thread.cc revision 03c9785a8a6d712775cf406c4371d0227c44148f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker-inl.h"
36#include "class_linker.h"
37#include "debugger.h"
38#include "dex_file-inl.h"
39#include "entrypoints/entrypoint_utils.h"
40#include "entrypoints/quick/quick_alloc_entrypoints.h"
41#include "gc_map.h"
42#include "gc/accounting/card_table-inl.h"
43#include "gc/allocator/rosalloc.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "handle_scope-inl.h"
47#include "handle_scope.h"
48#include "indirect_reference_table-inl.h"
49#include "jni_internal.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/art_method-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/class-inl.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/stack_trace_element.h"
56#include "monitor.h"
57#include "object_lock.h"
58#include "quick_exception_handler.h"
59#include "quick/quick_method_frame_info.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "scoped_thread_state_change.h"
63#include "ScopedLocalRef.h"
64#include "ScopedUtfChars.h"
65#include "stack.h"
66#include "thread_list.h"
67#include "thread-inl.h"
68#include "utils.h"
69#include "verifier/dex_gc_map.h"
70#include "verify_object-inl.h"
71#include "vmap_table.h"
72#include "well_known_classes.h"
73
74namespace art {
75
76bool Thread::is_started_ = false;
77pthread_key_t Thread::pthread_key_self_;
78ConditionVariable* Thread::resume_cond_ = nullptr;
79const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80
81static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
83void Thread::InitCardTable() {
84  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85}
86
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90
91void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
94void Thread::InitTlsEntryPoints() {
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                sizeof(tlsPtr_.quick_entrypoints));
99  for (uintptr_t* it = begin; it != end; ++it) {
100    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101  }
102  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104}
105
106void Thread::ResetQuickAllocEntryPointsForThread() {
107  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108}
109
110void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111  tlsPtr_.deoptimization_shadow_frame = sf;
112}
113
114void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116}
117
118ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120  tlsPtr_.deoptimization_shadow_frame = nullptr;
121  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122  return sf;
123}
124
125void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126  sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127  tlsPtr_.shadow_frame_under_construction = sf;
128}
129
130void Thread::ClearShadowFrameUnderConstruction() {
131  CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132  tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133}
134
135void Thread::InitTid() {
136  tls32_.tid = ::art::GetTid();
137}
138
139void Thread::InitAfterFork() {
140  // One thread (us) survived the fork, but we have a new tid so we need to
141  // update the value stashed in this Thread*.
142  InitTid();
143}
144
145void* Thread::CreateCallback(void* arg) {
146  Thread* self = reinterpret_cast<Thread*>(arg);
147  Runtime* runtime = Runtime::Current();
148  if (runtime == nullptr) {
149    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150    return nullptr;
151  }
152  {
153    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154    //       after self->Init().
155    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156    // Check that if we got here we cannot be shutting down (as shutdown should never have started
157    // while threads are being born).
158    CHECK(!runtime->IsShuttingDownLocked());
159    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160    Runtime::Current()->EndThreadBirth();
161  }
162  {
163    ScopedObjectAccess soa(self);
164
165    // Copy peer into self, deleting global reference when done.
166    CHECK(self->tlsPtr_.jpeer != nullptr);
167    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169    self->tlsPtr_.jpeer = nullptr;
170    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171    Dbg::PostThreadStart(self);
172
173    // Invoke the 'run' method of our java.lang.Thread.
174    mirror::Object* receiver = self->tlsPtr_.opeer;
175    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
176    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
177  }
178  // Detach and delete self.
179  Runtime::Current()->GetThreadList()->Unregister(self);
180
181  return nullptr;
182}
183
184Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
185                                  mirror::Object* thread_peer) {
186  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
188  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189  // to stop it from going away.
190  if (kIsDebugBuild) {
191    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192    if (result != nullptr && !result->IsSuspended()) {
193      Locks::thread_list_lock_->AssertHeld(soa.Self());
194    }
195  }
196  return result;
197}
198
199Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
200                                  jobject java_thread) {
201  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
202}
203
204static size_t FixStackSize(size_t stack_size) {
205  // A stack size of zero means "use the default".
206  if (stack_size == 0) {
207    stack_size = Runtime::Current()->GetDefaultStackSize();
208  }
209
210  // Dalvik used the bionic pthread default stack size for native threads,
211  // so include that here to support apps that expect large native stacks.
212  stack_size += 1 * MB;
213
214  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
215  if (stack_size < PTHREAD_STACK_MIN) {
216    stack_size = PTHREAD_STACK_MIN;
217  }
218
219  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
220    // It's likely that callers are trying to ensure they have at least a certain amount of
221    // stack space, so we should add our reserved space on top of what they requested, rather
222    // than implicitly take it away from them.
223    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
224  } else {
225    // If we are going to use implicit stack checks, allocate space for the protected
226    // region at the bottom of the stack.
227    stack_size += Thread::kStackOverflowImplicitCheckSize +
228        GetStackOverflowReservedBytes(kRuntimeISA);
229  }
230
231  // Some systems require the stack size to be a multiple of the system page size, so round up.
232  stack_size = RoundUp(stack_size, kPageSize);
233
234  return stack_size;
235}
236
237// Global variable to prevent the compiler optimizing away the page reads for the stack.
238byte dont_optimize_this;
239
240// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
241// overflow is detected.  It is located right below the stack_begin_.
242//
243// There is a little complexity here that deserves a special mention.  On some
244// architectures, the stack created using a VM_GROWSDOWN flag
245// to prevent memory being allocated when it's not needed.  This flag makes the
246// kernel only allocate memory for the stack by growing down in memory.  Because we
247// want to put an mprotected region far away from that at the stack top, we need
248// to make sure the pages for the stack are mapped in before we call mprotect.  We do
249// this by reading every page from the stack bottom (highest address) to the stack top.
250// We then madvise this away.
251void Thread::InstallImplicitProtection() {
252  byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
253  byte* stack_himem = tlsPtr_.stack_end;
254  byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
255      ~(kPageSize - 1));    // Page containing current top of stack.
256
257  // First remove the protection on the protected region as will want to read and
258  // write it.  This may fail (on the first attempt when the stack is not mapped)
259  // but we ignore that.
260  UnprotectStack();
261
262  // Map in the stack.  This must be done by reading from the
263  // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
264  // in the kernel.  Any access more than a page below the current SP might cause
265  // a segv.
266
267  // Read every page from the high address to the low.
268  for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
269    dont_optimize_this = *p;
270  }
271
272  VLOG(threads) << "installing stack protected region at " << std::hex <<
273      static_cast<void*>(pregion) << " to " <<
274      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
275
276  // Protect the bottom of the stack to prevent read/write to it.
277  ProtectStack();
278
279  // Tell the kernel that we won't be needing these pages any more.
280  // NB. madvise will probably write zeroes into the memory (on linux it does).
281  uint32_t unwanted_size = stack_top - pregion - kPageSize;
282  madvise(pregion, unwanted_size, MADV_DONTNEED);
283}
284
285void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
286  CHECK(java_peer != nullptr);
287  Thread* self = static_cast<JNIEnvExt*>(env)->self;
288  Runtime* runtime = Runtime::Current();
289
290  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
291  bool thread_start_during_shutdown = false;
292  {
293    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
294    if (runtime->IsShuttingDownLocked()) {
295      thread_start_during_shutdown = true;
296    } else {
297      runtime->StartThreadBirth();
298    }
299  }
300  if (thread_start_during_shutdown) {
301    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
302    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
303    return;
304  }
305
306  Thread* child_thread = new Thread(is_daemon);
307  // Use global JNI ref to hold peer live while child thread starts.
308  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
309  stack_size = FixStackSize(stack_size);
310
311  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
312  // assign it.
313  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
314                    reinterpret_cast<jlong>(child_thread));
315
316  pthread_t new_pthread;
317  pthread_attr_t attr;
318  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
319  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
320  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
321  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
322  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
323
324  if (pthread_create_result != 0) {
325    // pthread_create(3) failed, so clean up.
326    {
327      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
328      runtime->EndThreadBirth();
329    }
330    // Manually delete the global reference since Thread::Init will not have been run.
331    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
332    child_thread->tlsPtr_.jpeer = nullptr;
333    delete child_thread;
334    child_thread = nullptr;
335    // TODO: remove from thread group?
336    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
337    {
338      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
339                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
340      ScopedObjectAccess soa(env);
341      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
342    }
343  }
344}
345
346void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
347  // This function does all the initialization that must be run by the native thread it applies to.
348  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
349  // we can handshake with the corresponding native thread when it's ready.) Check this native
350  // thread hasn't been through here already...
351  CHECK(Thread::Current() == nullptr);
352  SetUpAlternateSignalStack();
353  InitCpu();
354  InitTlsEntryPoints();
355  RemoveSuspendTrigger();
356  InitCardTable();
357  InitTid();
358  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
359  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
360  tlsPtr_.pthread_self = pthread_self();
361  CHECK(is_started_);
362  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
363  DCHECK_EQ(Thread::Current(), this);
364
365  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
366  InitStackHwm();
367
368  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
369  thread_list->Register(this);
370}
371
372Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
373                       bool create_peer) {
374  Thread* self;
375  Runtime* runtime = Runtime::Current();
376  if (runtime == nullptr) {
377    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
378    return nullptr;
379  }
380  {
381    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
382    if (runtime->IsShuttingDownLocked()) {
383      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
384      return nullptr;
385    } else {
386      Runtime::Current()->StartThreadBirth();
387      self = new Thread(as_daemon);
388      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
389      Runtime::Current()->EndThreadBirth();
390    }
391  }
392
393  CHECK_NE(self->GetState(), kRunnable);
394  self->SetState(kNative);
395
396  // If we're the main thread, ClassLinker won't be created until after we're attached,
397  // so that thread needs a two-stage attach. Regular threads don't need this hack.
398  // In the compiler, all threads need this hack, because no-one's going to be getting
399  // a native peer!
400  if (create_peer) {
401    self->CreatePeer(thread_name, as_daemon, thread_group);
402  } else {
403    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
404    if (thread_name != nullptr) {
405      self->tlsPtr_.name->assign(thread_name);
406      ::art::SetThreadName(thread_name);
407    }
408  }
409
410  return self;
411}
412
413void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
414  Runtime* runtime = Runtime::Current();
415  CHECK(runtime->IsStarted());
416  JNIEnv* env = tlsPtr_.jni_env;
417
418  if (thread_group == nullptr) {
419    thread_group = runtime->GetMainThreadGroup();
420  }
421  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
422  jint thread_priority = GetNativePriority();
423  jboolean thread_is_daemon = as_daemon;
424
425  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
426  if (peer.get() == nullptr) {
427    CHECK(IsExceptionPending());
428    return;
429  }
430  {
431    ScopedObjectAccess soa(this);
432    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
433  }
434  env->CallNonvirtualVoidMethod(peer.get(),
435                                WellKnownClasses::java_lang_Thread,
436                                WellKnownClasses::java_lang_Thread_init,
437                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
438  AssertNoPendingException();
439
440  Thread* self = this;
441  DCHECK_EQ(self, Thread::Current());
442  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
443                    reinterpret_cast<jlong>(self));
444
445  ScopedObjectAccess soa(self);
446  StackHandleScope<1> hs(self);
447  Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
448  if (peer_thread_name.Get() == nullptr) {
449    // The Thread constructor should have set the Thread.name to a
450    // non-null value. However, because we can run without code
451    // available (in the compiler, in tests), we manually assign the
452    // fields the constructor should have set.
453    if (runtime->IsActiveTransaction()) {
454      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
455    } else {
456      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
457    }
458    peer_thread_name.Assign(GetThreadName(soa));
459  }
460  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
461  if (peer_thread_name.Get() != nullptr) {
462    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
463  }
464}
465
466template<bool kTransactionActive>
467void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
468                      jobject thread_name, jint thread_priority) {
469  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
470      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
471  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
472      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
473  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
474      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
475  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
476      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
477}
478
479void Thread::SetThreadName(const char* name) {
480  tlsPtr_.name->assign(name);
481  ::art::SetThreadName(name);
482  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
483}
484
485void Thread::InitStackHwm() {
486  void* read_stack_base;
487  size_t read_stack_size;
488  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size);
489
490  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
491  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", read_stack_base,
492                                PrettySize(read_stack_size).c_str());
493
494  tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
495  tlsPtr_.stack_size = read_stack_size;
496
497  // The minimum stack size we can cope with is the overflow reserved bytes (typically
498  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
499  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
500  // between 8K and 12K.
501  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
502    + 4 * KB;
503  if (read_stack_size <= min_stack) {
504    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
505        << " bytes)";
506  }
507
508  // TODO: move this into the Linux GetThreadStack implementation.
509#if defined(__APPLE__)
510  bool is_main_thread = false;
511#else
512  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
513  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
514  // will be broken because we'll die long before we get close to 2GB.
515  bool is_main_thread = (::art::GetTid() == getpid());
516  if (is_main_thread) {
517    rlimit stack_limit;
518    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
519      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
520    }
521    if (stack_limit.rlim_cur == RLIM_INFINITY) {
522      // Find the default stack size for new threads...
523      pthread_attr_t default_attributes;
524      size_t default_stack_size;
525      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
526      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
527                         "default stack size query");
528      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
529
530      // ...and use that as our limit.
531      size_t old_stack_size = read_stack_size;
532      tlsPtr_.stack_size = default_stack_size;
533      tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
534      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
535                    << " to " << PrettySize(default_stack_size)
536                    << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
537    }
538  }
539#endif
540
541  // Set stack_end_ to the bottom of the stack saving space of stack overflows
542  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
543  ResetDefaultStackEnd();
544
545  // Install the protected region if we are doing implicit overflow checks.
546  if (implicit_stack_check) {
547    size_t guardsize;
548    pthread_attr_t attributes;
549    CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), "guard size query");
550    CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, &guardsize), "guard size query");
551    CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), "guard size query");
552    // The thread might have protected region at the bottom.  We need
553    // to install our own region so we need to move the limits
554    // of the stack to make room for it.
555    tlsPtr_.stack_begin += guardsize + kStackOverflowProtectedSize;
556    tlsPtr_.stack_end += guardsize + kStackOverflowProtectedSize;
557    tlsPtr_.stack_size -= guardsize;
558
559    InstallImplicitProtection();
560  }
561
562  // Sanity check.
563  int stack_variable;
564  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
565}
566
567void Thread::ShortDump(std::ostream& os) const {
568  os << "Thread[";
569  if (GetThreadId() != 0) {
570    // If we're in kStarting, we won't have a thin lock id or tid yet.
571    os << GetThreadId()
572             << ",tid=" << GetTid() << ',';
573  }
574  os << GetState()
575           << ",Thread*=" << this
576           << ",peer=" << tlsPtr_.opeer
577           << ",\"" << *tlsPtr_.name << "\""
578           << "]";
579}
580
581void Thread::Dump(std::ostream& os) const {
582  DumpState(os);
583  DumpStack(os);
584}
585
586mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
587  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
588  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
589}
590
591void Thread::GetThreadName(std::string& name) const {
592  name.assign(*tlsPtr_.name);
593}
594
595uint64_t Thread::GetCpuMicroTime() const {
596#if defined(HAVE_POSIX_CLOCKS)
597  clockid_t cpu_clock_id;
598  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
599  timespec now;
600  clock_gettime(cpu_clock_id, &now);
601  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
602#else
603  UNIMPLEMENTED(WARNING);
604  return -1;
605#endif
606}
607
608// Attempt to rectify locks so that we dump thread list with required locks before exiting.
609static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
610  LOG(ERROR) << *thread << " suspend count already zero.";
611  Locks::thread_suspend_count_lock_->Unlock(self);
612  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
613    Locks::mutator_lock_->SharedTryLock(self);
614    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
615      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
616    }
617  }
618  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
619    Locks::thread_list_lock_->TryLock(self);
620    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
621      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
622    }
623  }
624  std::ostringstream ss;
625  Runtime::Current()->GetThreadList()->DumpLocked(ss);
626  LOG(FATAL) << ss.str();
627}
628
629void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
630  if (kIsDebugBuild) {
631    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
632          << delta << " " << tls32_.debug_suspend_count << " " << this;
633    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
634    Locks::thread_suspend_count_lock_->AssertHeld(self);
635    if (this != self && !IsSuspended()) {
636      Locks::thread_list_lock_->AssertHeld(self);
637    }
638  }
639  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
640    UnsafeLogFatalForSuspendCount(self, this);
641    return;
642  }
643
644  tls32_.suspend_count += delta;
645  if (for_debugger) {
646    tls32_.debug_suspend_count += delta;
647  }
648
649  if (tls32_.suspend_count == 0) {
650    AtomicClearFlag(kSuspendRequest);
651  } else {
652    AtomicSetFlag(kSuspendRequest);
653    TriggerSuspend();
654  }
655}
656
657void Thread::RunCheckpointFunction() {
658  Closure *checkpoints[kMaxCheckpoints];
659
660  // Grab the suspend_count lock and copy the current set of
661  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
662  // function will also grab this lock so we prevent a race between setting
663  // the kCheckpointRequest flag and clearing it.
664  {
665    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
666    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
667      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
668      tlsPtr_.checkpoint_functions[i] = nullptr;
669    }
670    AtomicClearFlag(kCheckpointRequest);
671  }
672
673  // Outside the lock, run all the checkpoint functions that
674  // we collected.
675  bool found_checkpoint = false;
676  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
677    if (checkpoints[i] != nullptr) {
678      ATRACE_BEGIN("Checkpoint function");
679      checkpoints[i]->Run(this);
680      ATRACE_END();
681      found_checkpoint = true;
682    }
683  }
684  CHECK(found_checkpoint);
685}
686
687bool Thread::RequestCheckpoint(Closure* function) {
688  union StateAndFlags old_state_and_flags;
689  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
690  if (old_state_and_flags.as_struct.state != kRunnable) {
691    return false;  // Fail, thread is suspended and so can't run a checkpoint.
692  }
693
694  uint32_t available_checkpoint = kMaxCheckpoints;
695  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
696    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
697      available_checkpoint = i;
698      break;
699    }
700  }
701  if (available_checkpoint == kMaxCheckpoints) {
702    // No checkpoint functions available, we can't run a checkpoint
703    return false;
704  }
705  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
706
707  // Checkpoint function installed now install flag bit.
708  // We must be runnable to request a checkpoint.
709  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
710  union StateAndFlags new_state_and_flags;
711  new_state_and_flags.as_int = old_state_and_flags.as_int;
712  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
713  bool success =
714      tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
715                                                                                       new_state_and_flags.as_int);
716  if (UNLIKELY(!success)) {
717    // The thread changed state before the checkpoint was installed.
718    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
719    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
720  } else {
721    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
722    TriggerSuspend();
723  }
724  return success;
725}
726
727void Thread::FullSuspendCheck() {
728  VLOG(threads) << this << " self-suspending";
729  ATRACE_BEGIN("Full suspend check");
730  // Make thread appear suspended to other threads, release mutator_lock_.
731  TransitionFromRunnableToSuspended(kSuspended);
732  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
733  TransitionFromSuspendedToRunnable();
734  ATRACE_END();
735  VLOG(threads) << this << " self-reviving";
736}
737
738void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
739  std::string group_name;
740  int priority;
741  bool is_daemon = false;
742  Thread* self = Thread::Current();
743
744  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
745  // cause ScopedObjectAccessUnchecked to deadlock.
746  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
747    ScopedObjectAccessUnchecked soa(self);
748    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
749        ->GetInt(thread->tlsPtr_.opeer);
750    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
751        ->GetBoolean(thread->tlsPtr_.opeer);
752
753    mirror::Object* thread_group =
754        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
755
756    if (thread_group != nullptr) {
757      mirror::ArtField* group_name_field =
758          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
759      mirror::String* group_name_string =
760          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
761      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
762    }
763  } else {
764    priority = GetNativePriority();
765  }
766
767  std::string scheduler_group_name(GetSchedulerGroupName(tid));
768  if (scheduler_group_name.empty()) {
769    scheduler_group_name = "default";
770  }
771
772  if (thread != nullptr) {
773    os << '"' << *thread->tlsPtr_.name << '"';
774    if (is_daemon) {
775      os << " daemon";
776    }
777    os << " prio=" << priority
778       << " tid=" << thread->GetThreadId()
779       << " " << thread->GetState();
780    if (thread->IsStillStarting()) {
781      os << " (still starting up)";
782    }
783    os << "\n";
784  } else {
785    os << '"' << ::art::GetThreadName(tid) << '"'
786       << " prio=" << priority
787       << " (not attached)\n";
788  }
789
790  if (thread != nullptr) {
791    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
792    os << "  | group=\"" << group_name << "\""
793       << " sCount=" << thread->tls32_.suspend_count
794       << " dsCount=" << thread->tls32_.debug_suspend_count
795       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
796       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
797  }
798
799  os << "  | sysTid=" << tid
800     << " nice=" << getpriority(PRIO_PROCESS, tid)
801     << " cgrp=" << scheduler_group_name;
802  if (thread != nullptr) {
803    int policy;
804    sched_param sp;
805    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
806                       __FUNCTION__);
807    os << " sched=" << policy << "/" << sp.sched_priority
808       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
809  }
810  os << "\n";
811
812  // Grab the scheduler stats for this thread.
813  std::string scheduler_stats;
814  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
815    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
816  } else {
817    scheduler_stats = "0 0 0";
818  }
819
820  char native_thread_state = '?';
821  int utime = 0;
822  int stime = 0;
823  int task_cpu = 0;
824  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
825
826  os << "  | state=" << native_thread_state
827     << " schedstat=( " << scheduler_stats << " )"
828     << " utm=" << utime
829     << " stm=" << stime
830     << " core=" << task_cpu
831     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
832  if (thread != nullptr) {
833    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
834        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
835        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
836    // Dump the held mutexes.
837    os << "  | held mutexes=";
838    for (size_t i = 0; i < kLockLevelCount; ++i) {
839      if (i != kMonitorLock) {
840        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
841        if (mutex != nullptr) {
842          os << " \"" << mutex->GetName() << "\"";
843          if (mutex->IsReaderWriterMutex()) {
844            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
845            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
846              os << "(exclusive held)";
847            } else {
848              os << "(shared held)";
849            }
850          }
851        }
852      }
853    }
854    os << "\n";
855  }
856}
857
858void Thread::DumpState(std::ostream& os) const {
859  Thread::DumpState(os, this, GetTid());
860}
861
862struct StackDumpVisitor : public StackVisitor {
863  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
864      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
865      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
866        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
867  }
868
869  virtual ~StackDumpVisitor() {
870    if (frame_count == 0) {
871      os << "  (no managed stack frames)\n";
872    }
873  }
874
875  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
876    mirror::ArtMethod* m = GetMethod();
877    if (m->IsRuntimeMethod()) {
878      return true;
879    }
880    const int kMaxRepetition = 3;
881    mirror::Class* c = m->GetDeclaringClass();
882    mirror::DexCache* dex_cache = c->GetDexCache();
883    int line_number = -1;
884    if (dex_cache != nullptr) {  // be tolerant of bad input
885      const DexFile& dex_file = *dex_cache->GetDexFile();
886      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
887    }
888    if (line_number == last_line_number && last_method == m) {
889      ++repetition_count;
890    } else {
891      if (repetition_count >= kMaxRepetition) {
892        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
893      }
894      repetition_count = 0;
895      last_line_number = line_number;
896      last_method = m;
897    }
898    if (repetition_count < kMaxRepetition) {
899      os << "  at " << PrettyMethod(m, false);
900      if (m->IsNative()) {
901        os << "(Native method)";
902      } else {
903        const char* source_file(m->GetDeclaringClassSourceFile());
904        os << "(" << (source_file != nullptr ? source_file : "unavailable")
905           << ":" << line_number << ")";
906      }
907      os << "\n";
908      if (frame_count == 0) {
909        Monitor::DescribeWait(os, thread);
910      }
911      if (can_allocate) {
912        Monitor::VisitLocks(this, DumpLockedObject, &os);
913      }
914    }
915
916    ++frame_count;
917    return true;
918  }
919
920  static void DumpLockedObject(mirror::Object* o, void* context)
921      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
922    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
923    os << "  - locked ";
924    if (o == nullptr) {
925      os << "an unknown object";
926    } else {
927      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
928          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
929        // Getting the identity hashcode here would result in lock inflation and suspension of the
930        // current thread, which isn't safe if this is the only runnable thread.
931        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
932                           PrettyTypeOf(o).c_str());
933      } else {
934        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
935      }
936    }
937    os << "\n";
938  }
939
940  std::ostream& os;
941  const Thread* thread;
942  const bool can_allocate;
943  mirror::ArtMethod* method;
944  mirror::ArtMethod* last_method;
945  int last_line_number;
946  int repetition_count;
947  int frame_count;
948};
949
950static bool ShouldShowNativeStack(const Thread* thread)
951    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
952  ThreadState state = thread->GetState();
953
954  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
955  if (state > kWaiting && state < kStarting) {
956    return true;
957  }
958
959  // In an Object.wait variant or Thread.sleep? That's not interesting.
960  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
961    return false;
962  }
963
964  // In some other native method? That's interesting.
965  // We don't just check kNative because native methods will be in state kSuspended if they're
966  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
967  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
968  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
969  return current_method != nullptr && current_method->IsNative();
970}
971
972void Thread::DumpJavaStack(std::ostream& os) const {
973  std::unique_ptr<Context> context(Context::Create());
974  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
975                          !tls32_.throwing_OutOfMemoryError);
976  dumper.WalkStack();
977}
978
979void Thread::DumpStack(std::ostream& os) const {
980  // TODO: we call this code when dying but may not have suspended the thread ourself. The
981  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
982  //       the race with the thread_suspend_count_lock_).
983  bool dump_for_abort = (gAborting > 0);
984  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
985  if (!kIsDebugBuild) {
986    // We always want to dump the stack for an abort, however, there is no point dumping another
987    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
988    safe_to_dump = (safe_to_dump || dump_for_abort);
989  }
990  if (safe_to_dump) {
991    // If we're currently in native code, dump that stack before dumping the managed stack.
992    if (dump_for_abort || ShouldShowNativeStack(this)) {
993      DumpKernelStack(os, GetTid(), "  kernel: ", false);
994      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr));
995    }
996    DumpJavaStack(os);
997  } else {
998    os << "Not able to dump stack of thread that isn't suspended";
999  }
1000}
1001
1002void Thread::ThreadExitCallback(void* arg) {
1003  Thread* self = reinterpret_cast<Thread*>(arg);
1004  if (self->tls32_.thread_exit_check_count == 0) {
1005    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1006        "going to use a pthread_key_create destructor?): " << *self;
1007    CHECK(is_started_);
1008    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1009    self->tls32_.thread_exit_check_count = 1;
1010  } else {
1011    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1012  }
1013}
1014
1015void Thread::Startup() {
1016  CHECK(!is_started_);
1017  is_started_ = true;
1018  {
1019    // MutexLock to keep annotalysis happy.
1020    //
1021    // Note we use nullptr for the thread because Thread::Current can
1022    // return garbage since (is_started_ == true) and
1023    // Thread::pthread_key_self_ is not yet initialized.
1024    // This was seen on glibc.
1025    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1026    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1027                                         *Locks::thread_suspend_count_lock_);
1028  }
1029
1030  // Allocate a TLS slot.
1031  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1032
1033  // Double-check the TLS slot allocation.
1034  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1035    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1036  }
1037}
1038
1039void Thread::FinishStartup() {
1040  Runtime* runtime = Runtime::Current();
1041  CHECK(runtime->IsStarted());
1042
1043  // Finish attaching the main thread.
1044  ScopedObjectAccess soa(Thread::Current());
1045  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1046
1047  Runtime::Current()->GetClassLinker()->RunRootClinits();
1048}
1049
1050void Thread::Shutdown() {
1051  CHECK(is_started_);
1052  is_started_ = false;
1053  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1054  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1055  if (resume_cond_ != nullptr) {
1056    delete resume_cond_;
1057    resume_cond_ = nullptr;
1058  }
1059}
1060
1061Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1062  wait_mutex_ = new Mutex("a thread wait mutex");
1063  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1064  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1065  tlsPtr_.single_step_control = new SingleStepControl;
1066  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1067  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1068
1069  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1070  tls32_.state_and_flags.as_struct.flags = 0;
1071  tls32_.state_and_flags.as_struct.state = kNative;
1072  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1073  std::fill(tlsPtr_.rosalloc_runs,
1074            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1075            gc::allocator::RosAlloc::GetDedicatedFullRun());
1076  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1077    tlsPtr_.checkpoint_functions[i] = nullptr;
1078  }
1079}
1080
1081bool Thread::IsStillStarting() const {
1082  // You might think you can check whether the state is kStarting, but for much of thread startup,
1083  // the thread is in kNative; it might also be in kVmWait.
1084  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1085  // assigned fairly early on, and needs to be.
1086  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1087  // this thread _ever_ entered kRunnable".
1088  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1089      (*tlsPtr_.name == kThreadNameDuringStartup);
1090}
1091
1092void Thread::AssertNoPendingException() const {
1093  if (UNLIKELY(IsExceptionPending())) {
1094    ScopedObjectAccess soa(Thread::Current());
1095    mirror::Throwable* exception = GetException(nullptr);
1096    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1097  }
1098}
1099
1100void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1101  if (UNLIKELY(IsExceptionPending())) {
1102    ScopedObjectAccess soa(Thread::Current());
1103    mirror::Throwable* exception = GetException(nullptr);
1104    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1105        << exception->Dump();
1106  }
1107}
1108
1109static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1110                               RootType /*root_type*/)
1111    NO_THREAD_SAFETY_ANALYSIS {
1112  Thread* self = reinterpret_cast<Thread*>(arg);
1113  mirror::Object* entered_monitor = *object;
1114  if (self->HoldsLock(entered_monitor)) {
1115    LOG(WARNING) << "Calling MonitorExit on object "
1116                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1117                 << " left locked by native thread "
1118                 << *Thread::Current() << " which is detaching";
1119    entered_monitor->MonitorExit(self);
1120  }
1121}
1122
1123void Thread::Destroy() {
1124  Thread* self = this;
1125  DCHECK_EQ(self, Thread::Current());
1126
1127  if (tlsPtr_.opeer != nullptr) {
1128    ScopedObjectAccess soa(self);
1129    // We may need to call user-supplied managed code, do this before final clean-up.
1130    HandleUncaughtExceptions(soa);
1131    RemoveFromThreadGroup(soa);
1132
1133    // this.nativePeer = 0;
1134    if (Runtime::Current()->IsActiveTransaction()) {
1135      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1136          ->SetLong<true>(tlsPtr_.opeer, 0);
1137    } else {
1138      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1139          ->SetLong<false>(tlsPtr_.opeer, 0);
1140    }
1141    Dbg::PostThreadDeath(self);
1142
1143    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1144    // who is waiting.
1145    mirror::Object* lock =
1146        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1147    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1148    if (lock != nullptr) {
1149      StackHandleScope<1> hs(self);
1150      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1151      ObjectLock<mirror::Object> locker(self, h_obj);
1152      locker.NotifyAll();
1153    }
1154  }
1155
1156  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1157  if (tlsPtr_.jni_env != nullptr) {
1158    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1159  }
1160}
1161
1162Thread::~Thread() {
1163  if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1164    // If pthread_create fails we don't have a jni env here.
1165    tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1166    tlsPtr_.jpeer = nullptr;
1167  }
1168  tlsPtr_.opeer = nullptr;
1169
1170  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1171  if (initialized) {
1172    delete tlsPtr_.jni_env;
1173    tlsPtr_.jni_env = nullptr;
1174  }
1175  CHECK_NE(GetState(), kRunnable);
1176  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1177  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1178  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1179  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1180
1181  // We may be deleting a still born thread.
1182  SetStateUnsafe(kTerminated);
1183
1184  delete wait_cond_;
1185  delete wait_mutex_;
1186
1187  if (tlsPtr_.long_jump_context != nullptr) {
1188    delete tlsPtr_.long_jump_context;
1189  }
1190
1191  if (initialized) {
1192    CleanupCpu();
1193  }
1194
1195  delete tlsPtr_.debug_invoke_req;
1196  delete tlsPtr_.single_step_control;
1197  delete tlsPtr_.instrumentation_stack;
1198  delete tlsPtr_.name;
1199  delete tlsPtr_.stack_trace_sample;
1200
1201  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1202
1203  TearDownAlternateSignalStack();
1204}
1205
1206void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1207  if (!IsExceptionPending()) {
1208    return;
1209  }
1210  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1211  ScopedThreadStateChange tsc(this, kNative);
1212
1213  // Get and clear the exception.
1214  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1215  tlsPtr_.jni_env->ExceptionClear();
1216
1217  // If the thread has its own handler, use that.
1218  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1219                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1220                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1221  if (handler.get() == nullptr) {
1222    // Otherwise use the thread group's default handler.
1223    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1224                                                  WellKnownClasses::java_lang_Thread_group));
1225  }
1226
1227  // Call the handler.
1228  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1229      WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1230      peer.get(), exception.get());
1231
1232  // If the handler threw, clear that exception too.
1233  tlsPtr_.jni_env->ExceptionClear();
1234}
1235
1236void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1237  // this.group.removeThread(this);
1238  // group can be null if we're in the compiler or a test.
1239  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1240      ->GetObject(tlsPtr_.opeer);
1241  if (ogroup != nullptr) {
1242    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1243    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1244    ScopedThreadStateChange tsc(soa.Self(), kNative);
1245    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1246                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1247                                    peer.get());
1248  }
1249}
1250
1251size_t Thread::NumHandleReferences() {
1252  size_t count = 0;
1253  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1254    count += cur->NumberOfReferences();
1255  }
1256  return count;
1257}
1258
1259bool Thread::HandleScopeContains(jobject obj) const {
1260  StackReference<mirror::Object>* hs_entry =
1261      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1262  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1263    if (cur->Contains(hs_entry)) {
1264      return true;
1265    }
1266  }
1267  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1268  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1269}
1270
1271void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1272  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1273    size_t num_refs = cur->NumberOfReferences();
1274    for (size_t j = 0; j < num_refs; ++j) {
1275      mirror::Object* object = cur->GetReference(j);
1276      if (object != nullptr) {
1277        mirror::Object* old_obj = object;
1278        visitor(&object, arg, thread_id, kRootNativeStack);
1279        if (old_obj != object) {
1280          cur->SetReference(j, object);
1281        }
1282      }
1283    }
1284  }
1285}
1286
1287mirror::Object* Thread::DecodeJObject(jobject obj) const {
1288  Locks::mutator_lock_->AssertSharedHeld(this);
1289  if (obj == nullptr) {
1290    return nullptr;
1291  }
1292  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1293  IndirectRefKind kind = GetIndirectRefKind(ref);
1294  mirror::Object* result;
1295  // The "kinds" below are sorted by the frequency we expect to encounter them.
1296  if (kind == kLocal) {
1297    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1298    // Local references do not need a read barrier.
1299    result = locals.Get<kWithoutReadBarrier>(ref);
1300  } else if (kind == kHandleScopeOrInvalid) {
1301    // TODO: make stack indirect reference table lookup more efficient.
1302    // Check if this is a local reference in the handle scope.
1303    if (LIKELY(HandleScopeContains(obj))) {
1304      // Read from handle scope.
1305      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1306      VerifyObject(result);
1307    } else {
1308      result = kInvalidIndirectRefObject;
1309    }
1310  } else if (kind == kGlobal) {
1311    JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1312    result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1313  } else {
1314    DCHECK_EQ(kind, kWeakGlobal);
1315    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1316    if (result == kClearedJniWeakGlobal) {
1317      // This is a special case where it's okay to return nullptr.
1318      return nullptr;
1319    }
1320  }
1321
1322  if (UNLIKELY(result == nullptr)) {
1323    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1324  }
1325  return result;
1326}
1327
1328// Implements java.lang.Thread.interrupted.
1329bool Thread::Interrupted() {
1330  MutexLock mu(Thread::Current(), *wait_mutex_);
1331  bool interrupted = IsInterruptedLocked();
1332  SetInterruptedLocked(false);
1333  return interrupted;
1334}
1335
1336// Implements java.lang.Thread.isInterrupted.
1337bool Thread::IsInterrupted() {
1338  MutexLock mu(Thread::Current(), *wait_mutex_);
1339  return IsInterruptedLocked();
1340}
1341
1342void Thread::Interrupt(Thread* self) {
1343  MutexLock mu(self, *wait_mutex_);
1344  if (interrupted_) {
1345    return;
1346  }
1347  interrupted_ = true;
1348  NotifyLocked(self);
1349}
1350
1351void Thread::Notify() {
1352  Thread* self = Thread::Current();
1353  MutexLock mu(self, *wait_mutex_);
1354  NotifyLocked(self);
1355}
1356
1357void Thread::NotifyLocked(Thread* self) {
1358  if (wait_monitor_ != nullptr) {
1359    wait_cond_->Signal(self);
1360  }
1361}
1362
1363class CountStackDepthVisitor : public StackVisitor {
1364 public:
1365  explicit CountStackDepthVisitor(Thread* thread)
1366      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1367      : StackVisitor(thread, nullptr),
1368        depth_(0), skip_depth_(0), skipping_(true) {}
1369
1370  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1371    // We want to skip frames up to and including the exception's constructor.
1372    // Note we also skip the frame if it doesn't have a method (namely the callee
1373    // save frame)
1374    mirror::ArtMethod* m = GetMethod();
1375    if (skipping_ && !m->IsRuntimeMethod() &&
1376        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1377      skipping_ = false;
1378    }
1379    if (!skipping_) {
1380      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1381        ++depth_;
1382      }
1383    } else {
1384      ++skip_depth_;
1385    }
1386    return true;
1387  }
1388
1389  int GetDepth() const {
1390    return depth_;
1391  }
1392
1393  int GetSkipDepth() const {
1394    return skip_depth_;
1395  }
1396
1397 private:
1398  uint32_t depth_;
1399  uint32_t skip_depth_;
1400  bool skipping_;
1401};
1402
1403template<bool kTransactionActive>
1404class BuildInternalStackTraceVisitor : public StackVisitor {
1405 public:
1406  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1407      : StackVisitor(thread, nullptr), self_(self),
1408        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1409
1410  bool Init(int depth)
1411      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1412    // Allocate method trace with an extra slot that will hold the PC trace
1413    StackHandleScope<1> hs(self_);
1414    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1415    Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1416        hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1417    if (method_trace.Get() == nullptr) {
1418      return false;
1419    }
1420    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1421    if (dex_pc_trace == nullptr) {
1422      return false;
1423    }
1424    // Save PC trace in last element of method trace, also places it into the
1425    // object graph.
1426    // We are called from native: use non-transactional mode.
1427    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1428    // Set the Object*s and assert that no thread suspension is now possible.
1429    const char* last_no_suspend_cause =
1430        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1431    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1432    method_trace_ = method_trace.Get();
1433    dex_pc_trace_ = dex_pc_trace;
1434    return true;
1435  }
1436
1437  virtual ~BuildInternalStackTraceVisitor() {
1438    if (method_trace_ != nullptr) {
1439      self_->EndAssertNoThreadSuspension(nullptr);
1440    }
1441  }
1442
1443  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1444    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1445      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1446    }
1447    if (skip_depth_ > 0) {
1448      skip_depth_--;
1449      return true;
1450    }
1451    mirror::ArtMethod* m = GetMethod();
1452    if (m->IsRuntimeMethod()) {
1453      return true;  // Ignore runtime frames (in particular callee save).
1454    }
1455    method_trace_->Set<kTransactionActive>(count_, m);
1456    dex_pc_trace_->Set<kTransactionActive>(count_,
1457        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1458    ++count_;
1459    return true;
1460  }
1461
1462  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1463    return method_trace_;
1464  }
1465
1466 private:
1467  Thread* const self_;
1468  // How many more frames to skip.
1469  int32_t skip_depth_;
1470  // Current position down stack trace.
1471  uint32_t count_;
1472  // Array of dex PC values.
1473  mirror::IntArray* dex_pc_trace_;
1474  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1475  mirror::ObjectArray<mirror::Object>* method_trace_;
1476};
1477
1478template<bool kTransactionActive>
1479jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1480  // Compute depth of stack
1481  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1482  count_visitor.WalkStack();
1483  int32_t depth = count_visitor.GetDepth();
1484  int32_t skip_depth = count_visitor.GetSkipDepth();
1485
1486  // Build internal stack trace.
1487  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1488                                                                         const_cast<Thread*>(this),
1489                                                                         skip_depth);
1490  if (!build_trace_visitor.Init(depth)) {
1491    return nullptr;  // Allocation failed.
1492  }
1493  build_trace_visitor.WalkStack();
1494  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1495  if (kIsDebugBuild) {
1496    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1497      CHECK(trace->Get(i) != nullptr);
1498    }
1499  }
1500  return soa.AddLocalReference<jobjectArray>(trace);
1501}
1502template jobject Thread::CreateInternalStackTrace<false>(
1503    const ScopedObjectAccessAlreadyRunnable& soa) const;
1504template jobject Thread::CreateInternalStackTrace<true>(
1505    const ScopedObjectAccessAlreadyRunnable& soa) const;
1506
1507jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1508    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1509    int* stack_depth) {
1510  // Decode the internal stack trace into the depth, method trace and PC trace
1511  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1512
1513  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1514
1515  jobjectArray result;
1516
1517  if (output_array != nullptr) {
1518    // Reuse the array we were given.
1519    result = output_array;
1520    // ...adjusting the number of frames we'll write to not exceed the array length.
1521    const int32_t traces_length =
1522        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1523    depth = std::min(depth, traces_length);
1524  } else {
1525    // Create java_trace array and place in local reference table
1526    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1527        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1528    if (java_traces == nullptr) {
1529      return nullptr;
1530    }
1531    result = soa.AddLocalReference<jobjectArray>(java_traces);
1532  }
1533
1534  if (stack_depth != nullptr) {
1535    *stack_depth = depth;
1536  }
1537
1538  for (int32_t i = 0; i < depth; ++i) {
1539    mirror::ObjectArray<mirror::Object>* method_trace =
1540          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1541    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1542    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1543    int32_t line_number;
1544    StackHandleScope<3> hs(soa.Self());
1545    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1546    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1547    if (method->IsProxyMethod()) {
1548      line_number = -1;
1549      class_name_object.Assign(method->GetDeclaringClass()->GetName());
1550      // source_name_object intentionally left null for proxy methods
1551    } else {
1552      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1553      uint32_t dex_pc = pc_trace->Get(i);
1554      line_number = method->GetLineNumFromDexPC(dex_pc);
1555      // Allocate element, potentially triggering GC
1556      // TODO: reuse class_name_object via Class::name_?
1557      const char* descriptor = method->GetDeclaringClassDescriptor();
1558      CHECK(descriptor != nullptr);
1559      std::string class_name(PrettyDescriptor(descriptor));
1560      class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1561      if (class_name_object.Get() == nullptr) {
1562        return nullptr;
1563      }
1564      const char* source_file = method->GetDeclaringClassSourceFile();
1565      if (source_file != nullptr) {
1566        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1567        if (source_name_object.Get() == nullptr) {
1568          return nullptr;
1569        }
1570      }
1571    }
1572    const char* method_name = method->GetName();
1573    CHECK(method_name != nullptr);
1574    Handle<mirror::String> method_name_object(
1575        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1576    if (method_name_object.Get() == nullptr) {
1577      return nullptr;
1578    }
1579    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1580        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1581    if (obj == nullptr) {
1582      return nullptr;
1583    }
1584    // We are called from native: use non-transactional mode.
1585    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1586  }
1587  return result;
1588}
1589
1590void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1591                                const char* exception_class_descriptor, const char* fmt, ...) {
1592  va_list args;
1593  va_start(args, fmt);
1594  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1595                     fmt, args);
1596  va_end(args);
1597}
1598
1599void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1600                                const char* exception_class_descriptor,
1601                                const char* fmt, va_list ap) {
1602  std::string msg;
1603  StringAppendV(&msg, fmt, ap);
1604  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1605}
1606
1607void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1608                               const char* msg) {
1609  // Callers should either clear or call ThrowNewWrappedException.
1610  AssertNoPendingExceptionForNewException(msg);
1611  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1612}
1613
1614void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1615                                      const char* exception_class_descriptor,
1616                                      const char* msg) {
1617  DCHECK_EQ(this, Thread::Current());
1618  ScopedObjectAccessUnchecked soa(this);
1619  StackHandleScope<5> hs(soa.Self());
1620  // Ensure we don't forget arguments over object allocation.
1621  Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1622  Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1623  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1624  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1625  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1626  ClearException();
1627  Runtime* runtime = Runtime::Current();
1628
1629  mirror::ClassLoader* cl = nullptr;
1630  if (saved_throw_method.Get() != nullptr) {
1631    cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1632  }
1633  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1634  Handle<mirror::Class> exception_class(
1635      hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1636                                                        class_loader)));
1637  if (UNLIKELY(exception_class.Get() == nullptr)) {
1638    CHECK(IsExceptionPending());
1639    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1640    return;
1641  }
1642
1643  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1644    DCHECK(IsExceptionPending());
1645    return;
1646  }
1647  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1648  Handle<mirror::Throwable> exception(
1649      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1650
1651  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1652  if (exception.Get() == nullptr) {
1653    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1654                                         throw_location.GetDexPc());
1655    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1656    SetExceptionReportedToInstrumentation(is_exception_reported);
1657    return;
1658  }
1659
1660  // Choose an appropriate constructor and set up the arguments.
1661  const char* signature;
1662  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1663  if (msg != nullptr) {
1664    // Ensure we remember this and the method over the String allocation.
1665    msg_string.reset(
1666        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1667    if (UNLIKELY(msg_string.get() == nullptr)) {
1668      CHECK(IsExceptionPending());  // OOME.
1669      return;
1670    }
1671    if (cause.get() == nullptr) {
1672      signature = "(Ljava/lang/String;)V";
1673    } else {
1674      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1675    }
1676  } else {
1677    if (cause.get() == nullptr) {
1678      signature = "()V";
1679    } else {
1680      signature = "(Ljava/lang/Throwable;)V";
1681    }
1682  }
1683  mirror::ArtMethod* exception_init_method =
1684      exception_class->FindDeclaredDirectMethod("<init>", signature);
1685
1686  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1687      << PrettyDescriptor(exception_class_descriptor);
1688
1689  if (UNLIKELY(!runtime->IsStarted())) {
1690    // Something is trying to throw an exception without a started runtime, which is the common
1691    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1692    // the exception fields directly.
1693    if (msg != nullptr) {
1694      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1695    }
1696    if (cause.get() != nullptr) {
1697      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1698    }
1699    ScopedLocalRef<jobject> trace(GetJniEnv(),
1700                                  Runtime::Current()->IsActiveTransaction()
1701                                      ? CreateInternalStackTrace<true>(soa)
1702                                      : CreateInternalStackTrace<false>(soa));
1703    if (trace.get() != nullptr) {
1704      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1705    }
1706    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1707                                         throw_location.GetDexPc());
1708    SetException(gc_safe_throw_location, exception.Get());
1709    SetExceptionReportedToInstrumentation(is_exception_reported);
1710  } else {
1711    jvalue jv_args[2];
1712    size_t i = 0;
1713
1714    if (msg != nullptr) {
1715      jv_args[i].l = msg_string.get();
1716      ++i;
1717    }
1718    if (cause.get() != nullptr) {
1719      jv_args[i].l = cause.get();
1720      ++i;
1721    }
1722    InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1723    if (LIKELY(!IsExceptionPending())) {
1724      ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1725                                           throw_location.GetDexPc());
1726      SetException(gc_safe_throw_location, exception.Get());
1727      SetExceptionReportedToInstrumentation(is_exception_reported);
1728    }
1729  }
1730}
1731
1732void Thread::ThrowOutOfMemoryError(const char* msg) {
1733  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1734      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1735  ThrowLocation throw_location = GetCurrentLocationForThrow();
1736  if (!tls32_.throwing_OutOfMemoryError) {
1737    tls32_.throwing_OutOfMemoryError = true;
1738    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1739    tls32_.throwing_OutOfMemoryError = false;
1740  } else {
1741    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1742    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1743  }
1744}
1745
1746Thread* Thread::CurrentFromGdb() {
1747  return Thread::Current();
1748}
1749
1750void Thread::DumpFromGdb() const {
1751  std::ostringstream ss;
1752  Dump(ss);
1753  std::string str(ss.str());
1754  // log to stderr for debugging command line processes
1755  std::cerr << str;
1756#ifdef HAVE_ANDROID_OS
1757  // log to logcat for debugging frameworks processes
1758  LOG(INFO) << str;
1759#endif
1760}
1761
1762// Explicitly instantiate 32 and 64bit thread offset dumping support.
1763template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1764template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1765
1766template<size_t ptr_size>
1767void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1768#define DO_THREAD_OFFSET(x, y) \
1769    if (offset == x.Uint32Value()) { \
1770      os << y; \
1771      return; \
1772    }
1773  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1774  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1775  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1776  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1777  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1778  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1779  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1780  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1781  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1782  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1783  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1784  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1785  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1786#undef DO_THREAD_OFFSET
1787
1788#define INTERPRETER_ENTRY_POINT_INFO(x) \
1789    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1790      os << #x; \
1791      return; \
1792    }
1793  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1794  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1795#undef INTERPRETER_ENTRY_POINT_INFO
1796
1797#define JNI_ENTRY_POINT_INFO(x) \
1798    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1799      os << #x; \
1800      return; \
1801    }
1802  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1803#undef JNI_ENTRY_POINT_INFO
1804
1805#define PORTABLE_ENTRY_POINT_INFO(x) \
1806    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1807      os << #x; \
1808      return; \
1809    }
1810  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1811  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1812  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1813#undef PORTABLE_ENTRY_POINT_INFO
1814
1815#define QUICK_ENTRY_POINT_INFO(x) \
1816    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1817      os << #x; \
1818      return; \
1819    }
1820  QUICK_ENTRY_POINT_INFO(pAllocArray)
1821  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1822  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1823  QUICK_ENTRY_POINT_INFO(pAllocObject)
1824  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1825  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1826  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1827  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1828  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1829  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1830  QUICK_ENTRY_POINT_INFO(pCheckCast)
1831  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1832  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1833  QUICK_ENTRY_POINT_INFO(pInitializeType)
1834  QUICK_ENTRY_POINT_INFO(pResolveString)
1835  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1836  QUICK_ENTRY_POINT_INFO(pSet32Static)
1837  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1838  QUICK_ENTRY_POINT_INFO(pSet64Static)
1839  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1840  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1841  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1842  QUICK_ENTRY_POINT_INFO(pGet32Static)
1843  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1844  QUICK_ENTRY_POINT_INFO(pGet64Static)
1845  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1846  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1847  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1848  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1849  QUICK_ENTRY_POINT_INFO(pAputObject)
1850  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1851  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1852  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1853  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1854  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1855  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1856  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1857  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1858  QUICK_ENTRY_POINT_INFO(pLockObject)
1859  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1860  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1861  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1862  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1863  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1864  QUICK_ENTRY_POINT_INFO(pFmod)
1865  QUICK_ENTRY_POINT_INFO(pL2d)
1866  QUICK_ENTRY_POINT_INFO(pFmodf)
1867  QUICK_ENTRY_POINT_INFO(pL2f)
1868  QUICK_ENTRY_POINT_INFO(pD2iz)
1869  QUICK_ENTRY_POINT_INFO(pF2iz)
1870  QUICK_ENTRY_POINT_INFO(pIdivmod)
1871  QUICK_ENTRY_POINT_INFO(pD2l)
1872  QUICK_ENTRY_POINT_INFO(pF2l)
1873  QUICK_ENTRY_POINT_INFO(pLdiv)
1874  QUICK_ENTRY_POINT_INFO(pLmod)
1875  QUICK_ENTRY_POINT_INFO(pLmul)
1876  QUICK_ENTRY_POINT_INFO(pShlLong)
1877  QUICK_ENTRY_POINT_INFO(pShrLong)
1878  QUICK_ENTRY_POINT_INFO(pUshrLong)
1879  QUICK_ENTRY_POINT_INFO(pIndexOf)
1880  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1881  QUICK_ENTRY_POINT_INFO(pMemcpy)
1882  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1883  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1884  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1885  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1886  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1887  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1888  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1889  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1890  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1891  QUICK_ENTRY_POINT_INFO(pDeliverException)
1892  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1893  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1894  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1895  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1896  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1897  QUICK_ENTRY_POINT_INFO(pA64Load)
1898  QUICK_ENTRY_POINT_INFO(pA64Store)
1899#undef QUICK_ENTRY_POINT_INFO
1900
1901  os << offset;
1902}
1903
1904void Thread::QuickDeliverException() {
1905  // Get exception from thread.
1906  ThrowLocation throw_location;
1907  mirror::Throwable* exception = GetException(&throw_location);
1908  CHECK(exception != nullptr);
1909  // Don't leave exception visible while we try to find the handler, which may cause class
1910  // resolution.
1911  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1912  ClearException();
1913  bool is_deoptimization = (exception == GetDeoptimizationException());
1914  QuickExceptionHandler exception_handler(this, is_deoptimization);
1915  if (is_deoptimization) {
1916    exception_handler.DeoptimizeStack();
1917  } else {
1918    exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1919  }
1920  exception_handler.UpdateInstrumentationStack();
1921  exception_handler.DoLongJump();
1922  LOG(FATAL) << "UNREACHABLE";
1923}
1924
1925Context* Thread::GetLongJumpContext() {
1926  Context* result = tlsPtr_.long_jump_context;
1927  if (result == nullptr) {
1928    result = Context::Create();
1929  } else {
1930    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1931    result->Reset();
1932  }
1933  return result;
1934}
1935
1936// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1937//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1938struct CurrentMethodVisitor FINAL : public StackVisitor {
1939  CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1940      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1941      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1942        abort_on_error_(abort_on_error) {}
1943  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1944    mirror::ArtMethod* m = GetMethod();
1945    if (m->IsRuntimeMethod()) {
1946      // Continue if this is a runtime method.
1947      return true;
1948    }
1949    if (context_ != nullptr) {
1950      this_object_ = GetThisObject();
1951    }
1952    method_ = m;
1953    dex_pc_ = GetDexPc(abort_on_error_);
1954    return false;
1955  }
1956  mirror::Object* this_object_;
1957  mirror::ArtMethod* method_;
1958  uint32_t dex_pc_;
1959  const bool abort_on_error_;
1960};
1961
1962mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
1963  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
1964  visitor.WalkStack(false);
1965  if (dex_pc != nullptr) {
1966    *dex_pc = visitor.dex_pc_;
1967  }
1968  return visitor.method_;
1969}
1970
1971ThrowLocation Thread::GetCurrentLocationForThrow() {
1972  Context* context = GetLongJumpContext();
1973  CurrentMethodVisitor visitor(this, context, true);
1974  visitor.WalkStack(false);
1975  ReleaseLongJumpContext(context);
1976  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1977}
1978
1979bool Thread::HoldsLock(mirror::Object* object) const {
1980  if (object == nullptr) {
1981    return false;
1982  }
1983  return object->GetLockOwnerThreadId() == GetThreadId();
1984}
1985
1986// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1987template <typename RootVisitor>
1988class ReferenceMapVisitor : public StackVisitor {
1989 public:
1990  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1991      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1992      : StackVisitor(thread, context), visitor_(visitor) {}
1993
1994  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1995    if (false) {
1996      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1997                << StringPrintf("@ PC:%04x", GetDexPc());
1998    }
1999    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2000    if (shadow_frame != nullptr) {
2001      VisitShadowFrame(shadow_frame);
2002    } else {
2003      VisitQuickFrame();
2004    }
2005    return true;
2006  }
2007
2008  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2009    mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2010    visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2011    mirror::ArtMethod* m = *method_addr;
2012    DCHECK(m != nullptr);
2013    size_t num_regs = shadow_frame->NumberOfVRegs();
2014    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2015      // handle scope for JNI or References for interpreter.
2016      for (size_t reg = 0; reg < num_regs; ++reg) {
2017        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2018        if (ref != nullptr) {
2019          mirror::Object* new_ref = ref;
2020          visitor_(&new_ref, reg, this);
2021          if (new_ref != ref) {
2022            shadow_frame->SetVRegReference(reg, new_ref);
2023          }
2024        }
2025      }
2026    } else {
2027      // Java method.
2028      // Portable path use DexGcMap and store in Method.native_gc_map_.
2029      const uint8_t* gc_map = m->GetNativeGcMap();
2030      CHECK(gc_map != nullptr) << PrettyMethod(m);
2031      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2032      uint32_t dex_pc = shadow_frame->GetDexPC();
2033      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2034      DCHECK(reg_bitmap != nullptr);
2035      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2036      for (size_t reg = 0; reg < num_regs; ++reg) {
2037        if (TestBitmap(reg, reg_bitmap)) {
2038          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2039          if (ref != nullptr) {
2040            mirror::Object* new_ref = ref;
2041            visitor_(&new_ref, reg, this);
2042            if (new_ref != ref) {
2043              shadow_frame->SetVRegReference(reg, new_ref);
2044            }
2045          }
2046        }
2047      }
2048    }
2049  }
2050
2051 private:
2052  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2053    StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2054    mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2055    mirror::ArtMethod* old_method = m;
2056    visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2057    if (m != old_method) {
2058      cur_quick_frame->Assign(m);
2059    }
2060
2061    // Process register map (which native and runtime methods don't have)
2062    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2063      const uint8_t* native_gc_map = m->GetNativeGcMap();
2064      CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2065      const DexFile::CodeItem* code_item = m->GetCodeItem();
2066      DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2067      NativePcOffsetToReferenceMap map(native_gc_map);
2068      size_t num_regs = std::min(map.RegWidth() * 8,
2069                                 static_cast<size_t>(code_item->registers_size_));
2070      if (num_regs > 0) {
2071        Runtime* runtime = Runtime::Current();
2072        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2073        uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2074        const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2075        DCHECK(reg_bitmap != nullptr);
2076        const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2077        const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2078        QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2079        // For all dex registers in the bitmap
2080        StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2081        DCHECK(cur_quick_frame != nullptr);
2082        for (size_t reg = 0; reg < num_regs; ++reg) {
2083          // Does this register hold a reference?
2084          if (TestBitmap(reg, reg_bitmap)) {
2085            uint32_t vmap_offset;
2086            if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2087              int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2088                                                        kReferenceVReg);
2089              // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2090              mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2091              if (*ref_addr != nullptr) {
2092                visitor_(ref_addr, reg, this);
2093              }
2094            } else {
2095              StackReference<mirror::Object>* ref_addr =
2096                  reinterpret_cast<StackReference<mirror::Object>*>(
2097                      GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2098                                  frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2099              mirror::Object* ref = ref_addr->AsMirrorPtr();
2100              if (ref != nullptr) {
2101                mirror::Object* new_ref = ref;
2102                visitor_(&new_ref, reg, this);
2103                if (ref != new_ref) {
2104                  ref_addr->Assign(new_ref);
2105                }
2106              }
2107            }
2108          }
2109        }
2110      }
2111    }
2112  }
2113
2114  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2115    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2116  }
2117
2118  // Visitor for when we visit a root.
2119  const RootVisitor& visitor_;
2120};
2121
2122class RootCallbackVisitor {
2123 public:
2124  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2125     : callback_(callback), arg_(arg), tid_(tid) {}
2126
2127  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2128    callback_(obj, arg_, tid_, kRootJavaFrame);
2129  }
2130
2131 private:
2132  RootCallback* const callback_;
2133  void* const arg_;
2134  const uint32_t tid_;
2135};
2136
2137void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2138  VerifyObject(class_loader_override);
2139  tlsPtr_.class_loader_override = class_loader_override;
2140}
2141
2142void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2143  uint32_t thread_id = GetThreadId();
2144  if (tlsPtr_.opeer != nullptr) {
2145    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2146  }
2147  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2148    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2149  }
2150  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2151  if (tlsPtr_.class_loader_override != nullptr) {
2152    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2153            kRootNativeStack);
2154  }
2155  if (tlsPtr_.monitor_enter_object != nullptr) {
2156    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2157  }
2158  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2159  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2160  HandleScopeVisitRoots(visitor, arg, thread_id);
2161  if (tlsPtr_.debug_invoke_req != nullptr) {
2162    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2163  }
2164  if (tlsPtr_.single_step_control != nullptr) {
2165    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2166  }
2167  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2168    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2169    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2170    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2171        shadow_frame = shadow_frame->GetLink()) {
2172      mapper.VisitShadowFrame(shadow_frame);
2173    }
2174  }
2175  if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2176    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2177    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2178    for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2179        shadow_frame != nullptr;
2180        shadow_frame = shadow_frame->GetLink()) {
2181      mapper.VisitShadowFrame(shadow_frame);
2182    }
2183  }
2184  // Visit roots on this thread's stack
2185  Context* context = GetLongJumpContext();
2186  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2187  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2188  mapper.WalkStack();
2189  ReleaseLongJumpContext(context);
2190  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2191    if (frame.this_object_ != nullptr) {
2192      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2193    }
2194    DCHECK(frame.method_ != nullptr);
2195    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2196  }
2197}
2198
2199static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2200                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2201  VerifyObject(*root);
2202}
2203
2204void Thread::VerifyStackImpl() {
2205  std::unique_ptr<Context> context(Context::Create());
2206  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2207  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2208  mapper.WalkStack();
2209}
2210
2211// Set the stack end to that to be used during a stack overflow
2212void Thread::SetStackEndForStackOverflow() {
2213  // During stack overflow we allow use of the full stack.
2214  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2215    // However, we seem to have already extended to use the full stack.
2216    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2217               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2218    DumpStack(LOG(ERROR));
2219    LOG(FATAL) << "Recursive stack overflow.";
2220  }
2221
2222  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2223
2224  // Remove the stack overflow protection if is it set up.
2225  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2226  if (implicit_stack_check) {
2227    if (!UnprotectStack()) {
2228      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2229    }
2230  }
2231}
2232
2233void Thread::SetTlab(byte* start, byte* end) {
2234  DCHECK_LE(start, end);
2235  tlsPtr_.thread_local_start = start;
2236  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2237  tlsPtr_.thread_local_end = end;
2238  tlsPtr_.thread_local_objects = 0;
2239}
2240
2241bool Thread::HasTlab() const {
2242  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2243  if (has_tlab) {
2244    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2245  } else {
2246    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2247  }
2248  return has_tlab;
2249}
2250
2251std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2252  thread.ShortDump(os);
2253  return os;
2254}
2255
2256void Thread::ProtectStack() {
2257  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2258  VLOG(threads) << "Protecting stack at " << pregion;
2259  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2260    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2261        "Reason: "
2262        << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
2263  }
2264}
2265
2266bool Thread::UnprotectStack() {
2267  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2268  VLOG(threads) << "Unprotecting stack at " << pregion;
2269  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2270}
2271
2272
2273}  // namespace art
2274