;
612    }
613    Thread* owner = monitor->owner_;
614    if (owner != nullptr) {
615      // Can't deflate if we are locked and have a hash code.
616      if (monitor->HasHashCode()) {
617        return false;
618      }
619      // Can't deflate if our lock count is too high.
620      if (monitor->lock_count_ > LockWord::kThinLockMaxCount) {
621        return false;
622      }
623      // Deflate to a thin lock.
624      obj->SetLockWord(LockWord::FromThinLockId(owner->GetThreadId(), monitor->lock_count_), false);
625      VLOG(monitor) << "Deflated " << obj << " to thin lock " << owner->GetTid() << " / "
626          << monitor->lock_count_;
627    } else if (monitor->HasHashCode()) {
628      obj->SetLockWord(LockWord::FromHashCode(monitor->GetHashCode()), false);
629      VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
630    } else {
631      // No lock and no hash, just put an empty lock word inside the object.
632      obj->SetLockWord(LockWord(), false);
633      VLOG(monitor) << "Deflated" << obj << " to empty lock word";
634    }
635    // The monitor is deflated, mark the object as nullptr so that we know to delete it during the
636    // next GC.
637    monitor->obj_ = nullptr;
638  }
639  return true;
640}
641
642/*
643 * Changes the shape of a monitor from thin to fat, preserving the internal lock state. The calling
644 * thread must own the lock or the owner must be suspended. There's a race with other threads
645 * inflating the lock and so the caller should read the monitor following the call.
646 */
647void Monitor::Inflate(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) {
648  DCHECK(self != nullptr);
649  DCHECK(obj != nullptr);
650  // Allocate and acquire a new monitor.
651  Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
652  DCHECK(m != nullptr);
653  if (m->Install(self)) {
654    if (owner != nullptr) {
655      VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
656          << " created monitor " << m << " for object " << obj;
657    } else {
658      VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
659          << " created monitor " << m << " for object " << obj;
660    }
661    Runtime::Current()->GetMonitorList()->Add(m);
662    CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
663  } else {
664    MonitorPool::ReleaseMonitor(self, m);
665  }
666}
667
668void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
669                                uint32_t hash_code) {
670  DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
671  uint32_t owner_thread_id = lock_word.ThinLockOwner();
672  if (owner_thread_id == self->GetThreadId()) {
673    // We own the monitor, we can easily inflate it.
674    Inflate(self, self, obj.Get(), hash_code);
675  } else {
676    ThreadList* thread_list = Runtime::Current()->GetThreadList();
677    // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
678    self->SetMonitorEnterObject(obj.Get());
679    bool timed_out;
680    Thread* owner;
681    {
682      ScopedThreadStateChange tsc(self, kBlocked);
683      // Take suspend thread lock to avoid races with threads trying to suspend this one.
684      MutexLock mu(self, *Locks::thread_list_suspend_thread_lock_);
685      owner = thread_list->SuspendThreadByThreadId(owner_thread_id, false, &timed_out);
686    }
687    if (owner != nullptr) {
688      // We succeeded in suspending the thread, check the lock's status didn't change.
689      lock_word = obj->GetLockWord(true);
690      if (lock_word.GetState() == LockWord::kThinLocked &&
691          lock_word.ThinLockOwner() == owner_thread_id) {
692        // Go ahead and inflate the lock.
693        Inflate(self, owner, obj.Get(), hash_code);
694      }
695      thread_list->Resume(owner, false);
696    }
697    self->SetMonitorEnterObject(nullptr);
698  }
699}
700
701// Fool annotalysis into thinking that the lock on obj is acquired.
702static mirror::Object* FakeLock(mirror::Object* obj)
703    EXCLUSIVE_LOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
704  return obj;
705}
706
707// Fool annotalysis into thinking that the lock on obj is release.
708static mirror::Object* FakeUnlock(mirror::Object* obj)
709    UNLOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
710  return obj;
711}
712
713mirror::Object* Monitor::MonitorEnter(Thread* self, mirror::Object* obj) {
714  DCHECK(self != NULL);
715  DCHECK(obj != NULL);
716  obj = FakeLock(obj);
717  uint32_t thread_id = self->GetThreadId();
718  size_t contention_count = 0;
719  StackHandleScope<1> hs(self);
720  Handle<mirror::Object> h_obj(hs.NewHandle(obj));
721  while (true) {
722    LockWord lock_word = h_obj->GetLockWord(true);
723    switch (lock_word.GetState()) {
724      case LockWord::kUnlocked: {
725        LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0));
726        if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) {
727          // CasLockWord enforces more than the acquire ordering we need here.
728          return h_obj.Get();  // Success!
729        }
730        continue;  // Go again.
731      }
732      case LockWord::kThinLocked: {
733        uint32_t owner_thread_id = lock_word.ThinLockOwner();
734        if (owner_thread_id == thread_id) {
735          // We own the lock, increase the recursion count.
736          uint32_t new_count = lock_word.ThinLockCount() + 1;
737          if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
738            LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count));
739            h_obj->SetLockWord(thin_locked, true);
740            return h_obj.Get();  // Success!
741          } else {
742            // We'd overflow the recursion count, so inflate the monitor.
743            InflateThinLocked(self, h_obj, lock_word, 0);
744          }
745        } else {
746          // Contention.
747          contention_count++;
748          Runtime* runtime = Runtime::Current();
749          if (contention_count <= runtime->GetMaxSpinsBeforeThinkLockInflation()) {
750            // TODO: Consider switching the thread state to kBlocked when we are yielding.
751            // Use sched_yield instead of NanoSleep since NanoSleep can wait much longer than the
752            // parameter you pass in. This can cause thread suspension to take excessively long
753            // and make long pauses. See b/16307460.
754            sched_yield();
755          } else {
756            contention_count = 0;
757            InflateThinLocked(self, h_obj, lock_word, 0);
758          }
759        }
760        continue;  // Start from the beginning.
761      }
762      case LockWord::kFatLocked: {
763        Monitor* mon = lock_word.FatLockMonitor();
764        mon->Lock(self);
765        return h_obj.Get();  // Success!
766      }
767      case LockWord::kHashCode:
768        // Inflate with the existing hashcode.
769        Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
770        continue;  // Start from the beginning.
771      default: {
772        LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
773        return h_obj.Get();
774      }
775    }
776  }
777}
778
779bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) {
780  DCHECK(self != NULL);
781  DCHECK(obj != NULL);
782  obj = FakeUnlock(obj);
783  LockWord lock_word = obj->GetLockWord(true);
784  StackHandleScope<1> hs(self);
785  Handle<mirror::Object> h_obj(hs.NewHandle(obj));
786  switch (lock_word.GetState()) {
787    case LockWord::kHashCode:
788      // Fall-through.
789    case LockWord::kUnlocked:
790      FailedUnlock(h_obj.Get(), self, nullptr, nullptr);
791      return false;  // Failure.
792    case LockWord::kThinLocked: {
793      uint32_t thread_id = self->GetThreadId();
794      uint32_t owner_thread_id = lock_word.ThinLockOwner();
795      if (owner_thread_id != thread_id) {
796        // TODO: there's a race here with the owner dying while we unlock.
797        Thread* owner =
798            Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
799        FailedUnlock(h_obj.Get(), self, owner, nullptr);
800        return false;  // Failure.
801      } else {
802        // We own the lock, decrease the recursion count.
803        if (lock_word.ThinLockCount() != 0) {
804          uint32_t new_count = lock_word.ThinLockCount() - 1;
805          LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count));
806          h_obj->SetLockWord(thin_locked, true);
807        } else {
808          h_obj->SetLockWord(LockWord(), true);
809        }
810        return true;  // Success!
811      }
812    }
813    case LockWord::kFatLocked: {
814      Monitor* mon = lock_word.FatLockMonitor();
815      return mon->Unlock(self);
816    }
817    default: {
818      LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
819      return false;
820    }
821  }
822}
823
824/*
825 * Object.wait().  Also called for class init.
826 */
827void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns,
828                   bool interruptShouldThrow, ThreadState why) {
829  DCHECK(self != nullptr);
830  DCHECK(obj != nullptr);
831  LockWord lock_word = obj->GetLockWord(true);
832  switch (lock_word.GetState()) {
833    case LockWord::kHashCode:
834      // Fall-through.
835    case LockWord::kUnlocked:
836      ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
837      return;  // Failure.
838    case LockWord::kThinLocked: {
839      uint32_t thread_id = self->GetThreadId();
840      uint32_t owner_thread_id = lock_word.ThinLockOwner();
841      if (owner_thread_id != thread_id) {
842        ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
843        return;  // Failure.
844      } else {
845        // We own the lock, inflate to enqueue ourself on the Monitor.
846        Inflate(self, self, obj, 0);
847        lock_word = obj->GetLockWord(true);
848      }
849      break;
850    }
851    case LockWord::kFatLocked:
852      break;  // Already set for a wait.
853    default: {
854      LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
855      return;
856    }
857  }
858  Monitor* mon = lock_word.FatLockMonitor();
859  mon->Wait(self, ms, ns, interruptShouldThrow, why);
860}
861
862void Monitor::DoNotify(Thread* self, mirror::Object* obj, bool notify_all) {
863  DCHECK(self != nullptr);
864  DCHECK(obj != nullptr);
865  LockWord lock_word = obj->GetLockWord(true);
866  switch (lock_word.GetState()) {
867    case LockWord::kHashCode:
868      // Fall-through.
869    case LockWord::kUnlocked:
870      ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
871      return;  // Failure.
872    case LockWord::kThinLocked: {
873      uint32_t thread_id = self->GetThreadId();
874      uint32_t owner_thread_id = lock_word.ThinLockOwner();
875      if (owner_thread_id != thread_id) {
876        ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
877        return;  // Failure.
878      } else {
879        // We own the lock but there's no Monitor and therefore no waiters.
880        return;  // Success.
881      }
882    }
883    case LockWord::kFatLocked: {
884      Monitor* mon = lock_word.FatLockMonitor();
885      if (notify_all) {
886        mon->NotifyAll(self);
887      } else {
888        mon->Notify(self);
889      }
890      return;  // Success.
891    }
892    default: {
893      LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
894      return;
895    }
896  }
897}
898
899uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) {
900  DCHECK(obj != nullptr);
901  LockWord lock_word = obj->GetLockWord(true);
902  switch (lock_word.GetState()) {
903    case LockWord::kHashCode:
904      // Fall-through.
905    case LockWord::kUnlocked:
906      return ThreadList::kInvalidThreadId;
907    case LockWord::kThinLocked:
908      return lock_word.ThinLockOwner();
909    case LockWord::kFatLocked: {
910      Monitor* mon = lock_word.FatLockMonitor();
911      return mon->GetOwnerThreadId();
912    }
913    default: {
914      LOG(FATAL) << "Unreachable";
915      return ThreadList::kInvalidThreadId;
916    }
917  }
918}
919
920void Monitor::DescribeWait(std::ostream& os, const Thread* thread) {
921  // Determine the wait message and object we're waiting or blocked upon.
922  mirror::Object* pretty_object = nullptr;
923  const char* wait_message = nullptr;
924  uint32_t lock_owner = ThreadList::kInvalidThreadId;
925  ThreadState state = thread->GetState();
926  if (state == kWaiting || state == kTimedWaiting || state == kSleeping) {
927    wait_message = (state == kSleeping) ? "  - sleeping on " : "  - waiting on ";
928    Thread* self = Thread::Current();
929    MutexLock mu(self, *thread->GetWaitMutex());
930    Monitor* monitor = thread->GetWaitMonitor();
931    if (monitor != nullptr) {
932      pretty_object = monitor->GetObject();
933    }
934  } else if (state == kBlocked) {
935    wait_message = "  - waiting to lock ";
936    pretty_object = thread->GetMonitorEnterObject();
937    if (pretty_object != nullptr) {
938      lock_owner = pretty_object->GetLockOwnerThreadId();
939    }
940  }
941
942  if (wait_message != nullptr) {
943    if (pretty_object == nullptr) {
944      os << wait_message << "an unknown object";
945    } else {
946      if ((pretty_object->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
947          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
948        // Getting the identity hashcode here would result in lock inflation and suspension of the
949        // current thread, which isn't safe if this is the only runnable thread.
950        os << wait_message << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
951                                           reinterpret_cast<intptr_t>(pretty_object),
952                                           PrettyTypeOf(pretty_object).c_str());
953      } else {
954        // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
955        os << wait_message << StringPrintf("<0x%08x> (a %s)", pretty_object->IdentityHashCode(),
956                                           PrettyTypeOf(pretty_object).c_str());
957      }
958    }
959    // - waiting to lock <0x613f83d8> (a java.lang.Object) held by thread 5
960    if (lock_owner != ThreadList::kInvalidThreadId) {
961      os << " held by thread " << lock_owner;
962    }
963    os << "\n";
964  }
965}
966
967mirror::Object* Monitor::GetContendedMonitor(Thread* thread) {
968  // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
969  // definition of contended that includes a monitor a thread is trying to enter...
970  mirror::Object* result = thread->GetMonitorEnterObject();
971  if (result == NULL) {
972    // ...but also a monitor that the thread is waiting on.
973    MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
974    Monitor* monitor = thread->GetWaitMonitor();
975    if (monitor != NULL) {
976      result = monitor->GetObject();
977    }
978  }
979  return result;
980}
981
982void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*),
983                         void* callback_context) {
984  mirror::ArtMethod* m = stack_visitor->GetMethod();
985  CHECK(m != NULL);
986
987  // Native methods are an easy special case.
988  // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
989  if (m->IsNative()) {
990    if (m->IsSynchronized()) {
991      mirror::Object* jni_this = stack_visitor->GetCurrentHandleScope()->GetReference(0);
992      callback(jni_this, callback_context);
993    }
994    return;
995  }
996
997  // Proxy methods should not be synchronized.
998  if (m->IsProxyMethod()) {
999    CHECK(!m->IsSynchronized());
1000    return;
1001  }
1002
1003  // <clinit> is another special case. The runtime holds the class lock while calling <clinit>.
1004  if (m->IsClassInitializer()) {
1005    callback(m->GetDeclaringClass(), callback_context);
1006    // Fall through because there might be synchronization in the user code too.
1007  }
1008
1009  // Is there any reason to believe there's any synchronization in this method?
1010  const DexFile::CodeItem* code_item = m->GetCodeItem();
1011  CHECK(code_item != NULL) << PrettyMethod(m);
1012  if (code_item->tries_size_ == 0) {
1013    return;  // No "tries" implies no synchronization, so no held locks to report.
1014  }
1015
1016  // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
1017  // the locks held in this stack frame.
1018  std::vector<uint32_t> monitor_enter_dex_pcs;
1019  verifier::MethodVerifier::FindLocksAtDexPc(m, stack_visitor->GetDexPc(), &monitor_enter_dex_pcs);
1020  if (monitor_enter_dex_pcs.empty()) {
1021    return;
1022  }
1023
1024  for (size_t i = 0; i < monitor_enter_dex_pcs.size(); ++i) {
1025    // The verifier works in terms of the dex pcs of the monitor-enter instructions.
1026    // We want the registers used by those instructions (so we can read the values out of them).
1027    uint32_t dex_pc = monitor_enter_dex_pcs[i];
1028    uint16_t monitor_enter_instruction = code_item->insns_[dex_pc];
1029
1030    // Quick sanity check.
1031    if ((monitor_enter_instruction & 0xff) != Instruction::MONITOR_ENTER) {
1032      LOG(FATAL) << "expected monitor-enter @" << dex_pc << "; was "
1033                 << reinterpret_cast<void*>(monitor_enter_instruction);
1034    }
1035
1036    uint16_t monitor_register = ((monitor_enter_instruction >> 8) & 0xff);
1037    mirror::Object* o = reinterpret_cast<mirror::Object*>(stack_visitor->GetVReg(m, monitor_register,
1038                                                                                 kReferenceVReg));
1039    callback(o, callback_context);
1040  }
1041}
1042
1043bool Monitor::IsValidLockWord(LockWord lock_word) {
1044  switch (lock_word.GetState()) {
1045    case LockWord::kUnlocked:
1046      // Nothing to check.
1047      return true;
1048    case LockWord::kThinLocked:
1049      // Basic sanity check of owner.
1050      return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
1051    case LockWord::kFatLocked: {
1052      // Check the  monitor appears in the monitor list.
1053      Monitor* mon = lock_word.FatLockMonitor();
1054      MonitorList* list = Runtime::Current()->GetMonitorList();
1055      MutexLock mu(Thread::Current(), list->monitor_list_lock_);
1056      for (Monitor* list_mon : list->list_) {
1057        if (mon == list_mon) {
1058          return true;  // Found our monitor.
1059        }
1060      }
1061      return false;  // Fail - unowned monitor in an object.
1062    }
1063    case LockWord::kHashCode:
1064      return true;
1065    default:
1066      LOG(FATAL) << "Unreachable";
1067      return false;
1068  }
1069}
1070
1071bool Monitor::IsLocked() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1072  MutexLock mu(Thread::Current(), monitor_lock_);
1073  return owner_ != nullptr;
1074}
1075
1076void Monitor::TranslateLocation(mirror::ArtMethod* method, uint32_t dex_pc,
1077                                const char** source_file, uint32_t* line_number) const {
1078  // If method is null, location is unknown
1079  if (method == NULL) {
1080    *source_file = "";
1081    *line_number = 0;
1082    return;
1083  }
1084  *source_file = method->GetDeclaringClassSourceFile();
1085  if (*source_file == NULL) {
1086    *source_file = "";
1087  }
1088  *line_number = method->GetLineNumFromDexPC(dex_pc);
1089}
1090
1091uint32_t Monitor::GetOwnerThreadId() {
1092  MutexLock mu(Thread::Current(), monitor_lock_);
1093  Thread* owner = owner_;
1094  if (owner != NULL) {
1095    return owner->GetThreadId();
1096  } else {
1097    return ThreadList::kInvalidThreadId;
1098  }
1099}
1100
1101MonitorList::MonitorList()
1102    : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
1103      monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
1104}
1105
1106MonitorList::~MonitorList() {
1107  Thread* self = Thread::Current();
1108  MutexLock mu(self, monitor_list_lock_);
1109  // Release all monitors to the pool.
1110  // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
1111  // clear faster in the pool.
1112  MonitorPool::ReleaseMonitors(self, &list_);
1113}
1114
1115void MonitorList::DisallowNewMonitors() {
1116  MutexLock mu(Thread::Current(), monitor_list_lock_);
1117  allow_new_monitors_ = false;
1118}
1119
1120void MonitorList::AllowNewMonitors() {
1121  Thread* self = Thread::Current();
1122  MutexLock mu(self, monitor_list_lock_);
1123  allow_new_monitors_ = true;
1124  monitor_add_condition_.Broadcast(self);
1125}
1126
1127void MonitorList::Add(Monitor* m) {
1128  Thread* self = Thread::Current();
1129  MutexLock mu(self, monitor_list_lock_);
1130  while (UNLIKELY(!allow_new_monitors_)) {
1131    monitor_add_condition_.WaitHoldingLocks(self);
1132  }
1133  list_.push_front(m);
1134}
1135
1136void MonitorList::SweepMonitorList(IsMarkedCallback* callback, void* arg) {
1137  Thread* self = Thread::Current();
1138  MutexLock mu(self, monitor_list_lock_);
1139  for (auto it = list_.begin(); it != list_.end(); ) {
1140    Monitor* m = *it;
1141    // Disable the read barrier in GetObject() as this is called by GC.
1142    mirror::Object* obj = m->GetObject<kWithoutReadBarrier>();
1143    // The object of a monitor can be null if we have deflated it.
1144    mirror::Object* new_obj = obj != nullptr ? callback(obj, arg) : nullptr;
1145    if (new_obj == nullptr) {
1146      VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
1147                    << obj;
1148      MonitorPool::ReleaseMonitor(self, m);
1149      it = list_.erase(it);
1150    } else {
1151      m->SetObject(new_obj);
1152      ++it;
1153    }
1154  }
1155}
1156
1157struct MonitorDeflateArgs {
1158  MonitorDeflateArgs() : self(Thread::Current()), deflate_count(0) {}
1159  Thread* const self;
1160  size_t deflate_count;
1161};
1162
1163static mirror::Object* MonitorDeflateCallback(mirror::Object* object, void* arg)
1164    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1165  MonitorDeflateArgs* args = reinterpret_cast<MonitorDeflateArgs*>(arg);
1166  if (Monitor::Deflate(args->self, object)) {
1167    DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
1168    ++args->deflate_count;
1169    // If we deflated, return nullptr so that the monitor gets removed from the array.
1170    return nullptr;
1171  }
1172  return object;  // Monitor was not deflated.
1173}
1174
1175size_t MonitorList::DeflateMonitors() {
1176  MonitorDeflateArgs args;
1177  Locks::mutator_lock_->AssertExclusiveHeld(args.self);
1178  SweepMonitorList(MonitorDeflateCallback, &args);
1179  return args.deflate_count;
1180}
1181
1182MonitorInfo::MonitorInfo(mirror::Object* obj) : owner_(NULL), entry_count_(0) {
1183  DCHECK(obj != nullptr);
1184  LockWord lock_word = obj->GetLockWord(true);
1185  switch (lock_word.GetState()) {
1186    case LockWord::kUnlocked:
1187      // Fall-through.
1188    case LockWord::kForwardingAddress:
1189      // Fall-through.
1190    case LockWord::kHashCode:
1191      break;
1192    case LockWord::kThinLocked:
1193      owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
1194      entry_count_ = 1 + lock_word.ThinLockCount();
1195      // Thin locks have no waiters.
1196      break;
1197    case LockWord::kFatLocked: {
1198      Monitor* mon = lock_word.FatLockMonitor();
1199      owner_ = mon->owner_;
1200      entry_count_ = 1 + mon->lock_count_;
1201      for (Thread* waiter = mon->wait_set_; waiter != NULL; waiter = waiter->GetWaitNext()) {
1202        waiters_.push_back(waiter);
1203      }
1204      break;
1205    }
1206  }
1207}
1208
1209}  // namespace art
1210